
 

 

On Uncertainty 
Brian Weatherson BA (Hons) 

Department of Philosophy 

Monash University 

 

 

 

 

 

 

 

 

 

Dissertation submitted for degree of Doctor of Philosophy on 21 

July 1998 



 

Table of Contents 
Synopsis ____________________________________________________________ vi 

Declaration of Originality _____________________________________________ viii 

Acknowledgments ____________________________________________________ ix 

Chapter 1   What Probability Isn’t _______________________________________ 1 

1.1 Introduction _________________________________________________________ 1 

1.2 The Probability Calculus _______________________________________________ 3 

1.3 Probability is not Frequency ____________________________________________ 6 

1.4 Probability is not Modal Frequency ______________________________________ 10 

1.5 Probability is not Propensity ___________________________________________ 11 

1.6 Probability is not What Everyone Believes ________________________________ 12 

1.7 Probability is not a Syntactic Relation ____________________________________ 15 

1.8 Probabilities are not Subjective _________________________________________ 21 

Chapter 2   What Degrees of Belief Aren’t ________________________________ 35 

2.1 Analyses of Degree of Belief ____________________________________________ 35 

2.2 Why the Betting Analysis of Degrees of Belief Fails _________________________ 37 

2.3 Dutch Book Arguments Fail ____________________________________________ 41 

2.4 Other Critiques of Dutch Book Arguments _________________________________ 48 

2.5 The Betting Analysis as Analogy ________________________________________ 51 

Chapter 3   What Degrees of Belief Are ___________________________________ 55 

3.1 The Equivalence Analysis ______________________________________________ 55 

3.2 Outline of Chapter ___________________________________________________ 57 

3.3 Precise Models ______________________________________________________ 59 

3.4 Updating Precise Models ______________________________________________ 64 

3.5 Introducing Imprecision _______________________________________________ 70 

3.6 The Single Model Approach ____________________________________________ 81 



 

3.7 Many-Urn Models ____________________________________________________ 93 

3.8 Updating ___________________________________________________________ 99 

3.9 Conglomerability and Lower Envelopes _________________________________ 109 

3.10 Real-Valued Degrees of Belief _______________________________________ 119 

Appendix 3A Proof of Theorem 3.3.1 _______________________________________ 121 

Appendix 3B Proof of Theorem 3.6.1 _______________________________________ 123 

Appendix 3C More on Dutch Book Arguments ________________________________ 125 

Chapter 4   What Probability Is ________________________________________ 132 

4.1 The Probability Relation ______________________________________________ 132 

4.2 Necessitarian Probability _____________________________________________ 136 

4.3 Ambiguity and Relations ______________________________________________ 138 

4.4 Isms ______________________________________________________________ 150 

4.5 Lewis’s New Principle _______________________________________________ 156 

Chapter 5   Supervaluations ___________________________________________ 163 

5.1 Introduction _______________________________________________________ 163 

5.2 Supervaluations ____________________________________________________ 164 

5.3 Probability Sentences ________________________________________________ 166 

5.4 Scope and the T-schema ______________________________________________ 169 

5.5 Validity ___________________________________________________________ 179 

5.6 Models and Conceptual Truths _________________________________________ 182 

5.7 Local and General Supervaluationism ___________________________________ 189 

5.8 The Reasonableness of Imprecision _____________________________________ 191 

5.9 The Reasonableness of Precision _______________________________________ 196 

Chapter 6   Objections ________________________________________________ 199 

6.1 Introduction _______________________________________________________ 199 

6.2 There are no such things ______________________________________________ 201 



 

6.3 Probability Relations Between Simple Propositions ________________________ 202 

6.4 The Sorites Objection ________________________________________________ 204 

6.5 The Probability Calculus _____________________________________________ 205 

6.6 The Principle of Indifference __________________________________________ 206 

6.7 Uncertain Evidence _________________________________________________ 208 

6.8 A Recent Addition - Dependence on A Priori Assumptions ___________________ 210 

Chapter 7   Philosophical Predecessors __________________________________ 214 

7.1 Levi ______________________________________________________________ 214 

7.2 van Fraassen _______________________________________________________ 221 

7.3 Jeffrey ____________________________________________________________ 226 

7.4 Kyburg ___________________________________________________________ 228 

Chapter 8   Constructivist Probability ___________________________________ 238 

8.1 Motivations for a Constructivist Approach to Probability ____________________ 238 

8.2 The Morgan - Leblanc - Mares Calculus _________________________________ 242 

8.3 Developing a Constructivist Probability Calculus __________________________ 244 

8.4 Kripke Trees _______________________________________________________ 246 

8.5 Intuitionist Probability _______________________________________________ 252 

8.6 Updating __________________________________________________________ 255 

8.7 Objections _________________________________________________________ 259 

Appendix 8A Proof of Soundness of the Axioms _______________________________ 262 

Chapter 9   Vague Decision Theory _____________________________________ 265 

9.1 Introduction _______________________________________________________ 265 

9.2 Unstructured Decision Theories ________________________________________ 270 

9.3 Levi’s Rule ________________________________________________________ 274 

9.4 Conservatism ______________________________________________________ 280 

9.5 Caprice ___________________________________________________________ 283 



 

9.6 Arguments For Caprice ______________________________________________ 287 

9.7 Monte Hall Again ___________________________________________________ 289 

Chapter 10   Keynes and Probability ____________________________________ 291 

10.1 Introduction _____________________________________________________ 291 

10.2 Keynes’s Pure Theory of Probability __________________________________ 292 

10.3 Keynes’s Applied Theory of Probability ________________________________ 299 

10.4 Keynes and Conventions ____________________________________________ 304 

Chapter 11   The Economic Consequences of Uncertainty __________________ 311 

11.1 Uncertainty, Investment and Unemployment ____________________________ 311 

11.2 Two Consequences of Uncertainty ____________________________________ 314 

11.3 Uncertainty and Money ____________________________________________ 317 

11.4 Uncertainty and Liquidity Preference _________________________________ 321 

11.5 Uncertainty and Indecision __________________________________________ 328 

11.6 Disquietude ______________________________________________________ 331 

11.7 Summary ________________________________________________________ 334 

Bibliography ________________________________________________________ 336 

Name Index _________________________________________________________ 351 

Subject Index _______________________________________________________ 354 

 



 

Synopsis 

This dissertation looks at a set of interconnected questions concerning the foundations of 

probability, and gives a series of interconnected answers. At its core is a piece of old-fashioned 

philosophical analysis, working out what probability is. Or equivalently, investigating the 

semantic question of what is the meaning of ‘probability’? Like Keynes and Carnap, I say that 

probability is degree of reasonable belief. This immediately raises an epistemological question, 

which degrees count as reasonable? To solve that in its full generality would mean the end of 

human inquiry, so that won’t be attempted here. Rather I will follow tradition and merely 

investigate which sets of partial beliefs are coherent. 

The standard answer to this question, what is commonly called the Bayesian answer, says that 

degrees of belief are coherent iff they form a probability function. I disagree with the way this is 

usually justified, but subject to an important qualification I accept the answer. The important 

qualification is that degrees of belief may be imprecise, or vague.  

Part one of the dissertation, chapters 1 to 6, looks largely at the consequences of this qualification 

for the semantic and epistemological questions already mentioned. It turns out that when we allow 

degrees of belief to be imprecise, we can discharge potentially fatal objections to some 

philosophically attractive theses. Two of these, that probability is degree of reasonable belief and 

that the probability calculus provides coherence constraints on partial beliefs, have been 

mentioned. Others include the claim, defended in chapter 4, that chance is probability given total 

history. 

As well as these semantic and epistemological questions, studies of the foundations of probability 

usually include a detailed discussion of decision theory. For reasons set out in chapter 2, I deny 

we can gain epistemological insights from decision theory. Nevertheless, it is an interesting field 

to study on its own, and it might be expected that there would be decision theoretic consequences 



 

of allowing imprecise degrees of belief. As I show in part two, this expectation seems to be 

mistaken. Chapter 9 shows that there aren’t interesting consequences of this theory for decision 

theory proper, and chapters 10 and 11 show that Keynes’s attempt to use imprecision in degrees 

of belief to derive a distinctive theory of interest rates is unsound. 

Chapters 7 and 8 provide a link between these two parts. In chapter 7 I look at some previous 

philosophical investigations into the effects of imprecision. In chapter 8 I develop what I take to 

be the best competitor to the theory defended here – a constructivist theory of probability. On this 

view degrees of belief are precise, but the relevant coherence constraint is a constructivist 

probability calculus. This view is, I think, mistaken, but the calculus has some intrinsic interest, 

and there are at least enough arguments for it to warrant a chapter-length examination. 
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Chapter 1   

What Probability Isn’t 

1.1 Introduction 

Part one of this dissertation defends the view that we should analyse probability as reasonable 

degree of belief. So the correct analysis of the sentence The probability that Oswald killed JFK is 

greater than 0.5 is that the only degrees of belief in Oswald killed JFK that are reasonable are 

greater than 0.5. This will obviously have to be relativised to some evidence; the sentence is not 

refuted by the existence of people who have never heard of Oswald or Kennedy and who can thus 

reasonably refrain from having a high degree of belief in Oswald killed JFK. Hence I claim that 

probability sentences contain an elliptical reference to evidence; in chapter 4 I’ll say more about 

how this reference works. That probability sentences are in part elliptical is not at all 

controversial: virtually every theory of probability does this in some way. 

This approach to probability puts my account in the tradition of Keynes (1921a) and Carnap 

(1950). They advocated this analysis of probability, and what I regard as one of its corollaries, 

that probability sentences are non-contingent. I differ from these theorists in one important 

respect. They thought that probability is a ‘logical’ concept, in a rather narrow sense. That is, they 

thought that the truth of probability sentences could be deduced from their syntactical structure 

in an ideal language. As I will argue in section 1.7, there are pragmatic and theoretical reasons 

for rejecting this approach. Nevertheless, there is no reason why all non-contingent truths must 

be true in virtue of syntactic form, so I can differ from Keynes and Carnap on this point while 

holding on to their more important insight. 

Probability is not just used in sentences like The probability that Oswald killed Kennedy is a. We 

also use probability in a purely mathematical sense when we talk about the probability calculus. 

Part of my theory of probability is to explain the connection between these two facets of 

probability. In chapter 2 I argue that a very common way of proving a connection (the ‘Dutch 
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Book argument’) is unsound, however in chapter 3 I give a new argument for this connection. 

The argument only works on the assumption that degrees of belief ought be precise, or what is 

equivalent, completely ordered, and that assumption is false. The argument is, however, 

illuminating as to what we ought say about situations where degrees of belief are partially ordered. 

The probability calculus will be so important to what follows that I give a brief introduction to it 

in section 2. 

The rest of this chapter is to set out the common objections to all the other analyses of probability 

on the market. The aim is not to provide a conclusive refutation, but as Ramsey said to “show that 

[they are] not so completely satisfactory as to render futile any attempt to treat the subject from a 

rather different point of view” (Ramsey 1926: 166). The most important objection to some of 

these theories is provided by the rest of the dissertation. In particular those theories of probability 

which are defended by showing necessitarian analyses to be implausible are weakened not so 

much by my direct attacks on them as by my defence of their rival. 

Sections 3 argues that probability should not be analysed as actual frequency, and section 4 shows 

that analysing probability as modal frequency is no better. In section 5 I argue that Popper’s 

conception of probability as propensity cannot explain probability sentences about past events, 

and hence cannot be a complete theory. Section 6 argues that we cannot adopt Ayer’s 

conventionalist approach to probability, because of the problem of unknown conventions. Section 

7 looks at the problems with the syntactic theories of probability defended by Keynes and Carnap. 

Finally, and perhaps most importantly, in section 8 I examine the various kinds of theory of 

probability called ‘subjective’. This includes the necessitarian theory defended here. Following 

Carnap I argue that this theory is not properly called subjectivist, and following Ayer I argue that 

most other theories called subjectivist are flawed. 
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A note on notation before I start. I will often talk about probability sentences; indeed the overall 

project here could be described as trying to analyse probability sentences. There are more types 

of probability sentence than I have indicated above. I also intend the term to refer to sentences 

like the following: 

• Oswald probably killed JFK. 

• It’s more probable that Oswald killed JFK than that O. J. Simpson killed his wife. 

• The probability that Oswald killed JFK is 0.6. 

• The probability that Oswald killed JFK given the forensic evidence is 0.6. 

That is, I take probability sentences to come in qualitative, comparative, quantitative forms as 

well as in conditional and unconditional forms. Of course I could by mixing these forms come up 

with even more examples, but I hope this is enough to indicate the field in which I’m interested. 

1.2 The Probability Calculus 

Mathematically, probability functions have as their domain a field of sets, and as their range reals 

in [0, 1]. However, the probability sentences that I’m taking to be the explicandum of our theory 

seem to refer to the probability of an event or sentence. We solve this little problem by saying 

that probability sentences talk about the probability of propositions, and propositions are just sets 

of possible worlds. The proposition p is just the set of possible worlds in which p .  Hence we can 

interpret the ‘universe’ in the mathematical representation as the set of all possible worlds, and 

the field as a set of propositions. 

We take as given a possibility space U, and a field F of subsets of U. That F is a field just means 

it includes U, and is closed under complementation, union and intersection. Pr : F ® [0, 1] is a 

simple probability function just in case it satisfies the following three axioms. 

(Pr1) For all A Î F, Pr(A) ³ 0; 

(Pr2) Pr(U) = 1 
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(Pr3) If A, B Î F and A Ç B = Æ then Pr(A) + Pr(B) = Pr(A È B) 

In propositional terms, (Pr2) says that the probability of any (classical) tautology is 1, and (Pr3) 

says that if p and q are inconsistent then the probability of p  Ú q is the probability of p plus the 

probability of q. The canonical statement of all this is in Kolmogorov (1933). He makes two 

complications to the theory. The first is to extend it to conditional probability functions. Often the 

axiomatisations for conditional probability functions are given in such a way that probability 

could be conditional or non-conditional. I think it’s neater to only allow conditional probabilities, 

and since I think all probability sentences make elliptical (or explicit) reference to evidence, there 

is a philosophical justification for this. So the axiomatisation for conditional probability functions 

Pr : F ´ F ® U is as follows. 

For all A, B, C Î F 

(CP1) Pr(A | B) ³ 0 

(CP2) Pr(U | A) = 1 

(CP3) If A, B, C Î F and A Ç B = Æ then Pr(A | C) + Pr(B | C) = Pr((A È B) | C) 

(CP4) Pr(A | B & C) · Pr(B | C) = Pr(A & B | C) 

The notation Pr(A | B) is read as ‘the probability of A given B’. We can recover the 

‘unconditional’ probability Pr(A) as Pr(A | U). When the simplification is harmless and aids the 

exposition I will occasionally talk about simple, or unconditional, probability functions, but the 

main focus will be on analysing probability sentences by using of conditional probability 

functions. Note that we can almost recover a conditional probability function from a simple one 

by setting Pr(A | B) =df Pr(A & B) / Pr(B). The problem is that this definition fails when Pr(B) 

= 0. It seems on the whole simpler to take conditional probability functions as basic.1 

 

1 It has been reported to me that Alan Hájek’s as yet unpublished Ph.D. thesis contains a wide range of 
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The other complication Kolmogorov makes is to extend the additivity axiom, (Pr3) or (CP3), from 

a principle of  ‘finite additivity’ to one of  ‘countable additivity’. This involves the adoption of a 

new axiom, (CP5). 

(CP5) If A1, ..., An, ... are pairwise disjoint elements of F, then  

It is hardly ever suggested that this be extended to cases where there are more than denumerably 

many A’s, for example where there is one element of the A’s for every real in [0, 1].2 However, 

there is some debate about whether even extension to the countable case is plausible. Kolmogorov 

merely defended it on grounds of mathematical convenience, which is hardly telling. The 

following example shows both how (CP5) is independent of the other axioms, and why we might 

not want this axiom. 

Say we know x is a natural number, but have no idea about which natural number it is. In this case 

we might think it appropriate to spread the probability evenly over every element of N. That is, 

for any natural number n, set Pr(x = n) = 0. Or in conditional language, set Pr(x = n | x Î N) = 0. 

Now this is clearly consistent with the axioms apart from (CP5), and it is clearly inconsistent with 

(CP5). To see this, set Ai as x = i for all i. The probability of each Ai is 0, but the probability of 

their union, x Î N, is 1. de Finetti thought this probability function was so obviously reasonable 

in the circumstances that he rejected Kolmogorov’s axiom (de Finetti 1974: 121). In chapter 3 I’ll 

look into this in more detail, but to get ahead of myself a little bit, I don’t think (CP5) has been 

proven to be appropriate for our usage of probability. And since I think there’s a burden of proof 

 

arguments for this conclusion, including arguments against resolving the difficulty of undefined conditional 

probabilities by moving to infinitesimals. However, without having seen that thesis, I am unable to 

comment in any detail on it. 

2 Though Lewis (1994) seems to suggest that we might need such ‘strong forms of additivity’ to deal with 

the infinitesimal-valued probabilities he posits. 

Pr Pr( | ) ( | )• •A C A Ci i•
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on the proponent of a new axiom, for now I take de Finetti’s side of this debate. However, I’m 

not as convinced as de Finetti that there will never be an argument for countable additivity.  

It might be worth noting one of the confusing nomenclatures in this field, if just to note that I 

won’t be adopting it. Sometimes the term ‘finitely additive’ is used for only those probability 

functions which do not satisfy countable additivity, our (CP5). This is misleading because of 

course countably additive functions are also finitely additive on the most natural interpretation of 

that term. That is, they satisfy (CP1) to (CP4). When I use the term ‘finitely additive’ that is 

precisely what I will mean, but to minimise confusion I’ll just try not to use it at all. 

So all I mean by a probability function is something satisfying (CP1) to (CP4). These will be 

important to our eventual analysis of probability sentences, but for now we can leave mathematics 

and return to philosophical analysis. Or at least to refuting philosophical analyses. 

1.3 Probability is not Frequency 

It could be the case that The probability that Oswald killed JFK is more than 0.5, which we’ll 

abbreviate to O, is true even if Oswald did not kill JFK. Since there was only one JFK 

assassination, that would make Oswald’s frequency of being JFK’s assassin 0. Yet this wouldn’t, 

one suspects, make us say that O is necessarily false now. If there is a lot of evidence for Oswald’s 

guilt, as many people seem to believe, then O will be true. Hence we cannot interpret O as a 

statement about frequencies, in this simple sense. 

Nor could probability be long-run frequency. If probability is long-run frequency it must be that 

Oswald being the assassin is one type of event, and the JFK assassination is another, and the ratio 

of events of the first type amongst events of the second is more than 0.5. Now on the one hand if 

we specify these types too closely then we will be back to the problem that there is at most one 

event of each type, so the ratio will be 0 or 1. On the other hand if we specify too coarsely, we 

lose any theoretical motivation for linking probability and frequency. 



§1.3 Probability is not Frequency 7 

 

Consider, for example, some of the possible event types E1 and E2 such that Oswald being the 

assassin is an instance of E1 and the assassination is an instance of E2 and the probability of 

Oswald being the assassin is the frequency of E1 events amongst the E2. (I.e. n(E1 & E2) / n(E2) 

or some limit of this, where n(E) is the number of times E occurs). If E1 is Oswald being the 

assassin and E2 is there being an assassination, then O will be obviously false, but presumably it 

could be true. If E1 is the initial suspect being guilty then the probability of initial suspects being 

guilty at every assassination will be constant, which seems mistaken. Similar considerations 

preclude E1 being say, a communist sympathiser is guilty, or being that someone who killed 

someone else on the day of the assassination is the killer. If we start taking conjunctions of these, 

say E1 being the initial suspect, who is a communist sympathiser and a known killer, is guilty and 

E2 is that there is an assassination where the initial suspect is a communist sympathiser and a 

known killer we risk the classes contracting to size 1 again, and the frequencies hence being either 

0 or 1. 

Even when the frequency analysis gives the correct output, it seems to get the direction of 

explanation wrong. Moving from assassinations to casinos, let E2 be the event that a standard (i.e. 

37-slot) roulette wheel is spun and E1 the event that the ball lands in 1. The probability of the ball 

landing 1 is 1/37, which is presumably also the frequency. I have just made a well-balanced, 

apparently fair 35-slot roulette wheel. The probability of the ball landing 1 on first spin is, it would 

seem, 1/35, even if this is the first ever spin of a 35-slot roulette wheel, and indeed even if it is 

the only ever spin of such a wheel. This is just the point of the previous argument, however there 

is a larger problem for the frequency analysis. 

Say that a schmoulette wheel is a 35-slot roulette wheel made today or a 37-slot wheel made any 

other day. Let E2 be the event that a schmoulette wheel is spun, and E1 the event that the ball lands 

1. The frequency of E1 amongst the E2 will in the long run be little different from 1/37. This 

doesn’t alter the fact that the probability that the ball will land 1 on the first spin of my 35-slot 



§1.3 Probability is not Frequency 8 

 

wheel is 1/35, even though the spin is an event of type E2 and the ball landing 1 of type E1. The 

conclusion I draw is that the events in E1 and E2 must be homogenous in some way if the frequency 

analysis is to give the correct response. However, I suspect there will be no way of defining this 

homogeneity except by reference to probability. In other words, it seems that it must be 

probability that determines frequency, rather than frequency determining probability. Unless we 

already know the probability of particular events we can’t determine appropriate event types, and 

without that we can’t determine the frequency of a type of event3. 

Russell (1948: 384) showed, when the cardinality of E1 and E2 is infinite, the ratio of occurrences 

of E1 to ¬E1 amongst the E2 can only be defined as a limit. That is, we list the occurrences of E2 

in some order, and say the frequency of E1 is the limit as n tends to infinity of the number of 

events in the first n which are E1 to n. However, the limit of this ratio depends not only on the 

membership of E2, but on its ordering. For example, if we order the natural numbers in the 

standard way (i.e. 1, 2, 3, ...) then as n tends to infinity the ratio of the number of primes less than 

or equal to n to n will tend to 0. So the long-run frequency of primes in the natural numbers is 0. 

However, if we simply re-order the numbers, we can make this limit be 1/2, or 1, or indeed any 

number we care to choose in [0, 1]. So frequency can’t be defined as a relation between classes, 

but only as a ratio between sequences. As Russell remarked, “This seems strange.” (1948: 385). 

There are also a multitude of theoretical reasons for not equating frequency and probability. One 

is what van Fraassen (1989) calls the horizontal-vertical problem. Assuming we’re trying to work 

out the probability of an event that will (or will not) happen in 2000, say a Democrat winning the 

2000 U. S. Presidential election. Consider a branching-time model of the universe, with the 

 

3 In section 7.4 I argue against Kyburg’s attempt to define homogeneity in just this way. Kyburg is not a 

frequency theorist; he is a logical theorist who thinks that probability refers to a metalinguistic relation 

between a sentence and its evidence whose value is determined by the most pertinent statement about 

frequencies in the evidence. 
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possible world time-slices being points on a Cartesian plane, and with actual time as the y-axis. 

This is drawn in the diagram below. Possible worlds are functions x = f(y). In the diagram below 

the actual world @ (the bold line) is represented by the function x = c. The dotted horizontal lines 

then represent all the ways the world could be at various points in time. The large dot is the way 

the actual world is now. The other lines leaving this world represent worlds which have the same 

past as ours, but diverge between now and the year 2000. There are of course infinitely many such 

worlds, but only finitely many can be drawn. 

 

To work out the relative frequency of one event type given another, we only have to look at @. 

In particular, we look at the vertical line x = c, and work out the ratio of points on it that are of 

type E1 & E2 to those that are of type E2. If this is impossible we work out the limit of this ratio 

as time tends to infinity. However, to work out the probability now of a certain event happening 

in 2000, we presumably have to look at the ratio of points on t = 2000 which are of that type to 

those that are not, or more likely some weighted average of this type, or more likely again a limit 

of some such weighted average. The important point is that what is important to the probability 

of a Democrat winning is a ratio of some kind on the horizontal line t = 2000, not on the vertical 

line @. Frequencies measure the wrong things to be probabilities. 
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Finally, there is the problem Kyburg (1961: 22) noted about the applicability of the frequency 

analysis. Let’s take a case where the frequentist should be on solid ground, the case where we try 

to work out the probability of a coin toss landing heads. Coin tosses happen often enough, and 

are homogenous enough, that at least some of the standard objections to frequentism are 

irrelevant. Perhaps then the frequentist can explain what we mean by ‘The probability of a coin 

toss landing heads is 1/2’. However, as Kyburg points out by their own lights we cannot mean 

anything by ‘The probability of the next coin toss landing heads is 1/2’. The frequentist can only 

talk about the probability of events which are outcomes of trials repeated very often, perhaps 

infinitely. However, ‘the next coin toss’ is not a repeated trial, hence they can’t talk about the 

probability of it. So even in cases where they appear most comfortable, the frequentist only gets 

away with their story by shifting from a definite to an indefinite article. 

1.4 Probability is not Modal Frequency 

Recognising the horizontal-vertical problem, some people have argued that probability is modal 

frequency. That is, the probability of p is the frequency of p across the possible worlds, or the 

ratio of p-worlds to all worlds. This does solve the horizontal-vertical problem, and it solves the 

problem of one-off events (like the JFK assassination) having a probability. But it seems to make 

a fundamental mistake about the nature of the possible worlds. There are just too many of them 

for this to get off the ground. Provided p is contingent, there are infinitely many worlds in which 

p ,  and infinitely many in which ¬p .  Now there are ways to get around this, indeed my theory 

could be considered such a way, but when we take it we seem to not have a modal frequency 

theory. Moreover, it is hard to see how on this analysis we could think the probability of a 

Democrat winning in 2000 is higher than that of a Republican winning. It’s not that there are more 

worlds in which Democrats go on to win than in which Republicans do, just that (at present) the 

Democrat-winning worlds are more probable. 
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We might hold that probability is modal frequency among the accessible worlds, or that it is some 

kind of weighted modal frequency. I have no objection to such a view; indeed it is quite similar 

to a view I adopt. However, adopting this as an analysis seems to me to get the order of 

explanation wrong. The frequency of a highly probable event among accessible worlds is high 

simply because the event is probable. That is, the accessible worlds are accessible because they 

are probable, they are not probable because they are accessible. So I think such analyses may be 

extensionally correct, but even if they are will be flawed as analyses because their ‘direction of 

fit’ is wrong. 

1.5 Probability is not Propensity 

Popper (1959) held that probability should be analysed as propensity. This seems to make sense 

when we are looking to analyse probability statements in, say, quantum mechanics. But it doesn’t 

make sense in a number of senses in which probability is used.  In particular, it doesn’t seem to 

work when we are considering the probability of events which, if they did happen, would have 

happened in the past, or the probability of laws of nature. 

As an example of the first type of problem, note that it makes sense to talk about the probability 

that Oswald is guilty. Now this doesn’t mean (and nor would Popper have said it meant) that 

Oswald is likely to commit more crimes. Even if we are now totally convinced that Oswald’s 

current propensity to commit crimes is low (because he’s dead), the probability that he was a 

killer can be high. So we can at most talk about what the propensity was. Even this seems 

implausible, as the following is not contradictory: “It seems highly probable on the basis of the 

forensic evidence that Oswald did it, though it would have been completely out of character for 

him”. Assuming Oswald’s character determines his propensity to commit crimes, this means we 

can distinguish between probability and past propensity. So it must be current propensity that 

matters. But the current propensity must be either 0 or 1. The world is already either an 

‘Oswald-did-it’ world or an ‘Oswald-didn’t-do-it’ world, so its propensity to become one of these 
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is 0 or 1. Yet the probability that Oswald did it on the basis of a certain body of evidence can be 

between 0 and 1. 

