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Abstract: I show how Hamilton’s philosophical commitments led him to a causal 
interpretation of classical mechanics. I argue that Hamilton’s metaphysics of causation 
was injected into his dynamics by way of a causal interpretation of force. I then detail 
how forces remain indispensable to both Hamilton’s formulation of classical mechanics 
and what we now call Hamiltonian mechanics (i.e., the modern formulation). On this 
point, my efforts primarily consist of showing that the orthodox interpretation of potential 
energy is the interpretation found in Hamilton’s work. Hamilton called the potential 
energy function the force-function because he believed that it represents forces at work 
in the world. Multifarious non-historical arguments for this orthodox interpretation of 
potential energy are provided, and matters are concluded by showing that in classical 
Hamiltonian mechanics, facts about the potential energies of systems are grounded in 
facts about forces. Thus, if one can tolerate the view that forces are causes of motions, 
then Hamilton provides one with a road map for transporting causation into one of the 
most mathematically sophisticated formulations of classical mechanics, viz., Hamiltonian 
mechanics. 
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“The circular motion is (like every non-rectilinear [motion]) a continuous change of the 
rectilinear, and as this is itself a continuous change of relation in respect of external space, the 
circular motion is a change of the change of these external relations in space, and consequently 
a continuous arising of new motions; since, now according to the law of inertia, a motion, in so 
far as it arises, must have an external cause, while the body, in every point of this circle, is 
endeavouring, according to the same law, to proceed in the straight line touching the circle, 
which motion works against the above external cause, every body in circular motion 
demonstrates by its motion a moving force…Hence the circular motion of the body…is a real 
motion…a motion cannot take place without the influence of a continuously active external 
moving force…”1 

- Immanuel Kant (1724-1804) 
 

“…Very glad you have the Kant from Coleridge for me: try and send it soon. I have read a 
large part of the Critique of Pure Reason, and find it wonderfully clear, and generally quite 
convincing. Notwithstanding some previous preparation from Berkeley, and from my own 
thoughts, I seem to have learned much from Kant’s own statement of his views of Space and 
Time. Yet, on the whole, a large part of my pleasure consists in recognizing, through Kant’s 
works, opinions, or rather views, which have been long familiar to myself, although far more 
clearly and systematically expressed and combined by him.”2 

- Sir William Rowan Hamilton (1805-1865) 
 

“All mechanicians agree that reaction is equal and opposite to action, both when one body 
presses another, and when one body communicates motion to another. All reasoners join in the 
assertion, not only that every observed change of motion has had a cause, but that every change 
of motion must have a cause. Here we have certain portions of substantial and undoubted 
knowledge…We have, in the Mechanical Sciences, certain universal and necessary truths on 
the subject of causes…Axioms concerning Cause, or concerning Force, which as we shall see, 
is a modification of Cause, will flow from an Idea of Cause, just as axioms concerning space 
and number flow from the ideas of space and number or time. And thus the propositions which 
constitute the science of Mechanics prove that we possess an idea of cause, in the same sense 
in which the propositions of geometry and arithmetic prove our possession of the ideas of space 
and of time or number…the relation of cause and effect is a condition of our apprehending 
successive events, a part of the mind’s constant and universal activity, a source of necessary 
truths; or, to sum all this in one phrase, a Fundamental Idea.”3 

- William Whewell (1794-1866) 
 

“…in Whewell at Cambridge, I thought with delight that I perceived a philosophical spirit more 
deep and true than I had dared to hope for.”4 “…Whewell has come round almost entirely to 
my views about the laws of Motion.”5 

- Sir William Rowan Hamilton 
 
  
                                                 

1 (Kant 1903, 235-236). 
2 From W.R. Hamilton to Viscount Adare, July 19th, 1834. As quoted by (Graves 1885, 96). The last emphasis 

is mine. 
3 (Whewell 1858, 182-183). 
4 From W.R. Hamilton to Aubrey De Vere, Observatory, May 7th, 1832. As quoted by (Graves 1882, 554). 
5 From W.R. Hamilton to Lord Adare dated April, 1834. As quoted in (Graves 1885, 83). 
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Hamilton, Hamiltonian Mechanics, and Causation 
 
1 Introduction 
 

Sir William Rowan Hamilton (1805-1865) affirmed that every dynamical evolution is a 
causal evolution. His causal dynamics may seem out of place to the contemporary philosopher of 
physics because most everyone in that subdiscipline now agrees with David Papineau’s remark 
that “there is strong reason to doubt that causation is constituted by basic dynamical processes”.6 
These same philosophers also typically agree with Michael Redhead’s (1929-2020) comment that 
“physicists long ago gave up the notion of cause as being of any particular interest! In physics, the 
explanatory laws are laws of functional dependence…”7 Alongside this majority opinion is a 
somewhat prevalent and friendly story  about causation and the historical development of physics 
and its supporting mathematics. The story says that as physics grew more and more mathematically 
sophisticated, less and less room remained for causal relations in the ontologies of our best physical 
theories. As Marius Stan concluded very recently: 

 
…the basic laws no longer count as causal principles after 1790; nor do their local 
corollaries, the equations of motion. In effect, the laws no longer state facts about the 
basic causal powers of bodies, material substances, or their ontological analogues…This 
astonishing consequence—it really heralds the disappearance of causality from 
fundamental science—remained unnoticed until Russell came across it. Disappointingly 
for a modern reader, it eluded the 18th century’s great minds. Oblivious to the tectonic 
shift beneath their feet, philosophers and reflective men of science alike continued to 
refer to physics, whose rock bottom was then mechanics, as the ‘science of causes.’ But 
a hard-headed interlocuter might wonder where causes were hidden, seeing as they no 
longer reside in the laws.8  

 
I will argue that this conclusion (and so the prevalent story) is multiply flawed.9 As I’ve already 
said, and as I will argue in sect. 2, Hamilton’s 19th century mechanics was understood by him to 
be a causal approach to that mechanics, and, what appears to be all the rage these days 
notwithstanding, Hamilton’s two most important and revolutionary papers on classical mechanics 
(Hamilton 1834; Second Essay 1835) provide persuasive ammunition for a causal interpretation 
of the laws of modern classical physics. The student of the history of classical physics knows just 
how important these two papers are. Indeed, it is hard to overestimate their value, for in them, 
Hamilton impacted our modern understanding of the underlying mathematics of classical 
mechanics to the extent that when introducing classical mechanics to students, modern physics 

                                                 
6 (Papineau 2013, 127). 
7 (Redhead 1990, 146). See (Earman 1976, 6); (Earman 2011, 494 refusing there to go beyond minimal 

interpretations that preclude causal readings of the laws of electrodynamics); (Field 2003, 435); (Kutach 2013, 266, 
272-273, 282); (Loewer 2007); (Russell 1912-1913); (Schaffer 2008, 92). 

8 (Stan forthcoming, 17). 
9 In (Weaver draft), I also show why some prominent 18th century thinkers were not at all “oblivious”, but 

were instead rationally justified in their continued promulgation of causal interpretations of physical laws even if those 
laws are restricted to Stan’s [1] (Euler’s statement of the second law of motion) and [3] (Lagrange’s version of the 
principle of least action) in (Stan forthcoming). Indeed, in this essay I provide reasons for interpreting the principle of 
least action causally. 
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textbooks typically present Hamiltonian mechanics, that modern and sophisticated formulation of 
classical mechanics inaugurated by (Hamilton 1834, Second Essay 1835).10 
 
2  Hamilton’s Metaphysical Dynamics 
 2.1  Influences and Methodology: A Sample 
 

In his monumental work, The Critique of Pure Reason, Kant presented the “Second 
Analogy of Experience”. According to that analogy, any and all transmutation or change must be 
accompanied by obtaining causal relations.11  As Kant’s “principle of temporal sequence according 
to the law of causality” (a synthetic a priori judgment) stated, “[a]ll alterations occur in accordance 
with the law of the connection of cause and effect.”12 For Kant, every substance undergoing change 
is connected to something else. In 1755, some 26 years before the First Critique, Kant published 
the New Elucidation. The last section of that work explicates Kant’s Principle of Succession, which 
says that: 
 

No change can happen to substances except in so far as they are connected with other 
substances; their reciprocal dependency on each other determines their reciprocal 
change of state.13 

 
The connection with which Kant is concerned is the connection between cause and effect. That 
relation is not reducible to Humean regularity or constant conjunction (see Friedman, Causal Laws 
1992, 162; Kant 1933, 4-6). For Kant, the connection in succession bespeaks a modal tie because 
causation is a modal tie indicative of the natural necessitation of an effect by its cause. As Kant 
remarked in the Prolegomena to Any Future Metaphysics (1783): 
 

For this concept [of causation] positively requires that something A be such that 
something else B follow from it necessarily and in accordance with an absolutely 
universal rule…the effect is not merely joined to the cause, but rather is posited through 
it and results from it.14  
 

                                                 
10 As Jos Uffink has written, “I would remark in defense of textbook writers anonymous, that they, usually 

discuss Hamiltonian mechanics rather than Newtonian.” (Uffink 2002, 557) 
11 (Kant 1998, 304-316; B232-B258) where the latter reference cites in accordance with the section divisions 

of the 1787 edition of the first Critique. 
12 (Kant 1998, 304; B232). I have removed the emphasis of the first quotation in this sentence. 
13 (Kant 1992, 37). For Kant, this is a principle of “metaphysical cognition” (ibid.). Its tincture reminds one 

of Isaac Newton’s (1643-1727) third law of motion (i.e., the action-reaction principle). In the Prolegomena to Any 
Future Metaphysics, Kant annunciated three a priori principles about the cognition of appearances in experience. The 
last of these invokes an action-reaction principle (reminiscent of Newton’s third law of motion and the reciprocity 
mentioned in the quotation in the main text) understood as a type of epistemic guide or tool (Kant 1933, 66). 

14 I quote here the translation of Kant’s Prolegomena to Any Future Metaphysics (A91-92/B123-124) 
provided by Michael Friedman in (Friedman, Causal Laws 1992, 161-162) emphasis in the original. For a standard 
English translation of Kant’s Prolegomena, see (Kant 1933) or (Kant 2004).  

Compare: “the concept of cause implies a rule, according to which one state follows another necessarily” 
(Kant 1933, 76). 
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Universal and naturally necessary rules or laws back causal relations and are for Kant, therefore, 
causal laws.15 Elsewhere in the same work Kant would add: 
 

…natural necessity must be the condition on which effective causes are determined…If 
without contradiction we can think of the beings of understanding as exercising such an 
influence on appearances, then natural necessity will attach to all connexions of cause 
and effect in the sensuous world...16 

 
The excerpt reveals how Kant’s opinions about causation were not left isolated in his theoretical 
philosophy. They entered his natural philosophy as well. The laws are causal precisely because 
they reference quantities that ought to be interpreted as producers of distinctive effects. For 
example, a body accelerated from (relative) rest to some subsequent uniform motion enjoys an 
alteration of state. That alteration requires a cause, and that cause, for Kant is a force that naturally 
necessitates its effect. A second example comes from Kant’s own work. When a body enjoys a 
curvilinear or circular motion that motion is due to a cause that is a dynamically acting force 
bringing about a continual alteration of rectilinear motion. As Kant put it in his Metaphysical 
Foundations of Natural Science (1786): 
 

The circular motion is (like every non-rectilinear [motion]) a continuous change of the 
rectilinear, and as this is itself a continuous change of relation in respect of external 
space, the circular motion is a change of the change of these external relations in space, 
and consequently a continuous arising of new motions; since, now according to the law 
of inertia, a motion, in so far as it arises, must have an external cause, while the body, 
in every point of this circle, is endeavouring, according to the same law, to proceed in 
the straight line touching the circle, which motion works against the above external 
cause, every body in circular motion demonstrates by its motion a moving force…Hence 
the circular motion of the body…is a real motion…a motion cannot take place without 
the influence of a continuously active external moving force…17 

 
Hamilton’s natural philosophy was greatly influenced by Immanuel Kant’s theoretical and 

natural philosophy.18 Kant’s Second Analogy of Experience led Hamilton to the view that physical 

                                                 
15 There is a question about whether Kant’s laws of mechanics are identical to Newton’s laws of motion. For 

the view that they are identical, see (Friedman 2013). For the view that they are distinct, but perhaps similar, see 
(Watkins 2005). I should add that Watkins’s views have undergone an evolution. Compare (ibid.) to (Watkins 2019). 

