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What should you do if two experts, each of whom you are disposed to
defer to, disagree? The answer depends on what you know about the
relationship between the experts’ evidence. I’m going to argue for this de-
pendence claim, and work through three examples that start the process
of illustrating the nature of the dependence. The first example concerns a
case where the evidence the experts have is maximally independent. This
case has been well analysed by Easwaran et al. (2016), and my main con-
tribution is to offer a new (and perhaps more explanatory) proof of their
primary conclusion. The second case is where you know what propor-
tion of the experts’ evidence is shared. And the third is where you know
that one expert is more informed, but you don’t know which. In each
of the last two cases I’ll show the computed exact values of the posterior
probabilities after conditionalising on the expert credences, and also show
some simple methods for approximating these exact values. The approxi-
mations are, I suspect, a little more robust when we move from the simple
examples I’ll describe to more realistic ones.
So let’s get more precise about the question we’re asking, and also give
names to the characters in the story. (It feels weird to talk about you when
I don’t know who you are, so I prefer having named characters.) Assume
Player regards Ivy and Zack as experts about p in the following sense.

(1) If Player learns that Ivy’s credence in p is x, and nothing else, he
will change his credence in p to x.

(2) If Player learns that Zack’s credence in p is x, and nothing else, he
will change his credence in p to x.

Given that, what is the answer to this question.
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(3) If Player learns that Ivy’s credence in p is y, and Zack’s credence in
p is z, and nothing else, what should his credence in p become?

Following Baccelli and Stewart (2021), let’s distinguish two kinds of an-
swers to this question. The supra-Bayesian says that this case, like every
other case, calls for conditionalisation. This is going to be the kind of an-
swer I defend. Here’s how we spell this answer out. First, we rewrite (1)
and (2) as (4) and (5).

(4) ∀x: CrP(p | CrI(p) = x) = x
(5) ∀x: CrP(p | CrZ(p) = x) = x

Where CrP, CrI and CrZ are Player, Ivy and Zack’s credence functions
respectively. Then (3) gets rephrased as a request for the value of

(6) CrP(p | CrI(p) = y ∧ CrI(p) = z)
That’s good as far as it goes, but it raises two natural questions. First, what
reasonable credal functions make (4) and (5) true, and what do they tend
to say about (6)? Second, given the massive computational difficulty in
calculating values like (6) in real time, are there heuristics for approximat-
ing its value in realistic cases? This paper aims to make progress on both
questions. It offers some examples of reasonable credal functions satisfy-
ing (4) and (5), and uses them to suggest some heuristics for approximat-
ing (6) in somewhat realistic cases.
But before we get to those answers, we should look at the other kind of
answer Baccelli and Stewart (2021) mention: pooling answers. A pooling
answer to (3) says that we should find some function that in some way
‘pools’ y and z to answer (3). One obvious such function is the arithmetic
mean. The answer to (3) is just (y + z)/2. Unfortunately, this won’t do
for three reasons. One reason, as proven independently by Gallow (2018)
and Bradley (2017) is that it is incompatible with supra-Bayesianism. A
second reason, as stressed by Russell, Hawthorne, and Buchak (2015),
is that it is in cases where Player defers to Ivy and Zack across a range
of questions, this answer is incompatible with Player, Ivy and Zack all
updating on external evidence by conditionalisation.1 A third reason, as 1 Note that supra-Bayesianism is the view

that Player should update on expert testi-
mony by conditionalisation. This objection
does not assume supra-Bayesianism, but
does assume that conditionalisation is the
right rule for normal, non-testimonial, up-
dating.

stressed by Levinstein (2015) and Easwaran et al. (2016) is that in some
cases the intuitively correct answer to (3) is not between y and z.
The last of these reasons is most pressing. The natural response to the
first two reasons is to move to some other kind of pooling. Both Russell,
Hawthorne, and Buchak (2015) and Baccelli and Stewart (2021) suggest
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that we should use some kind of geometric pooling instead of linear pool-
ing. In this context, to use geometric pooling is to give an answer to (3)
something like2 2 I say ‘something like’ because you might

want to allow some extra parameters in the
answer if, for example, you want to give dif-
ferent weights to the two experts. That kind
of detail won’t matter to the argument here;
we’re just going to focus on cases where the
experts are treated symmetrically.

