Margins and Errors

Brian Weatherson

Recently, Timothy Williamson (2012) has argued that considerations about mar-
gins of errors can generate a new class of cases where agents have justified true
beliefs without knowledge. I think this is a great argument, and it has a number
of interesting philosophical conclusions. In this note I'm going to go over the
assumptions of Williamson’s argument. I'm going to argue that the assumptions
which imply that the case in question is one of justification without knowledge
are true. I’'m then going to go over some of the recent arguments in epistemology
that are refuted by Williamson’s work. And I’'m going to end with an admittedly
inconclusive discussion of what we can know when using an imperfect measuring
device.

1 Measurement, Justification and Knowledge

Williamson’s core example involves detecting the angle of a pointer on a wheel
by eyesight. For various reasons, I find it easier to think about a slightly different
example: measuring a quantity using a digital measurement device. This change
has some costs relative to Williamson’s version - for one thing, if we are measur-
ing a quantity it might seem that the margin of error is related to the quantity
measured. If I eyeball how many stories tall a building is, my margin of error is 0
if the building is 1-2 stories tall, and over 10 if the building is as tall as the World
Trade Center. But this problem is not as pressing for digital devices, which are
often very unreliable for small quantities. And, at least relative to my prefer-
ences, the familiarity of quantities makes up for the loss of symmetry properties
involved in angular measurement.!

To make things explicit, I'll imagine the agent § is using a digital scale. The
scale has a margin of error 7. That means that if the reading, 1.e., the apparent
mass is a, then the agent is justified in believing that the mass is in [a — m,a + m].
We will assume that @ and m are luminous; i.e., the agent knows their values, and
knows she knows them, and so on. This is a relatively harmless idealisation for
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'There’s one other change that might make a larger difference. When we use a digital device,
there’s a very clear separation between what the input is, and what we do with that input. That
kind of factorisation is not nearly as easy when we are eyeballing something, and may well be
impossible. But I think it makes the discussion smoother to have a case where we can easily separate
the input from the processing.
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a; it is pretty clear what a digital scale reads.? It is a somewhat less plausible as-
sumption for 7. But we’ll assume that § has been very diligent about calibrating
her scale, and that the calibration has been recently and skillfully carried out, so
in practice m can be assessed very accurately.

Note that when I say the scale has a margin of error, this is a tensed claim.
The margin will change over time, and with a change of environment and so on.
Many scales will come with a designed margin of error, which may be printed on
the scale or even on the display. I'm 7ot assuming that 7 is that margin. In fact,
it will be easiest in what follows if we assume that 7 is much much larger than
this printed value. This could be because the scale is old, or because it is being
used in a noisy environment. What we are assuming is that § has very carefully
assessed the accuracy of the scale in the environment she is using it, and correctly
concluded that when it reads a, she is justified in believing that the mass of the
object on the scale is in [a — m,a + m].

We’ll make three further assumptions about m that strike me as plausible,
but which may I guess be challenged. I need to be a bit careful with terminology
to set out the first one. I'll use V and v as variables that both pick out the true
value of the mass. The difference is that v picks it out rigidly, while V' picks out
the value of the mass in any world under consideration. Think of V' as shorthand
for the mass of the object and v as shorthand for the actual mass of the object. (More
carefully, V' is a random variable, while v is a standard, rigid, variable.) Our
first assumption then is that 7 is also related to what the agent can know. In
particular, we’ll assume that if the reading 4 equals v, then the agent can know
that V € [a—m,a+m], and can’t know anything stronger than that. That is, the
margin of error for justification equals, in the best case, the margin of error for
knowledge. The second is that the scale has a readout that is finer than m. This is
usually the case; the last digit on a digital scale is often not significant. The final
assumption is that it is metaphysically possible that the scale has an error on an
occasion that is greater than . This is a kind of fallibilism assumption - saying
that the margin of error is 7 does not mean there is anything incoherent about
talking about cases where the error on an occasion is greater than .