As an example of the second type of problem, note that it seems plausible, at least when doing 

historical reconstructions, to talk about the probability that the laws are one way rather than 

another. We can talk sensibly about a certain experiment making one theory more or less probable. 

But we can’t, it would seem, make any sense of propensity statements without assuming laws as 

given. What is usually referred to as the propensity of, say, atoms to decay is at best a matter of 

natural law. If we take the law as up for question, the propensity is indeterminate. Since Popper 

does not think that all probabilities are indeterminate, it must be that we take laws as given when 

determining probabilities. Hence the probability of any actual law must be 1, and the probability 

of any counterlegal is 0. But this goes against our evidence that the probability of a purported law 

can change with experiments. So the propensity analysis must fail. These two counterexamples 

can be connected. The propensity theory cannot explain statements like ‘On the evidence the 

ancient Egyptians had, it was highly probable that the earth was flat, but on the evidence we have 

today, this is highly improbable’ both because it discusses the probability of prior events and it 

allows for counterlegals to have a positive probability. 

1.6 Probability is not What Everyone Believes 

Before getting onto orthodox subjectivist analyses in section 8, I want to address here 

conventionalist theories of probability, which are quite similar. The conventionalist, or 

intersubjectivist, argues that the probability of p given some evidence q is the degree of belief 

which the community holds to be appropriate in p given that evidence. On some tellings, the 

conventionalist agrees with the necessitarian position advocated here that probability should be 

analysed in terms of reasonable degrees of belief. They even proffer a broadly realist conception 

of what is reasonable. However, that conception is so different to what I am defending that it 

amounts to a different analysis. 
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The conventionalist account is historically important because it seems to be the theory of 

probability in Ayer’s Language, Truth and Logic. I say ‘seems’ because Ayer isn’t particularly 

explicit on this point, and the discussion amounts to no more than a couple of pages. The main 

evidence is the following quotes. 

To say that an observation increases the probability of a hypothesis ... 

is equivalent to saying that the observation increases the degree of 

confidence with which it is rational to entertain the hypothesis. And 

here we may repeat that the rationality of a belief is defined, not by 

reference to any absolute standard, but by reference to our own actual 

practice. 

[W]hen a man relates belief to observation in a way which is 

inconsistent with the accredited scientific method of evaluating 

hypotheses ... he is mistaken about the probability of the propositions 

which he believes (Ayer 1936: 100-101). 

More recently various writers such as  Gillies (1988, 1991), Runde (1994a), Davis (1994) and 

Bateman (1996) have held that Keynes moved to a conventionalist position when he wrote his 

later economics. Some of these writers, particularly Gillies and Runde, seem to endorse this shift. 

It is a little surprising at first that Ayer takes this position on probability. I expected Ayer to adopt 

a position that was both subjectivist and non-cognitivist about probability, much as he does about 

ethics. The reason he does not do this is two-fold. First, he recognised some of the good objections 

to subjectivism, at least as it is commonly presented. Secondly, his verification principle is 

expressed in terms of probability. A sentence is meaningful, says Ayer, iff it is verifiable. But to 

make this plausible we have to adopt what Ayer calls the ‘weak’ conception of verifiability. “[A 

proposition] is verifiable, in the weak sense, if it is possible for experience to render it probable” 



§1.6 Probability is not What Everyone Believes 14 

 

(Ayer 1936: 37).  Now if what was probable varied from person to person (as some subjectivists 

assert) it would turn out that which sentences were meaningful varied from person to person. This 

is much too implausible for Ayer. Alternatively, if we go fully expressivist (or non-cognitivist) 

about probability, and say that there is no fact of the matter as to whether or not a proposition has 

been rendered probable, there will be no fact of the matter as to whether some sentences are 

verifiable. This is again not a conclusion Ayer wants. 

However, the conventionalist move has problems of its own. There is one argument against it 

which seems quite powerful to me, but which is obviously question-begging. On Ayer’s story 

whether q renders p probable will depend not just upon p and q, and perhaps on background facts, 

but on the prevailing scientific standards. Probability sentences for Ayer presumably have an 

elliptical reference to these standards. Now this seems completely implausible, but since Ayer 

happily accepts it we can hardly urge it as an argument. I only mention it to remind the reader 

that their intuitions on this matter may differ from Ayer’s. 

The more substantial problem for Ayer is what I call the problem of unknown conventions. Since 

it is an empirical fact that convention A is operative in our society, rather than say convention B, 

this is only something we can learn by experience. That is, we learn it because we acquire 

evidence for it. Presumably this evidence, like all other evidence, could be misleading. So say an 

agent has evidence q, and that evidence provides strong but misleading support for the proposition 

that convention B is operative. Now assume, as again seems possible, that conventions A and B 

provide different directions as to the appropriate degree of belief in p given q. Say A says p ought 

be believed to degree 0.3, and B says it should be believed to degree 0.8. Now, what ought our 

agent do? 

The conventionalist says that the agent ought believe p to degree 0.3. Note, however, that if the 

agent does the best they can do to accord with the conventions, that is, arrange their beliefs in 
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accord with what they reasonably believe to be the conventions, they will believe p to degree 0.8. 

I don’t see how the conventionalist can criticise an agent who does follow convention B in these 

circumstances. After all, that agent has done what they could to satisfy conventionalist doctrines; 

they have arranged  their beliefs in accord with what they have reasonably taken to be the 

conventions of society. So I think the conventionalist is forced to say this kind of person both is 

and is not reasonable. 

We can make the same point in a more dramatic way. The conventions in which we are interested 

are just rules for converting evidence to reasonable degrees of belief. If someone believes all the 

conversions, they believe the convention, even if they can’t express it. And plausibly we can 

analyse believing a particular conversion as being disposed to make it in the right circumstances. 

That is, if an agent is disposed to believe p to degree x on evidence q, they believe that the relevant 

rule converts evidence q to degree of belief x in p .  They might, in some circumstances, not know 

that they believe it, but believe it they do. The conventionalist says reasonable agents will always 

have these dispositions. Hence all reasonable agents will believe the conventions are what they 

actually are, even on no evidence whatsoever. Since, as was noted, what the conventions are is 

for Ayer an empirical fact, he imposes upon his rational agents a requirement to believe an 

empirical fact on no evidence at all. This is hardly plausible, so Ayer’s conventionalism about 

probability fails. 

1.7 Probability is not a Syntactic Relation 

 In his (1921a) Keynes argued that probability referred to ‘partial entailment’ relationships, of 

which classical entailment is merely a limiting case. The spirit of this approach was adopted by 

Carnap in his (1950) and subsequent works. There are, as I have noted, strong similarities between 

my approach and the Keynes-Carnap approach. However, there are two crucial points on which I 

differ from Carnap, and the point of this section is to briefly set out Carnap’s theory and my 

grounds for dissenting from it. 
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The exposition of Carnap’s position given here largely follows the exposition in T. Fine (1973: 

Ch. 7) and Carnap’s own summary in his (1963). In simple terms, Carnap analyses probability in 

terms of degree of belief. The probability of h given e is the degree of rational belief in h given e. 

That’s entirely accurate, but Carnap didn’t like it as a description because it might have 

misleadingly subjectivist connotations. So as a next approximation he said the probability of h 

given e is the degree of confirmation of h by e. But this term too could be misinterpreted, as his 

exchange with Popper in the 1950s indicated. So he eventually defined the probability of h given 

e as the ‘rational subjective value’ in utils of a bet which pays 1 util if h and nothing otherwise to 

an agent with evidence e. 

It isn’t clear why Carnap thinks this explanation of probability should imply it is always 

numerically valued. The comments at (1963: 972) suggest he thinks this is necessary for 

probability to be used in rational decision making. In any case, he set himself the task of 

developing a quantitative theory of probability in account with the above analysis. Carnap thinks, 

correctly in my opinion, that the concept of probability4 he is working with is crucial to induction. 

Sound inductions are those where the logical probability of the conclusion given the premises is 

high. So he draws the following conclusions: 

(a) The reasons [for accepting axioms of inductive logic] are based 

upon our intuitive judgements concerning inductive validity, i.e. 

concerning inductive rationality of practical decisions (e.g. about 

bets); therefore: 

 

4 Actually Carnap thought there were two concepts of probability, one based on ‘logical probability’ and 

the other based on frequency, so the text might be a bit misleading here. However, it was the logical concept, 

his probability1 which attracted most attention, and which in later writings he referred to simply as 

probability. Hence most commentators have adopted the convention I’m using of referring to probability1 

as Carnap’s conception of probability.  
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(b) It is impossible to give a purely deductive justification of induction. 

(c) The reasons are a priori (Carnap 1963: 978). 

I think (c) is correct, but Carnap goes further. He has taken h and e to be sentences, not 

propositions, and he thinks that the probability of h given e, like the provability of h from e, can 

be determined by purely syntactic considerations. The position I will take is that while probability 

sentences are non-contingent, they are like ‘All bachelors are unmarried’ in being true in virtue 

of their non-syntactic features. 

To spell out this qualitative concept of logical probability, Carnap attempts to develop a c-function 

which will give the value for the ‘degree of confirmation’ of h given e for any h, e in a given 

language, written as c(h, e). To narrow down the class of functions which could serve the role of 

c, he adopts a number of axioms. These fall into three categories. The first category does enough 

to say c is a conditional probability function. The second are symmetry constraints. So for 

example we have an axiom saying that universal substitution of one name for another throughout 

h and e leaves the value of c(h, e) unchanged. And similarly universally substituting one predicate 

for another from the same family5, or substituting one family of predicates for another family with 

the same number of elements leaves c(h, e) unchanged. Finally, adding new families of predicates 

to the language will leave c(h, e) unchanged, as will adding terms for new individuals, provided 

h and e contain no quantifiers. It is these invariance postulates which prompt me to describe 

Carnap’s as a ‘syntactic’ theory of probability. Finally, Carnap has three axioms asserting that c 

must allow an agent to learn from experience. However, as Fine shows these don’t do much to 

restrict the class of permissible c-functions, and in some cases are simply redundant. 

 

5 A family of predicates is a set of predicates such that every possible individual satisfies exactly one of 

them. 
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I will note two types of objection to Carnap’s approach. The first essentially object to his claim 

to have developed a quantitative theory; the alleged faults are caused by his claim that c is real-

valued. The second object to the claim that probability is syntactic. I think both classes of 

objection will fail. 

There are four problems with Carnap’s claim to have developed a quantitative account. van 

Fraassen (1989: 119-25) stresses the point that despite Carnap’s aim, the axioms he gives do not 

suffice to specify a unique c-function. Carnap of course knew that we had to posit a continuum 

of c-functions, but could say little about how to choose between them (Carnap 1952). Fine notes 

that if we make a seemingly plausible extension of Carnap’s axioms, if we insist that uniform 

substitutions of one complete description of the world for another leaves probability unchanged, 

we are led into inconsistency. From this we conclude that not all symmetry requirements are met, 

that Carnap’s axioms aren’t as plausible as seemed at first (since the intuitions which grounded 

them perhaps provide equal support to inconsistent axioms) and, Fine argues, that Carnap must 

say that the probability of h given e is not determined by the meaning of h and e. The point here 

is that if the language includes the family of predicates {red, not-red} then the probability of a is 

not-red given a tautology is 1/2, whereas if it includes the family {dark red, light red, not-red} 

the probability of a is not-red given a tautology is 1/3. Thirdly, as Howson and Urbach (1989: 

Ch. 3) urge, not all symmetry requirements can be met at once. They note that different symmetry 

requirements are inconsistent. Fourthly, as Keynes (1921a) notes, there is no principled way to 

avoid the paradoxes of indifference if we insist that all probabilities are numerically valued. 

Some of these problems look like they’ll go away if we allow there to be more than one 

permissible c-function. Carnap at one point (1963: 971) goes very close to endorsing just this. 

However, there are a separate set of objections which can be levelled at the syntactic parts of 

Carnap’s theory. There are two objections which can be levelled at this, the first based around the 
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problem of non-projectability and the second around some objections of Jeffrey to Carnap’s 

theory of evidence. 

For our purposes it will be preferable to use the discussion of non-projectability in Russell (1948) 

rather than the more standard discussion in Goodman.6 As Russell notes, for many predicates F 

and G, the inference ‘All Fs observed so far have been Gs’ therefore ‘The probability that all Fs 

are Gs is high’ is sound. Or again, the probability that all Fs are Gs given all Fs observed so far 

have been Gs must be high. If we are to base probability around syntactic considerations and get 

started at all, we will have to accept this rule. However, as Russell also notes, some inferences of 

this form are clearly unsound. If a farmer has only seen cows in Heresfordshire so far in his life, 

this is no justification for believing that probably all cows are in Heresfordshire. That is, the 

inference is unsound when F is ‘is a cow’ and G is ‘is in Heresfordshire’. But the unsound 

inference has the same syntactic form as some sound inferences. So probability can’t be based on 

syntactic form. 

Perhaps there is a way out of this problem. We could, for example, restrict the language in which 

we allow inferences to be made, so there is no way in the language to represent the troublesome 

 

6 Discovery of the problems for induction caused by non-projectability is usually credited to Goodman 

(1954), or perhaps his (1947). However, the discussion in the earlier paper is rather brief, indeed just 

confined to the predicate P of an artificial language. Further the problem of non-projectability is urged more 

as a problem for the analysis of counterfactuals rather than for induction, as is now standard. So for these 

reasons I prefer giving credit to Russell. It would be interesting to discover when Russell discovered this 

problem. In his (1940) he is obviously ignorant of it. In the introduction to (1948) he mentions that parts of 

it are based on lectures he gave in 1944-45, but doesn’t make clear which parts. And the papers published 

from this time in his Collected Papers yield little light on the matter. My crediting Russell with this 

discovery is not meant to say Goodman’s book was anything less than an independent discovery, and of 

course it moved the debate forward and promoted the idea of non-projectability in a way which in the long 

run proved more effective. 
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inference as being of the same syntactic form as the sound inferences. This is what Kyburg does 

in his logical approach. Recently Tooley (1987) has argued that if we are realist about universals, 

we can restrict the predicates of our canonical language to those universals which exist, and 

presumably all the universals are projectible. If the existence of universals is non-contingent this 

might do the work required, though if not the probability sentences will not be a priori as Carnap 

required. 

There is, however, a bigger problem. Despite what may be inferred from some philosophy texts, 

we don’t just make inductive inferences or use probability sentences in physical sciences. The 

idea behind Kyburg’s and Tooley’s approach is that the ideal language of science will not include 

troublesome predicates like ‘is in Heresfordshire’ or Goodman’s ‘grue’. While it might be true 

that no absolute positional predicates are needed in physical science7, this just isn’t true in social 

sciences. At the very least we are going to need predicates like ‘in a city’, ‘in the country’ to do 

the most primitive sociology. So the ideal language of science generally will most likely include 

predicates which are not projectible.8 This isn’t yet an argument for saying that we will always 

end up with gruesome predicates, just an argument for saying that quite a lot more needs to be 

done to show we are rid of them. 

In any case, there’s another problem for the syntactic account. For this account to be plausible, 

we have to be able to specify the evidence we have for a proposition in a finite sentence of some 

language. But this seems implausible, as Ramsey (1926a) and Jeffrey (1991) have stressed, 

because of vague evidence. If we view probability as a semantic relationship between 

 

7 Clearly predicates referring to relative positions are needed. 

8 Could we have different languages for social sciences and physical sciences? It seems like a pretty 

desperate move. It would be hard then to explain sentences which referred to terms from both physical and 

social sciences, like ‘It’s more probable that a recession will occur than that this atom will decay in the next 

n days’. 
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propositions, rather than a syntactic relationship between sentences, this is no longer a problem, 

as I outline in chapter 2. The combined effect of these objections to Carnap’s account is enough 

to suggest a different approach could be worthwhile. 

1.8 Probabilities are not Subjective 

Theories of probability which are called ‘subjective’, either by their proponents or detractors, 

abound in the modern literature. Surprisingly then, it is hard to get a clear picture of what is meant 

by a subjective theory. So my first task in this section is to draw a brief taxonomy of subjective 

positions. I divide subjective positions into four types, depending on how they deal with two 

questions. The theories can either define probability in terms of rational degrees of belief or 

something less, perhaps actual or coherent degrees of belief. And they can be assertoric or 

expressivist theories. An assertoric theory says that probability sentences make a truth-apt claim 

about degrees of belief; an expressivist theory says that probability sentences make no claim about 

how the world is, they just express an attitude. This distinction can be quite clearly seen in looking 

at different subjectivist ethical theories. An assertoric subjectivist analyses Torture is wrong as 

Someone (perhaps me) disapproves of torture. On an expressivist analysis it comes out as Boo 

torture! or some more sophisticated variant on that. There is a fact as to whether I disapprove of 

torture, hence the assertoric theory is truth-apt, but Boo torture! says nothing even plausibly truth-

apt. It is, I think, surprising that more subjectivists in probability have not been drawn to 

expressivist analyses. 

One important clarification needs to be made to the above account. Despite some of the quotes I 

will adduce below, no one seriously believes that probability can be defined purely in terms of 

actual degrees of belief. If this were the case, there would be no laws of probability at all; as van 

Fraassen (1990) put it, any such law could be refuted by the existence of a moron. So our moron’s 

degrees of belief have to be made coherent before they can enter into the analysis of probability 

sentences. As Max Black (1967) put it, degrees of belief have to be at least ‘rectified’ before we 
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can use them in analysis. Rectified degrees of belief satisfy some minimal coherence 

requirements, but nothing more. That these coherence requirements should amount to conformity 

with the probability calculus is argued for by Dutch Book arguments  (see chapter 2) or some 

variant on them. In non-probabilistic (or classical) epistemology, consistency is not normally 

considered a sufficient ground for reasonableness. One can consistently believe The moon is made 

of green cheese. Similarly rectified degrees of belief can contain a high degree of belief in The 

moon is made of green cheese. Such a belief state would not be reasonable on any ordinary usage 

of that term. Despite this, some subjectivists (especially Savage and de Finetti) use reasonable to 

just mean rectified, and this leads to some confusion. I find Black’s terminology clearer, and I’ll 

employ it in what follows. 

So we have our four types of subjectivist theory, outlined in the table below. 

 

 Assertoric Expressivist 

Rectified Type 1 

de Finetti, Howson and Urbach 

Type 3 

Rational Type 2 

Keynes, Carnap 

Type 4 

Blackburn 

 

The names under each type list adherents of each position. My claim will be that there are strong 

objections to types 1, 3 and 4 and that type 2 is not properly regarded as subjectivist. The 

objections to types 1 and 3 are quite old, I will say little about them that is not said by Ayer. My 

argument that type 2 is not a breed of subjectivism is found entirely in Carnap. And whether or 

not type 4 subjectivism works seems to turn on whether or not a broadly expressivist program 

could work, a topic that could cover several chapters on its own. I’ll simply note some of the 
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arguments in the literature as to why it fails. So the originality of this section is confined to its 

organisation. 

Before starting on these objections, I should note one way in which the organisation itself is 

derivative. Kyburg (1978: 79-80) gives a different four-fold taxonomy of subjectivist positions. 

The rows are the same as in my table, but the columns refer to a different property. He divides 

subjectivist theories into theories of decision and theories of degrees of belief. Since I don’t regard 

theories of decision as theories of probability I could hardly adopt this division. Kyburg in turn 

doesn’t consider the distinction between assertoric and expressivist theories. But the motivation 

for the four-fold taxonomy is in part his paper. 

1.8.1 Type 1 

It might be thought that type 1 subjectivism is a mere straw man, something I would set up to be 

knocked down to show the weaknesses of subjectivism. However, it is very hard to read the 

following quotes as endorsing any other type of subjective theory. 

Let us suppose that an individual is obliged to evaluate the rate at which 

he would be ready to exchange the possession of an arbitrary sum S 

(positive or negative) dependent on the occurrence of a given event E, 

for the possession of the sum pS ; we will say by definition that this 

number p is the measure of the degree of probability attributed by the 

individual considered to the event E, or, more simply, that p is the 

probability of E (according to the individual concerned; this 

specification can be implicit if there’s no ambiguity) (de Finetti 1937: 

102). 



§1.8 Probabilities are not Subjective 24 

 

In the personalistic [i.e. subjectivist] concept, probability is an index – 

in an operational sense to be explained later – of a person’s opinion 

about an event (Savage 1964: 176). 

We shall argue that ... [probabilities] should be understood as subjective 

assessments of credibility, regulated by the requirement that they be 

overall consistent. (Howson and Urbach 1989: 39) 

Perhaps these might be interpreted as saying that the ordinary language concept of probability is 

so useless we ought replace it with the concept degree of belief. This might be one interpretation 

of de Finetti’s later view that “Probability does not exist”, printed in capitals on his (1974: i). 

However, these quotes seem to be claiming we can analyse probability simply as degree of belief. 

And this must be a mistake, because of two arguments from Ayer. 

Ayer (1936: 101) rejects this kind of subjectivism about probability because of the ‘obvious 

objection’ that it doesn’t allow a person to be mistaken about the probability of a proposition. 

Since the probability of p is just your degree of belief that p ,  whatever you believe is the 

probability of p will be its probability. Strictly this mightn’t be quite correct. Presumably a person 

might believe p to degree 0.2 and believe they believe it to degree 0.3, and hence falsely believe 

the probability of p is 0.3. So Ayer is wrong to say the subjectivist doesn’t allow mistakes, but 

they don’t allow mistakes from perfectly introspective agents, which is still implausible. 

With this objection Ayer is content to dismiss type 1 subjectivism about probability. There is 

another objection which we can extract from his dismissal of a simple subjectivist position in 

metaethics. He dismisses analyses of “X is wrong” as “I disapprove of X” by noting that a person 

can consistently say that they disapprove of things which are not wrong. The equivalent point is 

a little harder to put in epistemology because of Moore’s paradox, but it can easily be brought out 

in a little dialogue. If the subjectivist were right, B’s utterance would be consistent. 
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A: It is highly probable that the moon is made of green cheese. 

B: What A says is true, but it is not probable that the moon is made of green cheese. 

According to type 1 subjectivism, A is making a report about his mental state. B can presumably 

assent to that report, he agrees A thinks it probable that the moon is made of green cheese, while 

consistently saying that A is mistaken. But our intuition surely is that B’s utterance is inconsistent, 

which makes type 1 subjectivism implausible. 

As an aside, it is possible subjectivists were trying to capture a concept other than probability. 

For instance, in later papers, whenever Savage went to say what the subjectivist (he preferred 

‘personalist’) is claiming, he would give his preferred definition of the probability for a person 

of a proposition. (See for example Savage 1967a and 1967b.) Plausibly he is right vis a vis this 

question, but that concept is not central to probability sentences generally. I am no more making 

a report about my mental state when I utter The moon is probably made of green cheese than when 

I utter The moon is made of green cheese. 

1.8.2 Type 2 

Type 2 is called subjectivist by Kyburg (1978) who opposes it, and Lewis (1980) who endorses 

it. Keynes (1921a: 4) vacillates, saying the concept is in part subjectivist, because probability is 

relative to evidence, and partially not, because it is independent of what anyone thinks. Carnap 

(1950: 37-50) argues at length that this approach is not properly called subjectivist. I will just 

repeat some of Carnap’s arguments. 

Carnap has two primary arguments for calling his probability1 concept (what I call probability) 

‘objectivist’. These are that probability sentences are non-contingent and that whether or not they 

are true is not dependent on anyone’s thinking about them. We do use psychologistic terms when 

giving an analysis of probability, we talk about beliefs, but Carnap has two further reasons for 



§1.8 Probabilities are not Subjective 26 

 

thinking this doesn’t imply subjectivism. First, we never define probability in terms of beliefs 

simpliciter, always in terms of reasonable beliefs. So ours is, in Carnap’s language, a qualified 

psychologism. The second reason, which is in part a consequence of the first, is that we can 

eliminate the psychologistic references from formal presentations. So Carnap defines probability 

not in terms of degree of reasonable belief, but in what amounts to the same thing, degree of 

confirmation. Maybe this isn’t an improvement, perhaps we can only explain confirmation by 

reference to reasonable beliefs, but the first two arguments seem sound enough. Hence I think it 

is possible to define probability in terms of reasonable degrees of belief and oppose subjectivism9. 

1.8.3 Type 3 

The difficulty with looking at possible objections to expressivist interpretations of probability is 

that there has been so little said about them. This is surprising given the well-known difficulties 

attending type 1 subjectivism. However, at least this type of expressivist theory seems to do no 

better. Indeed, it isn’t obvious how we avoid the two problems Ayer raises for type 1 subjectivism 

by saying probability sentences are expressive rather than assertive. 

In fact we acquire a new problem. To say that the primary function of a sentence is expressive is 

no theory at all; we have to say what is being expressed. But it is hard to see how type 3 

subjectivism can solve this problem. If we say that what is being expressed is a belief, it looks 

like probability sentences really are assertoric. After all, the type of utterances that express beliefs 

are assertions. Perhaps the situation is different when we express a partial belief, but it’s hard to 

see how. And it is hard to see how we could say that probability sentences express anything else 

 

9 It should be remembered that Type 2 theories themselves form a large class, so that Lewis, Keynes and 

Carnap appear to all endorse theories from this class, but this does not imply there is close similarity 

between their respective views. 
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without giving up the hope of analysing probability sentences in terms of merely rectified beliefs, 

rather than say rational belief. So for these three reasons type 3 subjectivism seems untenable. 

1.8.4 Type 4 

Moving to type 4 subjectivism solves all three of these difficulties in one stroke, which bodes 

rather well for its success. The idea behind this theory is that probability sentences express 

commendation of certain epistemic states and disapproval of others, or perhaps express some 

more subtle dispositions to commend and disapprove. The idea is just to extend the analysis of 

ethical sentences offered in Ayer (1936), Blackburn (1984) and Gibbard (1990) to probability 

sentences. Indeed, Gibbard explicitly endorses an expressivist analysis of ‘reasonable’ and 

Blackburn (1980) suggests a very similar account of ‘chance’, though he uses the term in much 

the way that ‘probability’ would now be used.10 Blackburn claims that Ramsey also adopted this 

account, which might be correct. 

One unimportant technical point before proceeding. We can’t analyse ‘The probability of p is 0.2’ 

as a commendation of believing p to degree 0.2. The simple reason is that ‘The probability of p 

is 0.2’ entails ‘The probability of p is not 0.3’ but we can commend believing p to degree 0.2 

without disapproving of believing p to degree 0.3, because in some circumstances we might 

regard different, and indeed incompatible, states worthy of commendation. Similar remarks apply 

if we analyse probability sentences as expressions of something more complicated. But this 

problem is solved by just analysing an utterance of ‘The probability of p is 0.2’  as commendation 

of believing p to degree 0.2 and disapproval of all other degrees. Anti-expressivist, or cognitivist, 

 

10 For example, he argues that we can talk about non-integer chances in a deterministic world. We can 

certainly talk about probabilities in a deterministic world, but standard usage now seems to be that we can’t 

talk about such chances. See Lewis (1986: 118). 
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analyses of probability in terms of reasonable beliefs will have to make a similar complication to 

their story, so this is no argument against expressivism generally. 