16 (Kant 1933, 111-112). 
17 (Kant 1903, 235-236). See also (Friedman 2013, 335-412). 
18 By 1834, Hamilton would express admiration for Kant in correspondence with Viscount Adare:   
 

“…Very glad you have the Kant from Coleridge for me: try and send it soon. I have read a large 
part of the Critique of Pure Reason, and find it wonderfully clear, and generally quite convincing. 
Notwithstanding some previous preparation from Berkeley, and from my own thoughts, I seem 
to have learned much form Kant’s own statement of his views of Space and Time. Yet, on the 
whole, a large part of my pleasure consists in recognizing, through Kant’s works, opinions, or 
rather views, which have been long familiar to myself, although far more clearly and 
systematically expressed and combined by him.” From W.R. Hamilton to Viscount Adare, 
Observatory, July 19th, 1834. As quoted by (Graves 1885, 96). The last emphasis is mine. 
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evolutions must involve obtaining causal relations,19 and it would even help Hamilton justify a 
new interpretation of algebra.20 However, it was the former influence relation, the one resulting in 
Hamilton’s Kantian conviction that dynamics must be interpreted causally that encouraged him to 
make room for causally efficacious forces in the ontology of his new formulation of mechanics 
(q.v., sect. 4.1).  

To discern even more clearly how Hamilton ensured that his mechanics remained 
committed to a causal ontology, look beyond the influence of Kant to see that of Joseph-Louis 
Lagrange (1736-1813), a brilliant mathematician and physicist responsible for the initial 
development of a formulation of classical mechanics known today as Lagrangian mechanics. 
Hamilton said that mechanics is the “the science of force, or of power acting by law in space and 
time” and that it has 

 
…undergone already another revolution and has become already more dynamic, by 
having almost dismissed the conceptions of solidity and cohesion, and those other 
material ties, or geometrically imaginable conditions, which Lagrange so happily 
reasoned on, and by tending more and more to resolve all connexions and actions of 
bodies into attractions and repulsions of points…21 

 
For Hamilton, mechanics is the study of forces acting by means of repulsions or attractions on 
point masses situated in space and time.22 These forces are the causes of motions or changes 
thereof.  

When presenting his own methodology for the study of optics, Hamilton (1931, 314) 
approvingly quotes Newton’s Opticks. The passages quoted explicate Newton’s theory of analysis 
or composition. Newtonian analysis begins by empirical observation and experimentation. It then 
recommends cogent inductive inferences to general conclusions on the basis of experimental 
results and observations. Hamilton records Newton’s remarks as follows: 
 

By this way of analysis, we may proceed from compounds to ingredients, and from 
motions to the forces producing them; and, in general, from effects to their causes, and 
from particular causes to more general ones, till the argument end in the most general. 
This is the method of analysis: and the synthesis consists in assuming the causes 
discovered, and established as principles, and by them explaining the phenomena 
proceeding from them, and proving the explanations…23  

 
                                                 
There are reasons to believe that Hamilton was one of the first British theoreticians to seriously study Kant. See 
(Hankins 1980, 179) who notes that William Whewell (1794-1866) also helped spread Kantian ideas to British 
thinkers. I can find hardly any work on the relationship between Kant and Hamilton. 

19 (Hankins 1980, 178-179). 
20 As Graves’s summary indicates, 
 

“…we regard him [Hamilton] as having made a decidedly Kantian movement, when he 
conceived and published that view of algebraic science, including the various calculi, to which 
we have just now referred.” (Graves 1842, 107)  
 

21 (Hamilton 1834, 247). 
22 Elsewhere, he says that dynamics, or what he called “Dynamical Science”, consists of “reasonings and 

results from the notion of cause and effect” (Hamilton, Conjugate Functions 1835, 7). 
23 I quote Hamilton’s exact quotation of Newton at (Hamilton 1931, 314). But see (Newton 1952, 404-405). 
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For good measure, Hamilton adds (after his quotations of Newton) that “[i]n the science of optics, 
which has engaged the attention of almost every mathematician for the last two thousand years, 
many great discoveries have been attained by” means of utilizing the above Newtonian 
methodology.24 Hamilton’s reliance upon Newton for an explication of his own scientific method 
supports the judgment that Hamilton believed that forces cause motions, and that scientists 
engaged in sound physical inquiry investigate the natural world with the aim of uncovering causal 
structure revealed in the actions of forces.25 Forces are the means whereby causation enters 
classical mechanics.  
 Hamilton wasn’t just influenced by Kant, Lagrange, and Newton. He also had numerous 
and important interactions with the great polymath William Whewell (1794-1866).26 Whewell was 
an immensely important intellectual in the 19th century. His influence on the development of 
physics can not only be seen in his central role in the invention of terms like ‘physicist’, ‘anode’, 
‘cathode’, and ‘electrolysis’, but it can also be seen in the impact he left on the thought of Michael 
Faraday (1791-1867), James Clerk Maxwell (1831-1879), and, of course, Hamilton.27  
 Whewell wrote extensively on classical mechanics. He even articulated a unique 
formulation and interpretation of the three classical laws of motion and sought to justify those laws 
with their accompanying interpretations by appeal to an elaborate metaphysics of causation.28 Like 
Newton29 and Lagrange30, Whewell believed that forces cause motions. He said that “the term 
Force” denotes “that property which is the cause of motion produced, changed, or prevented,”31 
and that: 
 

By Cause we mean some quality, power, or efficacy, by which a state of things produces 
a succeeding state. Thus the motion of bodies from rest is produced by a cause which 
we call Force: and in the particular case in which bodies fall to the earth, this force is 
termed Gravity. In these cases, the Conceptions of Force and Gravity receive their 
meaning from the Idea of Cause which they involve: for Force is conceived as the Cause 
of motion.32 

 
Hamilton and Whewell maintained an important and mutually beneficial professional relationship. 
And while I cannot now explore all of the details of their interactions (see Graves 1882, 1885, 

                                                 
24 (Hamilton 1931, 315). 
25 Hamilton’s language elsewhere is quite strong. He believed in axioms of causation which entail that bodies 

in motion, particularly those moving along curves, enjoy that motion because of causes that produced that motion 
(Hankins 1980, 178). By using axioms of causation, Hamilton may have been showing the influence of Whewell on 
his work.  

26 On Whewell, see (Butts 1968); (Fisch and Schaffer 1991); (Whewell 1836, 1858, 1967) and for valuable 
correspondence, see (Todhunter, vol. 1 and vol. 2 1876). 

27 For a discussion of Whewell’s influence on Maxwell, see (Smith 1998, 305). For a discussion of Whewell’s 
influence on Faraday, see (Darrigol 2000, 83-86, 97). For a discussion of Whewell’s influence on Hamilton, see 
(Hankins 1980, 172-180) on which I lean in part. 

28 See (Whewell 1836, 138-161); (Whewell 1967, 573-594). 
29 Newton said, “…the forces…are the causes and effects of true motions.” (Newton 1999, 414, cf. 407, 575, 

794). See also (Dobbs 1992, 207-209); (M. Jammer 1957); (McGuire 1968); (McGuire 1977); (B. Pourciau 2006, 188-
189); (R. Westfall 1971); and q.v., n. 24. 

30 Lagrange said, “[i]n general, force or power is the cause, whatever it may be, which induces or tends to 
impart motion to the body to which it is applied.” (Lagrange 1997, 11) emphasis in the original. 

31 (Whewell 1858, 205) emphasis in the original. 
32 (Whewell 1858, 173). See also the comments at (Smith and Wise 1989, 362). 
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1889; Hankins 1980, 174-180), I note here that the two seemed to agree on how best to interpret 
the laws of motion. After authoring (Hamilton 1834)33, Hamilton sent a letter (dated March 31st, 
1834) to Whewell in which he stated: 
 

The Paper of your own On the Nature of the Truth of the Laws of Motion has been as 
yet so hastily read by me, that I can only say it seems to be an approach, much closer 
than of old, between your views and mine. Whether this approach is a change on my 
part or on yours, and if both, in what proportion, and how much or how little it wants of 
a perfect agreement, I dare not suddenly decide.34 

 
The following month, Hamilton wrote to Lord Adare as follows: “Whewell has come round almost 
entirely to my views about the laws of Motion.”35 Hamilton believed that the interpretation of the 
laws of motion in Whewell’s “On the Nature of the Truth of the Laws of Motion”36 (published in 
1834) matched his own interpretation of those laws. In that essay, Whewell said: 
 

The science of Mechanics is concerned about motions as determined by their causes, 
namely, forces; the nature and extent of the truth of the first principles of their science 
must therefore depend upon the way in which we can and do reason concerning causes.37 

 
Whewell went on to state what he calls “Axiom 1”: “Every change is produced by a cause.”38 
Axiom 2 says that: “Causes are measured by their effects.”39 Axiom 3 was about action and 
reaction. These axioms are used to motivate and interpret the laws of motion. The ensuing 
discussion also very clearly and explicitly and continually interprets forces causally, characterizing 
them, again and again, as causes of motion.40 Because Hamilton agreed with the views of Whewell 
here articulated, we can safely conclude that Hamilton adopted a causal metaphysics amidst the 
two years he published his two most important papers on classical mechanics.41 
 
 2.2  Hamilton’s Idealism: A Sample 
 

Hamilton was an idealist about the natural world. As I have already pointed out, Hamilton’s 
views about the role of causation in dynamics were heavily influenced by Kant’s first Critique. It 
is therefore unsurprising to see the influence of the first Critique on Hamilton’s idealism as well. 
There are also important similarities between Hamilton’s idealism and philosophical worldview, 
and the idealism and worldview of Gottfried Wilhelm Leibniz’s (1646-1716) Monadology 
(Leibniz 1898 originally published in 1714). Leibniz maintained that there are scientific efficient 
                                                 

33 The paper was received by Philosophical Transactions of the Royal Society on April 1st, 1834 and read 
April 10th, 1834. However, at the end of Hamilton’s introductory remarks, Hamilton includes a date of March, 1834, 
and because his letter to Whewell references (Hamilton 1834 although it was not yet published) we can infer that 
Hamilton’s letter (dated March 31st, 1834) was authored after Hamilton had completed but not yet published (Hamilton 
1834). 