This error term will do a lot of work in what follows, so I’ll use e to be the
error of the measurement, i.e., |z — v|. For ease of exposition, I’ll assume that
a > v, i.e., that any error is on the high side. But this is entirely dispensible, and
just lets me drop some disjunctions later on.

2This isn’t always true. If a scale flickers between reading 832g and 833g, it takes a bit of skill
to determine what the reading is. But we’ll assume it is clear in this case. On an analogue scale, the
luminosity assumption is rather implausible, since it is possible to eyeball with less than perfect
accuracy how far between one marker and the next the pointer is.
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Now we are in a position to state Williamson’s argument. Assume that on a
particular occasion, 0 < e < m. Perhaps v =830, = 10 and a = 832, s0 e = 2.
Williamson appears to make the following two assumptions.?

1. The agent is justified in believing what they would know if appearances
matched reality, i.e., if V equalled a.

2. The agent cannot come to know something about V' on the basis of a sub-
optimal measurement that they could not also know on the basis of an
optimal measurement.

I'm assuming here that the optimal measurement displays the correct mass. I
don’t assume the actual measurement is wrong. That would require saying some-
thing implausible about the semantic content of the display. It’s not obvious that
the display has a content that could be true or false, and if it does have such a
content it might be true. (For instance, the content might be that the object on
the scale has a mass near to 4, or that with a high probability it has a mass near
to a, and both of those things are true. Or it might be that the mass of the ob-
ject on the scale is within the printed margin of error of the scale. Even if that’s
false in the case we’re imagining, it could be true without 2 = v.) But the opti-
mal measurement would be to have 2 = v, and in this sense the measurement is
suboptimal.

The argument then is pretty quick. From the first assumption, we get that the
agent is justified in believing that V € [a —m,a+m]. Assume then that the agent
forms this justified belief. This belief is incompatible with V € [v — m,a — m).
But if a equalled v, then the agent wouldn’t be in a position to rule out that
V € [v — m,a — m). So by premise 2 she can’t knowledgeably rule it out on the
basis of a mismeasurement. So her belief that V > a — m cannot be knowledge.
So this justified true belief is not knowledge.

If you prefer doing this with numbers, here’s the way the example works
using the numbers above. The mass of the object is 830. So if the reading was
correct, the agent would know just that the mass is between 820 and 840. The
reading is 832. So she’s justified in believing, and we’ll assume she does believe,
that the mass is between 822 and 842. That belief is incompatible with the mass
being 821. But by premise 2 she can’t know the mass is greater than 821. So the
belief doesn’t amount to knowledge, despite being justified and, crucially, true.
After all, 830 is between 822 and 842, so her belief that the mass is in this range is
true. So simple reflections on the workings on measuring devices let us generate
cases of justified true beliefs that are not knowledge.

*I’m not actually sure whether Williamson makes the first, or thinks it is the kind of thing
anyone who thinks justification is prior to knowledge should make.
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I’ll end this section with a couple of objections and replies.

Objection: The argument that the agent can’t know that V € [a — m,a + m] is
also an argument that the argument can’t justifiably believe that V € [a — m,a +
m]. After all, why should it be possible to get justification from a suboptimal
measurement when it isn’t possible to get the same justification from an optimal
measurement?

Reply: It is possible to have justification to believe an outright falsehood. It is
widely believed that you can have justification even when none of your eviden-
tial sources are even approximately accurate (Cohen, 1984). And even most reli-
abilists will say that you can have false justified beliefs if you use a belief forming
method that is normally reliable, but which badly misfires on this occasion. In
such cases we clearly get justification to believe something from a mismeasure-
ment that we wouldn’t get from a correct measurement. So the objection is based
on a mistaken view of justification.