That unimportant point aside, there is a more pressing difficulty for expressivist theories 

generally. I won’t go into great detail here, in part because a fair discussion of this point would 

require a thesis length exposition on its own. In part, however, my lack of detail is caused by the 

possibility that there is less distance between my position and the expressivist position than 

appears at first. Some modern theorists, including some disposed to expressivism, have thought 

that an expressivist approach to some class of utterances, ethics being most frequently discussed, 

is compatible with believing utterances in that class to be truth-apt (e.g. Price (1994), Horwich 

(1994)). Since the traditional statement of expressivism is precisely that certain classes of 

utterances are not truth-apt, this might seem like a fairly substantial change, but there are reasons 

for the move11. Price, for example, argues that the essence of expressivism in ethics lies in the 

claim that the function of moral utterances like ‘Stealing is wrong’ is significantly different from 

the function of non-moral subject-predicate sentences like ‘Snow is white’ despite their common 

syntactic form. The latter class have as their primary aim making (accurate) descriptions of the 

physical world; moral sentences have as their primary aim expressing a certain outlook. If Price 

is right then the difference between Type 2 and Type 4 theorists lies only in the pragmatics of 

probability sentences, not in their semantics, or for that matter their syntactical rules. This is 

undoubtedly an important question, but it’s not one I’ve sought to address here. So I regard this 

type of expressivism as compatible with the theories I’m promoting. 

 

11 For Price, it is to escape from the Frege point I’ll set out presently; for Horwich, it is because of his 

minimalist conception of truth. 
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The important problem for expressivism is what has become known as the Frege point. This was 

first explicitly set out in Geach (1965), though Geach had hinted at it earlier. The point is that the 

following argument is clearly valid. 

(1) If stealing is wrong, then getting little brother to steal is wrong. 

(2) Stealing is wrong. 

(3) Getting little brother to steal is wrong. 

There are two problems intertwined here for the expressivist. The first is explaining how we get 

the meaning of (1) from its components. That is, it clearly isn’t a full explanation of the meaning 

of (2) to say that when uttered it expresses a con-attitude towards stealing, for this doesn’t explain 

how it contributes to the meaning of (1). This is a decisive refutation of some primitive 

expressivist theories (like that in Ayer (1936)) but is no problem for modern approaches which 

acknowledge this question and present answers to it. However, it is a constraint on those answers 

that they be consonant, in some broad sense, with the expressivist analysis of (2). In part this 

consonance is imposed for theoretical considerations; it would hardly be plausible to say moral 

words like ‘wrong’ function in a radically different way in antecedents to the way they function 

in simple sentences. And it’s imposed because of the second problem for the expressivist; they 

have to explain how the argument is valid. That is, they have to show the logical incoherence of 

accepting (1) and (2) and not accepting, or worse denying, (3). And in part this will require 

showing there is no equivocation in meaning between (1) and (2), else we will not have a clearly 

valid argument. 

Price (1994) suggests we can get out of this with an expressivist analysis of conditionals. His 

theory of conditionals might be on the right track, and seems to do the work the expressivist 

needs12. But I don’t think this solves the overall problem. The problem arises because of a 

 

12 See Barker (1995) for an outline of a pragmatic theory of conditionals that seems broadly correct and 
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convergence of two facts: moral sentences occur in unasserted positions in sentences, and those 

sentences combine with simple moral sentences to form valid arguments. This is exemplified by 

conditionals like (1), but it is also exemplified by disjunctions like (1´). 

(1´) Either stealing isn’t wrong or getting little brother to steal is. 

The truth functional analysis of conditionals has prominent supporters, but it is highly 

controversial and it hardly seems to be a refutation of a theory that it needs to deny it. On the 

other hand the truth functional analysis of disjunction is so entrenched, and so explanatorily 

successful, that it would require some large trade offs for it to be given up. And disjunctive 

syllogism is slightly more contentious than modus ponens, but still commonly enough accepted 

that it would be a cost for the expressivist to give it up. So I suspect the expressivist has to explain 

how moral sentences function as disjuncts, and how this story combines with the ordinary story 

about disjunction and validity to yield the validity of the argument from (1´), (2) to (3). 

The problem has been the subject of a number of attempted solutions. However, I agree with 

Hale’s contention that these solutions fall to a simple dilemma (Hale 1993: 340). Either the 

solutions do not explain how arguments like (1´) and (2) to (3) are logically valid in the sense that 

a person asserting the premises and denying the conclusion would suffer from a logical 

shortcoming, or they fail to explain the meaning of the disjunction in a way consonant with the 

expressive explanation of the meaning of the disjuncts. Hale argues that the solution proposed by 

Blackburn in his (1984) falls to the first horn, and the new solution proposed in Blackburn (1988) 

falls to the second.  

In (1984) Blackburn argued that we could interpret (1) (and (1´)) as expressions of a con-attitude 

towards disendorsing stealing but not disendorsing ‘getting little brother to steal’. The problem 

 

compatible with Price’s version of expressivism. 
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with this approach, as Blackburn came to realise, was that it posits the wrong kind of incoherence 

on the part of the person who asserts the premises and denies the conclusion. Such a person seems 

to suffer from the moral fault of not upholding their own second-order principles, but this is hardly 

a logical fault, which is what the expressivist needed to show. Blackburn has subsequently 

developed a different approach to explaining (1) and (1´) (Blackburn 1988). Hale argues that the 

interpretation adopted there is ambiguous, either disjunctions and conditionals are read truth-

functionally, in which case we don’t have a reading consonant with the expressivist reading of 

simple sentences, or they are read expressively, in which case they still don’t underlie the validity 

of the relevant arguments. There are more arguments to be had on this point, but there are enough 

problems here to suggest there is value in exploring a non-expressivist approach, as I do in 

subsequent chapters. 

1.8.5 The Exchangeability Point 

Given the objections I’ve made to subjectivism, the following defence of subjectivism may not 

seem immediately relevant, but perhaps its proponents intend it to defuse Ayer’s objection that 

subjectivism doesn’t allow for the obvious fact that epistemic states can be coherent but mistaken. 

In any case, the point may provide some defence of the Type 2 theory I want to defend. The idea 

is that coherence alone requires convergence of degrees of belief over time, so perhaps the 

epistemic states I described as coherent but mistaken are not really coherent at all. 

The crucial concept is de Finetti’s idea of exchangeability. I’ll just deal with a very simple version 

of this idea, because it does well enough at bringing out all the philosophical points involved. 

Assume that m trials will be conducted, each trial having two possible results, say that for some 

variable x either x = 0 or x = 1. So there are 2m possible outcomes for the series of trials. That is, 

we identify outcomes with the sequence of values of x according to each trial. Call the sum of an 

outcome the number of ones it contains. An agent regards the trials as exchangable over this 

sequence of trials iff they have the same degree of belief in any two outcomes with the same sum, 
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and exchangable generally iff they would regard any sequence of m trials as exchangable, 

whatever the length of m. 

Exchangeability is not the same thing as probabilistic independence13. An agent can regard the 

trials as highly interdependent in the sense that once they learn the outcome of an initial sequence 

of trials they would change their degrees of belief about the results of subsequent trials. For 

example, assume a biased coin is about to be tossed 5 times, with x = 1 meaning it lands heads 

and x = 0 meaning it lands tails. An agent regards the coin as so biased that she is certain it will 

land the same way on every trial. But she has no idea of the direction of the bias, so she assigns 

probability 1/2 to the sequence <1, 1, 1, 1, 1> and 1/2 to the sequence <0, 0, 0, 0, 0>. Then she 

regards the trials as exchangable in this sense, but clearly not independent. 

The importance of exchangeability lies in some convergence results developed by de Finetti. 

Assume two agents update their beliefs by conditionalisation14, and regard a long sequence of 

trials as exchangable. Then, provided they don’t completely rule out some possibilities to start 

with, their degrees of belief about success on the next trial will converge. That is, for any e > 0, 

there is an n such that after n trials their degrees of belief in success on the next trial will differ 

by at most e. One philosophical interpretation is to say that this removes the more perniciously 

subjectivistic elements from subjectivism. The subjectivist now has an explanation of not just 

why convergence of opinion occurs (most dramatically perhaps in the convergence of opinion 

about decay times for radioactive elements), but of why it ought occur. Perhaps, the argument 

could continue, anyone who differed from this great convergence would be unreasonable in a way 

that even Type 1 subjectivists could object to. 

 

13 Formally propositions A and B are probabilistically independent iff Pr(A & B) = Pr(A) · Pr(B), or, 

equivalently, Pr(A | B) = Pr(A). 

14 That is, upon learning B they assign to Pr(A) whatever value they used to assign to Pr(A | B). 
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The problem with this move is simply that there is nothing in Type 1 subjectivism which grounds 

the claim that agents should regard certain trials as exchangable. Indeed, in seeking to 

discriminate between different coherent states on the grounds of their reasonableness (i.e. between 

those that do and don’t regard trials as exchangable) we have slipped towards Type 2 theory, 

which Carnap showed is not subjectivist at all. This point is made by Kyburg (1978: 67) who 

attributes it to discussions with Nagel. 

Matters are even worse for the Type 1 subjectivist. An event can be interpreted as many different 

types of trial. For example, drawing an emerald from an urn can be regarded as a trial of whether 

the emerald is green or not-green, and whether it’s round or not-round. More interestingly, we 

can regard it as a trial of whether the emerald is grue or not-grue. And of course once we’ve 

recognised grue we can recognise all sorts of other predicates, such as green on an even numbered 

trial or blue on an odd numbered trial. We can’t, consistently, regard all such sequences of trials 

as exchangable. So we must make a selection, before the evidence comes in, as to what we will 

regard as the exchangable trials. But that we must make such choices before seeing any evidence 

is what distinguishes Carnap’s Type 2 approach from de Finetti’s Type 1 approach. 

Indeed, we can turn around de Finetti’s result to be a defence of a variant of Carnap’s position. 

The Type 2 theorist is burdened by the necessity of saying something about what is reasonable 

on zero evidence. Carnap rose to that challenge by trying to give the precise numerical value of 

every proposition on zero evidence, but as we saw in section 1.7, his attempts seemed doomed. 

Keynes allowed more flexibility by letting probability values be non-numerical, and I’ll 

essentially be following Keynes here. I think Carnap’s program is best served by not trying to 

find the reasonable probability function, but the set of such reasonable functions. de Finetti’s 

convergence theorem can be used to argue that what distinguishes elements of this set is not the 

value they give to particular propositions under no evidence, as Carnap thought, but what 

sequences of trials they regard as exchangable. Roughly, reasonable probability functions are 
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reasonable by virtue of their content, not as Carnap thought by virtue of their form. We are, 

however, getting ahead of ourselves. I’ll return to this matter in my defence of this theory against 

various objections in chapter 6. 



Chapter 2   

What Degrees of Belief Aren’t 

Ramsey objected to Keynes’s view that probability means reasonable degree of belief on the 

grounds that Keynes had provided no explanation of what degrees of belief were. So he proceeded 

to provide such an explanation, what I’ll call the betting analysis. The point of this chapter is to 

show that Ramsey’s analysis can’t work, and that even if it did work the Dutch Book arguments 

based upon it are unsound. With this a major motivation for the betting analysis disappears. 

2.1 Analyses of Degree of Belief 

At his first, and most famous, attempt Ramsey said that having degree of belief r in A is thinking 

the bet (1 - r, A, r)1 is fair. That is, its expected worth is zero, and an agent who makes this 

evaluation will be prepared to buy this bet for any price less than zero, or sell it for any price 

greater than zero. I’ll call this the betting analysis of degrees of belief. There is an important 

qualification to this analysis. I haven’t specified in what units the payouts are quantified. If the 

payouts are quantified in units like dollars with a declining marginal utility, what I’m calling 

Ramsey’s approach won’t work. It only works when the payouts are quantified in ‘utils’ or 

something equivalent. We can get around this problem in two ways. First, we can follow Ramsey 

and work out the utility of every possible outcome. Alternatively, we could set the payouts in a 

good which ought have constant marginal utility. Savage (1954) and Smith (1961) suggest that 

lottery tickets have this property, and hence develop their theories using lottery tickets as a 

currency. 

There are, however, approaches to defining degrees of belief other than in terms of evaluations of 

bets and dispositions to bet. Indeed, one of these is set out by Ramsey himself in a later paper. 

For this approach we have to assume that people can compare, introspectively, their degrees of 
 

1 The bet (x, p ,  y) is the bet which pays x if p and costs y otherwise. 
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belief in different propositions. In his earlier paper Ramsey puts forward some arguments against 

this, but I think these arguments have to fail. To see why we just have to consider Ramsey’s 

arguments carefully. 

Ramsey discusses and rejects various possible introspective feelings that could serve as degrees 

of belief. One of these is ‘intensity of feeling’ (1926: 169). Ramsey simply rejects this by an 

example. We have much more intense feelings about some beliefs which, if pressed, we would 

admit we believe to a lower degree than those things which we take for granted. For example, in 

terms of intensity, my belief that ‘Lowering tariffs improves welfare’ is stronger than my belief 

‘The earth is round’. On the other hand, my degree of belief in the latter is higher than in the 

former. Indeed, I suspect my degree of belief that the latter is true is stronger than is my degree 

of belief that the former is even truth-apt. So my degrees of belief are not mapped by my intensity 

of feelings. I suspect that for most people we can find examples showing the same effect. 

So this particular argument of Ramsey’s is effective. But look at what we take as evidence. I 

simply accepted the introspective evidence that my degree of belief in those things which I take 

for granted, such as ‘The earth is round’ is high. Now perhaps even if we didn’t have such 

introspective evidence we could still run Ramsey’s argument by looking at the external evidence, 

such as betting behaviour, to determine our relative degrees of belief in the two propositions. 

However, I suspect no reader actually did that or anything like it when considering the examples. 

As Mellor (1980) notes, this point of Ramsey’s serves to highlight the pretheoretic plausibility of 

saying we can introspectively make qualitative judgements about our degrees of belief. 

This is an important positive argument for the analysis in the next chapter, but it is also a negative 

argument against the betting analysis. Because Ramsey thinks degrees of belief don’t relate to 

any property determinable by introspection, he thinks that we have to look at what causal impact 

they have. That is, we have to look at their behavioural implications. Given this the betting 
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analysis seems the most plausible candidate. I agree that if “the kind of measurement of belief 

with which probability is concerned is ... belief qua basis of action” (1926, 171) the betting 

analysis seems the only plausible approach. However, the above argument, and the existence of 

the analysis developed in the next chapter, make this premise dubious. The reason the existence 

of a positive analysis is important is that the early Ramsey denies that there is any ‘introspected 

feeling’ which could be measured in the right type of units to be probability. The equivalence 

analysis shows that we can find such a feeling. 

2.2 Why the Betting Analysis of Degrees of Belief Fails 

Since the definition of degrees of belief in terms of bets is the orthodoxy, I have to show why I 

think it is untenable before I can justify an alternative outlook. Before going into detail about why 

I think the identification of degrees of belief with propensities to bet is wrong, I’ll simply list the 

objections: 

• Our propensity to bet is affected by our attitudes towards gambling. 

• Our intuitions about what is reasonable to do on the assumption that the marginal utility of 

the currency is constant are distorted by our intuitions about everyday situations. 

• On a betting analysis we can’t get our probability logic in order until we have worked out our 

logic of preference, but this has many foundational difficulties. 

• In betting situations there is no operational difference between a proposition being true and 

its truth being discovered, and if these are significantly different, the betting mechanism will 

determine our degree of belief in the wrong proposition. 

• The betting analysis presupposes that norms of practice are epistemic norms, but if this is true 

it is something which must be proven not presupposed. 

• For at least some incoherent agents, the analysis looks like it gives the wrong answers. 
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• The betting analysis cannot support Dutch Book arguments, as is commonly assumed, and 

hence does not ground the norms we want, whereas the analysis in this dissertation does 

ground these norms. 

The first objection is a common one, and perhaps not too serious. It has been suggested that we 

get around this problem by not looking at whether people would bet but rather at which gambles 

they would accept if offered a choice from a set of desirable gambles2. The latter approach runs 

into problems of its own because, in cases where agents are susceptible to Dutch Books, the 

problem won’t be the relatively serious one that they can be made to lose money, but the relatively 

trivial one that they will receive a smaller gift than they could have. Even in these cases, the 

experimental evidence is that people have a preference for choices which seem to involve less of 

a gamble, in some undefined and possibly incoherent sense3. The worry is just that these 

dispositions for or against gambling itself will pollute our information about degrees of belief. 

Indeed the fact that we can, it appears, sensibly talk about attitudes to gambling polluting the 

information about degrees of belief seems to count against the idea that we can analyse degrees 

 

2 This move is made in Savage (1954: 28). He credits de Finetti (1937) as the inspiration for it. 

3 The experiments I am thinking of are of the following form. Assume we have two goods, B and C, such 

that C is considerably better than B but not overwhelmingly so. If we aren’t paying our experimental 

subjects, B could be $1 million and C $5 million. If offered the choice between a 20% chance of C and a 

25% chance of B, subjects will, on the whole, choose the former. The same choice can be seemingly set up 

as a two-stage process. Whatever the subjects choose, there is a 25% chance of qualifying for the ‘second 

round’. If they qualify they will receive either B for certain or an 80% chance of C, but they have to say 

before they know whether they’ve qualified which they would choose. Even though this seems functionally 

equivalent to the first choice, here subjects will overwhelmingly choose B, because it doesn’t involve a 

gamble. There is no consequentialist sense in which these choices are coherent. These experiments are 

reported in Kahnemann and Tversky (1979: 273ff). They refer to the choice pattern exhibited as ‘the 

isolation effect’. I’ll discuss the relationship between dynamic and static choices in appendix 3C and also 

in chapter 9. 



§2.2 Why the Betting Analysis of Degrees of Belief Fails 39 

 

of belief as dispositions to gamble. Certainly attitudes to gambling do not pollute any information 

we might get about dispositions to gamble. Perhaps though this last point merely shows that the 

betting analysis is not obviously true, not that it is false. 

The second objection is related to the first, but it is more pragmatic. Ramsey argues that what we 

mean when we say a belief is reasonable is that it was formed by a reasonable habit (1926b: 

194ff). But what habits are reasonable depends in part on our surroundings. In particular, our 

reasonable habits may become unreasonable if we are placed in a radically different situation. A 

similar situation arises in ethics where if we think behaving ethically is behaving in accord with 

certain sets of rules we have to acknowledge the possibility that in certain unusual situations good 

actions will have less desirable expected outcomes than bad actions. The objection is that in 

situations where we are making bets in ‘utils’ are so different to everyday life that what is 

reasonable in our situation may be unreasonable in those. Hence our intuitions about what would 

be reasonable seem unreliable. Since the main point of the betting analysis is to work out what is 

reasonable, and our basic data is our intuitions about the reasonableness of specific acts, this 

vitiates the usefulness of the analysis. 

On a betting analysis, we work out what degrees of belief are reasonable by looking at what 

preferences are reasonable. This, however, increases unduly our workload in the foundations of 

probability. For example, Good (1952) notes that we have to work out how to deal with infinite 

utilities  (or show their impossibility) as a foundational task in probability logic on a betting 

analysis. I don’t doubt there are various plausible ways of doing this, but I would prefer my theory 

of probability was not held hostage to a particular analysis of infinity if possible. For a different 

example, Savage’s axioms of preference in his (1954) are much more contentious than the 

probability logic he derived from them. The point is simply the pragmatic one that the less 

contentious philosophy we have in our foundations the better. 
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When we place a bet, we don’t care directly about whether or not the proposition on which we 

bet is true. On the contrary, we care directly about whether we and our bettor will come to know 

that it is true, so we can claim our winnings. So the betting analysis of degrees of belief should 

lead to our logic of degrees of belief being intuitionist not classical (Harman 1983). Ramsey gets 

around this by assuming the bookmaker has the power of the Almighty. It would be distressing if 

our commitment to classical logic depended on being theists. (There is an interesting comparison 

here with Dummett’s arguments in ‘Truth’ for the claim that opposing intuitionism requires some 

kind of commitment to the supernatural.) Even if we accept that it is possible for the bookmaker 

to have this power, the concern from the last paragraph about the usefulness of our intuitions in 

these circumstances remains. 

It has been pointed out by several authors that Dutch Book arguments grounded on the betting 

analysis, even if sound, make a large presupposition4. That presupposition is that norms of action, 

such as ‘don’t buy Dutch Books’, are epistemic norms. Now it may be possible to prove that 

prudential norms are epistemic; indeed I suspect the analysis here goes some way to proving that. 

But it is a surprising result, and one for which we ought develop arguments. It isn’t something 

that can be safely supposed, as it appears to be under a betting analysis. 

Christensen (1996) argues for what he calls a ‘metaphysical separation’ between degrees of belief 

and betting practices. At one level his argument is an old-fashioned open question argument. Even 

if we know that someone has degree of belief 0.2 in p ,  we can still ask what evaluations they 

would make of bets on p .  Now such arguments aren’t particularly telling; it’s no refutation of an 

analysis that it isn’t obvious. Christensen, however, has in reserve a somewhat more subtle 

argument. Assume I will pay 30 cents for the bet ($1, p ,  0) but only 20 cents for the bet ($1, 

p  Ú q, 0). My evaluations are, in a sense I will get to, incoherent. The best justification for the 

 

4 For a recent example, see Kvanvig (1994). 
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betting analysis is that we have to identify mental states by their functional role. If we were to 

assume the only role a degree of belief plays is in bet-evaluation, there might be a functionalist 

argument for the betting analysis. As Christensen notes, however, in this case my degree of belief 

in p ,  whatever it is, performs at least two roles. One is in helping determine how much I’ll pay 

for ($1, p ,  0), and the other in helping determine how much I’ll pay for ($1, p  Ú q, 0). In fact 

there is a third role; helping determine what my degree of belief in p  Ú q is. When we’re coherent, 

there will be no tension between these roles. But incoherence, at least of preference, is clearly 

possible. Christensen’s point, I take it, is that for incoherent cases the betting analysis unjustifiably 

privileges one particular functional role to the exclusion of others, and hence it can be challenged 

on its own ground. 

Finally, one of the advertised strengths of the betting analysis is that through Dutch Book 

arguments we can provide a justification for degrees of belief obeying axioms of the probability 

calculus. This was originally argued by Ramsey, and has been extended to dynamic settings by 

Lewis and van Fraassen. If these arguments succeed they show that the betting analysis has great 

practical usefulness. However, I show in the next section that these arguments are invalid, or at 

least unsound. On the other hand, I prove in the next chapter that all the results which Dutch Book 

arguments claim to achieve can be grounded in a purely epistemic analysis.  

2.3 Dutch Book Arguments Fail 

For simplicity, let’s define the A-bet to be the bet (1, A, 0), where the unit is of some currency 

with constant marginal utility and Bel(A) to be my degree of belief in A. The following is a 

paradigm Dutch Book argument. Assume Bel(p)  is 0.6 and Bel(¬p)  is 0.55. Then, by the betting 

analysis, I will be prepared to pay Bel(A) units for an A bet, or at least Bel(A) - e, for arbitrarily 

small e. We’ll assume for the sake of the argument that the marginal utility of money is constant 
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in small amounts5. Hence I will pay $1.15 for a p-bet together with a ¬p-bet. The sum of these 

bets is (($2, ¬p ,  $1), p ,  ($1, ¬p ,  0)) or, in other words, a bet which pays $2 if p and ¬p ,  $1 if 

p or ¬p but not both, and nothing if neither p nor ¬p .  Since it is impossible that p and ¬p it is 

impossible that this bet will pay more than $1, hence my betting practices are normatively flawed. 

And since by assumption norms of betting behaviour are epistemic norms, I must be irrational. 

Such arguments can be used to show that my beliefs ought obey all the axioms of the probability 

calculus. 

I agree that if I was prepared to pay 60 cents for a p-bet and 55 cents for a ¬p-bet this would be 

irrational. That is, I accept for the sake of argument the identification of norms of betting with 

epistemic norms. However, I don’t see how it follows from having certain degrees of belief that 

I ought be prepared to pay these amounts. The problem is that the argument assumes I will not 

use any strategic pricing, yet it gives no reason for thinking that I oughtn’t price strategically. 

Indeed it seems implicit in the argument that I ought price strategically. By strategic pricing I 

mean setting a price for a good that is not determined solely by its intrinsic usefulness, but by 

how much I could either sell the good for or obtain the good from other sources. 

Adam Smith noted some 220 years ago that the price of goods bore no interesting relationship to 

their usefulness. Nothing is more useful than water, yet it is almost free, nor less useful than 

diamonds, but they have massive value. We have since learnt that there is in some specified 

 

5 This is a common enough assumption in this field, but I don’t see any economic reason for it. If we assume, 

as is standard, that the utility of any particular level of wealth is independent of our actual wealth, there is 

no reason to think that the marginal utility of money will be constant around our actual position than it 

would be around any other positions. If, on the other hand, the marginal utility of money in small quantities 

really is constant, this leads to problems for orthodox utility theory. I don’t want to argue for either of these 

assumptions and against the other, but it is worth noting that despite the frequency with which each is 

assumed they are in strong tension. 
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circumstances a determinate relationship between what we’ll call the value of a good and its 

usefulness. If a consumer’s budget is at equilibrium then the ratio of the marginal utility of a good 

to its marginal price will be constant for all goods the consumer purchases provided the utility 

function of every good is differentiable (Slutsky 1915). Still, in general, i.e. at disequilibrium, 

Smith’s observation holds. Moreover, since we are assuming that, for the bets in question, the 

marginal utility of both the payouts of the bets and the currency we use to buy them is constant, 

unless all people have the same degree of belief in all propositions we can’t trade our way to an 

equilibrium position. 

The principle flaw in Dutch Book arguments is that they ignore Smith’s observation. My degree 

of belief in A can determine at most the usefulness of an A-bet. Yet it is assumed that it will also 

determine the price I am prepared to pay for A-bets. Hence it is assumed that there is a correlation 

between how useful bets are and how much I will or ought be prepared to pay for them. As Smith 

showed, in general this cannot be the case. 

We can find simple examples where it would be unreasonable to pay Bel(A) for an A-bet. Assume 

that I know I can sell a p-bet for 90 cents, and Bel(p)  is 0.7. I am offered a p-bet for 80 cents, 

should I accept? According to the betting analysis I should not, because I am being asked to pay 

80 cents for something which has an expected value of 70. However, it seems at least plausible 

that I should accept the bet and then sell it for a sure profit. Alternatively, assume I know I can 

buy as many p-bets as I like for 70 cents each in the market, and Bel(p)  is 0.9. Again I am offered 

a p-bet for 80 cents. The betting analysis says I should accept, but again it’s plausible that I should 

instead buy p-bets at the cheaper market price. 

This may not look at first like a major difficulty. After all, we know the correlation between fair 

prices for A-bets and degrees of belief in A only holds under restricted conditions. All these 

examples show is that we have to be more careful in specifying the initial conditions. As far as it 
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goes, this response is correct. Provided we have good reason to believe that we oughtn’t use 

strategic pricing, the correlation will hold. The problem for Dutch Book arguments is that the only 

way we can know this is if there is no possibility of later bets, so we can know that we can’t buy 

the bets for less on the market nor make a profit by resale. However, as we saw above Dutch Book 

arguments in general only work by using retrade. Hence they rely on the correlation between 

degree of beliefs and betting prices for rational agents holding in a context in which only irrational 

agents would price bets this way, so the arguments fail. 

This conclusion is of major importance for what follows, so I should restate the argument which 

I have used. Dutch Book arguments rely on there being entailments from agents having certain 

degrees of belief to their propensity to buy certain bets. They conclude that if some set of our 

degrees of belief are probabilistically incoherent, we will buy a set of bets which incurs sure loss, 

and hence we must be irrational. However, the entailment in question only holds under restricted 

circumstances. One of the restrictions is that there be no possibility for later trade in bets. When 

there are retrade possibilities, as there must be for most types of Dutch Books to be made, the 

entailment does not hold. So Dutch Book arguments make inconsistent presuppositions, and 

hence fail. 

