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Abstract

I discuss several issues related to “classical” spacetime structure. I review Galilean, Newto-
nian, and Leibnizian spacetimes, and briefly describe more recent developments. The target
audience is undergraduates and early graduate students in philosophy; the presentation
avoids mathematical formalism as much as possible.

1. Introduction

One often associates spacetime—a four-dimensional geometrical structure representing both
space and time—with relativity theory, developed by Einstein and others in the early part of
the twentieth century.! But soon after relativity theory appeared, several authors, such as
Hermann Weyl (1952 [1918]), Elie Cartan (1923, 1924), and Kurt Friedrichs (1927), began to
study how the spatio-temporal structure presupposed by classical, i.e., Newtonian, physics
could be re-cast using the methods of four-dimensional geometry developed in the context
of relativity.

These reformulations of classical physics were initially of interest for the insight they
offered into the structure of relativity theory.? But this changed in 1967, when Howard

Stein proposed that the notion of a “classical” spacetime could provide important insight

Email address: weatherj@uci.edu (James Owen Weatherall)
!The idea of “spacetime” was actually introduced by Minkowski (2013 [1911]), several years after Einstein
first introduced relativity theory.
2And indeed, they remain of interest for this reason: see, for instance, Friedman (1983), Malament
(1986a,b, 2012), Earman (1989b), Fletcher (2014), Barrett (2015), Weatherall (2011a,b, 2014, 2017d,c), and
Dewar and Weatherall (2017) for philosophical discussions of the relationship between relativity theory and
Newtonian physics that make heavy use of this formalism.
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into Newtonian physics itself—including on issues that preoccupied Newton and his contem-
poraries regarding the status of “absolute” space and motion. On Stein’s reconstruction,
Newton’s oft-decried “absolutism” about space amounted to the claim that the laws govern-
ing the motion of bodies presupposed that there are (unobservable) facts about which bodies
are at rest. This idea can be reconstructed as a claim that space and time together have
a certain geometrical structure, now known as Newtonian spacetime. Leibniz’s response,
meanwhile, that there was no discernible difference between whether all of the bodies in
the world were at rest or in uniform rectilinear motion, can then be taken as an argument
that Newton’s laws assume more structure than can be supported on metaphysical grounds;
Leibniz, it seems, believed space and time had the structure of Leibnizian spacetime, which,
in a certain precise sense, is less structure than Newtonian spacetime.?

Perhaps the most striking and influential aspect of Stein’s paper was his argument that
in fact the spatio-temporal structure presupposed by Newton’s laws of motion was somewhat
less than Newton imagined—though somewhat more than Leibniz would have accepted. This
intermediate structure has come to be known as Galilean spacetime.* Remarkably, Galilean

spacetime provides the resources needed to both avoid Leibniz’s famous shift argument,®

which exposes the unobservability of absolute uniform rectilinear motion, and also to accept

3For more on the notion of “structure” being used here, see Barrett (2015) and Weatherall (2017b).
Newtonian spacetime was introduced in Stein’s original 1967 paper; Leibnizian spacetime was introduced
by Stein somewhat later (Stein, 1977), and then developed by Earman (1977, 1979, 1986, 1989b,a). Note,
however, that there are subtle differences in Earman and Stein’s understanding of what Leibnizian spacetime
captures (Weatherall, 2017¢), and that Earman, in particular, believed that Leibnizian spacetime includes
an implicit commitment to some form of “subtantivalism” (see footnote 7) that Leibniz would have denied;
he suggested that one should move to an algebraic framework to better reflect Leibniz’s views. For replies
to this proposal, see Rynasiewicz (1992) and Rosenstock et al. (2015).

“What we now call Galilean spacetime was first discussed by Weyl (1952 [1918]). It is not clear whether
any of Newton’s contemporaries were in a position to recognize this intermediate structure, though Stein
(1967, 1977) and others have suggested that Christian Huygens came closest. See Stan (2016) for a recent
discussion of Huygens’ views on rotation, which is the context in which he most closely approached the idea
of Galilean spacetime.