34 From W.R. Hamilton to Dr. Whewell, Observatory, Dublin, March 31, 1834 in (Graves 1885, 82). 
35 As quoted in (Graves 1885, 83). 
36 (Whewell 1967, 573-594). 
37 (Whewell 1967, 574) emphasis in the original. 
38 (Whewell 1967, 574) emphasis in the original. 
39 (Whewell 1967, 575) emphasis in the original. 
40 The idea is all over the essay, but see (ibid., 581) for just one example among many. 
41 Cf. the conclusions in (Hankins 1980, 178). 
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causal explanations of motion and change in the kingdom of power (science/physics) and divine 
final causal explanations of everything in the kingdom of wisdom (philosophy).42 There is 
something approaching this bifurcation in the work of Hamilton, for in that work, one finds 
efficient causal scientific explanations divorced from his idealism on the one side, and deeper more 
metaphysical explanations dependent upon his idealism but ultimately bottoming out in God on 
the other.43 There were for Hamilton (quoting Hankins) “two separate sciences joined only by the 
benevolent act of God.”44 

In the kingdom of wisdom, Leibniz had fundamental simple monads metaphysically 
explain a great deal. Hamilton had his fundamental and simple energies or powers play a similar 
role in the Hamiltonian worldview.45 A thorough study explicating all of the important similarities 
and differences should be pursued, but I will not take up that task here. I wish only to disclose that 
Hamilton’s fundamental and simple energies possess causal powers. Indeed, sometimes Hamilton 
speaks as if the fundamental energies are identical to causal powers acting in space and time 
(Hankins 1977, 179). As Hamilton said, “[p]ower, acting by law in Space and Time, is the ideal 
base of an ideal world, into which it is the problem of physical science to refine the phenomenal 
world…”46 
 
3 A (Very) Brief Sketch of Modern Hamiltonian Mechanics 
 
 Hamilton’s methodology, intellectual influences, and philosophical worldview all led him 
to a causal interpretation of classical mechanics. Forces in that mechanics causally produce 
changes of motion. The modern philosopher of physics will object. Nowhere in the fundamental 
equations of contemporary Hamiltonian mechanics (at least) do we see an indispensable role for 
forces. Hamilton’s views are his own. How could, and why should his ideas influence our modern 
understanding? Contemporary Hamiltonian mechanics is an energy-based theory which seeks to 
describe and explain mechanical systems by means of the Hamiltonian ℋ. ℋ is equal to the sum 
of the kinetic 𝑇𝑇 and potential energy 𝑈𝑈 of the modeled system when, potential energy is velocity 
independent and what are called generalized coordinates (introduced below) are natural in the 
sense that their relationship to the relevant rectangular Cartesian coordinates is time-independent 
(Marion and Thornton 1988, 218-219). And so, when assuming such naturalness of coordinates 
                                                 

42 See (Leibniz 1989, 223). 
43 Hamilton stated, “[i]n seeking for absolute objective reality I can find no rest but in God…” From Hamilton 

to H.F.C. Logan, June 27, 1834 in (Graves 1885, 87). 
44 (Hankins 1980, 179). 
45 Here is a taste of the evidence for the judgment that the idealisms of Hamilton and Leibniz are quite similar.  

Leibniz’s Monadology maintained that corporeal substances are phenomenal depending for their existence upon quasi-
mental simple entities called monads. Leibniz said, “simple things alone are true things, the rest are only beings 
through aggregation, and therefore phenomena, and, as Democritus used to say, exist by convention not in reality.” 
(Leibniz’s letter to Burchard de Volder (1643-1709) (June 20th of 1703, sent a second time). As quoted by (Garber 
2009, 368)). And elsewhere Leibniz said, 

 
“…if there are only monads with their perceptions, primary matter will be nothing other than the 
passive power of the monads, and an entelechy will be their active power…” (Leibniz and Des 
Bosses 2007, 274-275 emphasis mine). 

 
The equivalent of monads in Hamilton’s system are fundamental simple things called energies or powers (see the main 
text). Like Leibniz’s monads, Hamilton’s simple powers/energies give rise to the external world. Hankins calls 
Hamilton’s view an “idealized version of atomism” (Hankins 1977, 182).  

46 From Hamilton to H.F.C. Logan, June 27, 1834 in (Graves 1885, 87). 
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and when assuming that the target system (call it SYS) is an energetically isolated holonomic n-
particle system, it follows that: 
 

ℋ = 𝑇𝑇 + 𝑈𝑈 
 
and that the number of generalized coordinates and the number of degrees of freedom of SYS 
equal one another. 

According to the Hamiltonian formulation, the configuration of SYS (in three-dimensions) 
is given by n-generalized coordinates: (𝑞𝑞1, … , 𝑞𝑞𝑛𝑛). Following (Goldstine, Poole and Safko 2002), 
(Marion and Thornton 1988, 222-229), (Taylor 2005, 529-531), and (Thorne and Blandford 2017, 
158-160) one can represent n-generalized coordinates with 𝐪𝐪, and generalized momenta47 with 𝐩𝐩 
such that, 
 

𝐪𝐪 = (𝑞𝑞1, … , 𝑞𝑞𝑛𝑛),   𝐩𝐩 = (𝑝𝑝1, … , 𝑝𝑝𝑛𝑛) 
 
We can represent generalized velocities, or the time derivatives of the generalized coordinates with 
𝐪̇𝐪, such that, 
 

𝐪̇𝐪 = (𝑞̇𝑞1, … , 𝑞̇𝑞𝑛𝑛) 
 
Quantities 𝐩𝐩 and 𝐪𝐪 above are n-dimensional vectors in abstract spaces (Taylor 2005, 529).48 One 
can now write Hamilton’s equations (of motion) as (assuming that [𝑖𝑖 = 1, … ,𝑛𝑛]): 
 
                                                 

47 All discussion of modern physics will use the SI unit system. 
Generalized momenta can also be stated in terms of the Lagrangian ℒ (q.v., n. 49 below) and generalized 

velocity (Penrose 2007, 476, I’m citing in this case because some suggest otherwise): 
 

𝐩𝐩 =
∂ℒ
∂𝑞̇𝑞

 

 where ℒ is the Lagrangian and not the Lagrangian density. 
48 In technical discussions of Hamiltonian mechanics in the work of physicists, mathematicians, and some 

philosophers, one will see: (a) higher-dimensional phase spaces the points of which represent possible states of the 
system modeled (because they encode information about the positions and momenta of constituents of the system), 
(b) phase space orbits or flows tracing out (c) curves in phase space understood as representations of possible 
evolutions of the modeled system given by solutions to Hamilton’s equations, (d) Liouville’s theorem, (e) measures, 
(f) Poisson brackets, etc. For all of that, see (Dürr and Teufel 2009, 12-26); (Mann 2018, 167-201); (Torres del Castillo 
2018, 103-228) and pair it with (Healey 2007, 248-251). I skip that stuff here in the interest of brevity. My central 
argument will remain unaffected by details about cotangent bundles or phase spaces that are symplectic manifolds, 
measure preserving flows, and symplectic geometry. What gives you the curves that represent evolutions in the phase 
space are solutions to Hamilton’s equations. So, the question is, how should one interpret those equations and their 
solutions? 

Later I will make much of Galilean invariance in classical mechanics. Some might therefore object to 
precluding a discussion of the geometry of Hamiltonian mechanics because both canonical transformations and 
canonical invariants (or canonical form-invariants) are important to Hamiltonian and Hamilton-Jacobi mechanics. In 
order to appreciate canonical transformations (especially those that have to do with time), one must study 
symplectomorphisms and that study will require that one give attention to cotangent bundles and symplectic geometry. 
Canonical transformations have to do with tracking systems in a higher-dimensional phase space. Hamilton’s 
equations of motion are canonical form-invariant, and (again) their solutions provide one with the motions of systems 
modeled by the Hamiltonian apparatus (points orbiting in phase space). Once again, the question is, how should we 
interpret those equations and their solutions?    
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(Hamilton’s Equations of Motion): 

𝑝̇𝑝𝑖𝑖 = −
𝜕𝜕ℋ
𝜕𝜕𝑞𝑞𝑖𝑖

,     𝑞̇𝑞𝑖𝑖 =
𝜕𝜕ℋ
𝜕𝜕𝑝𝑝𝑖𝑖

 

 
Add to the above a specification of the (full) time derivative of the Hamiltonian as follows: 
 
 

𝑑𝑑ℋ
𝑑𝑑𝑑𝑑

= �[
𝜕𝜕ℋ
𝜕𝜕𝑞𝑞𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑞̇𝑞𝑖𝑖 +
𝜕𝜕ℋ
𝜕𝜕𝑝𝑝𝑖𝑖

𝑝̇𝑝𝑖𝑖] +
𝜕𝜕ℋ
𝜕𝜕𝜕𝜕

 

 
 
And keep in mind that the full or total derivative of the Hamiltonian with respect to time features 
2n+1 terms and that: 
 

𝑑𝑑ℋ
𝑑𝑑𝑑𝑑

=
𝜕𝜕ℋ
𝜕𝜕𝜕𝜕

 
 
which can be inferred from the equations of motion and our specification of the full time derivative 
of the Hamiltonian.49 And while the above expressions equal one another, they are conceptually 
distinct. The left side describes how the Hamiltonian changes with time as the generalized 
momenta and coordinates change with time. The right side describes the rate of change of the 
Hamiltonian as time changes, but while holding its “other arguments fixed” (Taylor 2005, 530). 
 Solutions to Hamilton’s equations give one the evolution of the system or subsystems 
modeled. The contemporary philosopher of physics will point out that forces do not seem to enter 
any of the above relations or equations. Likewise, forces do not appear to enter solutions to 
Hamilton’s equations of motion. How then can the contemporary natural philosopher insist on a 
causal interpretation of Hamiltonian mechanics? Indeed, if Hamilton’s understanding was 
anything like our own, how could Hamilton have done so? 

As we shall see, there are powerful reasons for insisting that forces belong to the ontology 
of modern Hamiltonian mechanics. Those reasons shall issue forth from reflecting upon precisely 
why those same forces never left the ontology of Hamilton’s mechanics despite the privileged 
place of the Hamiltonian in his formulation. The crucial piece to my argumentation will actually 
turn out to be the Hamiltonian. A proper interpretation of that quantity along with a correct 
statement of its metaphysical grounds (according to physics!) provides much of what is needed for 
the articulation and defense of a robust case for injecting forces into both past and present versions 
of Hamiltonian mechanics. 
 
 
 
 

                                                 
49 We can also affirm: 

 

−
𝜕𝜕ℒ
𝜕𝜕𝑡𝑡

=
𝜕𝜕ℋ
𝜕𝜕𝜕𝜕
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4 Hamiltonian Causal Mechanics 
 4.1  Hamilton’s Dynamics: A Brief Exposition 
 

In (Hamilton 1834), the law of varying action for SYS (i.e., a system of n-point masses 
with an ith member50) is stated as follows: 
 
(Law of Varying Action (LVA)

𝑡𝑡𝑡𝑡

51): 

𝛿𝛿𝛿𝛿 = �𝑚𝑚𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(𝑥̇𝑥𝑖𝑖𝛿𝛿𝑥𝑥𝑖𝑖 + 𝑦̇𝑦𝑖𝑖𝛿𝛿𝑦𝑦𝑖𝑖 + 𝑧̇𝑧𝑖𝑖𝛿𝛿𝑧𝑧𝑖𝑖) −�𝑚𝑚𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�𝑎̇𝑎𝑖𝑖𝛿𝛿𝑎𝑎𝑖𝑖 + 𝑏̇𝑏𝑖𝑖𝛿𝛿𝑏𝑏𝑖𝑖 + 𝑐̇𝑐𝑖𝑖𝛿𝛿𝑐𝑐𝑖𝑖� + ℋ 

 
where 𝑚𝑚 is mass, 𝑡𝑡 is time, 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖, and 𝑧𝑧𝑖𝑖 are Cartesian coordinate variables, 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖, and 𝑐𝑐𝑖𝑖 give the 
initial positions of the n-point masses, and 𝑎̇𝑎𝑖𝑖, 𝑏̇𝑏𝑖𝑖, and 𝑐̇𝑐𝑖𝑖 give the initial velocities of the same point-
masses with regard to select coordinate directions, and so the dots are derivatives with respect to 
time. The ‘𝛿𝛿’ symbol was originally invented by Lagrange to track some of the maneuvers of 
Leonhard Euler (1707-1783). Later on, in both Lagrange and Hamilton, it was used to represent a 
variation or specific type of differential change of a function or functional, although (in Lagrange’s 
work at least) it can act on operators as well.52 ℋ is now such that: 
 

ℋ = 𝑇𝑇 + −𝑈𝑈 
 
because I now assume with Hamilton that 𝑈𝑈 is “the negative of the potential energy”.53 (More on 
this function below.) Hamilton picks out the sum with the letter ‘ℋ’ in honor of Christiaan 
Huygens (1629-1695).54 For SYS, 𝑇𝑇’s value is given by what Hamilton called “the celebrated law 
of living forces”: 
 
(Law of Living Force (LLF)55): 

𝑇𝑇 = ℋ + 𝑈𝑈 
    
In addition: 
 

𝑇𝑇 =
1
2
�𝑚𝑚𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�𝑥̇𝑥𝑖𝑖2 + 𝑦̇𝑦𝑖𝑖2 + 𝑧̇𝑧𝑖𝑖2� 

 
All of this is just to make explicit what we’ve already noted, SYS is conservative.  