It might be objected that if an agent whose beliefs were not coherent with the probability calculus 

believed falsely that there was no possibility of retrade they would make trades which led to sure 

loss. However, the only way a bookmaker could exploit this is if she had more knowledge than 

the agent. And the fact that a bookmaker with more knowledge than us can sell us bets which, 

given the bookmaker’s knowledge, have to lose, is no proof that we are irrational. If it was we 

would be able to show that any person whose degree of belief was less than 1 for any true 

proposition, or greater than 0 for any false proposition, is irrational. Moreover, even if we regard 

such an agent as irrational, it is not clear that it is because her beliefs don’t follow the probability 

calculus that she’s irrational. All we can tell from the fact that she will suffer a sure loss is that 
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she’s made a mistake somewhere; this might be concerning her misplaced certainty that the 

market is closed rather than her degrees of belief in the proposition on which bets are placed. 

Alternatively, it might be objected that an agent who is completely ignorant of the state of the 

market will price bets by their expected return even if they think there is the possibility of retrade. 

The problem with this objection is that it is, famously, very hard to pin down what it is to be 

completely ignorant. Saying that if I am completely ignorant of whether or not it is the case that 

p then my degree of belief in p is, or ought to be, 1/2 leads to well-known contradictions. It 

certainly would be odd to say that if we are completely ignorant of the likely effects of a certain 

class of events we should ignore them, which would seem to be the line of attack here. In part 2, 

particularly in chapter 9, I’ll look at various theories about how we ought make decisions under 

ignorance. Under several of these (particularly maximin approaches) if the agent knows nothing 

about the market she should make no trades at all rather than pricing according to mathematical 

expectation. Finally, if the approach advocated in this dissertation is correct and there are 

necessary probabilities, then in many circumstances an agent is irrational to be completely 

ignorant in some strong sense. So again, even if the agent is irrational, the Dutch Book argument 

can’t prove that it is the incoherence of degrees of belief with the probability calculus that is 

making the agent irrational. 

In the literature there is generally a distinction drawn between synchronic and diachronic Dutch 

Book arguments, with the latter being referred to as Dutch Strategy arguments. These latter type 

are used to infer coherence constraints on how our degrees of belief should change over time. 

Though the above argument refutes both Dutch Book and Dutch Strategy arguments, the results 

concerning Dutch Strategy arguments are more striking. Unlike Dutch Book arguments, Dutch 

Strategy arguments appear to have occasionally led to authors drawing mistaken conclusions. 
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In his latest argument for a principle called Reflection, van Fraassen discusses the case of Pierino, 

whom he claims is irrational (1995: 11). Pierino is a young child who today prefers blocks to 

marbles, but knows that in a year when he has acquired older tastes, he will prefer marbles to 

blocks. He is in the predicament of today having 9 marbles. Van Fraassen stipulates that Pierino 

is indifferent between keeping his 9 marbles and trading them for 3 blocks, knowing full well that 

in a year’s time he’ll be indifferent between holding these blocks and trading them for a single 

marble. And this, van Fraassen claims, must be irrational, for if he made the two trades he would 

have lost 8 marbles. To the obvious response that he will have gained in enjoyment in the short 

term by having more blocks which he can use now, van Fraassen replies that since he was 

indifferent to the trades, he can’t gain anything. 

van Fraassen’s reply makes the mistake we have attempted to highlight here. Pierino’s 

indifference to the trades tells us that at each time the exchange-value of the bundles on offer was 

equal, but we can’t from this infer that the use-value of the two bundles was equivalent. Indeed, 

assuming Pierino preferred more marbles to fewer in year 2, we must assume that the value of 

having 3 blocks in year 1 was greater than the value of having 9 marbles, and indeed so much 

greater that it made up for the expected losses in year 2. 

We can make a formal model for Pierino that satisfies these constraints. Assume that U1 is the 

utility he gets from toys in year 1, and U2 the utility he gets in year 2. Assume his aim is to 

maximise U1U2, and hence that he is indifferent as to the amount of toys he holds at the end of 

year 2. Let Bi and Mi be the amounts of marbles and blocks he has in year i, and assume his utility 

functions are as follows. 

 U1 = 27B1 + M1; 

 U2 = B2 + 3M2. 
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Given that he starts with 9 marbles, if he just holds marbles his net utility across the two years 

will be 9 · 27 = 243. If he trades the 9 marbles for 3 blocks, knowing that these can only be traded 

for 1 marble at the end of year 1, his net utility will be 81 · 3 = 243. Hence his indifference to the 

trade. He could increase his utility if it is possible to trade say 6 marbles for 2 blocks, but we have 

no reason to assume that that trade is allowed. For reasons I will outline in the next chapter, I 

think van Fraassen’s main conclusion, that all rational agents are Reflective, is sound, but the 

arguments he uses to get there are mistaken. 

One final point ought be noted. When an agent holds a Dutch Book what is important is not that 

there is no winning outcome. What’s important is that all the winning outcomes are impossible. 

Assume as above that I bought a p-bet for 60 cents and a ¬p-bet for 55 cents. Then if it’s the case 

that p and ¬p I will win 85 cents, and if it’s the case that neither p nor ¬p I will lose $1.15. 

However, in all possible situations I will lose 15 cents. This has two interesting consequences.  

First, Dutch Book arguments presuppose a certain logic; in particular one where p  & ¬p is 

impossible and p  Ú ¬p is a tautology. There’s nothing wrong with this, but it is a presupposition 

which should be noted. (Harman (1983) notes that because of this attempts to use the probability 

calculus to prove the semantics for natural language ought be classical are question-begging). 

Unless otherwise stated, I will presuppose classical logic. That is, when I say A is impossible I 

will mean ¬A is a classical theorem, and when I say A entails B I will mean it classically entails 

B. 

Secondly, there is a sound Dutch Book argument which can be made against a person whose 

degree of belief in any contradiction is positive, or whose degree of belief in any tautology is less 

than 1. I’ll just illustrate the first. Assume my degree of belief that the four-colour map theorem 

is false is 0.1. Then I’ll buy a bet against it for 5 cents. As there’s no possibility of this bet winning, 

this is a sure loser. And since there’s only one bet involved, I didn’t assume that retrade was 
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possible, so the above objections to Dutch Book arguments don’t apply. The objector who says 

that it is an epistemic possibility that the four colour map theorem is false has a much deeper 

objection to Dutch Book arguments than I. After all, p  & ¬p might be an epistemic possibility 

too, so on this approach we could object directly to the toy Dutch Book argument with which I 

opened this section. Rather than take this road, I will simply assume that in this field we are 

interested in an epistemology for agents whose beliefs are closed under entailment. 

2.4 Other Critiques of Dutch Book Arguments 

The critique of Dutch Book arguments given here is unique in two respects. First, it is the only 

one, to my knowledge, to rely on Adam Smith’s distinction between usefulness and exchange-

value. Secondly, as will be seen in the next chapter I concur with the most famous conclusions of 

Dutch Book arguments. The usual motivation for criticising these arguments is to motivate dissent 

with their conclusions. Here the motivation is to provide a cleaner separation of epistemology and 

decision-theory. 

The closest argument in the literature to mine is given by Schick (1986). He argues that Dutch 

Book arguments fail because they assume that the value of bets is additive. That is, they assume 

the value of an A-bet is independent of whether or not the agent holds a B-bet. Since bets might 

be complementary in an economic sense, this is a false assumption, so these arguments fail. This 

objection is similar to mine in that it relies on a simple economic theory to refute the Dutch Book 

argument, and because as Schick notes it doesn’t apply to ‘single-bet’ books (1986: 116). 

However, it is not a successful refutation. 

The alleged flaw with Dutch Book arguments on which Schick relies was noted by Ramsey when 

he originally put the argument. (Ramsey 1926: 173-4). Not only does Ramsey point out the 

alleged flaw, he notes its prima facie implausibility and offers a small argument to try and defend 
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it. Ramsey claims that when all the final payouts6 of all bets are ‘ultimate goods’, the value of the 

bets is additive. Now Ramsey’s claim here might be wrong, but we should get an argument to this 

end. Instead, Schick simply assumes that when bets are denominated in utils (equivalently when 

the marginal utility of money is assumed to be constant) we will get similar economic results to 

those we’d get were bets denominated in dollars. Schick’s mistake (if it is a mistake) is instructive; 

as I noted above the fact that we don’t, even on reflection, have particularly clear intuitions about 

trading utils is a good reason for not founding our theory of probability on the types of bets 

Ramsey discusses. 

Levi (1987) and Maher (1992) argue that agents who are not Reflective will ‘see the Dutch Book 

coming’ and hence refuse to take the bets which lead to being Dutch Booked. Their argument is 

principally developed to defeat van Fraassen’s conclusion that ideally rational agents are 

Reflective, though it isn’t clear why it wouldn’t also apply to synchronic Dutch Book arguments. 

Since it doesn’t actually work it isn’t particularly worthwhile to speculate how far it would reach 

were it successful. 

The kinds of cases they are thinking of are like the following. Assume I today believe that the 

probability of p is 0.5, and believe that tomorrow I’ll believe the chance is 0.3. Assume also I’m 

offered a p-bet for 40 cents. I know that if I buy it I will be prepared to sell it tomorrow for say 

32 cents, for a sure 8-cent loss. That is, I’ll be Dutch Booked. But wait! If I see this coming I 

won’t buy the original bet for 40 cents, and thus avoid holding the book. Levi and Maher claim 

that the availability of this path to unreflective agents blocks the Dutch Book argument. 

 

6 When I say the ‘final payouts’ of bets are of type X I mean the following. The set of all bets whose ‘final 

payouts’ are of type X is the smallest set of bets including all those whose payouts are of type X such that 

any bet such that each of the payouts is a bet in the set is also in the set. If we allow bets to have more than 

two possible payouts we can amend this last condition accordingly. 
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This response to Reflection fails for the simple reason that being ‘Dutch Bookable’ is not a 

necessary condition of irrationality. Assume I don’t buy the original 40 cent bet. I won’t now be 

able to sell this bet for 32 cents tomorrow. However, I will still be able to buy a ¬p bet for 68 

cents. If I take Levi and Maher’s advice, I’ll have converted a sure loss of 8 cents into an expected 

loss of 18 cents. There might be an argument to show that this is a rational option, but I’d like to 

see what it is7. 

There is a bigger problem for Levi and Maher’s approach. As we saw above, when used by de 

Finetti and Savage the Dutch Book argument does not require the agent to incur an actual dollar 

loss. Rather, since the choices are between gifts, the incoherent agent incurs a sure opportunity 

loss. Now when I refuse the original offer of a p-bet for 40 cents, I have already incurred an 

opportunity loss. Admittedly it is again an expected opportunity loss rather than a sure one, but it 

isn’t clear why incurring an expected loss rather than a sure one is an epistemic improvement. 

Bacchus, Kyburg and Thalos (1990) run a series of responses to Dutch Book arguments. Their 

responses to dynamic Dutch Book arguments will be discussed in chapter 3 as possible objections 

to my arguments for dynamic coherence; here I’ll stick to discussing their general comments on 

 

7 The practicalities of this situation are very difficult, and it is impossible to get clear intuitions about what 

we should do given the assumption of constant marginal utility of money. If I know that tomorrow my 

degree of belief in p will be 0.3, ideally I will take steps to prevent myself acting on this later belief. That 

is, I should take the Ulysses option. Now buying p-bets today for 40 cents to sell tomorrow at a sure loss 

will, as is noted in the text, reduce my expected loss. However, that is assuming that the number of ¬p-bets 

I will buy (number of p-bets I will sell) tomorrow is independent of the number of p-bets I buy today. The 

idea is that taking Levi and Maher’s advice may in some circumstances, have the effect of tying me to the 

mast and not trading tomorrow. It will have this consequence if the marginal utility of money is not constant, 

but when it is there are few clear intuitions on the matter. 
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Dutch Book arguments. Put in slogan form, they endorse the position that bad betting is bad 

betting, not bad believing. I agree, but I’m a bit worried about the way they get to this slogan. 

Having incoherent degrees of belief (and even the disposition to convert these directly into bets) 

does not guarantee sure loss. Only this combined with a rather clever and devious bookie does. 

Note two important consequences of this qualification. First, we now say that certain sets of 

degrees of belief will not always lead to losses, but will sometimes lead to losses. But we knew 

all along that any degrees of belief (except certain kinds of dogmatic acceptance of only 

tautologies) might lead to losses. Why, we can ask, are the losses caused by devious bookies signs 

of irrationality, but not the losses caused by taking attractive but ultimately losing bets? I suspect 

this raises problems for a certain type of pragmatist, but I can’t see it as a general problem. The 

problem isn’t that some possibility claim, i.e. we might lose if a certain type of bookie exists, is 

true, but rather an existence claim, i.e. that a certain type of acceptable but losing bet exists. The 

second consequence Bacchus, Kyburg and Thalos draw is that the Dutch Book argument only 

works if we make the paranoid assumption that devious bookies exist. Consistency isn’t just the 

sign of a small mind, but of a paranoid one too. Again, this looks like a good refutation of a certain 

strictly pragmatic Dutch Book argument. However, we don’t need to formulate Dutch Book 

arguments as strictly pragmatic, and when we don’t I suspect this objection loses its force. That 

is, the possibility of the agent buying a Dutch Book seems at least as great an epistemic flaw as 

actually making the purchase, and hence anyone who runs a Dutch Book argument is just making 

an avoidable mistake if they assume an actual pernicious bookie. 

2.5 The Betting Analysis as Analogy 

Although I don’t regard the betting analysis as correct, or even that useful generally given the 

failure of Dutch Book arguments, it may be a helpful analogy. Much of this section is motivated 

by Shafer (1981), who also regards betting prices as an occasionally useful analogy to degrees of 

belief, though he’s considerably more sceptical than I about the applicability of this analogy. To 
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see when this analogy might be useful, we first have to consider the known limitations on its 

applicability. 

The only way I will use betting examples is to test whether Bel(p)  is reasonable by considering 

whether it is reasonable to accept or reject offers to buy or sell p-bets. If, for example, in 

appropriate circumstances it would be unreasonable to reject an offer of a p-bet for 0.2, this can 

be taken as a good argument for saying that Bel(p)  £ 0.2 is unreasonable. First we must consider 

what circumstances are ‘appropriate’, or since this seems a bit open-ended, which circumstances 

are known to be inappropriate. The following have already been mentioned. 

• When the units in which the bet is denominated or traded are of variable marginal utility. 

• When there is a time-delay between when the bet is or would be traded and when winnings 

would be paid. 

• When there is a possibility of trading in other bets at a later time. 

The last is actually a bit broader than what we used above. We have to rule out not just trade in 

this particular bet, but in other bets as well because some bets are complementary in the economic 

sense. This is very common in real life. For example, it is worthwhile to buy insurance on your 

car but not on someone else’s despite the fact that the cost of the bets are the same and the expected 

returns may well be identical (unless say you know you are a worse driver than other people). In 

part this will be because insurance bets are denominated in a currency with declining marginal 

utility. However, it seems presumptive to think that complementation is only caused by this effect. 

Experimental evidence suggests that for many agents the fact that their degree of belief in some 

propositions is vague leads to a complementation effect. So we have in general to assume this is 

the last possible trade. 

This assumption also gets us around a problem noted by Pargetter and Davidson (1985). Assume 

I know that your degree of belief in p is 0.7, and mine is 0.9. You offer to sell me a p-bet for 0.85. 
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Assuming all other circumstances are in order, this trade will be worthwhile for me. However, I 

know that if I counter-offer to buy it for 0.71, you will still find the trade worthwhile, and I will 

have bought the bet for 0.14 less. Pargetter and Davidson thought we could only get around this 

by assuming the agent under investigation knows the bookmaker has the same degrees of belief 

as they. However, once we know this is the last chance to bet, i.e. that the counter-offer possibility 

is closed, we don’t need to make this extra restriction, and since we need to have a closed market 

after the bet in question for other reasons, Pargetter and Davidson’s restriction seems redundant. 

Even though it is not needed in these cases, however, we might want to restrict attention to cases 

where each party to the bet is known to have the same information for the following reason. 

Degrees of belief can at most determine dispositions to bet, not actual betting practices. Even if I 

have a disposition to buy p-bets for 0.2, if I am offered a p-bet for that price I might not buy. This 

seems contradictory, but it is not. Dispositions can be finkish  (Martin 1994, Lewis 1997). I might 

have a disposition to f in circumstances C, yet be in a situation such that whenever circumstances 

C arise I will lose the disposition.  

Assume I have next to no evidence about the players in a certain tennis match, and let p be the 

proposition that the player who serves first will win. Even if I have a disposition to buy p-bets for 

0.1, say, if someone were to offer me a p-bet for that price I would most likely refuse. That is, the 

disposition would be finkish. The reason I would refuse is that the fact I was offered the bet would 

count as a new piece of information (the information that someone who most likely knows more 

about the match than I thinks p-bets are worth less than 0.1) and in the state with this extra 

information I’m not disposed to make the purchase. If I did have the disposition this would be 

just like paradigm cases of finkish dispositions because the occurrence of the circumstances which 

are meant to ‘trigger’ the disposition causes me to lose that disposition in an easily identifiable 

way.  
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How could we tell that I originally had a finkish disposition rather than having no disposition at 

all? The best test seems to be whether I would buy the bet if I knew that the person offering it had 

the same information I did, and hence that there was little information in the fact that the bet was 

offered. So the Pargetter and Davidson restriction to circumstances where the offeree knows the 

offerer has the same beliefs they do is important for cases of complete ignorance to eliminate the 

effect of finkish dispositions.  This will be used in later chapters. 

Given these restrictions, it seems the analogy with bets is worthwhile. We will have to be careful 

to use it only in appropriate circumstances, and to remember that it is only an analogy, and perhaps 

not the only one. Where possible it will be preferable to use the analysis of degrees of belief to be 

developed in chapter 3. 



Chapter 3   

What Degrees of Belief Are 

3.1 The Equivalence Analysis 

In chapter 2 I noted that I would take qualitative data about an agent’s degrees of belief as given. 

So I have as data to work with sentences of the form The agent’s degree of belief in A is higher 

than in B. Standardly in the literature, the agent is called You, with the capitalisation meant to 

indicate that You is being used as a name. Hence the possessive form of You, as used, is You’s, 

but it is standard to use Your. Rather than mimic this faulty grammar I’ll use a variety of agents 

as appropriate. 

In his 1926 paper, Ramsey argued that there was no way to convert qualitative judgements of 

greater or smaller degrees of belief into quantitative judgements of, say, degree of belief 2/3. 

However, there is a relatively simple way to do this, as he pointed out in a note in 1929. To say 

my degree of belief in A is 2/3 is to say I have the same degree of belief in it as I have in p1  Ú p2  

when I know that exactly one of p1 ,  p2  and p3  is true and each of the p i  are equally likely. From 

the qualitative judgements that A has the same degree of belief as p1  Ú p2  and that all p i  have the 

same degree of belief, we can work out a quantitative judgement. 

It is rather trivial to generalise this. My degree of belief in A is x / y when it is the same as my 

degree of belief in p1  Ú ... Ú p x  given that I believe fully that exactly one of p1 , ...,  p y  is true and 

each p i  is equally likely. By equally likely, I just mean that my degree of belief in p i  equals my 

degree of belief in p j  for all i, j. We will look in section 3.10 at how this analysis might be extended 

to real-valued degrees of belief, but until then we’ll assume that degrees of belief take rational-

values only. (Note that in this chapter ‘real’ and ‘rational’ always refer to properties of numbers. 

Saying that a degree of belief is real doesn’t entail that anyone has it, nor does saying it is rational 

entail that anyone should have it.) I’ll call this analysis of degrees of belief, that to believe A to a 

certain degree is to believe it to the same degree as a certain disjunction, the Equivalence Analysis. 
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It might seem that the Equivalence Analysis is circular, since we have analysed degrees of belief 

in terms of, inter alia, degrees of belief. This objection misses the point somewhat. The aim of 

the Equivalence Analysis is to reduce quantitative degrees of belief to qualitative degrees of 

belief. If we were to write it as a precise definition (or more exactly a set of definitions) we would 

find that on one side we have quantitative sentences and on the other we have only qualitative 

sentences. Indeed the only qualitative relation we have used is equality of degrees of belief; we 

haven’t even used inequalities. When we extend the analysis to real-valued or, on one account, 

vague degrees of belief, we will need this extra resource. 

As I noted above, the idea of defining degrees of belief in this way originates with Ramsey (1929). 

The first writer to use something like the Equivalence Analysis in a formal theory was Koopman 

(1940). He argued that probability was primarily a comparative notion; if there are exclusive and 

exhaustive propositions p1 , ..., p x , ..., p y  each equally likely such that A is as likely as p1  Ú ... Ú p x  

then A’s probability is x / y, otherwise A doesn’t have a numerical probability. To use Koopman’s 

term, in the latter case A is not appraisable. In sections 3.5 to 3.9 we will look at ways of 

introducing non-appraisable propositions into the theory. Good (1950) uses Koopman’s ideas as 

motivation for the idea that degrees of belief ought obey the probability calculus1. The theory here 

uses ideas from all of these writers. The components which are, to my knowledge, original are 

the use of what I will call models in the third section, and the use of material equivalences at the 

core of the analysis. It is the last fact which prompted the name Equivalence Analysis. 

 

1 A similar approach is used in Savage (1954). However, he uses ‘almost uniform partitions’ which are such 

that any disjunction of x + 1 elements is more probable than any disjunction of x elements for any 

x Î {1, ..., y - 1}. The motivation for this is that it makes it more plausible that the p i  can be propositions 

about real events, rather than dummy propositions as in the theory presented here. Although he starts, like 

Koopman, with comparative probability, he assumes that for any A, B either Pr  (A) ³ Pr(B) or 

Pr(B) ³ Pr(A). This entails that all propositions are appraisable. 



§3.2 Outline of Chapter 57 

 

If it helps we can visualise matters by thinking of the various p i  as being the drawing of the i’th 

ball from an urn containing y balls, but I’m not sure this helps. In urn cases there is often a 

temptation to think that the p i  are equally likely because we are ignorant of the way the balls are 

distributed in the urn. This may be approximately correct in some practical cases, but it seems 

wrong in general. I am doubtful that we must, or even may, derive precise numerical degrees of 

belief through ignorance. I certainly don’t want to have an appeal to the Principle of Indifference 

at the core of my definition of degrees of belief. Rather the kind of case I am thinking of is one 

where our evidence is sufficient to have an equal degree of belief in each p i . It doesn’t take much 

of a sceptical attitude to deny that physical evidence can ever provide us with this in real world 

examples. Nevertheless, the situation seems a useful fiction, particularly because in practice our 

degree of belief in certain types of events (e.g. lotteries) do approximate this ideal of equal degrees 

of belief in all outcomes. 

3.2 Outline of Chapter 

In section 3.3 I will introduce formal models of probabilistic belief. These are important because 

they allow us to regain the conclusions of Dutch Book arguments. That is, on the assumption that 

all an agent’s degrees of belief are rational numbers, then it is a coherence requirement that their 

degrees of belief obey the axioms of the probability calculus. Models are simply sets of 

propositions closed under entailment, however they are defined on a different possibility space. 

The core idea behind the models is that if in reality the agent believes A to degree x / y, some 

proposition of the form A ≡ p i  Ú ... Ú p j  is true in the model, where there are x disjuncts on the 

right-hand side. The axioms of the probability calculus fall out as consistency requirements on 

the model. In section 3.4 we extend this to updating methods for probabilistic beliefs, showing 

that the Bayesian requirements of Conditionalisation and Reflection can be justified by these 

models. In that section I also respond to some criticisms of these principles. 



§3.2 Outline of Chapter 58 

 

There are two complications that can be made. I have assumed in the initial sections that degrees 

of belief are rational and precise, but in general neither of these restrictions is permissible. In 

sections 3.5 to 3.9 I look at various ways of dropping the restriction that degrees of belief are 

precise. The most common way in the literature to do this is to have a person’s degree of belief 

represented by sets of probability functions rather than a single function. Section 3.5 looks briefly 

at the motivations for imprecision and outlines this approach to representing it. I will then consider 

two alternatives to this approach. 

In section 3.6 I look at a simple alteration of our conditions on models to permit imprecision. In 

the standard model, when the agent’s degree of belief in A is x / y, there is a disjunction D of x 

elements such that A ≡ D is in the model. In imprecise models, when the agent’s degree of belief 

in A is vague over the interval between x1 / y and x2 / y there are disjunctions D1 and D2 of x1 and 

x2 elements respectively such that D1 É A É D2 is in the model. It is shown that the resultant theory 

is equivalent, in a certain sense, to Shafer’s theory of belief functions. More importantly the 

resultant axioms on coherent degrees of belief are more restrictive than the approach of section 

3.5. 

Above I noted that we could think of the p i  as representing the drawing of a given ball from an 

urn with y balls in it. One way to loosen some of the restrictions on degrees of belief incurred in 

section 3.6 is to allow there to be multiple urns, not necessarily independent. This approach is 

analysed in section 3.7. This move doesn’t change our earlier conclusions for precise degrees of 

belief, but it does allow us to drop some of the unwanted restrictions. Although the resultant 

theory satisfies some proposed axiomatisations of vague probability theory, I will argue that it 

loses too much structure, and that some of the theorems it fails to prove are ones we ought want. 

So the only two live options are the family of probability functions approach, outlined in section 

3.5, and the Shafer belief functions approach, outlined in section 3.6. 
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Shafer proposes that his belief functions should not be updated by conditionalisation.  This is, I 

suggest, a mistake, and I’ll look at some examples designed to reinforce that belief. Some writers 

have suggested that this mistake can be remedied. We noted that Shafer belief functions are 

equivalent to families of probability functions with two particular properties. Although one of 

these properties is preserved under conditionalisation, the other is not, so it seems there is no 

coherent way to update Shafer functions. 

In section 3.9 I consider Walley’s argument that analyses of vague degrees of belief in terms of 

families of probability functions is bound to give the wrong answer to certain conditionalisation 

problems. He argues that adopting a certain principle, conglomerability, leads to thinking that 

vague previsions are basic, not probability functions. When applied to general cases the principle 

of conglomerability is inconsistent, which somewhat vitiates its force when applied to the special 

case Walley considers. 

Finally in section 3.10 I look at extending the analysis of this chapter to real-valued degrees of 

belief. I say that Bel(A) = r iff Bel(A) is greater than (less than, equal to) y / z for integer y and z 

whenever y / z is less than (greater than, equal to) r. This way talk of real-valued degrees of belief 

is eliminated in favour of comparisons between degrees of belief and rationals. An appendix 

contains some proofs which are left out of the body of the text to ease exposition. 

3.3 Precise Models 

I’ll again adopt the notation Bel(A) for the agent’s degree of belief, or credence, in A. The aim of 

this section is to show that, at least for the special case when Bel takes only rational values, the 

agent is unreasonable if Bel is not a probability function. As noted in chapter 1, by definition Pr  

is a finitely-additive probability function iff it is a function from propositions to numbers 

satisfying: 

(Pr1) Pr(A) ³ 0; 
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(Pr2) Pr(T) = 1; 

(Pr3) If ├ ¬(A & B) then Pr(A Ú B) = Pr(A) + Pr(B). 

If an agent believes, in the traditional sense, A, then they have the same credence in A as they 

would have in p1  were they to believe exactly one member of the set {p1} is true. Hence their 

credence in A will be 1/1, that is, 1. If they believe ¬A then there will be no value y such that they 

have the same credence in A as in p1  and exactly one member of {p1 , ..., p y} is true. Hence for 

all y, Bel(A) < 1/y. So Bel(A) = 0. 