What I call the shift argument concerns setting the whole world in motion at a constant velocity; it
is sometimes known as the “kinematic” shift argument, to distinguish it from the “static” shift argument,
wherein one considers shifting the entire universe by some fixed amount (Pooley, 2013); see also footnote 7.
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Newton’s famous bucket argument, which Newton and many others have taken to show that
at least some absolute motions are empirically detectable.

The remainder of this chapter will proceed as follows.® I will begin by making some
remarks about “space” in classical physics. I will then introduce the notion of Galilean
spacetime and discuss several senses in which it is the spacetime structure presupposed by
Newtonian physics. Next I will discuss Newtonian spacetime and Leibnizian spacetime. |
will conclude by briefly discussing some other ideas concerning classical spacetime structure,
including the recent proposal by Saunders (2013) that one should take a structure strictly
intermediate between Galilean and Leibnizian spacetimes to be what is really presupposed

by Newtonian physics.

2. Space

Before discussing classical spacetime, we first consider the geometry of space—something
that all of the structures I will discuss below agree on. Space, in what follows, will be
understood as a collection of (infinitesimally) small places, i.e., locations where small bodies

" (Since most physical

may be situated. We will call these locations the points of space.
objects are not vanishingly small, their locations cannot be represented by single points
of space; in general, bodies occupy regions of space, i.e., collections of contiguous points.)

This collection of points is understood to be structured, in the sense that there are various

SMy presentation will not be particularly historically sensitive; nor will it be technical. For more historical
detail, but with the same basic perspective, see Weatherall (2016¢) and (especially) references therein; for
technical details, see Weatherall (2016b). For a treatment at a level comparable to the one attempted here,
which also develops ideas from relativity theory, see Geroch (1981); a more philosophical perspective is
offered by Maudlin (2012).

" There is a subtle metaphysical issue here, concerning whether we understand these “points” or “places”
to themselves be physical objects, existing (metaphysically) prior to and independently of bodies (substan-
tivalism); or if instead they characterize something about relations between bodies (relationism). Nothing
I say here should be understood to be taking one or the other of these positions for granted. Perhaps more
importantly, the classical spacetime structures I describe here are supposed to provide insight on a different
issue, concerning the character of motion, rather than, in the first instance anyway, the metaphysics of
space or time. See Weatherall (2015b, 2017¢) for more on this perspective; for further discussion and other
perspectives, see Earman (1989b), Belot (2000), and Pooley (2013).
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Figure 1: (a) An arrow u relating two points p and g of space. (b) “Scaling” an arrow u at a point p by
various amounts, including flipping its direction. (c) Adding arrows w and v: here u+ v is the arrow relating
p are 7, where 7 is the point determined by ¢ and v, and ¢ is the arrow determined by p and w.

further relations defined on them. It is these relations that one aims to characterize when
one speaks of “spatial structure”—or, mutatis mutandis, “spatio-temporal structure”.

For example, space is three dimensional. We make this idea precise by introducing the
notion of an arrow between pairs of points of space.® (See Fig. 1(a).) First, pick any two
points of space, p and q. We suppose one can always draw a (unique) arrow whose tail
begins at p and whose head lands at ¢, and likewise, one can always draw an arrow whose
tail begins at ¢ and whose head ends at p. Conversely, we suppose that any arrow whose
tail begins at p ends somewhere in space, i.e., at some point. This means that we can think
of any point and an arrow originating at that point as uniquely picking out another point
of space; and we can think of any ordered pair of points as uniquely determining an arrow.

We will call arrows that originate at a point p arrows at p. We suppose that given
an arrow at p, one can identify the “same” arrow—i.e., an arrow with the same length
and orientation—at any other point. Thus it makes sense to speak of an arrow without

mentioning the point at which it is based.

8These arrows will make space a (three dimensional) affine space. See Malament (2009), or Weatherall
(2016b) for details.
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Now pick any point of space, p. We define two basic ways of manipulating the arrows at
p. For one, we assume we can always “scale” or any arrow. (See Fig. 1(b).) That is, given
any arrow u (say), one can uniquely identify an arrow that points in the same direction as
u, but which is twice as long (say). We will call this arrow 2u. Likewise, one can identify
an arrow that points in precisely the opposite direction as u; we will call this —u, short for
(—1)u. Given any arrow u at p, Ou is the (unique) arrow from p to itself.