√𝑦𝑧
√𝑦𝑧 + √(1 − 𝑦)(1 − 𝑧)

And that pooling function can be shown to avoid the first two reasons for
not using linear pooling. But it can’t avoid the third, and that’s what I’m
going to focus on here.
There are three somewhat distinct reasons you might use pooling to an-
swer (3).
First, you might use it as a replacement for supra-Bayesianism. I’m going
to argue that if you do this, you also have to give up on Bayesianism across
the board. Sometimes the recipient of expert opinion can reliably infer
the evidence behind the opinion reliably. In those cases, regular Bayesian-
ism implies that the recipient should update on just that evidence. And
that regular, not supra, Bayesian principle is enough to dispose of pooling
answers.
There are two more plausible uses for a pooling answer. Second, you
might use it as a constraint on supra-Bayesianism. You could argue that
if the values that (6) takes for various y, z do not look like some kind of
pooling function, that’s evidence the priorCrP was irrational to start with.
And third, you might use it as an approximation for supra-Bayesianism.
It’s a lot easier to calculate linear or geometric means than to work out
precisely the value of (6). Both of the last two uses are intuitively very
plausible. One of the arguments of this paper is that they are, unfortu-
nately, ultimately untenable. There just isn’t much use around here for
pooling.
Pooling answers to (3) look a lot like conciliationist approaches to peer
disagreement. Indeed, the form of pooling that uses linear averaging is
sometimes thought to be a application of the Equal Weight View (Elga
2007). Supra-Bayesian answers look like evidentialist approaches to peer
disagreement. In particular, they look a lot like the Total Evidence View
(Lackey 2010). I’m going to use an even older motivation for them: the
evidentialist approach to testimony defended by Frank Jackson (1987).
On Jackson’s view, testimony that p is evidence that the speaker has evi-
dence for p. The way to rationally update on it depends on what kind of
evidence you think the speaker is likely to have, given they’ve concluded
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p, and what you would (rationally) do with that evidence. Typically, the
answer is Conclude p. Jackson argues that while this is typical, it isn’t al-
ways the right answer. And it fails to be the right answer in just the cases
you shouldn’t accept the speaker’s testimony.
So to simplify here, I’m going to look at some cases where Player can sim-
ply deduce, given one of the experts’ credences, what their evidence must
have been. And then Player will update on that evidence. As we’ll see, dif-
ferent assumptions about how the evidence of the experts interacts leads
to different answers to (3).
Two quick notes. First, I’m only going to look at cases where the experts
are treated symmetrically. That’s a restriction, but it’s a useful one for
letting us see the range of cases. Second, I’m going to be agreeing with
Easwaran et al. (2016) a lot, especially in the first half of the paper. I’m
ultimately going to consider some different kinds of cases to what they
consider - but that’s a difference in focus, not a difference in conclusions.
(They look at a bunch of kinds of cases that I won’t consider as well; it’s
not like I’m going strictly beyond their work.) This paper is intended
as a complement to theirs, not at all a substitute. But I think it’s a valu-
able complement, because I’ll show how some very realistic cases require
a generalisation of their model, and make some suggestions for what that
generalisation should look like.