Objection: Premise 2 fails in cases using random sampling. Here’s an illustration.
An experimenter wants to know what percentage of Fs are G. She designs a sur-
vey to ask people whether they are G. The survey is well designed; everyone
gives the correct answer about themselves. And she designs a process for ran-
domly sampling the Fs to get a good random selection of 500. It’s an excellent
process; every F had an equal chance of being selected, and the sample fairly rep-
resents the different demographically significant subgroups of the Fs. But by the
normal processes of random variation, her group contains slightly more Gs than
the average. In her survey, 28% of people said (truly!) that they were G, while
only 26% of Fs are Gs. Assuming a margin of error in such a study of 4%, it
seems plausible to say she knows that between 25 and 32% of Fs are Gs. But
that’s not something she could have known the survey had come back correctly
reporting that 26% of Fs are Gs.

Reply: 1 think the core problem with this argument comes in the last sentence.
A random survey isn’t, in the first instance, a measurement of a population. It’s
a measurement of those surveyed, from which we draw extrapolations about the
population. In that sense, the only measurement in the imagined example was
as good as it could be; 28% of surveyed people are in fact G. So the survey was
correct, and it is fine to conclude that we can in fact know that between 24 and
32 percent of Fs are Gs.

There are independent reasons for thinking this is the right way to talk about
the case. If a genuine measuring device, like a scale, is off by a small amount, we
regard that as a reason for tinkering with the device, and trying to make it more
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accurate. That’s one respect in which the measurement is suboptimal, even if it
is correct within the margin of error. This reason to tinker with the scale is a
reason that often will be outweighed. Perhaps it is technologically infeasible to
make the machine more accurate. More commonly, the only way to guarantee
greater accuracy would be more cost and hassle than it is worth. But it remains
a reason. The fact that this experiment came out with a deviation between the
sample and the population is 7ot a reason to think that it could have been run
in a better way, or that there is some reason to improve the survey. That’s just
how random sampling goes. If it were a genuine measurement of the population,
the deviation between the ‘measurement’ and what is being measured would be a
reason to do things differently. There isn’t any such reason, so the sample is not
truly a measurement.

So I don’t think this objection works, and I think the general principle that
you can’t get extra knowledge from a suboptimal measurement is right. But note
also that we don’t need this general principle to suggest that there will be cases
of justified true belief without knowledge in the cases of measurement. Consider
a special case where e is just less than 7. For concreteness, say a = v + 0.95m,
so e = 0.95m. Now assume that whatever is justifiedly truly believed in this
case is known, so § knows that V € [a — m,a + m]. That is, § knows that
V e[v—0.05m,a+m].

We don’t need any principles about measurement to show this is false; safety
considerations will suffice. Williamson (2000) says that a belief that p is safe only
if p is true in all nearby worlds. But given how close v is to the edge of the range
[v — 0.05m,a + m], the belief that v is in this range clearly isn’t safe, so isn’t
knowledge. Rival conceptions of safety don’t help much more than this. The
most prominent of these, suggested by Sainsbury (1996), says that a belief is safe
only if the method that produced it doesn’t produce a false belief in any nearby
world. But if the scale was off by 0.95m, it could have been off by 1.052, so that
condition fails too.

I don’t want the last two paragraphs to leave too concessive an impression.
I think the objection fails because it relies on a misconception of the notion of
measurement. But I think that even if the objection works, we can get a safety
based argument that some measurement cases will produce justified true beliefs
without knowledge. And that will matter for the argument of the next two sec-
tions.

2 The Class of Gettier Cases is Disjunctive

There’s an unfortunate terminological confusion surrounding gaps between kno-
wledge and justification. Some philosophers use the phrase ‘Gettier case’ to de-
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scribe any case of a justified true belief that isn’t knowledge. Others use it to
describe just cases that look like the cases in Gettier (1963), i.e., cases of true be-
lief derived from justified false belief. I don’t particularly have strong views on
whether either of these uses is better, but I do think it is important to keep them
apart.