The second operation one can perform on arrows at a point is to add them to one another.
Consider two arrows u and v at p. We define the arrow u + v to be the unique arrow from
p to the point r, where r is defined as follows: first, consider the point ¢ determined by p
and u; then, take v, and let r be the point determined by ¢ and v. (See Fig. 1(c).) In other
words, we understand u + v to be the arrow taking us from p to the point we would reach by
first following v and then following v. We assume that for all v and v, u + v = v + u—i.e.,
following v and then u leads to the same place as following v and then v.”

I can now say what it means for space to be three dimensional. Space is three dimensional
just in case at any point p, there exist three arrows, z, y, and z, which are such that (1)
none of these three can be constructed by any process of scaling or adding the other two;
and (2) one can construct any arrow v at p just by scaling and/or adding together z, y, and
z. The important thing, here, is that for ordinary space, any collection of arrows with these
two properties always has exactly the same number of elements: namely, three.

There is a bit more structure that we will take space to have. First, given any two points
p and ¢, we assume we can say how far apart they are: that is, we have a notion of spatial

distance.l® In other words, we assign a length—a non-negative number, which is zero only

9The arrows at each point are to be understood as forming a vector space; and there is a canonical
isomorphism between the vector spaces at each point. Vector spaces are required to satisfy some additional
conditions that I do not mention, but these are all met by the mental model meant to be invoked by this
description. See the texts already cited for details.

10This notion of spatial distance consists in a Euclidean metric on the vector space of arrows between
points.



for the arrow taking a point to itself—to the arrow v between p and ¢, which we will write
||v]|. Likewise, given two arrows u and v, we can assign an angle—a number between 0 and
27—to0 them, where an angle of 0 (or 27) means the arrows point in the same direction; an
angle of m means they point in opposite directions; and an angle of 7/2 or 37 /2 means they
are orthogonal, i.e., the angle between uw and v is precisely the same as the angle between
u and —v (or, equivalently, between —u and v). Finally, we assume that this notion of
length satisfies the following two conditions: (a) for any real number a and any arrow u,
\lau|| = |a|-||ul||, where |a]| is the absolute value of a; and (b) if u and v are orthogonal, then

[l +[]* = [Jul|* + [Jo]|*.

3. Galilean Spacetime

We now turn to our first spacetime structure: Galilean spacetime. To characterize Galilean
spacetime, we begin much as in our discussion of space: Galilean spacetime consists in a
collection of points, now understood as locations not only in space, but also in time. Rather
than “places”, these locations are events, in the sense that they represent occurrences in a
small region of space for an instant of time. They are not necessarily significant events: an
event might be a speck of dust existing at a moment, or even the occurrence of nothing at
all.

Just as ordinary extended objects are not located at single points of space, neither are
objects that are extended in space—say, a rope—nor objects that persist through time—
say, a particle or a person—represented by single points in spacetime. Instead, these are
represented by various sorts of curves and surfaces, as described below.

This collection of events is once again structured. In particular, Galilean spacetime is a
four-dimensional “space” of events, in much the same way that space is three dimensional.
That is, we suppose that any pair of spacetime points p and ¢ are uniquely related by an

arrow; and that given any point p, and any arrow v, there is a unique point ¢ such that v is
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the arrow from p to ¢. Now, though, we suppose that at any point p of Galilean spacetime,
one can find four arrows—t, z, y, and z—with the properties that (1) none of these four
can be constructed by any process of scaling or adding the other three; and (2) one can
construct any other arrow by scaling and /or adding together ¢, z, y, and 2.1