1 Case One: Conditionally Independent Evidence

In our first case, the experts’ evidence is as independent as possible. Here’s
a story to think about how that could be. Carmen has an urn with 50
marbles, 25 black and 25 white. She draws one at random and marks
it with invisible ink. She has a scanner that can detect which marble is
marked, but no one else can tell it apart from the other marbles. Let p be
the proposition that the marked marble is white - that’s what we’ll focus
on from now on.
After selecting one marble to be marked, she puts together a jar contain-
ing the marked marble and 9 other marbles drawn at random from the
urn. (I’ll use ‘urn’ for where Carmen keeps all the unused marbles, and
‘jar’ for what she constructs to show the experts.) She shows that to one of
the experts, let’s say Ivy. She gets to inspect the jar, i.e., count how many
marbles in it are white and black. She then reports to Player, but crucially
not to Zack, her credence in p.
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In this example, the next thing that happens is that Carmen takes the jar
back, removes the 9 unmarked marbles, puts them back in the urn, and
draws a new set of 9 marbles. (That set may overlap with the first set
of course.) She puts these 9 in the jar, along with the marked marble,
and shows the jar to Zack. He examines the jar, and reports to Player his
credence in p.
Now in this case we can work out precisely how Player should update on
these two pieces of information. When one expert reports a credence of x
in p, Player can infer that they saw 10x white marbles. After all, what the
expert knows is just that the marked marble is equally likely to be any of
the marbles in the jar they see. So given CrI(p) = y and CrZ(p) = z, Player
can infer how many white marbles were in each jar. And he can work
out the probability of each of those jars turning up given p and given ¬p.
And that’s enough to plug into Bayes’s Theorem to work out a posterior
probability for p. When you do that, you get the following result.

(7) CrP(p | CrI(p) = y ∧ CrZ(p) = z) = yz/(yz + (1-y)(1-z))
I’m not going to work through the derivation of this, because it’s a
straightforward consequence of something I will derive below. If you
do want to check it for yourself, the key input is that the probability of
drawing x white balls in t draws without replacement from an urn with
w white balls and b black balls is

(𝑤𝑥)( 𝑏𝑡−𝑥)
(𝑤+𝑏𝑡 )

More importantly, (7) looks just like a special case of the central formula
(Upco) that Easwaran et al. (2016) use. And that’s not surprising, since
this case uses the same conditional independence assumption that they
make through much of their paper. To say thatA and B are conditionally
independent givenC is just to say that Pr(A ∧ B |C) = Pr(A |C)Pr(B |C).
In this case, any pair of claims about how many white balls are in the
jars shown to Ivy and to Zack are conditionally independent, both condi-
tional on p and on ¬p.
The right hand side of (7) also looks a lot like the geometric means de-
scribed above. The big difference is that the square root signs have disap-
peared. And that makes a difference, because it means the result violates
what Baccelli and Stewart (2021) call Unanimity. This principle requires
that CrP(p | CrI(p) = y ∧ CrI(p) = y) = y. If (7) is true then Unanimity
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is violated in every case except where y equals 0, 0.5 or 1. But this is bad
news for Unanimity, because the case for (7) in this case seems very strong.
Player really knows how many white marbles were in each jar, and it’s
just a bit of algebra to get from there to (7) via conditionalisation. And
it’s very plausible that conditionalisation is the right way to update on evi-
dence about how many marbles are in a jar. So any principle incompatible
with (7) is false.
It turns out that varying how many marbles are in the urn Carmen starts
with does not change (7). But changing the ratio of white marbles to
black marbles in the urn does change the formula. If the proportion of
the initial urn that is white is r, then the general result is:

(8) CrP(p | CrI(p) = y ∧ CrI(p) = z) = (yz(1-r))/(yz(1-r) + (1-y)(1-z)r)
Again, this isn’t a new result; Easwaran et al. (2016, 27) derive an even
more general formula from which this falls out as a special case. But my
way of deriving it is just different enough to be worth including.
Let Ix be the disjunction of all possible evidence propositions that would
lead Ivy to have credence x in p. In this case Ix is a simple proposition that
there are 10x white marbles in the jar, but we don’t need to assume that
Ix will be anything like that simple. Everything that follows about Ix also
holds for Zx, the disjunction of all possible evidence propositions that
would lead Ivy to have credence x in p, but I won’t repeat the derivations.
Since Player defers to Ivy, i.e., (4) is true, we have the following proof. (All
credences are Player’s, so I’ll drop the subscripts.)