Il illustrate the importance of this by discussing a recent argument due to
Jeremy Fantl and Matthew McGrath (Fantl and McGrath, 2009, Ch. 4). I've
previously discussed this argument (Weatherson, 2011), but I don’t think I quite
got to the heart of why I don’t like the kind of reasoning they are using.

The argument concerns an agent, call her 7', who has the following unfor-
tunate combination of features. She is very confident that p. And with good
reason; her evidence strongly supports p. For normal reasoning, she takes p for
granted. That is, she doesn’t distinguish between ¢ is best given p, and that ¢ is
simply best. And that’s right too, given the strong evidence that p. But she’s not
crazy. Were she to think that she was facing a bet on extreme odds concerning p,
she would cease taking p for granted, and revert to trying to maximise expected
value given the high probability that p. But she doesn’t think any such bet is
salient, so her disposition to retreat from p to Probably p has not been triggered.
So far, all is going well. I’'m inclined to say that this is enough to say that T jus-
tifiedly believes that p. She believes that p in virtue of the fact that she takes p
for granted in actual reasoning.* She’s disposed to stop doing so in some circum-
stances, but until that disposition is triggered, she has the belief. And this is the
right way to act given her evidence, so her belief is justified. So far, so good.

Unfortunately, T really does face a bet on long odds about p. She knows
she has to choose between ¢ and ¢. And she knows that ¢ will produce the
better outcome iff p. But she thinks the amount she’ll gain by choosing ¢ if =p
is roughly the same as the amount she’ll gain by choosing ¢ if p. That’s wrong,
and her evidence clearly shows it is wrong. If p is false, then ¢ will be much worse
than ¢. In fact, the potential loss here is so great that ¢ has the greater expected
value given the correct evidential probability of p. I think that means she doesn’t
know that p. Someone who knows that p can ignore —p possibilities in practical
reasoning. And someone who could ignore —p possibilities in practical reasoning
would choose ¢ over ¢, since it is better if p. But T isn’t in a position to make
that choice, so she doesn’t know that p.

#There are some circumlocutions here because I'm being careful to be sensitive to the points
raised in Ross and Schroeder (fort) about the relationship between belief and reasoning. I think
there’s less distance between the view they put forward and the view I defended in Weatherson
(2005) than they do, but this is a subtle matter, and for this paper’s purposes I want to go along
with Ross and Schroeder’s picture of belief.
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(I've said here that T is wrong about the costs of choosing ¢ if p, and her
evidence shows she is wrong. In fact I think she doesn’t know p if either of those
conditions obtain. But here I only want to use the weaker claim that she doesn’t
know p if both conditions obtain.)

Fantl and McGrath agree about the knowledge claim, but disagree about the
justified belief claim. They argue as follows (this is my version of the ‘Subtraction
Argument’ from page 97 of their book).

1. T isjusthed in choosing ¢ iff she knows that p.

2. Whether T7s belief that p is true is irrelevant to whether she is justified in
choosing ¢.

3. Whether 7’s belief that p is ‘Gettiered’ is irrelevant to whether she is jus-

tified in choosing ¢.

Knowledge is true, justified, UnGettiered belief.

So T isjustfied in choosing ¢ iff she is justified in believing that p.

T is not justified in choosing ¢.

So T is not justified in believing that p.

N

I think this argument is only plausible if we equivocate on what it is for a belief
to be ‘Gettiered’.

Assume first that ‘Gettiered” means ‘derived from a false intermediate step’.
Then premise 4 is false, as Williamson’s example shows. § has a justified true
belief that is neither knowledge nor derived from a false premise.