Now consider any two points p and ¢ in Galilean spacetime. There are several additional
relationships that hold between them. One such notion is temporal distance, t, which assigns
a real number to any ordered pair of events—or, equivalently, a temporal length to any arrow
relating events. This number represents the duration between those two events. Temporal
distance has the following properties. First, if u and v are arrows, then t(u+v) = t(u)+t(v),
i.e., if p and ¢ are related by u, and ¢ and r are related by v, then the temporal distance
between p and r is the sum of the temporal distance between p and ¢ and the temporal
distance between ¢ and r. Likewise, given any real number a and any vector u, the temporal
distance satisfies t(au) = at(u), where on the left hand side of this equation we are applying
the scaling operation, and on the right hand side we are just multiplying real numbers.!?
Finally, we can always find a (non-unique) collection of three arrows, z, y, and z, with the
properties that (1) none of these three can be constructed by any process of scaling or adding
the other two; and (2) the temporal distance assigned to each of these arrows, and thus all
other arrows that can be constructed by scaling and adding them, is zero.

If the temporal distance from p and ¢ is positive, we say that ¢ is in the future of p; if
it is negative, we say it is in the past of p; if it is zero, then p and ¢ are simultaneous. Now
let p be a point, and let z, y, and z be three arrows satisfying (1) and (2) in the previous
paragraph. Then any point ¢ related to p by an arrow that can be constructed by scaling or

adding z, y, and z will be simultaneous with p, and all events simultaneous with p can be

Hn other words, Galilean spacetime consists in a four-dimensional affine space of events, with further
structure to be described.

12That is, temporal duration is a linear functional acting on the vector space associated with Galilean
spacetime.
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Figure 2: Galilean spacetime may be thought of as consisting of copies of three-dimensional space stacked
on top of one another to form a four-dimensional structure. (a) Here points p and ¢ are simultaneous, and so
the arrow between them has temporal length 0, but non-zero spatial length; the point r is not simultaneous
with p or ¢ and so it has a non-zero temporal distance from both, and its spatial distance to p and ¢ is not
defined. (b) Here we depict the straight line through p determined by a given arrow of unit temporal length.

found in this way. Thus, the events simultaneous with p form a three-dimensional “space”.
We take such collections to represent space at a time.

Finally, given space at any time, Galilean spacetime includes a notion of spatial distance
between those events, and a notion of angle between arrows relating those events, that satisfy
all of the conditions we placed on spatial distance above. Note, however, that we do not
have any notion of spatial distance between points that are not simultaneous—a caveat that
will turn out to be important in what follows.

Summing up, we can think of Galilean spacetime as an infinite collection of copies of
three-dimensional space, stacked on top of one another to form a four-dimensional struc-
ture.!® (See Fig. 2(a).) Each copy of space has all of the structure we described in the
previous section, including the relations of spatial distance and angle. And between any two

slices, we have a notion of duration. It is in this sense that Galilean spacetime may be taken

13 More precisely, Galilean spacetime is a four-dimensional affine space endowed with (1) a non-vanishing
linear functional ¢ on its associated vector space; and (2), on each affine subspace by the subspace of vectors
to which ¢ assigns 0, a Eucliean metric h.



to represent space and time—i.e., to deserve the name “spacetime”.

Having described this structure, we can now say the sense in which it is the “right”
structure for Newtonian physics. The key is to understand what Galilean spacetime allows
one to say about motion. Consider a particle—i.e., some vanishingly small body that we
understand to “persist” in the sense of existing over time. We represent this particle by
a collection of events—specifically, by a curve through spacetime with the property that
it intersects each spatial slice no more than once.!* Such a curve is called a “trajectory”
or a “world-line”. The idea is that the (single) point of intersection between the particle’s
world-line and any spatial slice represents the location of the particle at that time. The
whole world-line, then, represents the history of the particle over time: it consists in the
collection of places, at successive times, that are occupied by the particle. In other words,
it represents the motion of the particle through space.

Extended bodies are represented similarly, by “world-tubes” that are bounded in each
slice of space; the intersection of the world-tube with each slice represents the configuration
of the body in space at that instant. In what follows, I will focus on the particle case for
simplicity, though much of what is said carries over because one can generally associate
a “center of mass’ curve with extended bodies, which characterizes their mass-averaged
motion.