The variation on 𝑇𝑇 is expressed in this context as: 
 

                                                 
50 My gloss on the formalism here follows (Hamilton 1834) and (Hamilton, Second Essay 1835) only in part. 

It is more in line with the notational style of contemporary historians of mathematics, Hamilton scholars, and historians 
of physics (e.g., Goldstine 1980; Hankins 1980; Lützen 1995; Nakane and Fraser 2002 etc. on which I lean). 

51 Hamilton also calls this the “equation of the characteristic function” (Hamilton 1834, 252). 
52 (Goldstine 1980, 111); (Fraser 2003, 361-363). On the full history of the calculus of variations, see 

(Goldstine 1980). 
53 (Hankins 1980, 183). This was a common assumption at the time. 
54 (Dürr and Teufel 2009, 16). 
55 The LLF was for Hamilton the “celebrated law of living force” (Hamilton 1834, 250). 
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𝛿𝛿𝛿𝛿 = 𝛿𝛿𝛿𝛿 + 𝛿𝛿ℋ = �𝑚𝑚𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(𝑥̇𝑥𝑖𝑖𝛿𝛿𝑥̇𝑥𝑖𝑖 + 𝑦̇𝑦𝑖𝑖𝛿𝛿𝑦̇𝑦𝑖𝑖 + 𝑧̇𝑧𝑖𝑖𝛿𝛿𝑧̇𝑧𝑖𝑖) 

 
𝑉𝑉 in LVA is what Hamilton called the “action of the system”, the “characteristic function”, and 
the “accumulated living force”. 𝑉𝑉56  is a function of ℋ along with 𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑎𝑎, 𝑏𝑏, and 𝑐𝑐. It must satisfy, 
according to Hamilton, the following two fundamental partial differential equations: 
 
(Constraining Fundamental PDEs): 
 

⎩
⎪
⎨

⎪
⎧1

2
�

1
𝑚𝑚𝑖𝑖

��
𝜕𝜕𝜕𝜕
𝜕𝜕𝑎𝑎𝑖𝑖

�
2

+ �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑏𝑏𝑖𝑖

�
2

+ �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑐𝑐𝑖𝑖

�
2

� = 𝑇𝑇𝑡𝑡0

𝑛𝑛

𝑖𝑖=1

1
2
�

1
𝑚𝑚𝑖𝑖

��
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

�
2

+ �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦𝑖𝑖

�
2

+ �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧𝑖𝑖

�
2

� = 𝑇𝑇
𝑛𝑛

𝑖𝑖=1

 

 
where the top constraining fundamental PDE gives the living force (kinetic energy) of the system 
at the start of the evolution, and where the bottom equation gives the living force of the system at 
the end. Hamilton (1834, 253) says that one must use these equations to retrieve the form of the 
characteristic function 𝑉𝑉. 

To see what LVA means one need only understand the content and significance of the 
characteristic function and a little calculus of variations. Function 𝑉𝑉 (quoting Hankins) 
“completely determines the mechanical system [SYS] and gives us its state at any future time once 
the initial conditions are specified”.57 It is therefore the law which governs the evolutions of 
mechanical systems of the same type as SYS. The LVA was a central tool that Hamilton used to 
build his dynamics. It is also central to my case for the historical judgment that the dynamical 
models of (Hamilton 1834) and (Hamilton, Second Essay 1835) were correctly causally interpreted 
by Hamilton. Thus, reflection upon the LVA will reveal precisely how causation entered 
Hamilton’s dynamics and by consequence it will also reveal how causation enters modern 
Hamiltonian mechanics. 

The adroit reader has probably already noticed that I have failed to explicate the meaning 
and significance of one choice function in the LLF and indirectly (via the Hamiltonian) in the 
LVA, viz., the potential energy function 𝑈𝑈. Concerning that function, Hamilton wrote, “[t]he 
function which has been here called 𝑈𝑈, may be named the force-function of a system…it is of great 
utility in theoretical mechanics, into which it was introduced by Lagrange…”58 Hamilton’s 
indebtedness to Lagrange becomes even more evident after reflecting upon the fact that Hamilton 
specified the force-function’s variation by means of the dynamical principal of virtual work: 

                                                 
56 (Hamilton 1834, 251-252). Hamilton had already written about the characteristic function in (Hamilton 

1828) at the age of 21. According to Sir Edmund Whittaker (1873-1956), Hamilton discovered the function at the age 
of 16 (Whittaker 1954, 82). 

57 (Hankins 1980, 186). 
58 (Hamilton 1834, 249) emphasis in the original. It was very common during Hamilton’s time to call potential 

energy the force-function (Nakane and Fraser 2002, 163). As a prime example, Nakane and Fraser mention Carl 
Gustav Jacob Jacobi (1804-1851) who would, in some ways, improve Hamilton’s work. Interestingly, Leonhard Euler 
(1707-1783) identified what Lagrange called the potential as force effort (Euler 1753, 173-175); (Boissonnade and 
Vagliente 1997, xxxvii); (Weaver draft). 
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(Dynamical Principle of Virtual Work (DPVW)): 

𝛿𝛿𝛿𝛿 = �𝑚𝑚𝑖𝑖

𝑛𝑛

𝑖𝑖=1

(𝑥̈𝑥𝑖𝑖𝛿𝛿𝑥𝑥𝑖𝑖 + 𝑦̈𝑦𝑖𝑖𝛿𝛿𝑦𝑦𝑖𝑖 + 𝑧̈𝑧𝑖𝑖𝛿𝛿𝑧𝑧𝑖𝑖) 

 
which is basically Lagrange’s principle of virtual work (PVW) (sometimes called d’Alembert’s 
principle).59 The variation of the potential energy function represents changes to work performed 
over time by the point masses of SYS, because (at least in part) potential energy represents work 
performed by the constituents of SYS.60 Thus, Hamilton affirms 
 
(Force-Function (FF)): 

𝑈𝑈 = � 𝑚𝑚𝑖𝑖𝑚𝑚𝑗𝑗𝑓𝑓�𝑟𝑟𝑖𝑖𝑖𝑖�
𝑛𝑛,𝑚𝑚

𝑖𝑖,𝑗𝑗=1

 

 
where 𝑓𝑓�𝑟𝑟𝑖𝑖𝑖𝑖� here represents a force law specifying details describing a repulsive or attractive 
force.

𝑉𝑉

61 The potential function therefore represents operating forces in SYS because it represents 
work. That is why Hamilton calls it the “force-function”. This is how forces enter Hamilton’s 
approach to classical dynamics even after Hamilton introduces his auxiliary function 𝑆𝑆 around 
which (Hamilton, Second Essay 1835), is centered. For when Hamilton transforms the 
characteristic function  into the auxiliary function 𝑆𝑆, he specifies it thus: 
 

𝑆𝑆 = 𝑉𝑉 − 𝑡𝑡ℋ 
 
where 𝑆𝑆 is a function of 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, and 𝑡𝑡, whose variation is: 
 
  

                                                 
59 As in (Weaver draft), here my presentation is indebted to the presentations in (Hankins 1980, 184-186) and 

(Nakane and Fraser 2002, 163). Lagrange’s PVW in modern vector notation would read as follows: 
 
(Principle of Virtual Work (PVW)): 

�𝐅𝐅 ∙ δ𝐫𝐫 = �𝑚𝑚𝐫̈𝐫 ∙ 𝛿𝛿𝐫𝐫 
 
Or: 
 
(Modified Modern Principle of Virtual Work (MMPVW)): 

�𝑚𝑚𝐫̈𝐫 ∙ δ𝐫𝐫 + δ𝑈𝑈 = 0 
 
[The term ‘virtual’ is used because the displacements etc. are not necessarily physically realized (Langhaar 1962, 13).] 
Fraser reports that from MMPVW, Lagrange infers his equations of motion (Fraser 1985, 173 on which I lean). 
Lagrange called the PVW, the principle of virtual velocities in (Lagrange 1997). There he also privileges it by 
crowning it with the status of “a kind of axiom of mechanics” (Lagrange 1997, 26). Notice how central forces are in 
all of the above. 

60 (Hankins 1980, 184). 
61 Following (Nakane and Fraser 2002, 163). Hamilton’s statement is slightly (trivially) different. 
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(Transformed LVA (T-LVA)): 

𝛿𝛿𝛿𝛿 = −ℋ𝑑𝑑𝑑𝑑 + �𝑚𝑚𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�(𝑥̇𝑥𝑖𝑖𝛿𝛿𝑥𝑥𝑖𝑖 − 𝑎̇𝑎𝑖𝑖𝛿𝛿𝑎𝑎𝑖𝑖) + (𝑦̇𝑦𝑖𝑖𝛿𝛿𝑦𝑦𝑖𝑖 − 𝑏̇𝑏𝑖𝑖𝛿𝛿𝑏𝑏𝑖𝑖) + (𝑧̇𝑧𝑖𝑖𝛿𝛿𝑧𝑧𝑖𝑖 − 𝑐̇𝑐𝑖𝑖𝛿𝛿𝑐𝑐𝑖𝑖)� 

 
Therefore, Hamilton transformed the LVA into the (T-LVA) using 𝑆𝑆 (see proposition W7 in 
(Hamilton 1834, 307); (qq.v., n. 62 and n. 63). This new auxiliary function 𝑆𝑆, which in (Hamilton, 
Second Essay 1835, 95) is called the “principal function”, harbors within both ℋ and 𝑉𝑉, and 
thereby includes the force-function 𝑈𝑈. It too must satisfy two fundamental PDEs that are really 
specifications of the force-function at the beginning (time 𝑡𝑡0) and end of an evolution62: 
 
(New Constraining Fundamental PDEs (or the Hamilton-Jacobi Equation(s))): 

⎩
⎪
⎨

⎪
⎧𝜕𝜕𝜕𝜕
𝛿𝛿𝛿𝛿

+ �
1

2𝑚𝑚𝑖𝑖
��
𝜕𝜕𝜕𝜕
𝜕𝜕𝑎𝑎𝑖𝑖

�
2

+ �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑏𝑏𝑖𝑖

�
2

+ �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑐𝑐𝑖𝑖

�
2

� = 𝑈𝑈𝑡𝑡0

𝑛𝑛

𝑖𝑖=1

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ �
1

2𝑚𝑚𝑖𝑖
��
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

�
2

+ �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦𝑖𝑖

�
2

+ �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧𝑖𝑖

�
2

� = 𝑈𝑈
𝑛𝑛

𝑖𝑖=1

 

 
 In (Hamilton, Second Essay 1835), Hamilton defines S via an integral: 
 

𝑆𝑆 = �(𝑇𝑇 + 𝑈𝑈) 𝑑𝑑𝑑𝑑 = �ℒ 𝑑𝑑𝑑𝑑 
𝑡𝑡

0

𝑡𝑡

0

 

 
where ℒ is the Lagrangian within which the force-function (inter alia) resides (Hankins 1980, 
192); (Lützen 1995, 10). This is the principle of least action. Hamilton derives this principle from 
the LVA (Hankins 1980, 186). The LVA is therefore upstream from the principle of least action. 
Hamilton also uses the principal function 𝑆𝑆 to state what has become known as Hamilton’s 
principle63: 
 
(Hamilton’s Principle (HP)): 

𝛿𝛿𝛿𝛿 = 𝛿𝛿 �ℒ 𝑑𝑑𝑑𝑑
𝑡𝑡

0

= 0 

 
The principle of least action and the HP are parts of both modern Hamiltonian and Lagrangian 
mechanics.64   

In (Hamilton 1834), Hamilton used the force-function to present his equations of motion 
(the DPVW is an equation of motion). Hamilton’s canonical equations of motion in (Hamilton, 
Second Essay 1835) likewise use the force-function.65 Moreover, for systems like SYS, modern 
Hamiltonian mechanics specifies the Hamiltonian in terms of the force-function (see sect. 3), and 

                                                 
62 (Hamilton 1834, 307-308); (Goldstine 1980, 178, 183); (Nakane and Fraser 2002, 180-181). 
63 (Hankins 1980, 194); (Nakane and Fraser 2002, 184). 
64 See (Feynman, Leighton and Sands 2010, 19-8); (Taylor 2005, 239). 
65 (Nakane and Fraser 2002, 163). 
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for some systems unlike SYS, the Hamiltonian is ordinarily specified in part in terms of the 
Lagrangian which (again) harbors 𝑈𝑈. 
  