Assume then that ‘Gettiered’ simply means that the true belief is justified
without being known. In that case we have no reason to accept premise 3. After
all, the class of true justified beliefs that are not knowledge is pretty open ended.
Before reading Williamson, we may not have thought that this class included
the beliefs of agents using measuring devices that were functioning properly but
imperfectly. But it does. Prior to the end of epistemology, we simply don’t know
what other kind of beliefs might be in this class. There’s no way to survey all the
ways for justification to be insufficient for knowledge, and see if all of them are
irrelevant to the justification for action. I think one way a justified belief can fall
short of knowledge is if it is tied up with false beliefs about the stakes of bets. It’s
hard to say that that is irrelevant to the justification of action.

It is by now reasonably well known that logical subtraction is a very messy
and complicated business. See, for instance, Humberstone (2000) for a clear dis-
cussion of the complications. In general, unless it is analytic that Fs are Gs and
Hs, for some antecedently understood G and H, there’s nothing interesting to
say about the class of things that are G but not F. It will just be a disjunctive
shambles. The same is true for knowledge and justification. The class of true
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beliefs that are justified but not known is messy and disjunctive. We shouldn’t
expect to have any neat way of overviewing it. That in part means we can’t say
much interesting about it as a class, contra premise 3 in the above argument. It
also means the prospects for ‘solving the Gettier problem’ are weak. We’ll turn
to that issue next.

3 There is No Solution to the Gettier Problem

The kind of example that Edmund Gettier (1963) gives to refute the justified true
belief theory of knowledge has what Linda Zagzebski (2009, 117) aptly calls a
“double luck” structure. In Gettier’s original cases, there’s some bad luck that
leads to a justified belief being false. But then there’s some good luck that leads
to an inference from that being true. As was quickly realised in the literature, the
good and bad luck doesn’t need to apply to separate inferential steps. It might be
that the one belief that would have been false due to bad luck also ends up being
true due to good luck.

This has led to a little industry, especially in the virtue epistemology section
of the market, of attempts to “solve the Gettier problem” by adding an anti-luck
condition to justification, truth and belief and hoping that the result is something
like an analysis of knowledge. As Zagzebski (1994) showed, this can’t be an inde-
pendent condition on knowledge. If it doesn’t entail truth, then we will be able to
recreate the Gettier cases. But maybe a ‘fourth’ condition that entails truth (and
perhaps belief) will suffice. Let’s quickly review some of these proposals.

So Zagzebski (1996) suggested that the condition is that the belief be true
because justified. John Greco (2010) says that the extra condition is that the beliefs
be “intellectually creditable”. That is, the primary that the subject ended up with
a true belief is that it was the result of her reliable cognitive faculties. Ernest Sosa
(2007) said that knowledge is belief that is true because it manifests intellectual
competence. John Turri (2011) says that knowledge is belief the truth of which is
a manifestation of the agent’s intellectual competence.

It should be pretty clear that no such proposal can work if what I've said in
earlier sections is remotely right. Assume again that v = 830,24 =832 and m = 10.
The agent believes that V' € [822,842]. This belief is, we’ve said, justified and
true. Does it satisfy these extra conditions?

My short answer is that it does. My longer answer is that it does if any belief
derived from the use of a measuring device does, and since some beliefs derived
from the use of measuring devices amount to knowledge, the epistemologists are
committed to the belief satisfying the extra condition. Let’s go through those
arguments in turn.
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In our story, § demonstrates a range of intellectual competencies. She uses
a well-functioning measuring device. It is the right kind of device for the pur-
pose she is using. By hypothesis, she has had the machine carefully checked, and
knows exactly the accuracy of the machine. She doesn’t form any belief that is
too precise to be justified by the machine. And she ends up with a true belief
precisely because she has so many competencies.

Note that if we change the story so 4 is closer to v+ m, the case that the belief
is true in virtue of § being so competent becomes even stronger. Change the case
so that @ = 839, and she forms the true belief that V € [829,849]. Now if § had
not been so competent, she may have formed a belief with a tighter range, since
she could easily have guessed that the margin of error of the machine is smaller.
So in this case the truth of the belief is very clearly due to her competence. But as
we noted at the end of section 1, in the cases where a is near v + m, the argument
that we have justified true belief without knowledge is particularly strong. Just
when the gap between justification and knowledge gets most pronounced, the
competence based approach to knowledge starts to issue the strongest verdicts in
Javour of knowledge.