We now turn to Newton’s laws of motion. We first remark that, in Galilean spacetime,
we have the resources to characterize a special kind of trajectory: namely, a “straight line
through spacetime”. (See Fig. 2(b).) Given any point p and any arrow v with temporal
length one, we define the straight line trajectory through p with 4-velocity v to consist of all
the points one can reach from p by scaling v. (We say 4-velocity because the arrow v relates

points in four-dimensional spacetime.) These trajectories describe motions through space-

14We intend by “curve” a map from (some open subset of) the real numbers into Galilean spacetime that
is continuous and at least twice differentiable relative to a topological and differential structure canonically
determined by the affine space structure. For details, see Weatherall (2016b).
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Figure 3: The motion of a body is described by its 4-velocity, which is an arrow w with temporal length
1. (a) To recover ordinary “3-velocity” one introduces an observer O with its own 4-velocity; the (relative)
3-velocity of the body at p is given by V' = u — O, which is an arrow with temporal length 0. (b) Two
different observers, O and O’, with different states of motion, will determine different 3-velocities, V and
V’. Tt is in this sense that (3-)velocity is relative in Galilean spacetime.

time wherein a body moves in some fixed direction at a constant velocity. Such trajectories

play an important role in Newton’s theory, encapsulated in his first law of motion.

Newton’s First Law: In the absence of any external force, massive bodies will

follow straight line trajectories.

This law establishes a tight connection between two classes of curves: the mathemati-
cally privileged curves picked out by the structure of Galilean spacetime, and the physically
privileged curves picked out by the “default,” force-free motions of bodies. These default
trajectories are known as inertial trajectories.'®

Before proceeding, let us briefly comment on the role of 4-velocity here. We usually
understand velocity as a quantity with some direction (and magnitude) in space; 4-velocity,

meanwhile, has direction in spacetime. These are different. To recover velocity as we usually

conceive of it—i.e., 3-velocity—we need to introduce an observer, O, which is an idealized

15See Earman and Friedman (1973) for a discussion of the status of Newton’s first law of motion; see
DiSalle (2016) for a discussion of inertial frames more generally.
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measuring apparatus, situated somewhere in space and with its own inertial state of motion
(represented by some trajectory with 4-velocity, which we also denote O). 3-velocity at a
time as determined by this observer is given by u — O, where u is the 4-velocity of the body
at that time. (See Fig. 3(a).) This will always be a vector with temporal length 0 (since O
and u both have temporal length one), and so 3-velocity relative to any observer has spatial
length, representing the “speed” of motion.

The important point about 3-velocity is that it is an essentially relative notion: that is,
its value at a time depends on the state of motion of the observer. Different observers, with
different states of motion, would attribute different 3-velocities to a body. (See Fig. 3(b).)
Indeed, in Galilean spacetime, the notion of an “absolute”, i.e., non-relative, 3-velocity
does not make sense. But this does not mean that all measures of motion are relative. In
particular, 4-velocity may be characterized independently of any observer.

Thus far, we have focused on straight line trajectories. But not all trajectories are
straight: in general, the motion of a body will change over time. We capture this by
associating an instantaneous 4-velocity with a body at each instant. Given two (necessarily
non-simultaneous) points p and ¢ on a body’s trajectory, we can define the change in 4-
velocity from p to ¢ to be the difference v(p) — v(q), where v(p) is the 4-velocity at p and
v(q) is the 4-velocity at g; by considering the change in 4-velocity between pairs of points
that are ever closer together, and scaling appropriately, we can define the instantaneous rate
of change of the particle’s 4-velocity, or its acceleration, at each point of its worldline. The
acceleration will itself be an arrow at p with temporal length 0. Acceleration is important

in Newton’s second law of motion.

Newton’s Second Law: If a body of mass m is subject to an external force F

at a point, then the acceleration a of the body at that point will satisfy F' = ma.

Thus we see that an impressed force, represented by an arrow F', causes a body to

deviate from inertial motion, i.e., to accelerate in the direction of the force. The mass of the
11



body is what determines the magnitude of the acceleration. It is important to emphasize
that acceleration as just defined in Galilean spacetime is an absolute quantity—it is defined
without reference to any observer—which is crucial to Newton’s second law because force is
meant to be an objective, absolute quantity (i.e., not observer dependent), and it would not
make sense to have a law that equates a relative quantity with an absolute quantity.