4.2  From Potential Energy to Forces 
 
 I have shown that the force-function was used by Hamilton to present central formulas of 
his dynamics, to state the Hamiltonian ℋ, and to state the principal function that is 𝑆𝑆. I have 
demonstrated that both the force-function for the initial time of an evolution of a physical system, 
as well as the force-function for the end-time of that same evolution, are used to provide constraints 
on the principal function 𝑆𝑆.66 I have described in what way the force-function is used to present 
modern Hamiltonian mechanics. Furthermore, I have argued that Hamilton interpreted the force-
function in such a way that it represents work and so also forces. (That forces were for Hamilton, 
causes of motion, is a fact established in sect. 2) But why think that forces play any indispensable 
role in correctly interpreting potential energy in modern Hamiltonian dynamics?  
 In our modern context (as during Hamilton’s time), energy is but a measure of a physical 
system’s power or ability to bring about work.67 Work, however, is force multiplied by 
displacement.68 Thus, if this characterization is correct, forces are essential to the interpretation of 
energy in general.  

The following expresses a law of classical mechanics, whether Lagrangian, Newtonian, or 
Hamiltonian: 
 
(Potential Energy Identity (PEI)): 

𝑈𝑈(𝐫𝐫) ≡ − �𝐅𝐅(𝐫𝐫′) ∙ 𝑑𝑑𝐫𝐫′
𝐫𝐫

𝐫𝐫0

 

 
when the 𝐫𝐫s are position vectors, and the triple bar expresses a mathematical identity (the flanking 
expressions are equal no matter the values we consistently attribute to the variables). PEI says that 
if our choice point mass travels from an initial position 𝐫𝐫0 to another position 𝐫𝐫 (e.g., along a curve), 
𝑈𝑈(𝐫𝐫) will be minus the work done by the force 𝐅𝐅 during the evolution. PEI is more than a law of 
classical mechanics. It is the definition of potential energy for the relevant system-types.69 The 

                                                 
66 See the New Constraining Fundamental PDEs. 
67 The Oxford Dictionary of Physics defines energy as “[a] measure of a system’s ability to do work” (Rennie 

2015, 180). 
68 When there are disagreeing directions between force and displacement, the relevant equation becomes: 

𝑊𝑊 = 𝐅𝐅 ∙ 𝑠𝑠 cos𝜃𝜃 (where 𝑠𝑠 is displacement). 
69 See, e.g., (Taylor 2005, 111) who says that “[w]e define 𝑈𝑈(𝐫𝐫)” in terms of, −𝑊𝑊(𝐫𝐫0 → 𝐫𝐫). But, 

 

−𝑊𝑊(𝐫𝐫0 → 𝐫𝐫) ≡ − �𝐅𝐅(𝐫𝐫′) ∙ 𝑑𝑑𝐫𝐫′
𝐫𝐫

𝐫𝐫0

 

where 𝑊𝑊 is the work function. That we can define 𝑈𝑈(𝐫𝐫) in terms of work is enough for my purposes because, again, 
work has to do with force. Hecht remarked,  
 

“…only changes in 𝑃𝑃𝑃𝑃 are defined, and these are defined as the work done on a system by 
conservative forces. Such work is measurable as it is being done. However, once work is done it 
no longer exists and is no longer measurable; if ∆𝑃𝑃𝑃𝑃 is only defined by work done (e.g., mgh, or 
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work involved is virtual if the referenced displacement due to force is nonactual or unrealized. 
This should not detract from the view I intend to promote, for even if the work is virtual, the 
definition that is PEI underwrites the position that the concept of potential energy has content 
about work and so about forces (assuming a mental representation theory of concepts). I call this 
understanding or definition of potential energy in classical mechanics the orthodox 
interpretation of potential energy. 
 
  4.2.1 Forces Beyond the Newtonian Formulation  
 
 Have I reverted to the Newtonian formulation of classical mechanics by explicitly 
connecting the potential energy function to a force? Not at all. You will recall that Hamilton (1834) 
forged the same type of connection when he affirmed FF. In addition, I remind the reader that 
Hamilton called the potential energy function the force-function. Even today, we think of potential 
energy as the “energy of interaction”.70 It should be no surprise then that forces remain part of the 
ontology of modern Hamiltonian mechanics. There is nothing distinctively anti-Hamiltonian about 
them. When a point mass is under sway of a central force field, modern Hamiltonian mechanics 
specifies the involved radial force (in polar coordinates) as follows71: 
 

𝐅𝐅𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 = −
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 
 
What one should remember is that in many different contexts, Hamiltonian mechanics is correctly 
used to arrive at the same precise equations one can discover using force-laden Newtonian 
mechanics.72 In other words, modern Hamiltonian mechanics does in fact provide important 
information about forces. 
 Some will accept that forces are central to modern Hamiltonian mechanics. At the same 
time, they will insist that for the general case of an n-particle system, Hamiltonian mathematical 
models use generalized forces and (quoting North) “[i]t isn’t clear that they count as regular forces 

                                                 
1/2𝑘𝑘𝑥𝑥2, or 1/2𝐶𝐶𝑉𝑉2) it cannot be measured in stasis while it supposedly exists.” (Hecht 2019a, 
500 emphasis in the original) 

 
 Some maintain that potential energy and work are identical. Coopersmith stated, “[p]otential energy and work were 
eventually seen to be one and the same (an integration of force over distance)” (Coopersmith 2015, 115).  

It is common to understand the work quantity in such a way that it is deemed more fundamental than potential 
energy. In his classic graduate level text on classical mechanics, Cornelius Lanczos (1893-1974) stated,  

 
“[t]he really fundamental quantity of analytical mechanics is not the potential energy but the 
work function...In all cases where we mention the potential energy, it is tacitly assumed that the 
work function has the special form 𝑊𝑊 = 𝑊𝑊(𝑞𝑞1,𝑞𝑞2, … , 𝑞𝑞𝑛𝑛), together with the connection 𝑈𝑈 =
−𝑊𝑊” (Lanczos 1970, 34) 

 
I have rephrased Lanczos’s equations by using my own notation. The first equation in the quotation is inserted here in 
place of Lanczos’s reference to equation (17.6). I argue that forces are more fundamental than potential energy in sect. 
4.3 below. Lanczos argues that work is more fundamental than force (Lanczos 1970, 27). I disagree. Work is analyzed 
in terms of force. 

70 (Coopersmith 2015, 337). 
71 (Taylor 2005, 531-532). 
72 (ibid., 532). 
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of the Newtonian kind”.73 A generalized (conservative) force with n-components is a higher 
dimensional vector that lives in a higher dimensional abstract mathematical space.74 But in 
analytical mechanics of either the Lagrangian or Hamiltonian varieties, a generalized 
(conservative) force 𝑄𝑄𝑖𝑖 depends upon and is asymmetrically determined by real-world (North’s 
“Newtonian”) forces whether due to either external fields or interactions between constituents of 
systems. Consider now my argument for this conclusion. 

If there are real-world forces 𝐅𝐅𝑖𝑖 acting between point-particles with masses given by 𝑚𝑚𝑖𝑖, 
we say that their total work is given by75: 
 
(Total Work or DPVW*): 

𝑑𝑑𝑑𝑑 = �(𝑋𝑋𝑖𝑖𝑑𝑑𝑥𝑥𝑖𝑖 + 𝑌𝑌𝑖𝑖𝑑𝑑𝑦𝑦𝑖𝑖 + 𝑍𝑍𝑖𝑖𝑑𝑑𝑧𝑧𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

 
assuming that the particle constituents of the system have Cartesian coordinates that change by the 
arbitrary infinitesimal amounts represented by 𝑑𝑑𝑥𝑥𝑖𝑖 ,𝑑𝑑𝑦𝑦𝑖𝑖 , and 𝑑𝑑𝑧𝑧𝑖𝑖, and that 𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖 , and 𝑍𝑍𝑖𝑖 give the 
components of the real-world forces 𝐅𝐅𝑖𝑖 in appropriate orthogonal directions (qq.v., n. 76 and n. 
80). A quick comparison reveals that this equation is equivalent to Hamilton’s DPVW above. 
Modern analytical (e.g., Hamiltonian) mechanics exploits the fact that the Cartesian coordinates 
are functions of the generalized coordinates (𝑞𝑞1, … , 𝑞𝑞𝑛𝑛) such that the generalized coordinate 
variables have an invariant first-order differential form that is linear76 and expressed by77: 
 

𝑑𝑑𝑑𝑑 = (𝐹𝐹1𝑑𝑑𝑞𝑞1 + 𝐹𝐹2𝑑𝑑𝑞𝑞2 + 𝐹𝐹3𝑑𝑑𝑞𝑞3 … 𝑒𝑒𝑒𝑒𝑒𝑒… 𝐹𝐹𝑛𝑛𝑑𝑑𝑥𝑥𝑛𝑛) 
 
The coefficients 𝐹𝐹1,𝐹𝐹2, 𝐹𝐹3, etc. are not the components of the real-world force 𝐅𝐅𝑖𝑖, but are instead 
the components of generalized force 𝑄𝑄𝑖𝑖, that higher dimensional abstract vector previously 
mentioned (more on these components soon). I will now use the symbol: ℱ𝑖𝑖 to represent the 
generalized force components.  

𝑄𝑄𝑖𝑖 can be thought of as an abstract actor in the n-dimensional configuration space used to 
model the system. Points no longer just travel or orbit without reason, they orbit because the 
generalized force with its n-components “acts”, “producing” the orbit (Lanczos 1970, 28-29). Of 
course, this is not an action indicative of causation. The ‘because’ involved here is one “without 
cause”. The explanation provided is an explanation by constraint as in (Lange 2017). However, 
we have reason to believe that these explanations by constraint in the abstract configuration or 
phase spaces are determined by causal explanations in the real world.  

Consider that the components of 𝑄𝑄𝑖𝑖 can be related to potential energy and generalized 
coordinates as follows: 
 
                                                 

73 (North forthcoming, 14). 
74 I will assume that generalized force 𝑄𝑄𝑖𝑖 has the dimension of a force and not that of the moment of a force. 

On this distinction, see (Langhaar 1962, 17). For more on generalized force in general, see (Fitzpatrick 2011); 
(Lanczos 1970, 27-31); (Langhaar 1962, 14-23); (Peacock and Hadjiconstantinou 2007); (Sommerfeld vol. 1 1964, 
187-189); (Stewart 2016, 16-21). In places, my discussion follows these sources. 