But maybe this is all a mistake. After all, the object doesn’t have the mass
it has because of $’s intellectual competence. The truth of any claim about its
mass is not because of §’s competence, or a manifestation of that competence.
So maybe these epistemologists get the correct verdict that § does not know that
Vela—mya+m]?

Not so quick. Even had a equalled v, all these claims would have been true.
And in that case, § would have known that V was within 7 of the measurement.
What is needed for these epistemological theories to be right is that there can be
a sense that a belief that p can be true in virtue of some cause C without C being
a cause of p. I'm inclined to agree with the virtue epistemologists that such a
sense can be given. (I think it helps to give up on content essentialism for this
project, as suggested by David (2002) and endorsed inWeatherson (2004).) But
I don’t think it will help. There’s no real way in which a belief is true because
of competencies, or in which the truth of a belief manifests competence, in the
good case where 2 = v, but not in the bad cases, where 4 is in (0,m). These
proposals from Zagzebski and others might help with explaining why a gap opens
between knowledge and justification in ‘double luck’ cases. But that gap can
appear in cases that don’t have a ‘double luck’ structure. As noted in the previous
section, I think the gap in question includes some cases involving false beliefs
about the practical significance of p, but I don’t expect everyone to agree with
that. Happily, the Williamsonian cases should be less controversial.
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4 What Can We Learn from Fallible Machines?

My presentation of Williamson’s argument in section 1 abstracted away from
several features of his presentation. In particular, I didn’t make any positive as-
sumption about what the agent can know when they find out that the machine
reads a. Williamson makes a suggestion, though he offers it more as the most
internalist friendly suggestion than the most likely correct hypothesis.

The suggestion, which I’ll call the Circular Reading Centred hypothesis, is
that the most the agent can know is that V € [a — (e + m),a + (e + m)]. That
is, the agent can know that V is in a region centred on 4, the ‘radius’ of which is
the margin of error m, plus the error on this occasion e. This is actually a quite
attractive suggestion, though not the only suggestion we could make. Let’s look
through some other options and see how well they work.

We said above that the agent can’t know more from a mismeasurement than
they can know from an accurate measurement. And we said that given an ac-
curate measurement, the most they can know is that V € [v — m,v + m]. So
here’s one very restrictive suggestion: if a € [v — m,v + m], then the agent
can know that V € [v — m,v 4+ m]. But we can easily rule that out on the ba-
sis of considerations about justification. The strongest proposition the agent is
justified in believing is that V' € [a — m,a + m]. If the agent could know that
V € [v—m, v+ m], then she could know that V ¢ (v+m,a+ m], even though
she isn’t justified in believing this. This is absurd, so that proposal is wrong.

We now have two principles on the table: S can’t know anything by a mis-
measurement that she knows on the basis of a correct measurement, and that she
can only know things she’s justified in believing. The first principle implies that
for all x € [v — m,v + m], that V = x is epistemically possible. The second
implies that for all x € [a — m,a + m], that V = x is epistemically possible. Our
next proposal is that the epistemic possibilities, given a reading of 4, are just that
Velv—m,ov+m]|U[a—m,a+m].

But this is fairly clearly absurd too. Assume thata > v+2m. This is unlikely,
but as we said above not impossible. Now consider the hypothesis that V' €
(v 4+ m,a — m). On the current hypothesis, this would be ruled out. That is,
she would know it doesn’t obtain. But this seems bizarre. There are epistemic
possibilities all around it, but somehow she’s ruled out this little gap, and done
so on the basis of a horrifically bad measurement.