For completeness, we include Newton’s third law, although it is not essential to the

discussion (and we suppress commentary for space reasons).

Newton’s Third Law: If body 1 exerts a force F' on body 2, then body 2

exerts a force —F on body 1.

Finally, although it is not strictly part of Newtonian mechanics, it is worth noting that
Newton’s laws provide a framework for detailed studies of particular forces. Newton, for

instance, focused on gravitation.

Newton’s Law of Universal Gravitation: A body of mass my located at
point p will exert on a body of mass ms located at (simultaneous) point ¢ a force
given by

F— Gm1m2
[Ir|}?

where r is the arrow from ¢ to p, ||r|| is the spatial length of that arrow, and G

is Newton’s constant.

It is worth emphasizing that this law invokes temporal length (to define simultaneity)
and spatial distance (to define distance between the bodies). To further relate this force
to the acceleration of a body, of course, one also requires the full four dimensional arrow
structure of spacetime, as discussed above in connection with Newton’s second law. Thus,
we see that all of the structure of Galilean spacetime enters into Newton’s laws of motion

and his law of universal gravitation.
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4. Newtonian and Leibnizian Spacetimes

Although the language may be anachronistic, Newton, in the Principia and elsewhere,'% took
for granted the structure of Galilean spacetime. But as Stein (1967) convincingly argues,
Newton also believed that spacetime had further structure: namely, what Newton called
absolute space, which is the structure needed to say whether two places, at different times,
are “the same”. In other words, Newton believed there was a basic matter of fact about
whether any given object remains in one place over time—i.e., at rest—or if it moves.

As we have just seen, this is precisely what Galilean spacetime does not provide. There,
one can say whether a body is accelerating, i.e., if its velocity is changing over time. But
one cannot say that the body is at rest or moving (at a constant velocity).

To represent this further structure, we need a way of identifying points in space at
different times: that is, a way of saying that “here” now is the same as “here” five minutes
ago. We do so by choosing some arrow &, of unit temporal length, as special. This arrow
represents Newton’s absolute space as follows: two events p and ¢ are at the same place
(at different times) if and only if the arrow from p to ¢ is some multiple (possibly zero) of
¢. Likewise, a particle is at rest (relative to absolute space) if its worldline is the straight
line determined by £. More generally, a particle with constant velocity (in the sense of
Galilean spacetime) has absolute velocity ||{ — u||, where u is the arrow of temporal length
one determining that particle’s world-line. If we take Galilean spacetime, and we add to it
this further structure of a privileged arrow &, we arrive at Newtonian spacetime.'”

There are several reasons why someone—even someone who accepted all of Newton’s
physics—might worry that the world does not exhibit the full structure of Newtonian space-

time. One particularly influential reason for skepticism, most famously associated with

16Gee, especially, the Scholium to the Definition, i.e., the Scholium on Space, Time, Place, and Motion
(Newton, 1999 [1687 / 1713 / 1726], pp. 408-415).

17In other words, Newtonian spacetime is Galilean spacetime as described in footnote 13, with a privileged
vector of unit temporal length.
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Leibniz’s arguments in his correspondence with Clarke (Leibniz and Clarke, 2000, pp. 18f.),
is that the structure of absolute space, as characterized by £, has no observable consequences.
In particular, one could take any system of bodies and imagine setting the entire system in
motion, at some constant speed (relative to &) in some fixed direction, and show that, by
the lights of Newton’s own theory, the relative motions of the bodies would be unchanged.

Newton fully understood this, of course: Corollary 5 to the Laws of Motion (Newton,
1999 [1687 / 1713 / 1726], p. 423) demonstrates precisely this fact. But Leibniz took it to
have great significance. He concluded, on its basis, that space and time could not have the
structure of absolute space.