75 Following (Lanczos 1970, 28). 
76 (Lanczos 1970, 28). 
77 We could use 𝛿𝛿𝑛𝑛 instead of 𝑑𝑑𝑛𝑛 to highlight the fact that the involved force impression can be virtual (as in 

Langhaar 1962, 16). 
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ℱ𝑖𝑖 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞𝑖𝑖

 

 
But by PEI, we know that one can also state the generalized force components in terms of work 
and generalized coordinates: 
 

ℱ𝑖𝑖 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞𝑖𝑖

 

 
What these equations reveal is that one can calculate generalized (conservative) forces from the 
potential energy or work functions. This is because the real-world forces lying beneath work (work 
is force times displacement) and potential energy (identical to minus work) determine generalized 
force (q.v., GF below). The minus partial derivatives of potential energy give the components of 
real-world forces (q.v., sect. 4.2.2 below). Of course, matters are not resolved. When the work 
function is time-dependent, there is no potential energy to look to for the purposes of calculating 
generalized force. Of course, this bothers my project none because work remains, and residing in 
work is real-world force. Furthermore: 
 
(Generalized Force (GF)): 

𝑄𝑄𝑗𝑗 ≡�𝐅𝐅𝑖𝑖 ∙
𝜕𝜕𝐫𝐫𝑖𝑖
𝜕𝜕𝑞𝑞𝑗𝑗

𝑛𝑛

𝑖𝑖=1

 (𝑗𝑗 = 1, … ,𝑚𝑚) 

 
where here, 𝐫𝐫𝑖𝑖 gives the position vector for the ith point where a real-world force is applied 
(assuming that 𝐫𝐫𝑖𝑖 is a function of the generalized coordinates) such that its variation is given by78: 
 

𝛿𝛿𝐫𝐫𝑖𝑖 = �
𝜕𝜕𝐫𝐫𝑖𝑖
𝜕𝜕𝑞𝑞𝑗𝑗

𝛿𝛿𝑞𝑞𝑗𝑗

𝑚𝑚

𝑗𝑗=1

 

 
Most importantly, 𝐅𝐅𝑖𝑖 represents real-world forces such as gravitation. A plain implication of all of 
this (especially GF) is that generalized force depends upon actual applied forces. Indeed, the 
components of 𝑄𝑄𝑗𝑗 represent the numerous forces standing behind 𝐅𝐅𝑖𝑖, i.e., the real-world forces at 
work in the system. Thus, generalized force 𝑄𝑄𝑗𝑗 is a more abstract representation of force 
impressions and actions in the world. That is why Lanczos (1970, 29) says, “the dynamical action 
of all the forces can…be represented by a single vector [i.e., the generalized force vector] acting 
on” a point in a higher-dimensional mathematical space.  
 
   
  

                                                 
78 See (Fitzpatrick 2011); (Peacock and Hadjiconstantinou 2007, 6); (Stewart 2016, 19). 
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4.2.2 Back to Potential Energy 
 

Some reject the orthodox interpretation of potential energy, choosing instead to identify 
potential energy with a “capacity to do work”.79 Call this outlook the capacity interpretation of 
potential energy. On this view, potential energy just is an objective dispositional property of 
physical systems.  

While the capacity interpretation is not identical to the orthodox approach, it is nonetheless 
friendly to my central thesis because it causally interprets the potential energy function by 
ascribing to choice systems with potential energies causal powers, viz., capacities or dispositions 
to act by force impression over a distance thereby performing work. Ignoring for now the benefits 
this account would provide for my cause, I should detail how its fatal flaw follows from a point 
made by some of the very promulgaters of the capacity interpretation (i.e., Marion and Thornton 
1988, 73). If the capacity interpretation were correct, whether a system has an objective potential 
energy or not would be a fact insensitive to conventions and arbitrariness introduced by physicists. 
Howbeit, there is no means whereby one can measure such an objective potential energy that is an 
objective capacity.80 The quantity physicists call “potential energy” in the three main formulations 
of classical mechanics is a quantity whose differences alone ultimately matter because the 
differences are what can be measured. Of course, the fact that a system’s evolution over time can 
be described by appeal to differences in potential energy presupposes that it at least makes sense 
to ascribe to said system potential energy full stop (no differences). However, the problem is that 
in order to get the differences physics needs, physicists predicate potential energies to systems at 
locations in an arbitrary manner. That is why the differences are emphasized.  

Consider the following well-known and often repeated example used to help teach students 
about potential energy. Let spatial point 𝑥𝑥 at height ℎ(𝑥𝑥) be the summit of Mauna Kea (the tallest 
mountain on earth measured from base to height). Put a simple particle system or body b there. 
One now states the (gravitational) potential energy of the system as follows: 
 
(Gravitational Potential Energy (Approx.) (GPEA)): 

𝑈𝑈𝑔𝑔 = 𝑚𝑚𝑚𝑚ℎ(𝑥𝑥) 
 
But here 𝑔𝑔 is gravitational acceleration due to an acting gravitational force81, 𝑚𝑚 is the gravitational 
mass (equivalent to the inertial mass) of a body b at that height, and 𝑚𝑚𝑚𝑚ℎ(𝑥𝑥) is interpreted as the 
work required to get b to ℎ(𝑥𝑥) given that b started somewhere else, e.g., sea level (you will notice 
that work is now being set equal to the gravitational potential energy) without imparting kinetic 
energy to b while laboring against gravity. But sea level here was chosen arbitrarily to facilitate 

                                                 
79 (Marion and Thornton 1988, 72). 
80 What is said in the main text holds true for both internal and external potential energy. None “of these 

potential energies is independently measurable” (Hecht 2016, 10). Albert Einstein (1879-1955) said,  
 

“[b]ut if every gram of material contains this tremendous energy, why did it go so long 
unnoticed? The answer is simple enough: so long as none of the energy is given off externally, 
it cannot be observed. It is as though a man who is fabulously rich should never spend or give 
away a cent; no one could tell how rich he was.” (Einstein 1954, 340) 

 
It also holds true for static electric field energy (Hecht 2019b, 3) (q.v., sect. 5). 

81 Sometimes it is interpreted as the gravitational force field. 
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acquisition of the differences one needs to make sense of 𝑈𝑈𝑔𝑔.
𝑈𝑈

82 Sea level is arbitrarily determined 
to be the place where 𝑔𝑔 vanishes (French 1971, 378-379). How then can the potential energy 
referenced here be an objective property of the system when its quality and quantity are determined 
by the arbitrary decisions of physicists? Of course, this arbitrariness will infect the quantity that is 
(virtual) work too, but the infection is not overly contagious. The 𝑚𝑚𝑚𝑚 portion (weight) of GPEA 
expresses the force pulling the object toward the center of the earth.83 The only way to get b to 
ℎ(𝑥𝑥) without giving it kinetic energy is to apply an external force to b (French 1971, 378). When 
any conservative force acts thereby producing an acceleration, what transpires is a purely objective 
affair. More reasons will be given for this judgment soon (q.v., sect. 4.3).  

That the most important points in the preceding discussion of this subsection (viz., those 
about (a) arbitrariness and potential energy in general, (b) arbitrariness and gravitational potential 
energy in particular, and (c) the GPEA) hold true in both Lagrangian and Hamiltonian 
formulations of classical mechanics is well-known.84 There is therefore no escape from my 
reasoning by appeal to a shift in formalism. But we can say something more general. In almost 
every context, the specification of the potential energy function does not change across the three 
major formulations of classical mechanics. 

Let us now entertain an objection to my argument from arbitrariness. The GPEA is but an 
approximation even in classical mechanics. It holds true for bodies near to the earth, but as one 
moves away from the earth, one will need to use a different expression for gravitational potential 
energy, one that follows from Newton’s famous universal law of gravitation and the definition that 
is PEI: 
 
(Gravitational Potential Energy (GPE)): 
 

𝑈𝑈𝑔𝑔 = −
𝐺𝐺𝐺𝐺𝐺𝐺
𝑟𝑟

 
 
where 𝑀𝑀 is the gravitational mass of the earth (the body exerting the gravitational force), 𝑚𝑚 is the 
gravitational mass of body b, r is the distance between b and the earth, and big 𝐺𝐺 is the gravitational 
constant. 

Switching to GPE does not help matters. That law is usually posited given yet another 
arbitrary choice. This time it is to set the gravitational potential energy of b that is 𝑈𝑈𝑔𝑔 equal to zero 
when b is situated at a position infinitely far removed from the earth. Potential energy decreases 
as b moves closer to the earth and so is negative.85 Physicists will usually add that this arbitrary 
decision is reasonable, natural, or intuitive, but I have been unable to find an argument for such a 

                                                 
82 “Note that we cannot measure the absolute potential energy, but only differences.” (Ryder 2007, 58). 

Absolute potential energy does not fail to make sense because it is not measurable. There is no verificationism afoot 
here. 

83 It is therefore no surprise that the SI unit of measurement for both weight and force is one and the same, 
viz., the newton. 

84 (Fecko 2006, 517-518); (Penrose 2007, 475); (Pletser 2018, 55); cf. (Taylor 2005, 542 eq. 13.51). The 
Hamiltonian would be similarly specified in the Hamilton-Jacobi formulation as well. See (Pletser 2018, 55); (Torres 
del Castillo 2018, 256, 266-267). 

85 All of this remains as I am presenting it in both Newtonian and Hamiltonian mechanics. See (Meyer and 
Offin 2017, 61-62) for a discussion of gravitation and classical non-relativistic Hamiltonian mechanics. 
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choice that would render that choice principled or well-justified.86 I do not question that it is 
convenient for calculations, but that does not mean it informs us about what the world is like even 
given a robust scientific realism. There are fictional devices aplenty in physics that help us with 
our calculations, but no one would commit to the existence of these devices. Who likes Gaussian 
surfaces?87 Potential energy, yes, even gravitational potential energy, can only be specified up to 
an arbitrary additive constant. The arbitrariness is unavoidable. 
 Let us now consider a second reason for associating forces with potential energy. The 
orthodox interpretation of potential energy is provided by PEI, though it may need some tinkering 
in order to handle various other system-types. I maintain that because orthodoxy defines potential 
energy in terms of work, and work in terms of forces, causation enters mechanics through the 
potential energy function. Interestingly, my analysis of matters can be found in some of the very 
earliest work in which potential energy was first used in physics. For example, William Rankine 
(1820-1872; he coined the term ‘potential energy’ in 1853) remarked, 

 
In this investigation the term energy is used to comprehend every affection of substances 
which constitutes or is commensurable with a power of producing change in opposition 
to resistance, and includes ordinary motion and mechanical power, chemical action, 
heat, light, electricity, magnetism, and all other powers, known or unknown, which are 
convertible or commensurable with these. All conceivable forms of energy may be 
distinguished into two kinds; actual or sensible and potential or latent…Potential 
energy…is measured by the amount of a change in the condition of a substance, and that 
of the tendency or force whereby that change is produced (or, what is the same thing, of 
the resistance overcome in producing it), taken jointly.88 
 

Rankine is here associating energy with productive power, but he is also associating potential 
energy with work and therefore also forces. Eight years later, William Thomson’s (or Lord 
Kelvin’s) discussion of the electric potential function (which is used in classical electrostatics to 
state the potential energy function (q.v., sect. 5 below)) strongly associated that potential with 
work. He said,  
 

Electric potential. —The amount of work required to move a unit of electricity from any 
one position to any other position, is equal to the excess of the electric potential of the 
second position above the electric potential of the first position.89 

 
Thomson here says that differences are what matter, and that the electrostatic potential (and so the 
electrostatic potential energy) just is work (whether virtual or not) required to complete a task. 

Both Rankine and Thomson’s views of energy are important because they influenced the 
work of Rudolf Clausius (1822-1888), James Clerk Maxwell, and Ludwig Boltzmann (1844-
1906). These mechanicians thought of entropy as a quantity that tracks how the energy (as 
                                                 

86 I should add that I believe that the arbitrariness is to blame for the negativity. The arbitrariness is also the 
reason why negative gravitational potential energies should not confound the metaphysician of physics (Mann 2018, 
17). If energies are but measures or convenient ways of representing what’s really happening with forces, then the 
signs of the convenient devices need not bother one. It’s what’s fundamental that matters. 