This suggests two other approaches that are consistent with the two prin-
ciples, and which do not have such an odd result. Tll list them alongside the
proposal we mentioned earlier.
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Circular Appearance Centred The strongest proposition the agent can know
isthat Vel[a—(e+m),a+(e+m)].

Circular Reality Centred The strongest proposition the agent can know is that
Velv—(e+m),v+(e+m).

Elliptical The strongest proposition the agent can know is that V € [v — m,a +

The last proposal is called Elliptical because it in effect says that there are two foci
for the range of epistemic possibilities. The agent can’t rule out anything within
m of the true value, or anything within 7 of the apparent value, or anything
between those.

Actually we can motivate the name even more by considering a slight gener-
alisation of the puzzle that we started with. Assume that R is trying to determine
the location of an object in a two-dimensional array. As before, she has a digital
measuring device, perhaps a GPS locator trained on the object in question. And
she knows that margin of error of the device is 7. The object is actually located
at (x,,7,), and the device says it is at (x,,7,). So the epistemic possibilities, by
the reasoning given above, should include the circles with radius 7 centred on
(x,,7,) and (x_, 7). Call these circles C, and C,. Unless (x,,y,) = (x,,7,), the
union of these circles will not be convex. If the distance between (x,,y,) and
(x,,7,) is greater than 2m, the union won’t even be connected. So just as we
‘filled in’ the gap in the one-dimensional case, the natural thing to say is that any
point in the convex hull of C, and C, is an epistemic possibility.

But now see what happens if we say those are all of the epistemic possibilities,
i.e., that the agent knows that the true value lies in the convex hull of the two
circles. Here’s what it might look like.

Now consider the line from (x,,y,) to (x,,7,). No matter how bad the mea-
surement is, the convex hull of the two circles C, and C, will include no points
more than distance 7 from the line between (x,,y,) to (x,,7,). That is, the
agent can know something surprisingly precise about how close V is to a partic-
ular line, even on the basis of a catastrophically bad measurement.

There are some circumstances where this wouldn’t be counterintuitive. As-
sume that x,, = x,, while y, and y, are very very different. And assume further
that (x,,y,) is calculated by using two very different procedures for the x and y
coordinates. (Much as sailors used to use very different procedures to calculate
longitude and latitude.) Then the fact that one process failed badly doesn’t, I
think, show that we can’t get fairly precise knowledge from the other process.
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But that’s not the general case. If the machine determines (x,,y,) by a more
holistic process, then a failure on one dimension should imply that we get less
knowledge on other dimensions, since it makes it considerably flukier that we
got even one dimension right. So I think the space of epistemic possibilities, in a
case involving this kind of errant measurement, must be greater than the convex
hull of C, and C,.

Fortunately, there are a couple of natural generalisations of the elliptical pro-
posal that avoid this complication. One of them says that the space of epistemic
possibilities forms an ellipse. In particular, it is the set of all points such that the
sum of the distance from that point to (x,,y,) and the distance from that point
to (x,,7,) is less than or equal to 2m + e, where e again is the distance between
the measured and actual value. As you can quickly verify, that includes all points
on the line from (x,,y,) to (x,,7,), plus an extension of length m beyond in
each direction. But it doesn’t just contain the straight path between C, and C; it
‘bulges’ in the middle. And the considerations above suggest that is what should
happen.

The other alternative is to drop the idea that the space of possibilities should
be elliptical, and have another circular proposal. In particular, we say that the
space of possibilities is the circle whose centre is halfway between (x,,v,,) and
(x,,7,), and whose radius is m+e¢/2. Again, that will include all points on the line
from (x,,y,) to (x,,7,), plus an extension of length 7 beyond in each direction.
But it will include a much larger space in the middle.

I think both of these are somewhat plausible proposals, though the second
suffers from a slightly weaker version of the objection I’'m about to mount to the
Circular Reality Centred proposal. But they do share one weakness that I think
counts somewhat against them. It’s easy enough to see what the weakness is in
the one-dimensional case, so let’s return to it for the time being, and remember
we’re assuming that a > v.