𝐶𝑟(𝑝|𝛪𝑥) = 𝑥 ∴
𝐶𝑟(𝑝 ∧ 𝛪𝑥) = 𝑥 ⋅ 𝐶𝑟(𝛪𝑥)

= 𝑥(𝐶𝑟(𝑝 ∧ 𝛪𝑥) + 𝐶𝑟(¬𝑝 ∧ 𝛪𝑥)) ∴
(1 − 𝑥)𝐶𝑟(𝑝 ∧ 𝛪𝑥) = 𝑥 ⋅ 𝐶𝑟(¬𝑝 ∧ 𝛪𝑥) ∴

𝐶𝑟(¬𝑝 ∧ 𝛪𝑥) =
1 − 𝑥
𝑥 𝐶𝑟(𝑝 ∧ 𝛪𝑥) ∴

𝐶𝑟(𝛪𝑥|¬𝑝) =
(1 − 𝑥)𝐶𝑟(∗𝑝∗)
𝑥 ⋅ 𝐶𝑟(¬𝑝) 𝐶𝑟(𝛪𝑥|𝑝)

So we know the ratio ofCr(Ix | p) toCr(Ix | ¬p). That will become useful
in what follows. Assuming evidentialism, what matters for (6) is working
out the value of Cr(p | Iy ∧ Zz). But we now know enough to do that.
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𝐶𝑟(𝑝 | 𝛪𝑦  ∧  𝛧𝑧)  =  
𝐶𝑟(𝑝  ∧  𝛪𝑦  ∧  𝛧𝑧)
𝐶𝑟(𝛪𝑦  ∧  𝛧𝑧)

Using the general fact that X is equivalent to (p ∧ X ) ∨ (¬p ∧ X ), and
that Player’s credences are probabilistic, so his credence in an exclusive
disjunction equals the sum of the credence in the disjuncts, we know this
equals.

𝐶𝑟(𝑝  ∧  𝛪𝑦  ∧  𝛧𝑧)
𝐶𝑟(𝑝  ∧  𝛪𝑦  ∧  𝛧𝑧) + 𝐶𝑟(¬𝑝  ∧  𝛪𝑦  ∧  𝛧𝑧)

Since Cr(p ∧ X ) = Cr(X | p)Cr(p), we can rewrite this as:

𝐶𝑟(𝛪𝑦  ∧  𝛧𝑧 | 𝑝)𝐶𝑟(∗𝑝∗)
𝐶𝑟(𝛪𝑦  ∧  𝛧𝑧 | 𝑝)𝐶𝑟(∗𝑝∗) + 𝐶𝑟(𝛪𝑦  ∧  𝛧𝑧 | ¬𝑝)𝐶𝑟(¬𝑝)

And since Iy andZz are independent given both p and ¬p, this becomes:

𝐶𝑟(𝛪𝑦|𝑝)𝐶𝑟(𝛧𝑧 | 𝑝)𝐶𝑟(∗𝑝∗)
𝐶𝑟(𝛪𝑦|𝑝)𝐶𝑟(𝛧𝑧 | 𝑝)𝐶𝑟(∗𝑝∗) + 𝐶𝑟(𝛪𝑦|¬𝑝)𝐶𝑟(𝛧𝑧 | ¬𝑝)𝐶𝑟(¬𝑝)

If we assume the initial value of Cr(p) = r, and use the earlier derived fact
that Cr(Ix | ¬p) = ((1-x)r)/(x(1-r)Cr(p)) this becomes:

𝐶𝑟(𝛪𝑦|𝑝)𝐶𝑟(𝛧𝑧 | 𝑝)𝑟
𝐶𝑟(𝛪𝑦|𝑝)𝐶𝑟(𝛧𝑧 | 𝑝)𝑟 +

(1−𝑦)𝑟
𝑦(1−𝑟)𝐶𝑟(𝛪𝑦|𝑝)

(1−𝑧)𝑟
𝑧(1−𝑟)𝐶𝑟(𝛧𝑧 | 𝑝)(1 − 𝑟)

Now we can finally eliminate Cr(Iy | p)Cr(Zz | p)r from the top and bot-
tom, so this becomes:

1
1 + (1−𝑦)(1−𝑧)𝑟

𝑦𝑧(1−𝑟)

Or in other words:

𝑦𝑧(1 − 𝑟)
𝑦𝑧(1 − 𝑟) + (1 − 𝑦)(1 − 𝑧)𝑟
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And that’s the completely general result when the evidence the experts
has is conditionally independent of both p and ¬p, and Player starts with
credence r in p.
But this case is surely rare. Experts typically have some training in com-
mon that isn’t shared by non-experts. So their reasons for having a cre-
dence in p that differs from our prior will not be completely independent.
Easwaran et al. (2016) note that sometimes we can adjust for the common
evidence by conditionalising on the common evidence to come up with a
new ‘prior’, or perhaps I should say ‘intermediate’ credence, r, then apply-
ing this formula. This is slightly more general, but still not a lot. Part of
what makes us non-experts be non-experts is that we don’t have this com-
mon training, so we can’t identify what’s common between the experts.
Let’s see if we can come up with a slightly more general case.

2 Case Two: Common Marbles

In our second case, Carmen once again has an urn with 50 marbles, 25
black and 25 white. She draws one at random and marks it with invisible
ink. She can tell which one this is, but no one else can. And p is still the
proposition that the marked marble is white - that’s what we’ll focus on
from now on. After selecting the marble to be marked, she puts together
a jar containing the marked marble and 9 other marbles drawn at random
from the urn. She shows that to one of the experts, let’s say Ivy. She gets
to inspect the jar, i.e., count how many marbles in it are white and black.
She then reports to Player, but crucially not to Zack, her credence in p.
So far, it’s just like the last case. But what happens next is (possibly) dif-
ferent. In this case, Carmen removes m unmarked marbles from the jar,
puts them back in the urn, and draws a new set of m marbles to put in
the jar. It’s all random, so this could include some of the marbles she
just removed. She shows the jar to Zack, he inspects it, and reports his
credence in p to Player. And, crucially, player knows m, the number of
marbles that are in common between the jars. So m is a measure of the
independence of the experts’ opinions.
Once again, we can work out precisely what Player’s credence should be
given m, and the two credences. Unfortunately, it’s just a long formula
that doesn’t seem to reduce nicely. But if you’ve got a machine that’s
good at calculating hypergeometric distributions, and you dear reader are
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probably reading this paper on a machine that’s good at calculating hyper-
geometric distributions, it’s not that hard to calculate the values by brute
force. I won’t list all the values, there are several hundred of them, but I’ll
present them graphically in Figure 1. (Note I’ll leave off the case where
one or other expert announces a credence of 0 or 1; in that case Player
knows whether p is true, so the question of how to merge the credences
is easy.)
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Figure 1: The result of merging two somewhat connected opinions.
Here is how to read the graph in Figure 1. Each row corresponds to a
particular credence announced by Ivy; the credence is shown on the right.
Each column corresponds to a particular credence announced by Zack;
that credence is shown on the top. The x-axis of the individual graphs
shows the value for m, the number of marbles removed. And the y-axis
shows Player’s final credence in p. There are more dots on some graphs
than others because some combinations of Ivy credence, Zack credence
andm are impossible. The announced credences can’t, by the rules of the
game, differ by more than 0.1m.
One notable feature of that graph is that asm gets larger, the final credence
tends to move away from 0.5; it tends to get more opinionated. Another
notable feature, though probably not one you can see in this resolution,
is that this move towards greater opinionation happens in a surprisingly
linear fashion. To a first approximation, Player’s credence moves away
from 0.5 roughly the same amount for each addition tom, at least holding
y and z fixed.
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It’s not perfectly linear, but it’s much closer than I would have guessed
looking at how really quite non-linear the inputs are. Figure 2 shows the
result of zooming in on a part of the graph to see this more vividly.
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Figure 2: The top right corner of Figure 1
The curve in the bottom right panel is not really linear; it definitely curves
downwards. But as you move your eye upwards and leftwards in the ta-
ble, the curves look much much straighter. The panel where they both
announce 0.7 is really remarkably straight. If we focus on the middle of
the big graph, this is even more striking. (I’ve left off the cases where Zack
announces a credence under 0.5 because those graphs are just mirror im-
ages of graphs already shown.)
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Why does this matter? Because pooling functions are easy to use, and the
supra-Bayesian needs something to match that ease of use. It’s a cliche
that for every problem there is a solution that is simple, intuitive, and
wrong. And the version of the pooling approach that uses linear averages
is very simple, very intuitive, and very wrong. The version that uses geo-
metric averages strikes most people as less simple and intuitive (or maybe
I’m just bad at explaining it), but it is less wrong. But still, sometimes sim-
ple, intuitive and wrong is exactly what you need! Computation is hard,
life is short, precision is overrated. Why not just average if you are just
looking to get something roughly right?
The supra-Bayesian can exploit the more-or-less linearity of the graphs
above graphs to come up with an approximation to these ideal Bayesian
credence. And the approximation isn’t that much harder to calculate
than the geometric average. Intuitively, it works like this. If the experts
have exactly the same evidence, we take the geometric average of their
opinions.3 If the experts’ evidence is conditionally independent, we use 3 We are working with cases so far where