Since we are discussing what agents should believe, or what reason requires them to believe, we 

need to define what concept of reasonableness we have in mind. For these purposes I will simply 

adopt the standard used in Dutch Book arguments. An agent is reasonable iff their beliefs are 

closed under entailment and not trivial. This is simply a coherence constraint on reasonableness. 

For consistency with the literature, I’ll use reasonable in this chapter simply to mean 

probabilistically consistent, or what we might call coherent2. This is not meant to imply that all 

coherent belief sets are reasonable in some strong sense. Nor is it meant to imply that incoherence 

is unreasonable in an everyday sense. 

Above I said that Bel(A) = x / y meant simply Bel(A) = Bel(p1  Ú ... Ú p x) where {p1 , ..., p y} is a 

set of propositions such that the agent knows one of them is true and for any i, j Bel(p i) = Bel(p j). 

Put this another way, I could say that Bel(A) = x / y means that the agent has the same credence 

in A as they would have were they to believe (i.e. believe fully) A ≡ p i  Ú ... Ú p j , where there are 

x disjuncts and {p1 , ..., p y} is defined the same way. 

It is clearly no constraint on rationality that if Bel(A) = x / y we can find y equiprobable 

alternatives such that we believe A is materially equivalent to a disjunction of x of these. However, 

 

2 We’ll come across a different use of coherent later in connection with vague belief functions. 
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it does seem to be a constraint that we should be able to consistently believe something of this 

sort. If it were inconsistent to believe that there was any such set as {p1 , ..., p y} and A is materially 

equivalent to a disjunction of x elements of this set, something seems amiss. 

Indeed, an even stronger constraint than this seems in order. Assume there exists a y such that for 

all propositions A in a finite field of propositions G, y · Bel(B) is an integer. Provided our degree 

of belief in any proposition in G is rational this will be possible for some y. Again assume 

{p1 , ..., p y} is a set of propositions such that we know exactly one is true and all are equiprobable, 

and that no proposition about any p i  is in G. Then it seems to be a rationality constraint that it 

should be possible for any B in G, where Bel(B) = x / y to find a disjunction of x elements of 

{p1 , ..., p y} such that it is consistent to believe B is materially equivalent to that disjunction. That 

is, it should be possible to model our probabilistic beliefs about propositions in G on {p1 , ..., p y}. 

Since what it means to say Bel(B) = x / y is to say B is believed to the same degree as such a 

disjunction, it would be odd if it were inconsistent to say that B is materially equivalent to any of 

them. 

The above is fairly informal, particularly the requirement that no proposition ‘about’ the p i  be in 

G. The following is a more formalised statement of it, followed by proofs that these restrictions 

are sufficient to show why the degrees of belief should follow the probability calculus.  

Assume an agent has a certain set of beliefs, say K, and certain degrees of belief Bel( • ). I want 

to test for coherence her credences about a certain set G of propositions, assuming that all these 

are rational numbers. A simple coherence constraint, which was argued for above3, is that if A Î K 

then Bel(A) = 1. Let y be the lowest common denominator of these degrees. Since we are 

considering her propositional beliefs we can represent each belief as a set of possible worlds, or 

more generally as a subset of the possibility space. Let W be the set of all worlds in the original 

 

3 And see also section 4.4 for consideration of some recent objections to this proposal. 
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possibility space. Since K is closed, it determines, and is determined by, some subset D of W. For 

any proposition A, A Î K iff D is a subset of A. The non-triviality constraint on reasonable belief 

sets is simply that D is non-empty. 

Let P be the set {p1 , ..., p y}. I won’t presume these are propositions in the sense of being subsets 

of W. Rather, to allow the agent to consider P ,  I need to extend the possibility space from W to 

W ´ P .  Elements of W are possible worlds, e.g. w. Elements of W ´ P are ordered pairs, the first 

element of which is a possible world, and the second element a member of P .  Because the p i  are 

not meant to be about the propositions in G, it can be assumed that all points in W ´ P are real 

possibilities. The proposition A on W will be the proposition {<w, q>: w Î A & q Î P} on W ´ P .  

We’ll write the latter proposition as A*, and in general use A, B, D for propositions on W, A*, 

B*, D* for the equivalent propositions on W ´ P .  The proposition p i  in P will be the proposition 

{<w, q>: w Î W & q = p i} on W ´ P .  I’ll write that as p i
*. I define conjunction, disjunction and 

negation of propositions in W ´ P in the usual way as intersection, union and complementation. 

The aim is then to see if the agent’s probabilistic beliefs about G can be modelled as propositional 

beliefs about subsets of W ´ P .  In the model the set of propositions on W ´ P which the agent 

believes is K*, which again to satisfy the reasonableness constraint should be closed and non-

empty. Hence K* determines, and is determined by, a subset D* of W ´ P .  The model should 

satisfy the following constraints. 

(1) (S Í P  & S* Î K*) ® S = P  

(2) If Bel(A) = x / y then $S: ((S Í P  & |S| = x) & (S* ≡ A* Î K*)) 

In (2) and in what follows I will assume sets of propositions are truth-valued, and I’ll simply 

stipulate that a set of propositions is true iff some element of it is true, false otherwise. This greatly 

eases the exposition in what follows. Again a proposition unstarred is either on W or P ,  and 

starred is the equivalent proposition on W ´ P .  (2) says that K* is a model for Bel in the sense that 
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if A is believed to degree x / y then it is equivalent in K* to a disjunction of x propositions such 

that the agent knows exactly one of y of these is true. (The expression |S| in (2) refers to the 

cardinality of S). (1) says that the agent doesn’t know that some subset of P is true. If this were to 

occur it would of course be inconsistent with the assumption that each of the p i  is equiprobable. 

That assumption isn’t used anywhere else in the proofs. 

We now prove the following lemmas: 

(L1) Ú(p1
*, ..., p y

*) Î K* 

(L2) (S Í P  & ¬S* Î K*) ® S = Æ 

The notation Ú in (L1) refers to exclusive disjunction. There is a difficulty with representing n-

place exclusive disjunction, since if we just took A Ú B =df (A Ú B) & ¬(A & B), we would have 

the result that (p1  Ú p2) Ú p3  would be true iff one or three of the p i  were true. So I allow exclusive 

disjunction to be an n-ary connective, written Ú(p1 , ..., pn), which is true provided exactly one of 

the p i  is true4.  

An exclusive disjunction is true is true iff the disjunction of every element is true and the 

conjunction of any distinct pair of disjuncts is false. For any two propositions p i
*, p j

*, it follows 

from the definition of W ´ P that p i
* Ç p j

* is empty. Since D* is not empty, it follows 

that D* Ë (p i
* Ç p j

*). Hence p i
* & p j

* Ï K*. Again from the definition of the p i
*, it follows that 

p1
* È ... È p y

* = W ´ P .  Hence D* Í (p1
* Ú ... Ú p y

*), so p1
* Ú ... Ú p y

* Î K*. This proves (L1). 

(L3) follows directly from (L2), since if S Í P ,  then ¬S will be P  / S, which is also a subset of 

P .  Since ¬S* Î K*, by (L2) ¬S = P ,  so S must be empty. 

 

4 McCauley (1993) defines all of the connectives as n-ary, partially to have a greater parallel between formal 

and natural language and partially to resolve this problem with exclusive disjunction. 
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These rules are sufficient to prove that the following are constraints on reasonable degrees of 

belief for any propositions A, B in G. (The proofs are in the appendix to this chapter) 

Theorem 3.3.1 If Bel can be modelled by K* satisfying (1) and (2) above and is defined for all 

propositions in G, then for all A, B in G: 

(T1) If ├ A then Bel(A) = 1 

(T2) If ├ ¬A then Bel(A) = 0 

(T3) Bel(A) + Bel(B) = Bel(A Ú B) + Bel(A & B) 

(T4) If A ├ B then Bel(A) £ Bel(B) 

(T5) 0 £ Bel(A) £ 1 

(T6) If Bel(A) = x / y and Bel(A) = z / y then x = z 

If we can prove (T1) to (T6) then it follows that Bel is reasonable vis a vis G iff Bel obeys the 

axioms of the probability calculus with respect to those propositions. Generally Bel is reasonable 

(or at least coherent) if it is reasonable vis a vis any finite set G of propositions.  

Now it simply falls to us to show that these requirements ensure that Bel is a probability relation. 

By (T6) Bel is a function from propositions to numbers (i.e. it is uniquely valued). By (T5) it 

satisfies (Pr1), by (T1) (and (T6)) it satisfies (Pr2) and by (T2) and (T3) it satisfies (Pr3). Hence 

it is a probability function. 

3.4 Updating Precise Models 

Dutch Book arguments have been presented to show that we should obey certain dynamic 

principles, such as Reflection and Conditionalisation.  These are commonly referred to as Dutch 

Strategy arguments, and these seem most at risk from my arguments in section 2.3. We should 

look at whether we can reach the same conclusions as they do using the Equivalence analysis of 

degrees of belief. To do this I’ll first look at what similar results to Reflection and 

Conditionalisation can be found concerning absolute beliefs.  
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Again the only norms I am adopting here are norms of dynamic coherence. I take it that if there 

is no possible world in which an agent can believe truly a set of propositions K then K is not a 

statically coherent belief set. However, since we are studying epistemic dynamics we have to 

extend this rule. So I adopt as a coherence constraint that holding a belief such that my holding 

that belief entails I have or will have a false belief shows that I am unreasonable. There are also 

closure constraints on rationality. Assume that D is the set of all worlds in which we have all the 

current beliefs we actually have and all our current and future beliefs are true. The first coherence 

requirement is that D be non-empty. As above, I will also insist that reasonableness requires that 

for every proposition A true in every world in D, we believe A. 

Assume I believe that tomorrow I’ll have a false belief. (‘Tomorrow’ refers simply to an arbitrary 

future time). If this is true I will, perforce, have a false belief. Alternatively, this belief will be 

false, so again I will have a false belief, this one. Hence I am guarunteed to have a false belief, so 

by the coherence constraint I am incoherent, or unreasonable. Hence it is unreasonable to believe 

that tomorrow I’ll have a false belief. Similar constraints apply to the belief that I now believe 

something false. It might be thought that this implies closure is not only unnecessary for 

reasonableness, it is incompatible with it. However, we get more plausible results when we restrict 

our attention to particular beliefs. 

Assume I believe A and believe that tomorrow I’ll believe ¬A. Since it can’t be that A and ¬A, it 

can’t be that my beliefs on each day are true, so one of them must be false. So I must either have 

a false belief, and hence be unreasonable, or believe I’ll have one, which is unreasonable for the 

reasons we noted in the previous paragraph. Hence again I am unreasonable. Alternatively, 

assume simply that I believe that tomorrow I’ll believe A. Then in all worlds in D tomorrow I 

truly believe A, hence all worlds in D are A-worlds. So by closure I should believe A. 
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The argument for Reflection is just the probabilistic version of that argument. Reflection is the 

principle that if I believe I will have credence r in A I must now have credence r in A. Assume 

that today my credence in A is x / y, and I believe that tomorrow it will be z / y, where z ¹ x. If 

tomorrow my credence isn’t z / y, I currently have a false belief, so tomorrow my credence must 

be z / y. (Note that by ‘it must be that B’ I just mean all worlds in D are B-worlds). Now our 

coherence requirements on credences mean that for any proposition B which we believe to degree 

v / y, we can consistently add to our belief set that B ≡ p1  Ú ... Ú p v . (Where there is little 

possibility of confusion I drop the * notation.) If we are assessing our beliefs about more than one 

proposition, the only plausible requirement is that we could add B ≡ S for some S Í P with |S| = v. 

But when just one proposition is being considered this stronger requirement looks plausible 

enough. 

Now, our assumptions lead us to believe that today I believe A ≡ p1  Ú ... Ú p x , and tomorrow I 

will believe A ≡ p1  Ú ... Ú p z . Since all my beliefs will be true, this means it must be that 

p1  Ú ... Ú p x  ≡ p1  Ú ... Ú p z . If x > z, this means it must be that ¬(p z +1 Ú ... Ú p x). Hence by the 

closure requirement I should believe ¬(p z +1 Ú ... Ú p x). But (L3) above still applies, showing that 

I should only believe the negation of a disjunction of elements of P if that disjunction had zero-

elements. So it can’t be that x > z. Similarly if z > x we would end up being committed to 

¬(p x +1 Ú ... Ú p z), which again is unreasonable by (L3). So reason requires that x = z. That is, if 

we have any beliefs about our future credence in A, we should believe we will believe it to just 

the degree we currently do. 

Two comments on this proof. First, I used the strong requirement that if our degree of belief in A 

is x / y we should be able to consistently add A ≡ p1  Ú ... Ú p x , rather than the weaker requirement 

that we be able to add A ≡ S for some suitable S. If we adopt just that requirement the proof doesn’t 

go through. For it doesn’t follow that if adding A ≡ S implies that tomorrow we will believe of 

some p i  or other that it is false that we are irrational. To see this, let A be the proposition that the 
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coin I am about to toss will land heads. Now my credence in A is 1/2. That is, I could add A ≡ p1 , 

with y = 2. However, I believe that tomorrow I’ll either believe A or disbelieve A. So if I had 

added A ≡ p1  I believe that tomorrow I’d either believe ¬p1  or ¬p2 . Since this isn’t irrational, 

that I will come to disbelieve some p i  or other can’t be irrational, and we can’t plausibly 

strengthen our coherence constraints to make it so. 

The other comment is that people have often misinterpreted coherence constraints. It might be 

perfectly reasonable, given that I am confident I won’t be completely coherent tomorrow, to 

believe I will falsely believe A. The Reflection criteria are necessary but insufficient criteria for 

full rationality. There is no reason to suspect, and certainly nothing in the above proofs, to justify 

the idea that Reflective agents are ceteris paribus more reasonable than those who are not. 

Compare the following example. Only students who don’t answer an even number of questions 

on the exam will get a perfect result. It doesn’t follow from this that students who don’t answer 

an even number of questions are ceteris paribus better students than those who make an odd 

number of mistakes. Nor does it follow that a student, noting she has failed to answer an odd 

number of questions but unable to make any more progress, should take steps to ensure she leaves 

out an even number of questions, particularly if this involves leaving out a good answer. This 

doesn’t invalidate the original claim that not answering an even number of questions is a necessary 

condition of perfection. Nor does the fact that taking steps to be Reflective would be positively 

irrational in some circumstances invalidate the claim that Reflection is a criterion of full 

rationality. 

The other constraint which is usually thought to be proven by Dutch Strategy arguments is 

Conditionalisation. As van Fraassen has pointed out, in its standard form this argument is 

noticeably weaker than other Dutch Book arguments; indeed considerably weaker than van 
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Fraassen’s own argument for Reflection (van Fraassen 1989: 173 - 6)5. Assume that my current 

degree of belief in A given B is 0.2, but if I were to discover B (and presumably nothing else) my 

credence in A would be 0.3. However, I do not know this, I believe falsely that I would be a good 

Bayesian and conditionalise. Then someone who knows all this can offer me bets that will lead 

to me losing money. But this doesn’t prove any incoherence. After all, assume my credence in A 

is 0.2, but A is false. Then someone can offer me a bet on A for 10 cents, which I’ll buy and lose. 

The fact that I’m prepared to take losing bets doesn’t show irrationality if it requires more 

information than I have to show that the bets are losing ones. So the Dutch Book argument to 

show that not being a conditionaliser is irrational relies on the presumption that I know, or at least 

ought know, what my degree of belief in a given proposition would be under any circumstances. 

I clearly don’t have this information, and I don’t see any particular reason why I should be 

required to do so. Hence the traditional Dutch Book argument fails, because the Dutch Bookie 

can only make a book if she has more knowledge than I either have or am epistemically obligated 

to have, and I’m only irrational if she can make a book without more knowledge than I have or 

ought have. 

van Fraassen showed that we could revive the Dutch Book argument against a person intending 

to follow a strategy other than Conditionalisation. Like all dynamic Dutch Book arguments, his 

appears to be faulty for the general reasons I have gone through; however it is at least acceptable 

by its own standards. He concluded that it could be rational to not conditionalise, as long as one 

did it capriciously rather than in accord with a pre-ordained strategy. This conclusion has been 

questioned by some who thought it paradoxical that a course of action could be irrational if carried 

out deliberately, but rational if carried out capriciously. There is certainly a ring of paradox about 

it!6 

 

5 An argument against requiring conditionalisation based around this fact is also found in Howson (1993). 

6 See, for example, Green and Hitchcock (1994: 321). 
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My arguments for Conditionalisation do not rely on Dutch Book considerations. Rather, they rely 

on the Equivalence Analysis of degrees of belief and the models used to show that degrees of 

belief ought obey the axioms of the probability calculus. Before we start on them however, we 

need to consider briefly the idea of modifying standard belief sets. There is a large literature on 

this, most of which is concerned with the difficult problem of how to retract beliefs. I only want 

to consider a simple problem, how to add a propositional belief to a coherent set of propositional 

beliefs. 

As we noted above, if an agent has propositional beliefs K and K is closed under entailment, then 

K will determine and be determined by a set D of possible worlds. There seems to be something 

of a consensus that the way to add a proposition, say B, to a set of beliefs K, is for the new belief 

set to be the closure of K È {B}. Or in other words, for the new belief set to be that set determined 

by the set of worlds D Ç B. I will adopt this conclusion in what follows. There could be a slight 

complication if K contains ¬B. Since this would involve difficult questions about revision of 

belief sets, an issue on which there is no agreement amongst theorists, I’ll assume ¬B is not in K 

and more generally that Bel(B) > 0. 

Assume Bel(A & B) = x / y and Bel(B) = z / y, where z > 0. I have to prove that when we add B to 

K the only rational new value of Bel(A) is x / z. If Bel and K are rational then there is some K* as 

outlined above containing S* ≡ B* for some S such that |S| = z. Although there is no requirement 

that S be {p1 , ..., p z} we can rename the p i  such that this is the case. After all, there is no 

distinction between the various elements of P .  For convenience, I’ll call the set {p1 , ..., p z} Sz. 

There will also be a set S such that (A & B) * ≡ S* is in K*, |S| = x and S Í {p1 , ..., p z}. 

Now K* is a propositional belief set. So we can see what beliefs that agent should have if they 

started with that set and added B, or equivalently, added B*. The new set, which we’ll name KB
*, 

is simply the closure of K* È {B}. Since K* contains B* ≡ Sz
* and B, it contains Sz

*. Let the new 
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set of beliefs and degrees of belief the agent has after coming to believe B be called KB and BelB 

respectively. Since KB
* contains Ú(p1 , ..., p z), if for any proposition D, there is a set S such that 

S Í Sz and KB
* contains D ≡ S, then BelB(D) = |S| / z. If the agent is reasonable then by (T6) any 

way of calculating BelB(D) will give the same answer. 

Now we know that there is some S such that |S| = x and K* contains S* ≡ (A & B)*. Hence KB
* also 

contains S* ≡ A*, since it is a superset of K*. And we also know S Í Sz, as (A & B) ├ B. So it 

follows that BelB(A & B) = x / z. Since KB contains B, we know that BelB(B) = 1, and by (T4) 

BelB(A Ú B) = 1. Hence by (T3) BelB(A) = BelB(A & B) = x / z as required. 

In summary, the argument is that given K and Bel represent the agent’s original belief state, the 

agent’s beliefs must be as they would be as if the agent believed K*. We know how to reasonably 

amend K* by adding B, since how to add beliefs to a non-probabilistic belief state is non-

controversial. Hence whatever the new agent’s beliefs are, say KB and BelB, we know that they 

must be capable of being modelled by KB
*, which we can determine. From this and the simple 

assumption that BelB(B) = 1 it follows that BelB(A) = Bel(A & B) / Bel(B). 

The conclusion of this argument is stronger than the conclusion of the parallel Dutch Book 

argument. As I noted above, that argument could only prove that it was irrational to adopt any 

strategy other than Conditionalisation. However, this argument shows that it is irrational not to 

adopt the strategy of Conditionalisation. 

3.5 Introducing Imprecision 

So far I have assumed that all degrees of belief are precise, or in Koopman’s term, appraisable. It 

is time to relax that assumption. I will look in detail at the arguments for this move in chapter 5, 

but I will introduce them here to motivate what follows. Like precise degrees of belief, imprecise 

degrees of belief should be capable of being modelled. This I take as a coherence constraint. I 

will introduce my preferred method of modelling and then look at two advantages of it. The 
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section concludes with a look at the history of this approach to imprecision, and some possible 

reasons for moving away from it. This leads naturally to the alternatives outlined in subsequent 

sections. 

3.5.1 Why Be Imprecise? 

There are three arguments for the conclusion that we shouldn’t require that reasonable degrees of 

belief be precise. The first is from introspection, the second from the possibility of ignorance and 

the third from the possibility of rational disagreement. 

When we look at our credences in various propositions, it seems highly plausible that these are 

not precise. My credence in Oswald killed JFK is not a precise number; that is, there is no fair 

lottery with y tickets such that my degree of belief in this proposition equals my degree of belief 

that one of the first x tickets will win.7 I might be wrong, but I don’t think this is because of a 

failure of rationality on my part. Rather, I have too little clear information on the Kennedy 

assassination to form a precise credence.  

If we believed a betting analysis of credences we could follow a process derived by Borel to 

measure, to any degree of accuracy we wanted, my degree of belief in this proposition. For 

arbitrarily large y we could keep offering me a choice of bets on Oswald being the killer or on 

one of the first x tickets winning. As long as I choose the Oswald-bet, we increase x until I first 

choose that bet. In response to Borel I can firstly run through my earlier objections to the betting 

analysis, but I can make one extra point. After a while (say after x grows beyond 0.4y or 

thereabouts) my choices would simply be arbitrary, and would not directly reflect my credences. 

 

7 If we are allowing real degrees of belief we have to say this more carefully in terms of sequences of fair 

lotteries. See section 3.10 for the technical details. 
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The assumption that my credences determine what I would do in all circumstances is just the 

completeness assumption that is at issue here. 

If we allow credences to be imprecise we have a good way to represent complete ignorance. 

Classically, ignorance was represented using Laplace’s Principle of Indifference. If we didn’t 

know anything about what would happen, we allocated equal probability to each possibility. 

Unfortunately when applied indiscriminately this led to inconsistency. Even when applied 

consistently it led to results which really were absurd. 

For example, let q be the proposition that there is intelligent life somewhere else in our galaxy. 

Put some numbering on all the stars in the galaxy (there’s only finitely many of them), and for 

each star i, let qi be the proposition that there is intelligent life on some body orbiting that star8. 

We are presumably completely ignorance about q, and about each qi, so by the Laplacean principle 

we assign credence 1/2 to each proposition. To see this more clearly, note that when we are 

considering whether or not it is the case that q, there are two possibilities: q, ¬q. The Laplacean 

principle says to assign equal credence to each possibility, which in this case means assigning 1/2 

to q and 1/2 to ¬q. However, the same reasoning applies to each qi. Since each qi entails q, it 

follows by simple applications of the probability calculus that we believe absolutely that if there’s 

intelligent life orbiting some other star in the galaxy there is intelligent life orbiting all of them. 

This is hardly the kind of thing we ought be able to infer from ignorance. When we allow 

credences to be imprecise on the other hand, we can say that for q and each qi that our credence 

in it is vague over the interval [0, 1]. We will have to say something about what this means, but 

it turns out not to have any absurd consequences. 

 

8 I intend ‘orbiting’ to be read widely enough that the moon does orbit the sun, which indeed it does in a 

way. 
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These two arguments are fairly well known, however the third argument is new. In large part this 

is because it only arises when we analyse probability, as it has been analysed here, as reasonable 

credence. It is a commonly observed fact that people with the same evidence, or the same relevant 

evidence, have different credences in a proposition. This can happen even when it seems plausible 

to say that each is acting reasonably. It would be a benefit for a theory of probability if it licensed 

this conclusion. That is, if it allowed us to say that reasonable people with the same evidence 

could, at least some of the time, have divergent credences in a proposition. And it turns out if we 

allow credences to be imprecise we can say exactly this.  

These three arguments are enough, I hope, to motivate an investigation into the technical 

properties of imprecise credences. I leave the detailed arguments until later, because I want to use 

some of the technical apparatus developed here in presenting these arguments. 

3.5.2 The Many Models Approach 

When all the credences of a coherent agent are precise, they can be represented by a single 

probability function Pr . On my preferred theory, when they are imprecise they can be represented 

by a family of probability functions P .   What it means to say that her credence in q is vague over 

an interval [a, b] is that this is the smallest interval such that for all Pr  Î P  , Pr(q) Î [a, b]. 

Following van Fraassen (1990) I will call P   her ‘representor’. 

If an agent’s credences can be represented in this way there is a trivial sense in which they can be 

modelled. Every Pr  in P   can be modelled, as shown in section 3.3. Hence we can simply say 

that the model for each Pr  is a possible model for the agent. One way of putting this is to say that 

the correct model for the agent is vague over these possible models. A better way is to say that 

there are many models for this agent. So I call this the Many models approach. 
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Apart from arguments from authority there are three reasons for taking this line. First, by using 

supervaluations it allows us in a sense to have the best of both worlds. In standard cases 

supervaluationist approaches allow us to keep classical logic, while still saying that the truth value 

of some propositions is vague. Here it allows us to keep the probability calculus in all its power, 

while allowing us to say that the probability of some propositions is vague. This will be developed 

further in chapter 5. 

The second reason follows from some technical work done by Smith (1961) and Williams (1976)9. 

A gamble is a bet that has a certain (finite) payout in each possible world. The bets we have been 

looking at so far pay $1 - d at some worlds and -d at others, where d is the price of the bet. 

However, these more general gambles can have all sorts of different payouts. This allows us to 

talk, for example, about the addition of gambles. We can think of gambles as functions from 

worlds to reals. Then in the usual way we add functions, we can add gambles. So for all worlds 

w, and gambles x, y, x + y(w) = x(w) + y(w). Now let D be the class of strictly desirable gambles10. 

We adopt as coherence axioms that D is closed under addition and positive scalar multiplication. 

We also assume that D includes all gambles which always take positive values and no gamble 

which always takes negative values. 

Now we can, in the usual way, work out the expectation value of a gamble according to a 

probability function Pr . So we can work out the set of expectation values that a gamble takes 

 

9 The exposition here follows Walley (1991). 

10 I include the term ‘strictly’ because if we think that we will only accept desirable gambles then vagueness 

leads to a kind of dynamic incoherence, set out in chapter 10. When we add ‘strictly’ it should be clearer 

that we don’t think that D exhausts the class of gambles we would accept if offered. Put another way, vague 

decision theory is only dynamically coherent if there are gambles we are neither disposed to accept nor 

reject; calling the class of gambles we are disposed to accept the ‘desirable’ gambles may lead to the 

misapprehension we’re disposed to reject the rest. 
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according to every element of a family P  . It turns out that whenever D obeys the above properties, 

there is a family P   of probability functions such that a gamble x is strictly desirable iff its 

expectation value is positive according to every element of P  .  

This result can be put the following way. If the agent’s credence in every proposition in a field 

are not such that they can be represented by a family of probability functions, then (assuming a 

simple decision theory) that agent’s decision-making will be incoherent in this sense. There is a 

set of gambles {y1, ..., yn} such that each yi is strictly desirable, but y1 + ... + yn is not strictly 

desirable. This looks to be a bad consequence. Note that this is a much stronger requirement than 

the usual Dutch Book requirement on credences. An agent who is incoherent in this sense need 

not be susceptible to a Dutch Book. However, whether the individual considers some gambles 

strictly desirable will be dependent on the way the gambles are presented, not the contents of 

those gambles. 