Consider a case where e is rather large, much larger than 7. This affects how
far below v we have to go in order to reach possibilities that are ruled out by
the measurement. But it doesn’t affect how far above v we have to go in order
to reach such possibilities. Indeed, no matter how bad e is, we can be absolutely
certain that we know V' < a+2m, or that we know that V > a —2m. That seems
a little odd; if the measurement is so badly mistaken, it seems wrong that it can
give us such a fine verdict, at least in one direction.

I don’t think that’s a conclusive objection. Well, I don’t think many of the
considerations I’ve listed here are conclusive, but this seems even weaker. But it is
a reason to look away from the elliptical proposal and back towards the circular
proposals that we started with.



Margins and Errors 13

If we just look at first order knowledge claims, it is hard to feel much of
an intuitive pull towards one or other of the alternatives. Perhaps safety based
considerations favour the Reality Centred over the Appearance Centred version,
but I don’t think the salient safety consideration is that strong.

If we look at iterated knowledge claims, however, there is a big problem with
the Reality Centred approach. The intuition here is clearer if we use numerical
examples, so I'll work through a case with numbers first, then do the general
version next.

Assume, as above, that v = 830,4 = 834 and m = 10. So we have a pretty
decent measurement here. On the Reality Centred proposal, the strongest thing
that § can know is that V' € [816,844]. So it is an epistemic possibility that
V = 816. Assume that that’s the actual possibility. Then the measurement is
rather bad; the new value for e is 18. Were V to equal 816, while a4 equalled
834, then on the Reality Centred approach, the epistemic possibilities would be a
circle of radius e + m, i.e., 28, around the actual value, i.e., 816. So the strongest
thing the agent could know is that V € [788,844]. On the other hand, if V were
844, the strongest thing the agent could know is that V' € [824,864]. Putting
those together, the strongest thing the agent can know that she knows is that
V €[788,864]. That’s a very large range already. Similar calculations show that
the strongest thing the agent can know that she knows that she knows is that
V e [732,904].

Now I'll grant that intuitions about second and third order knowledge are
not always maximally sharp. But I think it is very implausible that a relatively
accurate measurement like this could lead to such radical ignorance in the second
and third orders of knowledge. So I think the Reality Centred approach can’t be
right.

The general form the case is as follows. The strongest thing the agent can
know is that V € [v — (e + m),a + m]. The strongest thing she can know that
she knows is that V € [v —3(e + m),a + 3m]. And the strongest thing she
can know that she knows that she knows is that V € [v —7(e + m),a + 7m].
In general, we have exponential growth of the possibilities as we add one extra
order of knowledge. That seems absurd to me, so the Reality Centred approach
is wrong.

Note that this isn’t a problem with the Appearance Centred approach. The
first-order epistemic possibilities are that V € [a—(e+m),a+e+m]. If V isat the
extremes of this range, then e will be rather large. For example, if V were equal to
a+e+m, then the new error would be e+, since the measured value is still z. So
the range of possibilities would be that V € [a—((e+m)+m),a+((e+m)+m)].
Somewhat surprisingly, those would also be the possibilities if V' were equal to
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a — (e + m), since the only feature of V that affects the epistemic possibilities for
V is its distance from a. So for all § knows that she knows, V' could be anything
in [a—(e+2m),a+(e+2m)]. Similar reasoning shows that for all V knows that
she knows that she knows, V could be anything in [a—(e+3m),a+(e+3m)]. In
general, V has n’th order knowledge that V isin [a—(e+nm),a+(e+nm)]. This
linear growth in the size of the range of epistemic possibilities is more plausible
than the exponential growth on the Reality Centred approach.

So all things considered, I think the Circular Appearance Centred approach
is the right one, as Williamson suggests. Any simple alternative seems to have
rather counterintuitive consequences.
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