there is a unique rational credence for each
evidence, so if they have the same evidence
they have the same credence, and which kind
of averaging we use is redundant. What mat-
ters about the geometric average is how it en-
ters into mixtures, as we’re about to see.

the formula from Easwaran et al. (2016) that I rederived in the last sec-
tion. In between, we just need a guess k about what proportion of the
evidence they share, and what is independent. And we use that guess to
come up with an average of those two things, the geometric average and
the formula for conditionally independent evidence. So our estimation
of the new credence is this, where y and z are the announced credences,
and k is the measure of independence of the evidence.

(1 − 𝑘) √𝑦𝑧
√𝑦𝑧 + √(1 − 𝑦)(1 − 𝑧)

+ 𝑘 𝑦𝑧
𝑦𝑧 + (1 − 𝑦)(1 − 𝑧)
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Let’s check visually how this does against the exact calculations. In the
graphs that follow, I’ll use circles for the ideally calculated posterior cre-
dences, and triangles for the estimates made using this formula.
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That looks pretty good. There is a tiny bit of separation in the bottom
right panel, but otherwise the estimate tracks the calculated credences
pretty closely. Let’s look at the middle of the graph.
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And all through here the dots are overlapping. That’s close enough. So at
least in this special case, the supra-Bayesian can produce an estimate that
is very close to the ideally calculated credence. So we don’t need to resort
to pooling even as an approximation device.
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But the simplifications here are dire. Here are six ways we might want to
generalise the model.

1. Have the prior probabilities of p and ¬p vary.
2. Have more colors for the marbles, and have each expert announce

credences over all the colors.
3. Have the person doing the merger be uncertain about k.
4. Have the experts sample the jars they are given, not inspect them

fully.
5. Have more than two experts.
6. Allow that some experts are more informed than others.