But what structure would Leibniz attribute to space and time? It is not entirely clear
that a satisfactory or complete answer is to be extracted from Leibniz’s writings. But as
Stein (1977) argues, and Earman (1977, 1979, 1986, 1989b,a) develops, one might begin with
Leibniz’s claim, in various places, that all motion is relative—i.e., that there are facts only
about how the relative configurations of bodies change over time.'® In other words, it would
not make sense to say anything more about the motion of a given body than to describe the
rates at which its distance from other bodies is changing over time.

Both Newtonian spacetime and Galilean spacetime provide the resources to describe these
changes. One can consider, for instance, at each time a collection of point-like particles in
space, whose relative configuration is represented by the places at which they are located (and
the arrows between those places); and one can describe, by word-lines through spacetime, the
changes in relative position of these bodies over time. But one can also say more than this:
for instance, in both of these structures, there is a fact about each particle’s acceleration—
not as a relative matter of the rate of change of the relative velocity of one particle with

respect to another, but as an absolute matter. And this is precisely what someone who

181t is not universally accepted that Leibniz was committed to Leibnizian spacetime: see, for instance,
Roberts (2003); see also footnote 3. For more background on Leibniz’s views on physics (and philosophy of
physics), see, for instance, Garber (1995), McDonough (2014), and references therein.
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thinks all motion is relative would deny.

Thus, to characterize Leibniz’s views, we need to excise from Galilean spacetime the
structure that allowed us to distinguish a special class of motions—namely, the arrows
relating non-simultaneous points. We are left with Leibnizian spacetime, which is a collection
of events with a notion of temporal distance between pairs of events, such that the collection
of all points simultaneous with any given point have the structure of three-dimensional space
as described in section 2, but where we have no arrows between non-simultaneous events.'?

We saw above that Galilean spacetime—and thus, Newtonian spacetime—provided the
resources needed for Newtonian physics. Can we say the same of Leibnizian spacetime? In
short, no—for reasons Newton himself pointed out.?’ Indeed, Newton offered at least one
case in which absolute motion would be empirically testable. Imagine a bucket partially
filled with water. Newton argued that if the bucket is rotating (absolutely) then the surface
of the water will appear curved; if the bucket is at rest, then the surface of the water will
appear flat. Newton argued that this would be the case, according to his theory, even if
there were nothing in the universe but the bucket and the water, and so the behavior of the
water in the bucket could not have anything to do with merely relative motion.

This thought experiment has been very influential, and Newton himself believed it settled
the issue in favor of absolute space—i.e., Newtonian spacetime. But it is not quite what it
seems. The key to understanding the bucket experiment is to realize that any rotating object
is accelerating. In particular, each little bit of the bucket is constantly changing velocity,
because it is changing the direction in which it is moving. Thus Newton’s thought experiment
is not a way of measuring absolute motion in the sense of measuring absolute velocity.

Instead, it is an experiment to determine (one kind of) absolute acceleration. In other

9More precisely, Leibnizian spacetime is a three dimensional affine bundle over a one dimensional affine
space, where each fiber of the bundle is endowed with a Euclidean metric h and there is a one form ¢ on the
base space representing temporal distance.

20 Again, see the discussion in the Scholium to the Definitions (Newton, 1999 [1687 / 1713 / 1726], pp.
408-415).
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words, the bucket experiment is an argument that we need at least the structure of Galilean
spacetime to make sense of Newtonian physics; meanwhile, Leibniz’s shift argument against
Newtonian spacetime, that there are no empirical tests of absolute velocity in Newtonian
physics, still stands—as it must, in light of Corollary 5. Taken together, then, we are
pushed to Galilean spacetime as a spacetime structure intermediate between Newtonian

and Leibnizian spacetimes.

5. Maxwell-Huygens and Newton-Cartan Spacetimes

At the end of the previous section, I observed that in order to accommodate Newton’s bucket
thought experiment, one needs more structure than Leibnizian spacetime provides. We went
from this remark to the conclusion that one needs the structure of Galilean spacetime (at
least) to support Newtonian physics. But one might worry that this conclusion is too fast:
Galilean spacetime makes all acceleration absolute, whereas the bucket thought experiment
concerns only a very special kind of accelerated motion: namely, rotation. Perhaps rotation
must be absolute to accommodate Newtonian physics, but does it follow that all acceleration
is absolute?