87 The reference to Gaussian surfaces wasn’t just for the purposes of being humorous. Gaussian surfaces are 
arbitrarily specified closed surfaces introduced by the physicist to help with calculations in electrodynamics. 

88 (Rankine 1853, 106) emphasis in the original. 
89 (Thomson 1860, 334) emphasis in the original. 



Weaver, Hamilton, Hamiltonian Mechanics, and Causation 
 

 23 

understood by Rankine and Thomson) transforms over time.90 Modern thermodynamics and 
statistical mechanics has thereby inherited the work-laden and so also force-laden notion of energy. 
It is therefore unsurprising to see in the work of modern thermodynamicists, such as Klein and 
Nellis, the following: “…the property entropy is introduced in order to quantify the quality of 
energy”91 and “[t]he Second Law states that the quality of energy, i.e., the capability to do work, 
is reduced in all real processes.”92 All of this is unsurprising on the truth of the orthodox 
interpretation of potential energy.  
 That energy and work should be strongly associated is evidenced by the further fact that 
the SI derived unit of both energy and work is the joule J. One joule just is a unit of measurement 
about a force, more specifically, the work performed or executed by one newton (N) of force over 
one meter (m) in a single direction, viz., the direction of the force impressed. In the CGS 
(centimeter-gram-second or the Gaussian) unit system, the unit of both energy and work is the erg. 
The abbreviation erg derives its meaning from the Greek ἔργον, which means work. Therefore, it 
is unsurprising that the erg, like the joule, is a unit of measurement about a force, more specifically, 
the work performed or executed by one dyne (dyn; the unit of force in the CGS system) of force 
over one centimeter (cm; the unit of length in the CGS system) in a single direction, viz., the 
direction of the force impressed. These facts are not at all surprising, given the truth of the orthodox 
interpretation of potential energy. It is what you’d expect. 

My final line of evidence has (I believe) some serious bite. To feel its teeth, simplify 
matters some by giving attention to a target system of but one point mass that travels along a curve 
in three dimensions of space due to a conservative force. Let us call this new target system SYS-
1. We will assume that SYS-1 is conservative and holonomic. In modern Hamiltonian mechanics, 
the force in SYS-1 will be, what is sometimes called the corresponding force of the potential 
energy function used to represent the evolution of SYS-1. This corresponding force in SYS-1, is 
the referent of 𝐅𝐅 in the integral statement of the potential energy function that is PEI stated above. 
The relation of correspondence with respect to SYS-1 can be stated quantitatively as: 
 

𝐅𝐅 = −𝛁𝛁𝑈𝑈 
 
This equation says that the minus partial derivatives of the potential function express the 
components of the corresponding force in particular directions.93 It should now be clear precisely 
how potential energy is intimately related to corresponding forces. 
 

4.3  Forces are More Fundamental than Potential Energy 
  

There are those who wonder whether there is any reality to potential energy at all.94 I will 
not go so far as to challenge the existence of potential energy. I will instead argue that potential 

                                                 
90 See on this point (Weaver 2020 sect. 5). 
91 (Klein and Nellis 2012, 237). 
92 (Klein and Nellis 2012, 350). 
93 E.g., −𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 expresses the component of force along the direction of the 𝑧𝑧-axis in the rectangular coordinate 

system (Goldstine 1980, 176); (Taylor 2005, 111, 116-117). 
94 (Sullivan 1934, 247-248). 
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energy is less fundamental than force.95 This conclusion seems to be in line with a well-represented 
position among physicists.96  

My first argument for the view that potential energy is less fundamental than force is as 
follows. With respect to conservative physical systems, facts about potential energies are derivable 
from facts about conservative forces. Likewise, facts about conservative forces are derivable from 
facts about potential energies. However, nonconservative force-facts (about nonconservative 
systems) are not derivable from facts about potential energies. Nonconservative forces can act 
when no potential energies are specifiable (indeed when no potential energy exists). This 
constitutes evidence for the claim that there is a type of asymmetric dependence relationship 
between potential energy and forces. The latter should be understood as that which determines the 
former, not the other way around. 

Second, we have, in essence, already provided a reason for regarding forces as more 
fundamental than potential energy. The latter quantity has no absolute or objective status. One can 
only specify it up to an arbitrary additive constant. In order to evaluate facts about potential 
energy, one must admit arbitrariness, and even after the necessary arbitrariness is in play, 
differences in potential energies are all that one can have access to. By contrast, when a force is 
impressed thereby producing an acceleration, that causal fact will hold relative to every inertial 
frame of reference in Hamiltonian mechanics. Conservative forces are Galilean invariant 
quantities, as are the equations of motion which relate those forces to resulting motions.97 
However, potential energy is not Galilean invariant.98 There is no guarantee that performing a 

                                                 
95 I believe this is the best philosophically sophisticated characterization of the position defended in (Hecht 

2003, 2007, 2016, 2019a, 2019b). Q.v., n. 120. 
96 As Robert Mills (of Yang-Mills theory) said, “the idea of potential energy is not truly fundamental and that 

it breaks down in the relativistic world…” (Mills 1994, 152). Cf. (Lanczos 1970, 34) already quoted; and (Thomson 
1888, 15). Coopersmith (2015, 339) argues that because kinetic energy has the same form for every system and 
potential energy does not, the former is more fundamental than the latter (citing (Maxwell 1871, 282) in support). 

97 (Raju 1994, 64). See also (Maudlin 2011, 174). 
98 As Coopersmith remarked in correspondence: 

  
“Even outside of Einstein's Relativity theories, it is not always true that the potential energy is 
invariant. A requirement for Galilean invariance is that the potential energy depends only on 
'relative' coordinates (e.g. the difference between two positions) and not on 'absolute' coordinates 
(the position of the old oak tree at the corner of the street).” (11/08/2020) 

  
See (Diaz et. al. 2009, 271-272) who remarked,  

 
“…we illustrated that after a change of reference frame, the work done by each force also 
changes (even if the transformation is Galilean). Consequently, the corresponding potential 
energies change when they exist.” (ibid., 272) 

 
These authors give an argument for their conclusions at (ibid., 271-272). 

Horzela et. al. (1991) stated that, 
   

“The explicit expressions of the potential energy as functions of the position 𝑥⃗𝑥(𝑡𝑡) all have 
noncovariant meaning and therefore may be valid only in one inertial reference frame.” (ibid., 
12, their argument for this starts on page 11) 

 
With respect to force and acceleration, Tefft and Tefft (2007) state, 
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Galilean transformation on the mathematical statement of potential energy for a system in an 
inertial frame will yield an equation of the same form preserving the same value for the potential 
energy of that system. We should deem invariant quantities more fundamental than non-invariant 
ones. At a non-relativistic classical world, we should deem Galilean covariant laws more 
fundamental than non-covariant laws. Is this not a lesson taught by the successes of our best 
physical theories? The laws of classical mechanics that have passed empirical muster are precisely 
those laws that are appropriately constrained by meta-laws that are symmetry or invariance 
principles.99  

Robert Nozick (1938-2002) once said, 
 

Amalie Emmy Noether showed that for each symmetry/invariance that satisfies a Lie 
group, there is some quantity that is conserved. Corresponding to invariance under 
translation in space, momentum is conserved…and to invariance of the law under the 
addition of an arbitrary constant to the phase of the wave function, apparently electrical 
charge is conserved. So it is not surprising that laws that are invariant under various 
transformations are held to be more objective. Such laws correspond to a quantity that 
is conserved, and something whose amount in this universe cannot be altered, 
diminished, or augmented should count as (at least tied for being) the most objective 
thing there actually is.100 

 
My scholarship is shaky. I have cut out that portion of the quotation of Nozick which reads: 
“Corresponding…to invariance under translation in time, [mechanical] energy is conserved” 
(ibid.). I have done this to emphasize that Nozick’s invitation to his reader is for that reader to 
conclude that mechanical energy is one of “the most objective” things “there actually is.” On the 
contrary, while it is true that for isolated systems featuring only conservative forces total 
mechanical energy is conserved, that fact does not entail the Galilean invariance of total 
mechanical energy, potential energy, or kinetic energy. None of these quantities are Galilean 
invariant. That is why neither the Hamiltonian nor the Lagrangian are either.101 However, for the 
types of systems with which I have been concerned, the Hamiltonian becomes total mechanical 
energy which, again, is conserved. Thus, not all conserved quantities are Galilean invariant 
quantities. And so, as Schroeren put matters, “Noether’s theorem concerns the way particles 

                                                 
“…quantities, such as acceleration and force, are invariant or, to use Newton’s term, ‘absolute’ 
between inertial reference frames. Such quantities have the same values in any inertial frame.” 
(ibid., 220) 

 
99 Cf. the discussion in (Earman 2004). 
100 (Nozick 2001, 81). 
101 As Coopersmith stated, “energy is not an invariant quantity” (2015, 342). The Hamiltonian is not invariant 

under boost operations (Butterfield 2007, 6). Butterfield said, “the Hamiltonian of a free particle is just its kinetic 
energy, which can be made zero by transforming to the particle’s rest frame; i.e. it is not invariant under boosts.” 
(ibid.) This is true even in quantum mechanics (Lombardi et. al. 2010, 99). In classical mechanics, the Lagrangian is 
invariant under rotations and translations, but not under boosts (Finkelstein 1973, 106-107). Be careful. Landau and 
Lifshitz’s famous text on mechanics says that “the Lagrangian is [Galilean] invariant”, but their argument only 
demonstrates that Lagrange’s equations of motion are invariant under Galilean transformations (Landau and Lifshitz 
1976, 7). 

Interestingly, Coopersmith (2015, 239) says that the “potential energy function” just “is the 
Hamiltonian…and it is the function that determines the entire dynamics of the system.” If Coopersmith is right, it 
would not be surprising that potential energy fails to be a Galilean invariant quantity (cf., ibid., 313). 
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Symmetry/Invariance 
Principles Empirical Data

Galilean Covariant 
Laws 

Galilean Invariant 
Quantities Objective Quantities

behave under temporal evolution, i.e., whether certain physical quantities are conserved”; it does 
not concern whether those quantities are Galilean invariant.102 Yet, Nozick was supposed to help 
us commit to Paul Dirac’s (1902-1984) dictum that “[t]he important things in the world appear as 
the invariants…”103 These important things are the objective things. At a non-relativistic classical 
world, it is Galilean invariance (using Nozick’s wording) that “is [or should be]…connected to 
something’s being an objective fact”.104 But while Hamilton’s laws or equations of motion are 
covariant under Galilean transformations, they fail to “correspond to a quantity that is conserved” 
and that is one of “the most objective thing[s] there actually is”, if the quantity in question is taken 
to be the Lagrangian, the Hamiltonian, potential energy, kinetic energy, or even work.105 Nozick’s 
inference runs from invariance or symmetry principles (perhaps together with or closely followed 
by empirical data), to invariant (or covariant) laws, to conserved quantities, and then to objective 
quantities. But that inference is a bad one. Nozick’s inference should have had the following 
structure for the non-relativistic classical case: 
 
  
 
 
 
 
 
 
What explains the Galilean covariance of the laws of classical mechanics (including Hamilton’s 
equations of motion) is the nature of operating forces. That is why Tim Maudlin was right to stress 
that “…the necessary and sufficient condition for any Newtonian [classical but non-relativistic] 
theory to be Galilean invariant is that the force F be the same in all inertial frames.”106 Forces are 
                                                 

102 (Schroeren 2020, 52) emphasis in the original. Schroeren goes on to correctly note how “every property 
linked to a symmetry in the relevant sense is invariant under that symmetry” (ibid.). So, some type of thesis regarding 
the invariance of energy may be saved. However, that type of invariance cannot be indicative of that which is one of 
“the most objective thing[s] there actually is” for, again, total mechanical energy is conserved but not objective at 
least because of the arbitrariness that sneaks into potential energy (q.v., sect. 4.2). I do not know if Schroeren would 
agree with my conclusions. 