For example, assume that propositions q1 and q2 are disjoint. Assume that for q1, q2 and q1 Ú q2 

the agent’s credence is vague over [0.25, 1]. Let yi be a gamble which pays 80 cents if qi, -20 cents 

otherwise, for i Î {1, 2}. Then the agent will find y1 and y2 strictly desirable, but not y1 + y2. There 

is no way this agent can have a Dutch Book made against them, there is no set of strictly desirable 

bets which have in sum a uniformly negative payout, but something about their degrees of belief 

seems defective. It is this ‘something’ which Smith and Williams are interested in, and it turns 

out that were their degrees of belief represented by some family of probability functions this 

incoherence would go away. 

As we said in section 2.5, the betting analysis might not be a successful analysis for degrees of 

belief. However, it is a useful analogy, one of the best analogies we have. And as we’ve seen 

already in this chapter, most of the controversial conclusions argued which are usually argued for 
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by Dutch Books arguments are correct. So I take Smith and Williams’s arguments to be persuasive 

but not necessarily compelling arguments for the Many models approach. 

3.5.3 Disjunction And Inequalities 

There is a third argument for taking this approach to representing or modelling vague degrees of 

belief. Let q be some proposition in which my degree of belief is vague over an interval of width 

greater than 1/y for some finite integer y, and smaller than (1/y, (y - 1)/y). These are fairly minimal 

constraints. Let q1 be the proposition that ticket #1 in a fair lottery with y tickets will win. Assume 

that the fairness of the lottery entails that it is independent of q which ticket will win.  

This seems enough for it to be intuitively clear that my Bel(q Ú q1) is greater than Bel(q). This is 

despite the fact that the intervals over which the two are vague overlap. We now have three 

options. First, we could bite the bullet and deny that Bel(q Ú q1) really is greater than Bel(q), 

introspective evidence notwithstanding. Since I take introspective qualitative data as my 

fundamental given, this seems implausible.  

Whenever Bel(A) is vague over [a, b], let Bel*(A) = a and Bel*(A) = b. The second option then is 

to say that Bel(A) is greater than Bel(B) simply means Bel*(A) > Bel*(B), or alternatively it means 

that and Bel*(A) > Bel*(B). There are some difficulties with updating under this approach, but as 

using my preferred updating rule (i.e. conditionalisation)  to cause problems would probably be 

begging the question I won’t stress this point11. Rather I want to note some difficulties this 

approach has with negation. We showed above that in the precise case if Bel(A) > Bel(¬A) then 

Bel(A) > 1/2. Since the results we obtained there followed so simply from the Equivalence 

Analysis, I prefer approaches to vague credences which keep as many of these results as possible. 

However, that approach to inequalities does not preserve this result. 

 

11 See however the discussion in chapter 9 of the analogous decision-rule, called Maxi. 
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Assume Bel(A) is vague over [0.45, 0.6]. I presume this means Bel(¬A) is vague over [0.4, 0.55]. 

I leave until chapter 8 discussion of approaches which might not have this result, but it might be 

noted that this holds (suitably interpreted) for almost all the approaches to vagueness on the 

market.12 On the approach to inequalities advocated here, it follows that Bel(A) > Bel(¬A), but it 

is not the case that Bel(A) > 1/2. Without a motivation for accepting this, I take it that this 

approach to inequalities fails. 

The third option, and it seems the only plausible one, is to say that we have to look at more than 

the bounds of Bel(A) and Bel(B) to determine what inequalities hold between them. And under 

the Many Models Approach we do just this. We say Bel(A) > Bel(B) for an agent represented by 

P   iff for all Pr  in P  , Pr(A) > Pr(B). A similar definition is given for equality of credences, from 

which it follows that several credences will be incomparable. 

Again, this isn’t a totally compelling argument for the advocated approach. There might be other 

ways at looking at the ‘structure’ of the intervals other than the family of probability functions 

approach. And there might be ways of saving the second option, say by motivating the rejection 

of the theorem on which I relied. However, again the argument developed in this subsection seems 

to be at least persuasive. 

3.5.4 History of This Approach 

The idea of representing vague degrees of belief by sets of precise probability functions has gained 

dramatically in prominence in recent years. The views of three of its modern proponents (Levi, 

van Fraassen and Jeffrey) are examined in detail in chapter 7. This subsection looks at its 

prehistory. The motivation stretches back to the distinction between risk and uncertainty drawn 

by the American economist Frank Knight in his (1921), and the non-numerical probabilities 

 

12 This includes approaches where all we specify is a lower bound for Bel(A). Usually the upper bound will 

be determined in effect by 1 - Bel(¬A). 
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promoted in Keynes’s (1921a). However, neither theorist could be said to have had this particular 

formal representation of their informal ideas in mind13. 

Usually credit for the sets of probability function approach is given to the statistician Cedric A. 

B. Smith. His (1961) expressed many ideas which were important for the subsequent development 

of the theory. In particular the coherence constraints mentioned above are originally his. In 

discussion on that paper, I. J. Good claims the idea is quite similar to his ‘black box’ approach, 

which was first set out in his (1950), particular on page 32 of that book. However, inspection of 

that book, and in particular that page, reveals nothing which could be construed as a statement of 

the theory. These matters are always a little vague, but it seems to me the first statement of Good’s 

black box theory is his (1962). Whenever Good first had this idea, which in all likelihood was 

well before Smith’s paper, my reading is that he was beaten into print. 

As far as priority goes none of this is, however, particularly relevant. Credit for the idea is, I think, 

best awarded to the econometrician Gerhard Tintner and economist A. G. Hart. Tintner’s (1941) 

is a brief attempt to capture formally some of the informal ideas that drove Knight’s work. It isn’t 

particularly clear but I think it does just enough to be given priority. This summary of his ideas is 

from his opening paragraph; hopes that its lack of clarity are just caused by its being a concise 

summary are dashed by inspecting his text. 

Subjective risk deals with the case in which there exists a probability 

distribution of anticipations which, however, is itself known with 

certainty (probability one). Subjective uncertainty assumes that there is 

an a priori probability of the probability distributions themselves, i.e. a 

 

13 In Chapter 10 I argue that this is a formal representation of Keynes’s ideas, though this might be 

contentious. Knight is a bit harder to classify because he seems to be drawing a different distinction in 

different chapters of his book. See Schmidt (1996). 
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distribution of the probability distributions (Tintner 1941: 298, italics 

in original). 

It isn’t clear in Tintner why we oughtn’t reduce the second-order probability distributions to a 

first order one. Indeed, if we take his probability distributions to be hypotheses about the objective 

chance of a propositions, and his a priori probability to be degree of (rational) belief in these 

hypotheses, this is precisely what ought be done. Perhaps were he trying to write a philosophy 

paper and not an econometrics paper he would have been clearer on these issues. Or perhaps he 

just made a dumb error. It’s hard to say from the text which is correct, and charity demands that 

we at least not accept the latter. 

Hart’s (1942) is somewhat clearer on these points. He thinks that there will be occasions under 

which we should just reduce the set of distributions to a single distribution, in particular where a 

decision is needed now. However, when we don’t need to act immediately on our partial beliefs 

then having vague degrees of belief is just the reasonable step of keeping one’s options open. I 

will return to this possible connection between vague degrees of belief in chapter 11 and 

preference for delaying decision.14 Hart also notices that vague degrees of belief serve as an 

explication of at least something Knight was trying to capture with the distinction between risk 

and uncertainty. 

‘Risk’ is taken to denote the holding of anticipations which are not 

‘single valued’ but constitute a probability distribution having known 

parameters. ‘Uncertainty’ is taken to denote the holding of anticipations 

 

14 When I formally set out the idea I associate holding money, or gambles with a more stable money value, 

with delaying action. Hence I won’t need an implausible distinction between acts and omissions. 
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under which the parameters of the probability distribution are 

themselves not single valued (Hart 1942: 110). 

Neither Tintner’s nor Hart’s work receives a great deal of attention, and the papers of Smith and 

Good from 1961 and 1962 respectively appear to have eventually had greater effect. That effect 

though was somewhat delayed. Indeed to bring the story up to the 1980s the only papers that need 

to be mentioned are two by Peter Williams. His (1976) was a formal development of some of the 

ideas in Smith, which from our perspective is notable for being the first to note the suitability of 

supervaluational semantics to this account of probability. And his (1978) review essay of Shafer 

(1976) introduced the set of probability functions approach to a much wider audience. 

3.5.5 What might go wrong? 

It might be wondered why I have kept such a tight connection with precise degrees of belief as 

we stride into the brave new world of vagueness. Why not represent our vague degrees of belief 

as a single vague model rather than as a set of precise models? The arguments above presented 

some sort of case for this path, but it’s hardly irrefutable. 

The conclusion of this chapter will be that the reasons we don’t move to a single vague model are 

that the only plausible way of doing so is (i) more restrictive than the approach advocated here 

and (ii) incapable of being coherently updated. There is no plausible single model which allows 

an agent to have as its representor any family of probability functions. In the next section we will 

look at a type of single model which is plausible, but which puts unjustified restrictions on the 

types of families which are rationally permissible. In section 3.7 we’ll look at a way of loosening 

these restrictions. Unfortunately, in doing so we lose some restrictions we should (I hope) like to 

keep. For better or worse, the most plausible way to represent vague degrees of belief is by 

reference to these precise degrees of belief. 
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3.6 The Single Model Approach 

In the previous section we set out one possible paradigm for the representation of vague beliefs, 

what I call the Many Models Approach. In this section we will look at a different approach, which 

looks like a more natural generalisation of the approach to representing precise degrees of belief. 

It turns out this approach is more restrictive than the Many Models Approach, so we will look at 

whether the extra restrictions can be justified. I will conclude, somewhat tentatively, that they are 

not. However, I don’t think this approach is so implausible that we should abandon it altogether, 

and in section 3.8, which is on updating, we will return to it. 

3.6.1 The Model 

In section 3.3 we set out a method for modelling an agent’s beliefs about a set of propositions G 

such that the agent had a precise degree of belief in each of them. The plausibility of such 

modelling followed from the definition of degrees of belief set out in section 3.1. The idea is that 

there is a closed set of propositions K* on a possibility space W ´ P which satisfies the following 

two conditions: 

(1) (S Í P  & S* Î K*) ® S = P  

(2) If Bel(A) = x / y then $S: ((S Í P  & |S| = x) & (S* ≡ A* Î K*)) 

The motivation for (2) was that if the agent had credence x / y in A, their credence in A is just the 

same as it would be were they to believe A ≡ S for some proposition S in which their credence is, 

by definition, x / y. However, there is no reason in general for saying that the agent will have a 

precise credence in every proposition. Hence (2) should be replaced with (3) and (4). 

(3) Iff Bel(A) ³ x / y then $S: ((S Í P  & |S| = x) & (S* ® A* Î K*)) 

(4) Iff Bel(A) £ x / y then $S: ((S Í P  & |S| = x) & (A* ® S* Î K*)) 
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So as not to increase the confusion, I’ll here use ‘®’ for material implication. It might be noticed 

that (3) and (4) entail (2), so the new axioms are stronger than those for (2). This seems right; 

even if the agent needn’t have precise degrees of belief in every proposition, for every proposition 

where their credence is precise then (2) ought be satisfied. 

I haven’t required here, as I did for the precise models approach, that y be related in any interesting 

way to the end-points of the intervals over which the agent’s credences are vague. If (3) and (4) 

are plausible requirements, it seems they are plausible for any value of y. To make it clear which 

y we are using, we will use P y  for integer y to represent the set {p1 , ..., p y}. The claim is then for 

any reasonable epistemic state and any integer y there is a model on W ´ P y . 

The idea behind (3) is that if |S| = x then for any proposition B such that S* ≡ B*
 is in the model, 

Bel(B) = x / y. As I showed above, for precise models it is a theorem that whenever B ® A is 

believed fully, it is a coherence requirement that Bel(B) £ Bel(A). I assume (without strictly 

proving it) that this holds for imprecise credences too, and this is sufficient for the reverse 

direction of (3). The forward direction follows from the fact that K* is a model of the agent’s 

credences. If the largest S satisfying S* ® A* Î K* had a cardinality x - d, then it would seem the 

agent’s credence in A should, according to the model, be (x - d) / y. Hence either the model is 

inaccurate, or the agent’s beliefs are incoherent in some way. A similar justification applies to 

(4). 

3.6.2 The Three Prisoners Problem 

To see how this might work, consider the well-known Three Prisoners Problem (TPP). There are 

three prisoners, a, b and c, scheduled to be executed. The governor has decided to reprieve one of 

them, chosen at random by a fair chance mechanism. He makes his decision, and notifies the 

guards of it. However, he doesn’t tell the prisoners. Prisoner a, desperate for information, asks a 

guard if he is to spared. The guard won’t say, so a asks him for the name of one of the other 
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prisoners who isn’t going to be spared, and the guard agrees to answer this. We’ll look in section 

3.8 about how a should react to the guard’s answer, but here we’ll just show how a’s beliefs can 

be modelled to demonstrate the Single Model Approach15. 

Assume, for the sake of simplicity, that a knows the guard to be perfectly reliable. Then there are 

four possible outcomes. Let the proposition cfck for prisoners cf, ck mean that cf is to be reprieved 

and the guard says ck is to executed. The original possibility space W is {ab, ac, bc, cb}. If b or c 

are to be spared the guard has no choice about what to say, so Bel(bc) = Bel(cb) = 1/3. (I am 

assuming here that Lewis’s Principal Principle holds: when we know the chance of a proposition 

q is x, we ought to believe q to degree x .) However, if a is to be reprieved, the guard has a choice 

about what to say, and a has no way of knowing what he will do. In Gardner’s formulation of the 

problem the prisoner asks the guard to decide in this case what to say by tossing a coin, but my 

prison guards aren’t that cooperative. Hence, a’s credence in ab might be vague over [0, 1/3]. 

However, the proposition ab Ú ac is equivalent to the proposition ‘a is reprieved’, which a knows 

has chance 1/3. Hence his credence in ab Ú ac should be 1/3. 

 

15 This problem is usually credited to Gardner (1961), though he introduces it as a problem that was ‘doing 

the rounds’ at the time (pg 227). If we were being fussy about priority we’d have to say that the problem 

is a variation on a problem found at the beginning of Bertrand’s classic (1889: 2-4). In that problem we 

have three boxes containing two coins each. The first contains two gold coins, the second a gold and a silver 

coin and the third contains two silver coins. A box is chosen by a fair chance mechanism and then a coin is 

drawn from that box by an unknown mechanism. The coin drawn is silver. What is the probability that the 

other coin in the box is gold? (Bertrand asks the complementary question: What is the probability the other 

coin is silver?) As in the problems I discuss, the popular but incorrect answer is 1/2. If we say the coin 

selection mechanism is fair, then a simple application of Bayes’s Rule gives the answer 1/3. If we leave it 

unknown I take it the probability of drawing a gold coin is just the same as a’s probability of being reprieved 

after hearing the guard’s news. 
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We can represent all of a’s beliefs as a model on W ´ P3 . The model K* contains the closure of 

the following formulae: p1  ≡ bc, p2  ≡ cb, p3  ≡ ab Ú ac. To see how (3) and (4) are satisfied for 

A = ab, note that in the model we have ^ ® ab, ^ = Æ* and |Æ| = 0, so Æ is the S for (3). For (4), 

we have ab ® {p3}* in the model and |{p3}| = 1. Hence {p3} is the S in (4). We can show how 

ac is satisfied in a similar way. 

3.6.3 Shafer Functions 

 To show that every set of vague credences which can be represented under this approach can be 

represented using the Many models approach, I will show that this approach is equivalent to one 

advocated by Shafer (1976). His book built on some earlier suggestions of Dempster (1967, 1968), 

so the functions of the theory are usually referred to as Dempster-Shafer functions, or just Shafer 

functions. They are also called ‘belief functions’, particularly by Shafer. For simplicity I will 

presume that the probability space W is finite. Shafer functions can be extended unproblematically 

to infinite spaces, but the mathematics becomes more complicated, and there are no particularly 

interesting philosophical issues that arise out it.  

As W is a set of possibilities16, we can define its power set Po(W). If we wanted to define a 

probability function on W we could allocate some mass to each possibility. Then the probability 

of a proposition A on W (where A is the union of some possibilities) is the sum of the mass of 

every element in A. To define a Shafer function on W we allocate a mass to every element of 

Po(W). Then Bel(A) in the model is the sum of the masses of every subset of A. The plausibility 

of A, written Pl(A), is defined as 1 - Bel(¬A). For ease of reference, I’ll write BelS for a Shafer 

 

16 I don’t call them possible worlds because that would imply there are infinitely many of them. Rather W 

is a finite partition of the possible worlds, with each element of the partition being called a ‘possibility’. 

 I am calling the power set function Po , rather than P as would be standard, so as not to cause confusion 

with P  which is used to represent a family of probability functions. If I had to I could just differentiate the 

functions by the different fonts used, but unless it’s necessary this seems inappropriate. 
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function. This way the notation doesn’t presuppose that BelS functions are reasonable Bel 

functions. 

Formally, when there is a possibility space W, a mass function m: Po(W) ® [0, 1] and a Shafer 

belief function BelS the following must hold. 

    

It should be clear that once the mass function m is defined the BelS function is also defined. It is 

less obvious that once the BelS is defined function the mass function is determined, however this 

can be proven (Shafer 1976: 39). Usually I’ll define mass functions only, because they are clearer 

and shorter. 

We can represent prisoner a’s state of belief as a Shafer function. The possibility space W is still 

{ab, ac, bc, cb}, and the mass function is given by m({bc}) = m({cb}) = m({ab, ac}) = 1/3. The 

BelS and Pl  functions defined by this mass function are such that for any proposition A on W, the 

prisoner’s degree of belief in A, as we have defined it, is vague over the interval [BelS(A), Pl(A)].  

Shafer (1981) points out that we can think of Shafer functions in the following way. Imagine that 

we will find out for certain that B, where B is some proposition on W. (Shafer uses an analogy 

with being sent a single coded message.) Assume that for every B we have a precise degree of 

belief that it will be what we will find. Then BelS(A) is our degree of belief that we will find out 

A. As has been argued (see for example Pearl (1988)) we can think of BelS(A) as the probability 

of A being provable, or more generally of the probability of ,A, for some interpretation of ,A. In 

chapter 8 I’ll develop a constructivist theory of probability based around this intuition. That theory 

arguably does a better job than Shafer’s own at capturing the intuitions he is promoting. 

m B
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Intuitively, this seems to show that the Shafer functions can model some important epistemic 

property, but it is doubtful that it is credence. If BelS is the appropriate representation for some 

agent, then she should be convinced that her credence in A is at least BelS(A), not that it’s exactly 

BelS(A). Even on Shafer’s preferred analogy of the secret message, it seems more plausible to say 

that BelS defines a lower bound on credences, not the actual credences. If we can prove A from 

the message this would be conclusive reason to believe A, but it is possible that we won’t be able 

to prove A yet A still be true. Hence we should say our credence in A is bounded below by our 

credence in A’s provability. From here I’ll assume that the point of a Shafer function is to set 

bounds on credences, as this seems to be the only plausible interpretation. This move is not 

original; as will be seen below, there have been some detailed investigations into its plausibility. 

Shafer functions are important to this project because of theorem 3.6.1, a proof of which is given 

in appendix 3B. 

Theorem 3.6.1. Let Bel be a vague belief function such that there is a model K* for Bel satisfying 

(1), (3) and (4). Let G be any finite field of propositions such that Bel(A) is vague over an interval 

bounded by rational numbers for all elements of G. Then there is a Shafer function BelS such that 

for all A in G, Bel(A) is vague over the interval [BelS(A), Pl(A)]. 

The proof works by constructing a mass function from K*. The core idea is to allocate mass 1/y 

to the set of possibilities which are left open by p i  for each i Î {1, ..., y}. Now to complete the 

proof that Single Model Approach is stricter than the Many Models Approach, we only need the 

following theorem, which was proved by Dempster (1968). 

Theorem 3.6.2. Let BelS be a Shafer function defined on a possibility space W. Then there is a 

convex family P  of probability functions defined on the same possibility space with the following 

properties. 

(i) For each A Í W and Pr  Î P , BelS(A) £ Pr(A) £ 1 - BelS(¬A) = Pl(A) 
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(ii) For each A Í W, there is a Pr  Î P  such that Pr(A) = BelS(A). 

(iii) For each A Í W, there is a Pr  Î P  such that Pr(A) = Pl(A). 

Let W(BelS) denote the largest such family. Generally, for a given convex family of probability 

functions, define inf(A) as the lowest value that Pr(A) takes for Pr  in the family17. Then 

sup(A) = 1 - inf(¬A) is the maximal value that A takes. It is well-known (see for example Shafer 

(1976: 5)) that all Shafer functions satisfy the following property, which we’ll call complete 

monotonicity. Let A1, ..., An be propositions (not necessarily disjoint) on W. 

 BelS(A1 Ú ... Ú An) ³  

For example, for n = 2, the condition requires that 

BelS(A1 Ú A2) ³ BelS(A1) + BelS(A2) - BelS(A1 & A2). However, if we substitute inf(A) for BelS(A), 

complete monotonicity is not a property of all families of probability functions. To take a simple 

example (this is due to Williams (1978)), consider the family {Pr : Pr(A1) ³ 1/2 & Pr(A2) ³ 1/2}. 

In this family, inf(A1) = inf(A2) = inf(A1 Ú A2) = 1/2 and inf(A1 & A2) = 0. This shows that the 

Single Model approach is strictly stronger than the Many Models approach. So if we are to adopt 

this approach to modelling reasonable imprecise degrees of belief we need a justification for this 

extra restriction. 

All families W(BelS) have a further property, which is independent of monotonicity, but which 

isn’t shared by all families of probability functions. I’ll call it, for want of a better name, event 

defined. Families which have this property are such that once we have given all the intervals in 

which the probability of every proposition falls, we have said all there is to say about the family. 

 

17 Or if this does not exist, the greatest number x such that x < Pr(A) for all Pr  in the family. I am generally 

dealing with closed families here, so I won’t attend to the added complications arising from this possibility. 
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Formally, a family P   is event defined relative to a possibility space W iff it meets the following 

condition. 

Event Defined: For all wi in W, let xi be any element of [inf({w1}), sup({w1})]. Then there is a Pr  

Î P   such that for all i, Pr({wi}) = xi. 

A family is event defined simpliciter iff it is event defined relative to all possibility spaces W. 

Since W(BelS) is simply defined with respect to the interval within which the degree of belief of 

each proposition falls, it follows it is event defined.  

Let Bel be a belief function represented by the convex monotone family of probability functions 

P  and modelled on K*. We will say that Bel is event defined iff P  is. It doesn’t follow from (1), 

(3) and (4) that P   must be event defined. However, if it is not event defined then K* is not a good 

model for it in the following sense. Let P E be the smallest event defined family containing P .18 

The model for P E will also be K*. Hence the model loses the extra precision of P  over P E. 

So if we require that all vague belief functions must be capable of being modelled under this 

approach, we aren’t requiring that Bel be event defined, but we are requiring it to be monotone (I 

will drop the ‘completely’ unless clarity demands it). What arguments are there, then, that non-

monotone belief functions are somehow less reasonable than monotone ones? Well, the 

plausibility of (1), (3) and (4) is an argument already. However, the non-monotone family of 

probability functions Williams describes also seems reasonable enough. So we might need some 

stronger arguments to get to monotonicity. 

 

18 This family can be constructed in the following way. Assuming we are allowed to quantify over 

propositions, it is the family {Pr : "A inf(A) £ Pr(A) £ sup(A)}. 
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3.6.4 Uncertainty Aversion 

Schmeidler (1989) has one reason. He argues that any belief function which licences uncertainty 

averse behaviour will be monotone. I’m not convinced uncertainty aversion is a requirement of 

rationality. Schmeidler doesn’t say it is; I’m adapting his argument somewhat, because some 

people might reason this way. Schmeidler develops his account of uncertainty aversion by explicit 

analogy with the standard account of risk aversion. And herein lies the difficulty, for the standard 

theory of risk aversion is mistaken. That is, there is no way which a person is averse to risk in the 

everyday sense iff they are risk averse in the standard economist’s sense. By analogy, 

Schmeidler’s account of uncertainty aversion does not capture correctly the everyday concept of 

aversion to uncertainty. Hence we have no reason to apply it as a coherence constraint.  

Standardly, an agent is said to be risk averse with respect to some good (usually money) iff the 

marginal utility of that good is declining. More formally, if U(x) is the amount of utility received 

from x units of that good, the agent is risk averse iff U´´(x) < 0 for all x. This is thought to represent 

risk aversion because it means that the agent will always prefer receiving (a + b) / 2 units of the 

good to having a 1/2 chance of receiving a units and a 1/2 chance of receiving b units if a ¹ b. In 

particular the agent will prefer the status quo to a bet on p ,  where the chance of p is known to be 

1/2, and she wins a units if p and loses a units if ¬p .  It is a direct consequence of this definition, 

and the definition that the expected utility of a gamble is the sum of the utility of each possible 

outcome times its probability, that if an agent is risk averse they will prefer the mix of any two 

gambles to at least one of those gambles. If f and g are gambles their mixes, af + (1 - a)g for 

a Î [0, 1] are defined as bets which pay whatever f pays if p and whatever g pays if ¬p ,  where p 

is a proposition whose chance is known to be a. 

Following this, Schmeidler defines uncertainty aversion in the following way. The binary relation 

³ is a preference ordering on gambles. The set of gambles (what Schmeidler calls ‘acts’) is called 

L. 
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A binary relation ³ on L  is said to reveal uncertainty aversion if for any 

three acts f, g and h in L  and any a in [0, 1]: If f ³ h and g ³ h then 

af + (1 - a)g ³ h. Equivalently we may state: If f ³ g, then 

af + (1 - a)g ³ g. (Schmeidler 1989: 582). 

I don’t want to criticise Schmeidler’s extraction of a principle of uncertainty aversion from the 

classical principle of risk aversion. What I will criticise is that classical principle of risk aversion. 

The arguments given by Hansson (1988) seem to me to show conclusively that the classical 

concept of risk aversion does not accurately capture the everyday concept of aversion to risk. 

Hence we can run similar arguments to show that Schmeidler’s concept does not capture the 

everyday concept of aversion to uncertainty. Any good ideas in what follows here can be found 

in Hansson. 

Joe is a gambler, a person who likes risk. He also is a student of the foundations of mathematics, 

and as such would like to get a copy of Russell and Whitehead’s Principia Mathematica (hereafter 

PM). I offer Joe a choice between a copy of PM for certain or a gamble. The gamble pays 3 

copies of PM  if a coin lands heads, or nothing if it lands tails. Joe, who has little use for any extra 

copies of PM , chooses the single copy. Hence we can infer that Joe’s utility curve in copies of 

PM  is convex, hence Joe is risk averse. But we said at the start that Joe liked risk. Indeed we can 

specify that if I had increased the payout of the gamble to say 6 copies of PM , Joe would have 

accepted it even though he had less use for the 5 extra copies than for the original one. This seems 

sufficient to say Joe is attracted to risk, not averse to it. 

The example shows not only that the classical concept of risk aversion is mistaken, but how we 

might try and fix the difficulty. Let f and g be goods such that the worth to us of g if we already 

had f is equal to the worth of f. In some cases we can easily measure this. For instance in Joe’s 

case we can ensure that the extra copies of PM , whether it’s 2 or 5 extra copies, get used the way 
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Joe would have used them if he already had a copy. So we might give them to Joe’s friends and 

say they’re a present from Joe, or if he was to use the surplus volumes to prop up table legs we 

can give him equivalent sized blocks of wood, and so on. Often we won’t be able to make this 

comparison, but sometimes we will. Now, it seems plausible to say that Joe is risk averse iff he 

prefers f to a 1 in 2 chance of getting f + g. Since we specified that Joe would prefer a 1 in 2 

chance of getting f + g to getting f, even when getting g + f was less than twice as useful as getting 

f, Joe is attracted to risk. Put this way, standard theories of rationality require that everyone be 

risk neutral. 