This worry is buttressed by the fact that, immediately after Corollary 5 to the Laws of
Motion, Newton proves another result: Corollary 6 to the Laws of Motion, which establishes
that if a system of bodies is undergoing uniform linear acceleration—i.e., all of the bodies
have, in addition to their other motions, some fixed acceleration in a given spatial direction—
then their motions relative to one another would be indistinguishable from the case in which
that acceleration was absent (Newton, 1999 [1687 / 1713 / 1726], p.423ff). Corollary 6
makes precise a certain sense in which absolute linear acceleration has the same status as
absolute velocity.

Very recently, a number of authors have taken up the question of whether Corollary 6

motivated adopting some alternative spacetime structure, intermediate between Leibnizian
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spacetime and Galilean spacetime, asthe structure presupposed by Newtonian physics.?! For
instance, Simon Saunders (2013) argues that a spacetime structure that he calls Newton-
Huygens spacetime is the proper setting for Newtonian physics.?? Newton-Huygens space-
time is like Leibnizian spacetime—i.e., there are notions of spatial and temporal distance,
but no arrows between non-simultaneous events—except one has, in addition, a standard
for whether a system of bodies is rotating over time.?> But one does not, in general, have a
notion of absolute acceleration.

There are reasons to be cautious about accepting this move, however. For one, it is more
radical than it may at first appear. In Newtonian physics, forces are not relative: either
a body experiences a force or it does not.?* But then, by dint of Newton’s second law,
acceleration must also not be relative, since it is incoherent to say that an absolute quantity
is proportional to a relative quantity.?’ It follows that to accept Newton-Huygens space-
time, one needs to revise both the conceptual and mathematical foundations of Newtonian
physics.?® How significant a revision this amounts to, and whether it can succeed, is a topic
of ongoing debate.

A second reason to be cautious is that another response to Corollary 6 is available. In
particular, Eleanor Knox (2011) has argued that Corollary 6 supports a move to a different

theory of gravitation, sometimes known as geometrized Newtonian gravitation or Newton-

21Questions about classical spacetime structure in light of Corollary 6 are hardly new: see, for instance,
Stein (1977) and DiSalle (2008); see also Malament (1995) and Norton (1995) for an older discussion of the
“relativity of acceleration” in Newtonian physics in a different context. But whether Corollary 6 provides an
argument against Galilean spacetime has been of particular interest recently (Saunders, 2013; Knox, 2014;
Weatherall, 2016a, 2017a; Wallace, 2016, 2017; Teh, 2017; Dewar, 2017).

2Newton-Huygens spacetime was first introduced by Earman (1989b) under the moniker Mazwellian
spacetime (Earman, 1989b); Weatherall (2016a) and others have called it Mazwell-Huygens spacetime.

23In other words, Newton-Huygens spacetime is Leibnizian spacetime endowed with a standard of rotation
(Weatherall, 2017a).

24Curiously, Leibniz, too, seems to have taken force to be absolute in this sense, which may raise issues
for his views on space and time as reconstructed here. See Roberts (2003), Garber (2012), and McDonough
(2014) for more on Leibniz on force.

25 As Stein (1977, pp. 19-20) puts it in a very nice discussion of precisely these issues, absolute acceleration
is a wera causa in Newtonian physics.

206This is a project that Saunders (2013) and Dewar (2017) have undertaken.
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Cartan theory, developed by Cartan (1923, 1924) and Friedrichs (1927).2" Geometrized
Newtonian gravitation is a theory with the same empirical consequences as Newtonian grav-
itation, but set in a spacetime structure importantly different from any of those discussed

thus far: it is a theory in which spacetime is curved by the distribution of matter in the

universe, and where the motion of bodies in spacetime is influenced by that curvature.?

The details of geometrized Newtonian gravitation are beyond the scope of this chapter, but
one point is worth emphasizing. In geometrized Newtonian gravitation, while there are
(in general) no arrows between non-simultaneous events, there is nonetheless a standard of

absolute acceleration.
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