The first two points are not that hard. I could produce a string of graphs
for different priors over the colors, or for more colors, and the typical story
is not that different to what we’ve seen so far. It just gets messy because we
have more degrees of freedom than is consistent with a concise graphical
display.
The next two points are harder. It’s not that they are harder to come up
with the ideal value. For any prior over k, or sampling technique that’s
available to the expert, it’s pretty easy to write code to come up with the
optimal calculated credences. It’s rather that the number of degrees of
freedom are so great that it gets a little harder to eyeball how good any
given approximation is. The big point is that the posterior distribution
of kwill usually be different to the prior. In extreme cases, the announced
expert credences might rule out some hypotheses about k. So it won’t just
be a matter of calculating the values of the above formula for each value
of k, and averaging them out using the prior probabilities of k. There is a
lot of possible future research here.
Having more than two experts raises both computational questions, like
what we’ve just discussed, and conceptual questions. The number of vari-
ables we need to specify to say how connected the experts are roughly
doubles every time one ads an expert. But the point is not just that the
computations of the ideal supra-Bayesian credence require an exponen-
tially increasing number of inputs as the number of experts rises. It’s that
even thinking about how to approximate this ideal calculation, we need a
good way to conceptualise this space whose dimensionality rises exponen-
tially with the number of experts in a way that lets us even think about
what a good approximation would look like. I don’t have an answer to
this; it feels like a question for future research.
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What I will try to make some headway on instead is the last question, what
happens if we do not assume the experts are just as well informed as each
other.

3 Case Three: Differentially Informed Experts

In our last case, one expert is better informed than the other. Carmen first
fills the jar with the marked marble and 19 randomly chosen unmarked
marbles. She flips a coin to decide which expert to show this jar to. They
inspect the jar, and record their credence in p to the nearest 0.1. (We’ll
come back very soon to why this is rounded.) Carmen then removes 10
unmarked marbles from the jar, chosen at random, and then shows it to
the other expert. They inspect it, and come up with a new credence in p.
Then both these recorded numbers are reported to Player, without any
indication about who saw the larger jar and who saw the smaller one.
There is a weird thing in this setup in that one of the experts reports some-
thing other than their precise credence. The reason I set up the example
this way is to make it impossible for the recipient of the expert opinion to
infer who saw the smaller jar. If they both reported their actual credence,
it would be possible for the recipient to be told one of them has credence
0.75 in p and the other has credence 0.6. And then it would be obvious
that the hearer should have credence 0.6 in p, since that’s the credence
of the more informed person. So I made the first person round to the
nearest 0.1 to make it harder to make such inferences.
Given all that setup we can work out what Player’s credence in p should
be given the two announcements. (I’m rounding to three decimal places
to save space.I’m leaving off the cases where one or other party announces
an extremal credence - the hearer agrees with those credences, at least to
three decimal places. And the ‘NA’ values are where it is impossible given
the setup for those to be the announced values.)
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Ivy/Zack 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.100 0.103 0.100 0.100 0.100 0.100 NA NA NA
0.2 0.103 0.200 0.208 0.203 0.202 0.200 NA NA NA
0.3 0.100 0.208 0.300 0.320 0.325 0.348 0.500 NA NA
0.4 0.100 0.203 0.320 0.400 0.439 0.500 0.652 0.800 0.900
0.5 0.100 0.202 0.325 0.439 0.500 0.561 0.675 0.798 0.900
0.6 0.100 0.200 0.348 0.500 0.561 0.600 0.680 0.797 0.900
0.7 NA NA 0.500 0.652 0.675 0.680 0.700 0.792 0.900
0.8 NA NA NA 0.800 0.798 0.797 0.792 0.800 0.897
0.9 NA NA NA 0.900 0.900 0.900 0.900 0.897 0.900