I conclude that there is no reason to think that the concept picked out by U´´(x) < 0 is our concept 

of risk aversion. So the concept picked out by Schmeidler is not our concept of aversion to 

uncertainty. Hence this can’t provide a reason for thinking that it is a requirement of rationality. 

3.6.5 Fagin-Halpern Models 

Fagin and Halpern (1991) define probability spaces as follows. Probability spaces are triples 

<S, X, P> such that S is a set of possibilities, X a s-algebra on S and P a probability function 

defined on X.  Now for any proposition A, (i.e. for any subset A of S), its inner probability, Pr* 

and outer probability Pr* are defined as follows. 

 Pr*(A) = sup{Pr(X) | X Í A and X Î X } 

 Pr*(A) = inf {Pr(X) | X Ê A and X Î X } 

It turns out that Pr* is a DS belief function. More surprisingly, for every Shafer function BelS on 

a set S, there is a probability space <S, X, P> such that Pr* = BelS. (A similar relation holds 

between Pr* and Pl). The motivation behind Fagin and Halpern’s approach is that we can’t assign 

a numerical probability to every subset of S. However, for some sets the agent will have “sufficient 

information to assign a probability.” (349) These are the measurable sets. We can work out the 
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limits on the probability of the other sets by reference to the measurable sets. A similar motivation 

appears to be at work in Jeffrey (1983a). 

Even though everything to this point has been written in terms of bounds, this could be analysed 

in terms of families of probability functions. Indeed this is exactly the approach Fagin and Halpern 

take. A probability space <S, X, P> determines a family, P  , of probability functions on S such 

that for every function Pr  Î P  and every element X of X, P(X) = Pr(X). Then Pr*(A) is just the 

minimal value of P(A) in P .19 

Fagin and Halpern don’t appear to take this approach, but we could view their account of 

probability spaces as an argument for thinking reasonable families of probability functions should 

have belief functions as their lower bounds. The problem with this argument is that it is hard to 

see what argument could be given for saying that we should be able to represent vague degrees 

of belief as probability spaces. A person who has literally no belief might be represented by the 

vacuous family of probability function {Pr : Pr  is a probability function}. For any a posteriori 

proposition, this person’s degree of belief in it is vague over [0, 1]. 

Assume an agent is in this unfortunate state. On Fagin and Halpern’s approach, the only way we 

can move away from this is by coming to have a precise degree of belief in some proposition. If 

there is no proposition in which the agent has a precise degree of belief our belief, then she must 

have vacuous beliefs. This seems unreasonable; we can be partially (rather than completely) 

vague about something without being precise about anything. Hence I don’t think it is a 

requirement of rationality that our degrees of belief be representable by Fagin-Halpern probability 

 

19 Fagin and Halpern like the analysis in terms of families of probability functions because of concerns 

about updating. We shall return to these in section 3.8. 
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spaces, so this can’t provide an argument as to why the lower bound on reasonable families of 

probability functions should be a Shafer function. 

3.6.6 Convexity 

Even if we were assured that if an agent’s representor should, if convex, be monotone, there is a 

case to be made against requiring convexity in the first place. If this argument appears to succeed 

it will strengthen our case that the single model approach is too restrictive. Jeffrey (1987) argues 

that the set of probability functions {Pr : Pr(A & B) = Pr(A) · Pr(B)}, which just says that A and 

B are probabilistically independent, can represent a reasonable epistemic state. However, as can 

be easily seen, it is not a convex family. The functions Pr0, Pr0(A) = Pr0(B) = Pr0(A & B) = 0, and 

Pr1, Pr1(A) = Pr1(B) = Pr1(A & B) = 1, are both in P , but no linear mixture of them is. Since on 

the single model approach an agent’s representor can only be a convex set of probability 

functions, the plausibility of Jeffrey’s claim that for some A, B this set represents a reasonable 

state suggests again the single model approach is too restrictive. 

3.6.7 Summary 

The core aim of this section was to put forward a single model approach to modelling vague 

degrees of belief. It turned out this approach was stricter than the many models approach of the 

previous section. Hence I looked at various possible arguments for this extra restriction, but it 

turned out that none of these were particularly compelling. In the next section I’ll look at a 

different type of model which is less restrictive. 

3.7 Many-Urn Models 

The models discussed in section 3.6 seemed too restrictive. Belief states which intuitively seem 

coherent cannot be modelled within the scope of this theory. Hence we might be tempted to look 

for a different type of model, such as the Many-Urn model set out in this section. I will discuss 

this model’s properties, show how it gets around some of the difficulties of the Single Model 
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discussed above, and then set out some other benefits and costs of this model. I conclude that it 

is ultimately not a viable approach, because it is too permissive. 

3.7.1 The Model 

The example of a belief state which couldn’t be modelled using the Single Model approach was 

one represented by the family of probability functions {Pr : Pr(A1) ³ 0.5 & Pr(A2) ³ 0.5}. The 

idea here is that the agent has degree of belief greater than 0.5 in each of two propositions, but is 

completely ignorant about the probabilistic dependence between these two propositions. We can’t 

represent this in the single model because within that approach there is no way to represent this 

kind of ignorance. We can have vague degrees of absolute belief, but the allowable vagueness in 

degrees of conditional belief is somewhat restricted. 

Many-Urn models are designed to deal with this specific case. I said earlier it was possible to 

think of each of the p i  as expressing the proposition that the i’th ball is drawn from an urn with y 

balls in it. In Many-Urn models this analogy is developed in the following way. Proposition pij 

says that the i’th ball is drawn from the j’th urn. It is assumed here that there are several urns, 

each containing y balls, with a ball to be drawn from each urn. While it is assumed that the initial 

chance of drawing each ball from a given urn is equal (in a sense the urns are fair) it is not assumed 

the drawings are independent. 

Most, if not all, of the interesting properties of many-urn models are displayed by 2-urn models, 

so we will restrict our attention to these. We’ll start by doing the precise version, and then weaken 

this to the imprecise version. So pi1 is the proposition that the i’th ball was drawn from urn 1, and 

pi2 the proposition that the i’th ball was drawn from urn 2. Let P1  be the set of propositions pi1 for 

all i, and P2  the set of propositions pi2, again for all i. In this approach, the agents probabilistic 

beliefs are modelled as propositional beliefs about subsets of W ´ P1  ´ P2 , with K* and D* defined 
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as above. A model must then satisfy the following two constraints, which are just translations of 

(1) and (2). The definition of the asterisk operator is trivially extended to the new setting. 

(1´) (S Í P1  ´ P2  & S* Î K*) ® S = P1  ´ P2  

(2´) If Bel(A) = x / y then $S: ((S Í P1  Ú S Í P2) & (|S| = x & S* ≡ A* Î K*)) 

If a function Bel satisfies these conditions, then it must be a probability function. The proof of 

this is a little less neat, because we can’t prove the equivalent of (T6). That is, there doesn’t seem 

to be any contradiction in saying there are sets S1 Í P1  and S2 Í P2  such that |S1| ¹ |S2| and 

S1
* ≡ A ≡ S2

* Î K*. So we’ll just stipulate that Bel is a function. Although this possibility isn’t 

formally inconsistent, it is rather odd since we have in some sense Bel(S1
*) = Bel(S2

*) and 

Bel(S1
*) ¹ Bel(S2

*). Of course this use of ‘=’ isn’t formally permissible if Bel is a relation rather 

than a function, but it is a motivation for restricting our attention to belief functions.20 

Given this, the proofs that Bel must satisfy the three conditions of probability functions follows 

quite easily. It can be simply observed that Bel only takes non-negative values, since sets only 

have non-negative cardinality, and Bel is equal to the ratio of the cardinality of two sets. Similarly 

the proof that Bel(T) = 1 is just as above. The only difficulty is in proving Bel satisfies (Pr3). First 

we’ll prove (L4). 

(L4) ¬$i, j "w: <w, pi1, pj2> Ï D*. 

Assume there are i, j satisfying this condition. Then let S = {<pa1, pb2>: a ¹ i & b ¹ j}. By the 

definition of D* it follows that S* Î K*. Hence by (1) S = P1  ´ P2 , a contradiction. This proves 

(L4).  

 

20 Formally, the idea I have in mind is that we say Bel(A) = x / y means that the relation B(A, x / y) holds, 

where the holding of this relation is consistent with the relation B(A, x1 /y), where x1 ¹ x. 
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Now assume that for some A, B such that ¬(A & B) is provable, K* includes S1
* ≡ A* and S2

* ≡ B* 

such that S1 Í P1  and S2 Í P2 . Let p i  be an element of S1 and p j  an element of S2. It follows that 

for any world w, <w, pi1, pj2> is an element of S1
* Ç S2

*. Since K* is closed it contains ¬(A* & B*), 

so by substitutivity of material equivalents it contains ¬(S1
* & S2

*). Hence for all w, 

<w, pi1, pj2> Ï D*, contradicting (L4). Hence S1 and S2 are each subsets of P1  or of P2 . By a similar 

proof we can show that they cannot have any common members, hence |S1 È S2| = |S1| + |S2|, and 

|S1 È S2| Í P1  or P2 , so Bel(A Ú B) = Bel(A) + Bel(B), as required. 

3.7.2 Imprecision 

So moving to a Many-Urn model does not show that Bel, if always rational-valued, may be 

something other than a probability function. The only interesting difference arises when we move 

to imprecise models, for there we do perceive a real difference. As above, we drop axiom (2´) and 

import axioms (3´) and (4´). 

(3´) Iff Bel(A) ³ x / y then $S: ((S Í P1  Ú S Í P2) & |S| = x) & (S* ® A* Î K*) 

(4´) Iff Bel(A) £ x / y then $S: ((S Í P1  Ú S Í P2) & |S| = x) & (A* ® S* Î K*) 

Again, if Bel(A) always takes precise values (3´) and (4´) reduce to (2´). However, if it doesn’t 

then we can have a more general system of models. Indeed, we now have a system so general that 

we can model the family of probability functions we mentioned at the start of this section. K* is 

the following set, with y = 2. 

 K* = Cn({p11 ® A1, p12 ® A2}) 

If Bel can be modelled in this way, then Bel* and Bel* have the following rather neat properties.  

(M1) Bel*(T) = 1 

(M2) Bel*(^) = 0 
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(M3) If A ├ B then Bel*(B) £ Bel*(A) 

(M4) Bel*(A) = 1 - Bel*(A) 

(M5) If ├ ¬(A & B) then Bel*(A Ú B) ³ Bel*(A) + Bel*(B) and Bel*(A Ú B) £ Bel*(A) + Bel*(B) 

Walley (1991: 600) calls a function that satisfies these conditions 3-coherent. They are regarded 

as sufficient conditions for a lower probability function by Suppes (1974), Wolfenson and Fine 

(1982) and Fine (1983). I won’t go through the proofs because they are quite similar to the proofs 

already given. (In particular the proof for (M5) just uses the same move we made to prove (Pr3).) 

However, this is not sufficient to show that any Bel which can be modelled in this way is coherent. 

In particular, the following theorem, which seems intuitively plausible, is not validated by this 

model. 

(M6) Assume A0, A1, ..., An are pairwise disjoint, and that Bel*(A0 Ú A1) + ... + Bel*(A0 Ú An) > 

1. Then Bel*(A0) > 0. 

If a betting analysis of credences is adopted it is clear why we should want (M6). Assume that 

Bel*(A) is our minimum buy-price for A-bets, and that the assumptions in (M6) hold. Then we 

will be prepared to buy bets on A0 Ú A1 through to A0 Ú An in such a way that we will have spent 

more than $1. This set of bets can only have a return greater than $1 if A0. Hence we are prepared 

to buy a set of bets which have the same effect as placing a bet on A0. But if Bel*(A0) = 0 then we 

have said we are not prepared to bet on A0 at any odds. So there is some incoherence in our betting 

practices. 

Even if we don’t adopt a betting analysis there is something wrong with belief functions which 

don’t obey (M6). Assume Bel*(A0) = 0. Then Bel(A0) is vague over an interval which includes 0. 

So it should be coherent with the rest of our beliefs that Bel(A0) = 0. If it isn’t we can say we’ve 

ruled that possibility out, so we aren’t vague over it after all. So assume Bel(A0) = 0. Since for all 

i in {1, .., n} Bel(A0 Ú Ai) ³ Bel*(A0 Ú Ai) from the definition of Bel*, and Bel(A0) = 0 it follows 
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that Bel(A0 Ú Ai) = Bel(Ai), so we get Bel(A1) + ... + Bel(An) > 1, a contradiction. So we couldn’t 

have permitted Bel(A0) = 0 after all, so we were not vague over that value. 

To show that the Many-Urn model does not validate (M6), assume the possibility space is 

W = {A0, A1, A2, A3, A4}, and K* is defined as the following, with y = 3. (This example is derived 

from one in Walley 1991: 86). 

 K* = Cn({p11 ® (A0 Ú A1), p21 ® (A0 Ú A2), p12 ® (A0 Ú A3), p22 ® (A0 Ú A4)}) 

For any proposition A, Bel*(A) is given by the following rules. 

 If there is no Ai (i Î {1, ..., 4}) such that {A0, Ai} Í A, Bel*(A) = 0; 

 If {A0, A1, A2} Í A or {A0, A3, A4} Í A and A ¹ W, Bel*(A) = 2/3; 

 If A = W, then Bel*(W) = 1; and 

 If A satisfies none of the above conditions, Bel*(A) = 1/3. 

It can be seen by inspection that K* is a model for Bel in the sense set out here. Note particularly 

that although (p11 & p12) ® A0 Î K*, there is no subset S of P1  ´ P2  such that S ® ^ Î K* (as is 

required by (1´)), nor is there a subset S of either P1  or P2  such that S ® A0 Î K*. Hence 

Bel*(A0) = 0. However, SBel*(A0 Ú Ai) = 4/3, contradicting (M6). 

3.7.3 Summary 

Many-Urn models have a number of nice properties. First, they enable us to remove some of the 

restrictions of the Single urn models discussed in section 3.6. Secondly, they preserve the 

conclusion that precise belief functions should be probability functions. Thirdly, the lower bounds 

of the belief functions they define satisfy the requirements given by Suppes, Wolfenson and Fine 

for lower probability functions. However, these functions do not satisfy other intuitively plausible 
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requirements, such as (M6). For this reason I think this approach to modelling probability 

functions oughtn’t be taken. 

3.8 Updating 

So far I have discussed three possible approaches to modelling vague belief functions. The third 

of these I found reason to reject, but the other two seemed to be live possibilities. I take it that the 

failure of the positive arguments in section 3.6 doesn’t constitute a negative argument. So this 

section looks at how credences ought be updated according to these two approaches. 

On the many models approach the question is a rather trivial one, as I have already said how each 

model should be updated. A set of probability functions is updated by updating each function. If 

an agent’s credences are represented by a family of probability functions P  , then their credences 

after receiving evidence B should be represented by the family P B, defined as follows. 

 P B = {Pr( · | B): Pr  Î P   }. 

As noted earlier, I take conditional probability as basic, so Pr( • | B) is defined even when Pr(B) 

is zero. If we adopt a betting analysis of degrees of belief then there is an argument to show this 

is the only coherent way to update degrees of belief. Walley (1991: 297) uses the betting analysis 

and a condition he calls full conglomerability to get this conclusion. I don’t want to rely on 

Walley’s arguments because, for reasons I’ll set out in the next section, I don’t find full 

conglomerability a persuasive restriction on updates. 

3.8.1 Updating Shafer Functions 

The above I take to follow uncontroversially from what I have already shown. However, when 

we look at the Single Model Approach, and the associated Shafer functions, which updating 

approach should be adopted becomes a slightly harder question. One of the difficulties is that 

Dempster and Shafer themselves adopt an updating rule which seems incoherent. 
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Recall that for every Shafer function BelS defined on a possibility space W, there is an associated 

mass function m: Po(W) ® [0, 1]. The Dempster and Shafer (DS) updating rule is easiest to 

explain in terms of this mass function. When we receive evidence B, the possibility space shrinks 

from W to W Ç B. The mass of every subset A of this space is given by the following formula. 

  

The idea is that the mass previously assigned to C goes to C Ç B. However, the mass that was 

previously assigned to subsets of ¬B cannot be allocated in this way. So we normalise to take Sm 

back up to 1. This gives the following formula for the conditional degree of belief in A given B. 

  

We can define Pl(A | B) in a similar way, or just set it to be 1 - BelS(A | B). If we try and extend 

the analysis of updating in section 3.4 to the imprecise models, it seems we will get a similar 

updating rule. Presumably the updating rule will take K* to Cn(K* Ç {B}). More directly, it will 

take D* to D* Ç B. Now instead of having y dummy propositions, there will only be y · 

(1 - Bel(¬B)) such propositions left, as y · Bel(¬B) of them are contained within ¬B in the model 

K*. 

Now recall how we defined Shafer functions from the single models. For each p i , we assigned 

mass 1/y to the smallest set Ai Í W such that p i  ® Ai Î K*. Now consider what happens when we 

take the intersection of K* with B. In the new model, the smallest set Ai such that 

p i  ® Ai Î Cn(K* Ç {B}) will be Ai Ç B. If Ai ├ ¬B, this set will be empty. This in effect means 

that some dummy propositions will be discarded. For the remaining dummy propositions, we will 

assign mass 1/( y · (1 - Bel(¬B))) to each Ai Ç B. This is exactly the same construction as 
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Dempster and Shafer use to create the updated mass function. Hence viewed this way, when we 

update a Single Model the updated belief function is determined by the DS updating rule. 

3.8.2 The Three Prisoners Problem Again 

In subsection 3.6.2 we described the Three Prisoners Problem (TPP). At that stage we only 

discussed the problem of how to represent prisoner a’s initial belief state. Now we want to look 

at the problem of how to update that prisoner’s belief given what the guard says. The situation is 

entirely symmetric about b and c, so assume without loss of generality the guard says b. Then the 

only possibilities left are ab and cb. The mass previously allocated to {ab, ac} will now be entirely 

allocated to ab, and then every mass allocation will be scaled up because bc, which previously 

received mass 1/3, is now impossible. Hence m({ab}) = m({cb}) = 1/2, so BelS(ab | ab Ú cb) = 

1/2. 

This is absurd. Originally a believes to degree 1/3 that he will be reprieved. However, if the guard 

says that b will be executed, his degree of belief that he will be freed rises to 1/2, and the same 

happens if the guard says c. But the guard is going to say one of them. As Gardner points out, 

were this reasoning correct a should believe to degree 1/2 that he is going to be freed before the 

guard says anything, since he knows that whatever the guard says that will be his degree of belief. 

Formally, what has gone wrong is that our belief rule has breached a condition called finite 

conglomerability. Let P be a partition {B1, ..., Bn} of the possibility space such that for every Bi, 

Bel*(A | Bi) > Bel*(A). Then Bel* is not finitely conglomerable. This seems to be a problem 

because whatever element of P is true (and we know exactly one of them is true), Bel*(A) would 

rise were we to discover it. We will look in the next section at the plausibility of conglomerability 

more generally. It suffices to note that here, even without the general rule, it seems the result 

mandated by the DS updating rule is absurd. 
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3.8.3 Updating Single Models 

If the DS updating rule leads to absurdity, and we update Single Models by using that rule, that 

model has a difficulty. Fortunately it is one which can be solved. The problem rests with how we 

interpreted the updated models. In the updated model Cn(K* Ç {B}) there are y · (1 - Bel(¬B)) 

dummy propositions. However, not all of these dummy propositions are created equal.  

In the precise case, when we updated on B, all of the dummy propositions remaining in the model 

were on an equal footing. All of the dummy propositions outside B had been discovered to be 

attached to a false proposition. This is in effect what it is for a dummy proposition to be false. 

However, we learnt nothing new about whether the dummy propositions inside B were attached 

to a false proposition. Hence we increase the ‘weight’ of each dummy accordingly. In the 

imprecise case things aren’t quite so simple. Consider the model for the TPP set out in 3.6.2, 

which I’ll repeat here. 

 K* = Cn({p1  ≡ bc, p2  ≡ cb, p3  ≡ ab Ú ac}) 

When a finds out ab Ú cb (in other words, when the guard says b) he finds out that p1  is attached 

to a false proposition. However, while he has found out nothing to discredit p2 , the new 

information he has might be sufficient to make p3  false. What went wrong with the approach to 

updating described above was that we lost this information. All dummies which weren’t definitely 

ruled out by the new evidence were treated on a par. What it seems should have been done was 

to divide the dummies into three categories, those that are definitely out, those that are definitely 

in, and those that might be in or out. The new evidence ab Ú cb puts p1  into the first of these 

categories, p2  into the second and p3  into the third. 

Given this, how do we work out conditional degrees of belief? Or since these degrees will 

presumably be vague, how do we work out their bounds? To do this we need a more fine-grained 

taxonomy of what happens to the dummy propositions under conditionalisation. The required 
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taxonomy depends on the proposition whose conditional degree of belief is being evaluated. We’ll 

call this A. 

(i) a of the dummy propositions definitely go to A. 

(ii) b either go to A or are excluded. 

(iii) c either go to A or go to ¬A or are excluded. 

(iv) d either go to ¬A or are excluded. 

(v) e definitely go to ¬A. 

(vi) f are definitely excluded. 

By excluded I mean that they are ruled out by the new evidence.  In the above example, letting 

A = ab, a = 0, b = 1, c = 0, d = 0, e = 1, f = 1. The minimal value for A given B will be reached 

if we exclude all the dummies in (ii) and allocate all the dummies in (iii), (iv) and (v) to ¬A. The 

maximal value will be reached when we assign all the dummies in (i), (ii) and (iii) to A and 

exclude those in (iv). So we get the following formulae. 

 Bel*(A | B) = a /(a + c + d + e)  Bel*(A | B) = (a + b + c) / (a + b + c + e) 

Now, it follows from the above definitions that the following formulae hold. 

 f / y = Bel*(¬B) = 1 - Bel*(B) 

 a / y = Bel*(A & B) 

 e / y = Bel*(¬A & B) 

 (a + b + c) / y = Bel*(A & B) 

 (c + d + e) / y = Bel*(¬A & B) 

  

Combining these two sets of formulae, we get the following. 



§3.8 Updating 104 

 

(C1) Bel*(A | B) = Bel*(A & B) / (Bel*(A & B) + Bel*(¬A & B)) 

(C2) Bel*(A | B) = Bel*(A & B) / (Bel*(A & B) + Bel*(¬A & B)) 

These should both have some intuitive force. To make A given B as unlikely as possible, we make 

A & B minimally likely and ¬A & B maximally likely. The reverse applies for maximising the 

likelihood of A given B. Indeed this result has been reached by a number of different authors. (See 

for example Fagin and Halpern (1991) and the references therein.) More importantly, as is again 

pointed out by these authors, if Bel can be modelled by a Single Model and P  is its associated 

family of probability functions, then the bounds on Bel(A) we get by conditioning P  on B are just 

those given by (C1) and (C2). 

So we have some justifications from within the model to use conditionalisation as our updating 

rule, even if we don’t adopt the Many Models approach. We noted that not every family of 

probability functions can be represented by a Single Model. In particular only the monotone 

families can be represented. If we are to adopt the Single Model and update by conditionalisation 

it becomes important to work out whether the updated family can also be represented. It is rather 

non-trivial to prove, but Fagin and Halpern (1991) have shown that it always can be. That paper 

contains their proof and references to some other proofs developed independently of theirs. 

3.8.4 Difficulties 

So far it seems there is nothing wrong with adopting the Single Model as long as we update by 

conditionalisation and not by DS updating. However, there is a cloud on the horizon. Updating 

by just using (C1) and (C2), which from now on I’ll call ‘FH conditionalisation’ after Fagin and 

Halpern, is not commutative. Updating with respect to B1 and then with respect to B2 is not 

necessarily the same as updating with respect to B2 and then B1. 
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This seems rather odd. After all, it looks like all we’ve done is conditioned every element of a 

family of probability functions, and conditionalisation is commutative. The problem arises 

because the property of being Event Defined is not preserved under conditionalisation. If P   is 

Shafer bound then when we conditionalise every element of it we will get a new Shafer bound 

family, and its bounds will be given by (C1) and (C2). However, even if the old family was 

defined by its bounds, the new family is not. This is somewhat easier to see with an example. 

Let A, B, C and D be exclusive and exhaustive possibilities, with the DS belief function on them 

defined by m(A) = m(B) = 1/4, m({C, D}) = 1/2. Let f1 = A Ú B, f2 = A Ú B Ú C. Then FH 

conditionalisation with respect to f1 and then with respect to f2 gives a different result to FH 

conditionalising with respect to f2 and then with respect to f1. Hence it can’t be that each is 

equivalent to conditionalising with respect to f1 & f2.21 

The problem can be defined in another way. Recall our definition of W(BelS) as the largest family 

of probability functions bounded by BelS. Define BelS( · | B) by (C1) and (C2). This is a DS belief 

function, so we can determine W(BelS( · | B)). We can also defined WB(BelS) as the result of 

conditionalising every element of W(BelS) on B. For any proposition A, the maximal and minimal 

value of Pr(A) in W(BelS( · | B)) and WB(BelS) will be the same. However, the following theorem 

cannot be strengthened to be an equality. 

 W(BelS( · | B)) Ê WB(BelS) 

When W(BelS( · | B)) is strictly larger WB(BelS), we lose information by just modelling the belief 

state by the boundaries of every proposition. Hence the Single Model approach, even in its most 

plausible form, has real difficulties. If we insist on modelling agents this way we will lose 

 

21 This is pointed out by Paris (1994). 
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information about their belief states. This loss of information may lead to bizarre results, like the 

non-commutativity of updating. 

3.8.5 Figures 

These results are not unknown. Fagin and Halpern themselves point out the failure of 

commutativity under their form of conditionalisation, and supporters of the DS updating rule are 

aware of its odd consequence in the TPP. Why then are these rules kept? In large part it is because 

our theoretically preferred model, representing belief states by sets of probability functions and 

updating them by conditionalisation,  has such high computational costs. Given this, some results 

of van Fraassen (1990) might be important, because they point the way to a reduction in these 

costs. 

Rather than taking sets of probability functions as his given, van Fraassen takes bounds on 

expected values of gambles. This gives us more information than just looking at the bounds on 

bets. For example, we saw above that there was no way by looking just at its bounds to represent 

the distinct information contained in P   = {Pr : Pr(A1) = Pr(A2)}. However, we can represent this 

by looking at bounds on gambles. In this case the gamble that pays 1 if A1 & ¬A2, and -1 if 

¬A1 & A2 will have expectation 0, whereas if P   was the set of probability functions its expectation 

would be vague over the range [-1, 1]. We can’t do everything we want with just expectation, but 

as van Fraassen shows we can do quite a bit. 

In fact we don’t even need to take bounds on gambles as basic. Rather, we can just take as our 

basic information that certain gambles have non-negative expectation. Every time we say that a 

gamble has non-negative expectation according to an agent’s belief, we rule out some probability 

functions as being possible members of that agent’s representor (i.e. those functions according to 

which the gamble has negative expectation). Now, say P   is the set of all those probability 

functions such that for each function in P   each gamble in a finite class G has non-negative 
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expectation. If this occurs, say P   is a G’s figure. Any family which is a figure of some finite class 

of gambles is a figure. The complexity of a figure is the size smallest class for which it is a figure. 