103 (Dirac 1995, 456). Nozick himself uses this quotation at (Nozick 2001, 76). 
104 (Nozick 2001, 76).  
Someone may ask: But what about the action that is minimized in Lagrangian and Hamiltonian mechanics? 

That quantity is invariant under Galilean transformations, and it is typically understood in terms of energy multiplied 
by time. I reply that it is typically the Lagrangian multiplied by a small change in time (usually flanked by the 
integration symbol (the “action integral”)). It is difficult to discern the metaphysical nature of that quantity, but it is 
far from potential energy alone. My view of the relationship between force and action belonged to both Euler and 
Lagrange.  The action and action integral track the evolution of the system by indirectly representing its dynamical 
force interactions. That is why when you shift from one system with an operating force Fn to a system with different 
operating forces, the form of the action changes. Euler recognized that if the system involves accelerations, the action 
is a minimum, given that the system being modeled is acted upon by forces (Euler 1744, 311-312). The correct act of 
integration yields the system’s trajectory only under the assumption that a force has acted and that the form of the 
integral is appropriately specified in light of that force-action. This same point was made by Lagrange. See (Lagrange 
1867, 365-468) and the translated quotation at (Boissonnade and Vagliente 1997, xxxiii). So, the explanation of the 
invariance of the action integral arises from the invariance of the acting forces, those same forces that the form of the 
action integral is sensitive to. 

105 The incorporation of work into the list should not be surprising. As I’ve already argued, energy should be 
analyzed in terms of work. Energy is not Galilean invariant, and so neither is work. 

106 (Maudlin 2011, 174) emphasis in the original. 



Weaver, Hamilton, Hamiltonian Mechanics, and Causation 
 

 27 

invariant and objective. So too are their resulting accelerations. Potential energy is neither invariant 
nor objective. Force is therefore more fundamental than potential energy.  
 
5 Potential Energy and Classical Electrostatics 
 
 There exists a weighty analogical consideration in favor of the claim that potential energy 
in classical mechanics is grounded in forces at work in the world. The argument starts out by 
referencing the known marked similarities between, on the one side, potential energy 𝑈𝑈𝐸𝐸 in 
electrostatics and the electrostatic potential Φ (in that same science), and on the other side, the 
potential energy function 𝑈𝑈 in classical mechanics.  

Consider a conservative isolated system of classical electrostatics (SYSE). Here the electric 
potential Φ “is the potential energy of a unit charge”107 𝑞𝑞, such that: 
 

𝑈𝑈𝐸𝐸 = 𝑞𝑞Φ 
 
I have already shown how potential energy is related to work in mechanics. To show off that same 
relationship-type in electrostatics, add to SYSE an electric field 𝐄𝐄.108 In electrostatics, this field 
will stand in the same relation to Φ that 𝐅𝐅 stands in relation to 𝑈𝑈 in classical mechanics. 
 

𝐄𝐄 = −𝛁𝛁Φ 
 
Electric force becomes, 
 
 
(Simple Electric Force (SEF)): 

𝐅𝐅𝐸𝐸 = 𝐄𝐄𝑞𝑞 = −𝛁𝛁(𝑞𝑞Φ) = −𝛁𝛁𝑈𝑈𝐸𝐸 
 
If 𝜖𝜖0 is the electric or vacuum permittivity constant, and there are two point charges 𝑞𝑞1 and 𝑞𝑞2, 
then the force between them (which will yield an equal and opposite force) will be given by 
Coulomb’s law: 
 
(Coulomb’s Law (CL))109: 

𝐅𝐅𝐸𝐸 =
1

4𝜋𝜋𝜖𝜖0
𝑞𝑞1𝑞𝑞2

𝐫𝐫1 − 𝐫𝐫2
|𝐫𝐫1 − 𝐫𝐫𝟐𝟐|3 

 
CL says that the electric force is determined by the locations and properties of point charges. In 
electrostatics, the electric field is likewise determined by point charges. That is why one can 
motivate the following expression for the electric field by appeal to CL (q.v., also n. 122): 
 
(Simple Electric Field (SEFi)): 

𝐄𝐄(𝐫𝐫) =
1

4𝜋𝜋𝜖𝜖0
𝑞𝑞1

𝐫𝐫 − 𝐫𝐫1
|𝐫𝐫 − 𝐫𝐫1|3 

                                                 
107 (Shankar 2016, 97). 
108 I assume that SYSE is one for which it is true that the curl of the electric field equals zero. 
109 We can, of course, simplify many of these expressions (as in Shankar 2016, 19-41), but I like to explicitly 

state the relations as they appear in the main text thereby following the well-regarded exposition in (Jackson 1999). 



Weaver, Hamilton, Hamiltonian Mechanics, and Causation 
 

 28 

 
which specifies the electric field 𝐄𝐄 at 𝐫𝐫. This equation says that 𝐄𝐄 is generated by point charge 
𝑞𝑞1.110  

When a field 𝐄𝐄 is in play, the electrostatic potential is reified, and one introduces to SYSE 
an array of (𝑛𝑛 − 1) charges 𝑞𝑞𝑗𝑗 situated in spatial region 𝐫𝐫𝑗𝑗, that array will generate a potential 
Φ(𝐫𝐫𝑖𝑖), such that111: 
 
(Potential from Array (PFA)): 

Φ(𝐫𝐫𝑖𝑖) =
1

4𝜋𝜋𝜖𝜖0
�

𝑞𝑞𝑗𝑗
�𝐫𝐫𝑖𝑖 − 𝐫𝐫𝑗𝑗�

𝑛𝑛−1

𝑗𝑗=1

 

 
And this helps us support the judgment that the total potential energy of the system featuring the 
point charge array, electric field, and potential is: 
 
(Potential Energy and Work (P&W)112): 

𝑊𝑊 =
1

4𝜋𝜋𝜖𝜖0
��

𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗
�𝐫𝐫𝑖𝑖 − 𝐫𝐫𝑗𝑗�𝑗𝑗<𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

 
Despite the fact that I’ve here specified the potential energy of the system (i.e., the potential energy 
of every charge under the influence of every force in the system), my inclusion of the work variable 
𝑊𝑊 on the left is purposeful. In this context when you give the work in electrostatics you give the 
potential energy. Once again, this is precisely what you’d expect if potential energy were correctly 
analyzed in terms of work. But why should one believe that forces wrought by the point charges 
are more fundamental than potential energy?  

As with potential energy in classical mechanics, the potential energy of systems like SYSE 
can only be specified up to an arbitrary additive constant.113 The same is true of the electrostatic 
potential. Thus, any specification of these quantities will involve some arbitrariness and it is 
because of this arbitrariness that orthodoxy in electrostatics typically treats the potential as a 
conventional and derivative device that helps with calculations. In David Griffiths’ widely used 
textbook, we have: “[p]otential as such carries no real physical significance, for at any given point 
we can adjust its value at will by a suitable relocation of…[the reference point]”.114 Olness and 
Scalise remarked, “…the potential itself is not a physical quantity. In particular, we can shift the 
potential by a constant…and the physical quantities will be unchanged.”115 And while any good 
theory of electrostatics must be relativistic, both 𝑈𝑈𝐸𝐸  and Φ fail the test of Lorentz invariance 
(Steane 2012).  

                                                 
110 (Jackson 1999, 24). 
111 (Jackson 1999, 40). 
112 (Jackson 1999, 41); (Greiner 1998, 28). 
113 See the proof in (Langhaar 1961, 19) 
114 (Griffiths 2017, 81). 
115 (Olness and Scalise 2011, 309). In Maxwell’s An Elementary Treatise on Electricity, he said that “[t]he 

electric potential…which is the analogue of temperature is a mere scientific concept. We have no reason to regard it 
as denoting a physical state” (Maxwell 1888, 53). Here I’m indebted to the work of Eugene Hecht (2019b and q.v., n. 
97). His work cites several of the historical sources I’ve cited. 
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Orthodoxy in classical electrostatics has it that 𝑈𝑈𝐸𝐸 is closely connected to work and force. 
Equation P&W and my subsequent commentary makes that clear. And because 𝑈𝑈𝐸𝐸 = 𝑞𝑞Φ, the 
electrostatic potential is also strongly associated with both work and force. As Feynman said,  

 
(a) the “electric potential…is related to the work done in carrying a charge from one point 

to another.”116  
 
But Feynman likewise expounded orthodoxy when he added that: 
 

(b) “The existence of a potential, and the fact that the curl of E is zero, comes really only 
from the symmetry and direction of the electrostatic forces.”117  

 
Orthodox tenets (a) and (b) are both plainly supported by the picture I have painted with the help 
of the preceding equations. 𝑈𝑈𝐸𝐸 and Φ are strongly related such that: 𝑈𝑈𝐸𝐸 = 𝑞𝑞Φ (and SEF). The 
electric field and the electrostatic potential are strongly associated with one another, hence: 𝐄𝐄 =
−𝛁𝛁Φ and SEF. But both 𝐄𝐄 and Φ are determined by forces between point charges, hence the use 
of CL to motivate SEFi (q.v., n. 122), and in addition (considered separately) the fact that the PFA 
holds.118 P&W tells us that the work of a system depends on the positions and natures of point 
charges. The positions and natures of point charges determine the electric forces at work. This is 
not surprising because, again, physics teaches that work should be characterized in terms of forces. 
According to the P&W, that work just is the system’s potential energy and so, orthodoxy in 
electrostatics says that “the potential energy…depends on the [acting] forces...”119 And because 
there are so many known similarities between potential energy in electrostatics 𝑈𝑈𝐸𝐸 and potential 
energy 𝑈𝑈 in classical mechanics (some of which I have tried to highlight here), we can infer that it 
is likely that potential energy in classical mechanics is likewise downstream from forces. 
 
  

                                                 
116 (Feynman, Leighton and Sands 2010, 4-4). 
117 (Feynman, Leighton and Sands 2010, 4-7). The fact that the curl of the electric field equals zero, or: 

 
𝛁𝛁 × 𝐄𝐄 = 0 

 
follows from the generalized Coulomb’s law: 
 

𝐄𝐄(𝐫𝐫) =
1

4𝜋𝜋𝜖𝜖0
�𝜌𝜌(𝐫𝐫′)

𝐫𝐫 − 𝐫𝐫′

|𝐫𝐫 − 𝐫𝐫′|3
𝑑𝑑3𝑟𝑟′ 

 
where 𝑑𝑑3𝑟𝑟′ gives the 3D volume element at 𝐫𝐫′, and where 𝜌𝜌(𝐫𝐫′) gives the volume charge density at 𝐫𝐫′. This derivation-
fact supports Feynman’s claim.  

118 Charges near conductors likewise create electrostatic potentials (Appel 2007, 165). 
119 (Shankar 2016, 82). 
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6 Conclusion 
 
 I have shown how Hamilton’s philosophical commitments led him to a causal 
interpretation of classical mechanics. I argued that Hamilton’s metaphysics of causation was 
injected into his dynamics by way of a causal interpretation of the force quantity. I then detailed 
how forces remain indispensable to both Hamilton’s formulation of classical mechanics and what 
we now call Hamiltonian mechanics (i.e., the modern formulation). On this point, my efforts 
primarily consisted of showing that the orthodox interpretation of potential energy is none other 
than that interpretation found in Hamilton’s work. Hamilton called the potential energy function 
the force-function because he believed that it represented forces at work in the world. Multifarious 
non-historical arguments for the orthodox interpretation of potential energy were provided, and 
matters were concluded by showing that in classical Hamiltonian mechanics, facts about the 
potential energies of systems are grounded in facts about forces. If one can tolerate the view that 
forces are causes of motions, then Hamilton provided the road map for transporting causation into 
one of the most mathematically sophisticated formulations of classical mechanics, viz., modern 
Hamiltonian mechanics. 
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