And a striking thing about this table is how close it comes to verifying
a strong form of what Levinstein (2015) calls Thrasymachus’ Principle.
The hearer defers to the expert with the strongest view, i.e., the view that’s
furthest from the prior. In contemporary terms, the hearer listens to the
expert with the hottest take. It isn’t an unvarnished form of that. When
one says 0.5 and the other says 0.6 you end up with 0.561, not 0.6. But
that’s in large part because there’s a good chance that the person who said
0.6 was merely rounding up as the result of a coin flip. In general, the rule
in this case is find the expert credence that is furthest from the prior, and
adopt it.
There is a reason that a case like this should follow Thrasymachus’ Princi-
ple. If the experts are rational, hotter takes should correspond to stronger
evidence. And while it isn’t impossible for the person with more evidence
to have in a sense weaker evidence, the extra evidence may be full of de-
featers for the first obtained evidence, it is pretty unlikely. In general, if
someone is worthy of deference, and they have a strong view, they have
strong evidence. If someone else has a weaker view, i.e., a view closer to
the prior, the best explanation is that they simply don’t have the evidence
that the person with stronger view does.
So again, we shouldn’t pool the opinions in any interesting sense. The ta-
ble shows the optimal response by supra-Bayesian lights. And the simple
approximation is, “When one expert has clearly stronger views, listen to
them. Otherwise take the geometric mean.”

4 Summary

Let’s take stock of what’s been covered so far.
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• I’ve argued against all three uses of pooling answers to the question
of how to merge expert opinions. Sometimes the pooling answer
is clearly wrong, often it won’t be a good constraint on priors, and
there are better ways to approximate the correct supra-Bayesian an-
swer.

• I’ve connected supra-Bayesianism to some familiar positions in
epistemology, the view on testimony in Jackson (1987) and the
view on disagreement in Lackey (2010).

• I’ve shown that if you take that approach, that conditionalising
on someone else’s credence is just conditionalising on the fact that
they have evidence that rationalises such a credence by their lights,
then the principle Easwaran et al. (2016) recommend for updating
on the credences of others follows directly from the assumptions
that each expert is independently worthy of deference, and the ev-
idence the experts have is conditionally independent.

• I’ve developed a toy example that lets us think about cases where
the hearer doesn’t know which parts of the evidence are in com-
mon, but does know how much is in common.

• And I’ve shown that in that case, the correct supra-Bayesian answer
is nicely approximated by a linear average of two familiar formulas.

• I developed a toy example that lets us think about the case where
one expert is known to be more informed, but we aren’t sure which
it is.

• And in that case I showed that what Levinstein (2015) calls Thrasy-
machus’ Principle is approximately right; we should defer to the
‘stronger’, i.e., more opinionated, expert.

At the end of section 2 I mentioned six ways in which we might make the
model even more general. This is very much not meant to be the last word.
But I suspect these kinds of examples can be used to provide useful ap-
proximations, or guides, to real life situations where we know something
about the relationship between the experts. The general lesson is that by
looking at toy cases, we can provide practical advice for how to emulate,
or at least approximate, the supra-Bayesian approach for merging expert
opinion. And this advice will be better than the advice that anyone who
ignores the relationship between the experts can offer.
But there is one last kind of relationship between experts that I haven’t
made any progress on modelling, and it is a big one. What should we
say about cases where the experts know each others credences? This is
an old and, to my mind, open question. For reasons that trace back to
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Aumann (1976), in anything like the kind of model I’ve used here, if the
experts know each other’s credences, they have to agree. And someone
who knows both credences should agree with them. But the real world
obviously contains experts who do agree to disagree. What to say about
those cases is the biggest open questions around here, and I’m not sure
whether this approach can help. Gallow (2018) ends his paper by raising
doubts about whether it is rational to be disposed to defer to two different
experts. I’m not worried about that in general; I’ve described three very
different kinds of cases where it is rational. But I suspect one could not be
rationally disposed to defer to two experts who one knows are themselves
disposed to agree to disagree. That, however, is a story for another paper.
This paper has described a number of cases where the hearer knows some-
thing the experts doesn’t know: namely what other experts think. And
it has described both precise and approximate answers for what to do in
those interesting cases.
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