Van Fraassen gives a constructive proof of the following theorem. 

Figure Theorem: If P   is a figure of complexity n, then conditionalising P   with respect to B 

results in a figure of complexity at most n + 2. 

The proof of this is summarised in section 9.2.2. This shows that once we have represented P   as 

the figure of a class of gambles there is a simple algorithm for updating it. Given this, some of 

the motivation for using incoherent but efficient updating rules should be removed. 

3.8.6 Gilboa and Schmeidler’s Updating Rule 

There are other approaches in the literature to updating vague degrees of belief. The theory of 

Gilboa and Schmeidler (1993) is based around v-functions, which are called non-additive 

probabilities. Again, W is a possibility space and propositions are subsets of W. There are only 

three restrictions on v, which are listed below. 

 v(Æ) = 0; v(W) = 1; and If p  ├ q then v(p)  £ v(q). 

Returning to our prisoner a, the function defined by v(p)  = BelS(p)  for the DS belief function 

defined in subsection 3.6.2. would be a non-additive probability. There are a continuum of 

updating methods for non-additive probabilities, we’ll just consider the extremum cases. These 

are described by Gilboa and Schmeidler as ‘optimistic’ and ‘pessimistic’ rules. The pessimistic 

rule we’ve already seen, it is just the Dempster-Shafer rule. The optimistic rule is defined by the 

following formula. 

 vr(p)  = v(p  & r) / v(r). 
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The TPP seems to be just the right place to apply optimistic and pessimistic rules. The proposition 

that a is to reprieved is ab Ú ac. Let this be p, and let r be the proposition that the guard says b is 

to be executed. As we noted above, on the pessimistic view vr(p)  = 1/2. On the optimistic view 

vr(p)  = 1. Of course this wouldn’t change if the guard had said that c rather than b was to be 

executed. Optimism is all well and good, but this looks more like fanciful thinking! 

We might have been a little unfair to Gilboa and Schmeidler. They formulate their rule in terms 

of preferences over acts rather than degrees of belief. Still, should a have a choice, then, under 

the optimistic rule, he should accept a gamble which pays $1 if he’s reprieved and has an 

arbitrarily high penalty if he isn’t. (Of course he already faces such a penalty, so decision theory 

starts to break down here). Again this seems like optimism gone mad. None of the axioms Gilboa 

and Schmeidler employ look that implausible, yet their results are absurd. It would be an 

interesting research program to see where the absurdity creeps in, but this isn’t our research 

program. 

3.8.7 Summary 

At the start of this section there were two approaches to modelling which seemed plausible. For 

one of these, the Many Models approach, it is trivial to give an updating rule, because we have 

already given an updating rule for the precise case. For the Single Model approach, we had to do 

more work to find an updating rule which was even plausible. However, once we did this we 

found that updating a belief function can take us from a function which can be accurately modelled 

(i.e. one that is event defined) to one that cannot. Hence this approach to modelling seems 

mistaken. The section concluded with a summary of two other discussions of updating vague 

belief states. 
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3.9 Conglomerability and Lower Envelopes 

Walley (1991: 294-327)22 argues that we should accept as a rationality requirement a principle he 

calls conglomerability. From this he concludes that (i) probability functions should be countably, 

not just finitely, additive and (ii) we can’t always represent vague epistemic states by sets of 

probability functions. I think (i) is questionable and (ii) is false, but in each case his argument for 

these conclusions does not go through. The principle of conglomerability he relies on is so close 

to principles which are demonstrably not principles of rationality that we shouldn’t adopt it as an 

axiom of rationality. If it falls out from some uncontroversial principles of rationality that our 

epistemic states should be conglomerative, all well and good. However, arguments designed to 

show that this principle is intuitively compelling face a fundamental difficulty which Walley does 

little to overcome. 

3.9.1 Conglomerability 

In Walley’s theory, like many others, the basic conception is the expected value of a gamble. He 

doesn’t require this to be a precise number, so we can introduce vague or imprecise degrees of 

belief. For example we might be able to say no more than that a certain gamble is more valuable 

than $10 and less valuable than $20. Saying this does not commit us to saying there is some 

number x in [10, 20] such that the gamble is worth precisely x dollars. 

Under fairly minimal assumptions about rationality, viz that if gamble a is preferred to b, then 

a - c will be preferred to b - c, for some constant c, all the information about an agent is contained 

in their set of desirable gambles. For our purposes, nothing is lost if we merely talk about greatest 

lower bounds on the expected value of a gamble a, or what Walley calls lower previsions. 23 

 

22  All page references in this section to this book, unless otherwise stated. 

23 For most of his book Walley works with lower previsions. However, as he notes (160, 616) the class of 

desirable gambles is slightly more informative, particularly with regard to conditional expectations. Why 
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What I’ll call a propositional gamble is a gamble which takes value 1 at some worlds and 0 at all 

the rest. These are important in a theory like Walley’s for many reasons, not least being that the 

probability of a proposition is the expectation of a propositional gamble. For any propositional 

gamble define its associated proposition to be the set of worlds at which it takes value 1. 

Conversely the gamble which has payout 1 iff a certain proposition is true (and nothing otherwise) 

is the gamble on that proposition. 

For any gamble a, and propositional gamble p, we can define the conditional gamble ap. As 

might be clear from the notation, for all worlds w, ap(w) = a(w) · p(w). So at the worlds where 

p’s associated proposition is true, ap has the same payouts as a, and in all other worlds it has 

zero payout. So in a natural enough sense this is a conditional gamble. Now we can define the 

conglomerability axiom. 

Let P be a partition of the possibility space. Every element qi of the partition has an associated 

gamble pi. The principle of conglomerability is that if for all i, api is a desirable gamble, then a 

is a desirable gamble. Walley justifies this principle as follows. (Slight changes to reflect 

consistency with my notation have been made.) 

The conglomerative principle ... requires a type of consistency between 

current beliefs and current dispositions to update beliefs. It can be 

justified as follows. Suppose that api is desirable for all qi in P. This 

means that You will be willing to accept a after You observe some set 

in P, whatever set You observe. Knowing this, You should be prepared 

to accept a now. (294) 

 

just lower prevision, rather than upper and lower previsions? Well, if x is the lower prevision of -a, then -x 

should be the upper prevision of a. Hence we only need the lower boundaries. The lower boundaries are 

also easier to compare with other theories, such as Shafer’s. 
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So far we have not mentioned the cardinality of P. Walley claims that this principle should hold 

even if P is an infinite partition. The core of his argument for this is the following line: “Indeed 

the cardinality of P seems to be irrelevant in the arguments given to support [this] principle.” 

(295). If this is right then the principle is in very bad shape, for we’ll see below that it is untenable 

given a faily simple assumption when P is an infinite partition. 

3.9.2 Conglomerability and Finite Additivity 

Walley notes that if we accept this principle we have to insist on countable additivity of 

probability functions. The argument turns on the following example, which is fairly well known 

(321). (See for example de Finetti (1972: 98-100)). Let W (the possibility space) be the set of non-

zero integers. For ease of exposition, we’ll say x is a random variable ranging over the non-zero 

integers. Identify W with the product space Q ´ P by identifying each integer n with the pair 

(sign(n), |n|). The elements of P are the pairs {-m, m} for all natural m. For simplicity call this the 

set qm. Hence the elements of Q are simply the signs {–, +}. For simplicity we’ll call the 

proposition that x is positive +, and that it is negative –. 

Say we have a probability function Pr on W with the following properties. For any natural m, 

Pr(x = m | +) = 2–m. On the other hand, Pr( · | –) is a finitely additive distribution, such that for 

any natural m, Pr(x = -m | –) = 0. Finally, Pr(+) = Pr(–) = 1/2. Obviously Pr  itself, as well as its 

conditionalisation on –, is merely finitely additive. 

Now let a be a gamble such that a(x = m) = e for all positive m, and a(x = m) = -1 for all negative 

m. (We’re assuming here that all bets with positive expected value according to Pr  are desirable, 

and all those with negative expected value are not desirable). Assume e is an arbitrarily small, but 

not infinitesimal, positive value. Now a is not a desirable gamble, since its expected payout is 

(e - 1)/2. However, for any element qi of P, api will be desirable. The reason is that Pr(x = 
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i | qi) = 1, and Pr(x = –i | qi) = 0. Hence the expected value of the bet is now e · 2-i, which is 

positive. So Pr  is not conglomerable. 

de Finetti’s reaction to this case is rather disconcerting. He shrugs it off as one of those odd results 

we get when dealing with infinites. Now while we do often get odd results when working with 

infinite sets, this in itself hardly licences an ‘anything goes’ approach. We should have a 

principled reason why this particular odd result is acceptable. If an odd result is forced upon us 

by a principle which is more compelling than its negation, that result might be acceptable. de 

Finetti’s approach could only work if the intuitive appeal of allowing merely finitely additive 

probability distributions was greater than the intuitive appeal of conglomerability. And without 

some more work (part of which is reported below) this can’t get off the ground. 

3.9.3 Conglomerability and the Many Models Approach 

My main interest in conglomerability is in a possible argument from conglomerability to an 

objection to the many models approach. It turns out that if you take conglomerability as your main 

criterion on an updating rule, and take previsions to be primitive as Walley does, then there are 

epistemic states which seem reasonable enough but which cannot be represented by sets of 

probability functions. Or more precisely, they can’t be represented by sets of countably additive 

probability functions, despite being conglomerable. Since for precise probability functions, 

conglomerability entails countable additivity, this will be a difficulty if conglomerability is a 

plausible constraint on epistemic states. 

This is all consistent with the results of Smith (1961) and Williams (1976) reported above. The 

state here can be represented by sets of non-countably additive probability functions, but they 

cannot be represented by conglomerable probability functions. Indeed, there are no 

conglomerable probability functions which dominate the state in this sense. A probability function 

Pr  dominates a lower prevision P iff for all gambles a, the expected value of a according to Pr , 



§3.9 Conglomerability and Lower Envelopes 113 

 

which I write as EPr(a), is greater than or equal to P(a). Dominating probability functions are 

important because the way Walley’s previsions are represented according to our approach is by 

the set of probability functions which dominate them. 

Before we look at the supposed counterexample, we need one more bit of terminology. We 

discussed above the vacuous epistemic state, the one represented by the set of all probability 

functions. In Walley’s terminology, the vacuous prevision is where the lower prevision of every 

gamble is its infimum payout. This wouldn’t make sense unless every gamble has a lowest payout, 

and Walley helps himself to that assumption, apparently to facilitate exposition (58). However, 

as we’ll see below, the assumption does much more work than this. 

Here’s the example which Walley claims shows the Many Models Approach can’t work. Let P1  

be the finitely additive probability function Pr  described in the previous section, with W, Q and P 

defined the same way. Let P2  be a finitely additive probability function such that P2(x = –m) = 

3-m for any natural m, P2(x > 0) = 1/2 and P2(x = m) = 0 for any positive m. Now, neither P1  nor 

P2  are conglomerable, however their lower envelope P is conglomerable. P is defined in the 

following way. For all gambles a, P(a) = min(P1(a), P2(a)). The conditional prevision24 

P(  • | qi), where qi is any element of P, is vacuous. To see this, note that P1(api) = a(x = i) and 

P2(api) = a(x = -i), so P(api) = inf(api). Indeed, P satisfies all of the coherence requirements 

that Walley discusses. 

The next step is to show that no conglomerable probability function dominates P .  Any such 

probability function will, by virtue of a more general theorem, be of the form 

Pr  = lP1  + (1 - l)P2 , for l Î [0, 1]. Now it is shown that for any value of l, Pr  is not 

 

24 Conditional previsions can be technically defined in the following way. P(a | q) = P(ap), where a is any 

gamble (previsions are defined primarily on gambles and only derivatively on propositions) and q is the 

associated proposition of propositional gamble p. 
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conglomerable. For l = 0 the proof is simply the same as for showing the finitely additive function 

described in the previous section is not conglomerable. For l > 0, the proof is slightly more 

complex. 

Note that as n ® ¥, Pr(x = n) / Pr(x = -n) = 2l-1 (1 – l) (2/3)n ® 0, so Pr(x = n | qn) ® 1. 

Choose N large enough so that Pr(x = n | qn) ³ 1 - l/3 for n > N. Then P1(x > –N) = 1/2 and 

Pr(x > –N) = lP1(x > –N) + (1 – l)P2(x > –N) £ l/2 + (1 – l) = 1 – l/2. However, when n < N, 

Pr(x > –N | qn) = 1, and otherwise Pr(x > –N | qn) ³ 1 – l/3. Hence for all elements qi of P, 

Pr(x > –N | qn) > Pr(x > -N), so Pr  is not conglomerable. 

To summarise, the epistemic state represented by P satisfies all the coherence requirements that 

seem plausible. However, if it is a requirement on functions generated by precise models that they 

be conglomerable, and hence countably additive, that state cannot be represented by a set of 

probability functions. That is, it can’t be modelled by a set of precise models. Hence we should 

take a different approach to modelling than the Many Models approach, perhaps the approach 

based on previsions suggested by Walley. 

3.9.4 The Two Envelope Paradox 

There are several problems with the principle of conglomerability. The most serious is derived 

from some recent work by Broome (1995) and Arntzenius and McCarthy (1997) on the two 

envelope paradox. It turns out that if we drop Walley’s restriction to bounded gambles (i.e. 

gambles with maximal and minimal payouts) the principle of conglomerability leads to 

inconsistency. That is, it says of two gambles whose sum is uniformly negative that they are each 

desirable. To get this result we do not need to postulate gambles with infinite payouts, all payouts 

will still be finite, but we do need gambles with infinite expected payouts.  
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As a small aside, it might be noted that these gambles, which have all finite payouts and infinite 

expected payouts, are rather odd. We can guarantee that the actual payout will be less than the 

expected payout, which casts some doubt on the principle that we should value gambles according 

to their expected payout. The argument here will only use the principle that we should value 

gambles according to their expected payout when that expectation is finite, which seems a more 

plausible principle. 

The two envelope paradox can be set out as follows. One of two envelopes is chosen at random, 

and an amount of money x is placed in it. The game arbiter calculates x using a chance device 

such that Ch(x = 100 · 2n) = 2n / 3n + 1 for any integer n, and Ch(x = k) = 0 otherwise25. Then 2x is 

placed in the other envelope. The contestant is then given one envelope and asked, before they 

look inside the envelope, whether they would pay $10 to swap it for the other one. Assume the 

contestant knows the method that has been used to calculate the money to be placed in each 

envelope. 

Now at first (and at last I hope) it looks patently absurd that this gamble could be desirable. As 

far as the contestant knows, there is a complete symmetry between the envelopes. So how could 

it possibly be worthwhile to trade? Put more forcibly, if the trade is desirable, then presumably it 

is worthwhile to swap back, again for $10, since the contestant will now be in the same epistemic 

position. But the net effect of these two trades is to incur the sure loss of $20, and that can’t be 

rational. By the normal standards of decision theory this is the worst of all possible mistakes, to 

incur a sure loss26. 

 

25 A simple chance process would generate this distribution. Start with $100 in the envelope. Find a fair die 

tossing mechanism, and keep throwing a 6-sided die until either a 1 or 6 lands face up. After every throw 

which doesn’t land 1 or 6, double the amount of money in the envelope. 

26 Scott and Scott (1997) object to the conclusion that, if you’d trade once you’d keep on trading on the 
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However, look what happens when we bring the principle of conglomerability to work on the 

matter. Let y be the amount that’s in the envelope the contestant is holding, and let P be a partition 

{q100, q200, ... } where qi represents the proposition y = i. If i > 100, then the expected value of 

trading given qi can be easily calculated to be 11i / 10, and if i = $100 the expected value of 

trading given qi is $100. Hence no matter what is in the contestant’s envelope, if they knew what 

it was they’d happily give up that and ten dollars for the other envelope. So by the principle of 

conglomerability, they should be prepared to give up their envelope and the ten dollars now. 

That’s absurd, so I take it the principle of conglomerability fails here. 

Call the envelopes A and B. The core problem, as Arntzenius and McCarthy explicitly point out, 

is that there are distinct partitions of the possibility space P1 and P2 such that the expected worth 

of A is higher (at least $20 higher) given every element of P1 and the expected value of B is higher 

(again at least $20 higher) given every element of P2. Given this it’s clear that unrestricted uses 

of the principle of conglomerability will lead to inconsistency. 

Should this be a problem? After all, Walley did explicitly restrict himself to bounded gambles. I 

think it is a problem. Consider Walley’s short argument for extending the principle of 

conglomerability to infinite partitions. He simply noted that we didn’t appear to use the cardinality 

of the partition in the argument for conglomerability. Well we didn’t appear to use the fact that 

 

ground that the reasoning supposedly relies on the contestant in later rounds of trading forgetting the results 

of their earlier calculation. However, the original argument for trading only goes through if you, in effect, 

ignore how you would feel were you to be holding the other envelope, so I don’t see how this objection 

works. If you’d ignore the dynamic possibilities of the other position once, there’s no reason to not keep on 

ignoring them. 

 It might be noticed here that the contestant is making the kind of assumptions which I showed in chapter 

2 to be unreasonable. In particular they seem to not be thinking about future trade. But some kind of 

blindness like this will be necessary if we are to hold a betting analysis of degrees of belief, as all the writers 

in this field do. 
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gambles are bounded either, but we must have used one of them, or else we would have ‘proved’ 

an inconsistent principle. Alternatively, if we really have used neither of these facts, the two 

envelope case shows that there’s something wrong with Walley’s proof. Unfortunately it is little 

help in saying what precisely is wrong, but this alone is no reason to hang onto the principle. 

Even if it turns out that the principle is consistent when applied only to bounded gambles (and I 

have no reason to think it is inconsistent in this setting) there remains a philosophical difficulty. 

We know that when gambles can be unbounded we should not follow the principle of 

conglomerability. This alone seems enough motivation to deny that the principle is sufficiently 

compelling to count as an axiom when gambles are bounded. If cases which are roughly alike 

should be treated in a roughly alike manner, and the principle of conglomerability is provably 

mistaken when dealing with unbounded gambles, it seems implausible that it could be compelling 

enough to count as an axiom when we move to bounded gambles. So I conclude that Walley 

shouldn’t have adopted conglomerability as an axiom. If he did not, he would not have been able 

to prove that reasonable probability functions should be countably additive, and hence that there 

are no reasonable probability functions which dominate P .  

3.9.5 Intuitions 

The main motivation for the principle of conglomerability is its intuitive plausibility. However, it 

isn’t at all clear that intuitions in this area should be trusted. Many of the intuitive arguments for 

conglomerability (or the ‘sure-thing’ principle as it is more commonly known) seem to be equally 

good arguments for Probabilistic Disjunctive Syllogism (PDS). This is the following argument, 

where A, B and C are propositions. 

PDS: Pr(A | B) > e, Pr(A | C) > e, Pr(B Ú C) = 1 ├ Pr(A) > e. 
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We can run the intuitive argument easily enough. Assume Pr  represents your epistemic state. 

Since B Ú C is known, you can assume that you’ll find out one or other of them. In either case 

your degree of belief in A will be greater than e. So by Reflection, it should be greater than e now. 

But PDS is clearly invalid as the following example (due to Gillman (1992)) shows. 

Assume that a certain deck has only three cards, the ace of hearts, the ace of spades and the two 

of clubs. A hand of two cards is dealt from it by a fair chance mechanism (i.e. each possible hand 

is equally likely to be dealt). Let A be the proposition that this hand contains both aces, B be that 

it contains the ace of spades, and C that it contains the ace of hearts. Clearly enough, Pr(A | B) = 

Pr(A | C) = 1/2, B Ú C is known, and Pr(A) = 1/3, violating PDS. The problem is that we moved 

too quickly between a proposition being true and it being the evidence on which you 

conditionalise. The following can’t both be true (assuming you’re reasonable). 

(i) You will find out B only, or you will find out C only. 

(ii) Pr(A | You find out B) = Pr(A | You find out C) = 1/2. 

The intuitive argument for PDS assumed that (i) and (ii) both held in cases like this, which seems 

to have been the mistake. I only bring this case up to note that intuitions in this area are notoriously 

unreliable. Many seemingly reasonable people fall for traps like PDS, even though it can be shown 

with simple cases like this to be a mistake. I suspect that conglomerability vis a vis infinite 

partitions is another principle which, although intuitively plausible at first, is not acceptable on 

reflection. 

3.9.6 Summary 

Walley argued that we should adopt conglomerability as a coherence constraint on reasonable 

models. If we do this there are seemingly reasonable vague epistemic states which cannot be 

represented by sets of reasonable models, refuting our approach. However, the principle of 
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conglomerability can easily lead to inconsistency. I argued that this is sufficient reason to be at 

least open-minded about it in contexts where it is consistent. Hence Walley’s refutation does not 

work. 

I might be able to generate the problem again if I accepted countable additivity for other reasons 

as a constraint on probability functions. In chapter 5 I’ll look at some arguments for and against 

this constraint, with an eye to seeing what problems this will imply for our models. 

3.10 Real-Valued Degrees of Belief 

It was essential to my proofs earlier that if Bel was precise it should be a probability function that 

its range was the rationals. This assumption is unduly restrictive and ought be discharged. The 

most natural way to do this is by defining real-valued degrees of belief in terms of inequalities. 

Again these definitions are all made relative to some finite field of propositions; I’ll take that 

qualification as implicit in all that follows.  

Clearly Bel(A) = r and r > x / y (for integers x, y) should entail Bel(A) > x / y. Similarly Bel(A) = r 

and r < x / y should entail Bel(A) < x / y. I’ll assume that these entailments hold, and collectively 

they give a complete account of the meaning of Bel(A) = r for irrational r. As noted above, despite 

its quantitative representation, we can give a qualitative account of the meaning of Bel(A) > x / y. 

So this theory is again reductive, it says the meaning of the quantitative expression Bel(A) = r can 

be explained in purely qualitative terms. 

Our task now is to work out coherence constraints on real-valued degrees of belief. That is, when 

are sets of expressions {Bel(A) = r1, Bel(B) = r2, ...} coherent. I assume that the set includes an 

expression for the value of Bel(A) for every A in the field under consideration. We explicate each 

element of this set as an infinite set of inequalities, and hence the original set is explicated as the 

union of each of these original sets. The coherence constraint I postulate is just that there be a 

model for any finite subset of this infinite set of inequalities. 
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The restrictions on models are just those proposed in earlier sections. Indeed, the models used 

here are very similar to the ‘single models’ proposed as a representation of imprecision in section 

3.6. The idea is that there is a closed set of propositions K* on a possibility space W ´ P which 

satisfies the following three conditions: 

(1) (S Í P  & S* Î K*) ® S = P  

(2) Iff Bel(A) ³ x / y then $S: ((S Í P  & |S| = x) & (S* ® A* Î K*)) 

(3) Iff Bel(A) £ x / y then $S: ((S Í P  & |S| = x) & (A* ® S* Î K*)) 

Again, I use ‘®’ for material implication. The number of elements of P is y. From these 

constraints it can be deduced that Bel must be a probability function. Because the proofs are so 

similar to those appearing in appendix 3A for the case where Bel takes rational values, I won’t 

give all of them. Rather I’ll just illustrate how they all work by giving the proof that for disjoint 

A, B, Bel(A) + Bel(B) ³ Bel(A Ú B). This proof can easily be ‘reversed’ to show 

Bel(A) + Bel(B) £ Bel(A Ú B), and hence Bel(A) + Bel(B) = Bel(A Ú B). The proof may be easier 

to follow after reading appendix 3A where some steps are set out in more detail. 

Assume Bel(A) + Bel(B) < Bel(A Ú B). Then there is some integer y satisfying Bel(A) + Bel(B) < 

Bel(A Ú B) - 1/3y. Hence there are integers x1, x2 and x3 such that the following four inequalities 

hold: 

 Bel(A) < x1 / y; 

 Bel(B) < x2 / y; 

 Bel(A Ú B) > x3 / y; 

 x1 + x2 < x3 

So by conditions (2) and (3) there are sets S1, S2 and S3 satisfying the following conditions. 
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 S1 Í P and |S1| = x1 and A* ® S1
* Î K*. 

 S2 Í P and |S2| = x2 and B* ® S2
* Î K*. 

 S3 Í P and |S3| = x3 and S3
* ® (A Ú B)* Î K*. 

Since A and B are disjoint, S1 and S2 must be disjoint. But since x3 > x1 + x2 there is at least one 

element of S3 which is neither an element of S1 nor S2. Call that element p i . Since 

S3
* ® (A Ú B)* Î K*, {p i}* ® (A Ú B)* Î K*. As the material implication can be contraposed, 

from A* ® S1
* Î K* it can be inferred that ¬S1

* ® ¬A* Î K*, and similarly ¬S2
* ® ¬B* Î K*. 

Now since p i  is both an element of ¬S1 and ¬S2, it follows that {p i}* ® ¬A* Î K*, and 

{p i}* ® ¬B* Î K*. Hence {p i}* ® ((A Ú B) & ¬A & ¬B)* Î K*. Since the consequent is a 

contradiction, ¬{p i}* Î K*, contradicting (1). Hence the assumption must be false. Similar proofs 

show that Bel must obey all the other axioms of the probability calculus if it is to be coherent. 

This style of definition might be incapable of being used to explain what we mean by saying an 

agent’s degree of belief in some proposition takes a particular infinitesimal value. Indeed, I’m not 

at all sure what we could mean by such an expression. If we can make sense of assuming there is 

an urn with some non-standard number of balls in it, each of which is equally likely to be chosen, 

then we can explicate infinitesimal degrees of belief without recourse to a limiting procedure. If, 

however, we are dubious about the sense of that then recourse to limits won’t save the 

infinitesimals. One way of making sense of these lotteries with infinitely many outcomes might 

be by moving away from urns and towards natural processes like atom decay or darts being tossed 

at a dartboard. This is an area that demands more space than it can be afforded here. 

Appendix 3A Proof of Theorem 3.3.1 

In the proofs I will use S (occasionally subscripted) to refer to a subset of P .  

If ├ A then by closure A Î K, hence Bel(A) = 1. Hence (T1). Assume ¬A is a theorem (i.e. ├ ¬A) 

and Bel(A) = x / y. Then there is an S* such that |S| = x and S* ≡ A* is in K*. Since K* is closed, this 
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implies ¬A* and hence ¬S* are in K*. By (L3) this implies S is the null set, i.e. |S| = 0. Hence 

Bel(A) = 0, i.e. (T2) holds.  

Assume Bel(A) = x / y and Bel(B) = z / y. It follows that there are S1 and S2 such that S1
* ≡ A* and 

S2
* ≡ B* are in K*, |S1| = x and |S2| = z. It follows from (L1) and the way S1 and S2 are defined that 

S1
* Ú S2

* ≡ (S1
* È S2

*) and S1
* & S2

* ≡ (S1
* Ç S2

*). We can tell from (L1) that if any two subsets of 

P ,  say S3 and S4, are such that S3 ≡ S4 then S3 = S4. Finally, if two sets are subsets of P then their 

intersection and union are also subsets of P .  By the transitivity of material equivalences, it follows 

that A* Ú B* ≡ (S1
* È S2

*), hence Bel(A Ú B) = |S1 È S2| / y. Similarly A* & B* ≡ (S1
* Ç S2

*), so 

Bel(A & B) = |S1 Ç S2| / y. We know from set theory that |S1| + |S2| = |S1 È S2| + |S1 Ç S2|. Dividing 

both sides of this equation by y and substituting terms which we have already shown to be 

identical gives us (T3). 

If A ├ B then A ® B is a theorem. Assume Bel(A) = x / y and Bel(B) = z / y. As above, it follows 

that there are S1 and S2 such that S1
* ≡ A* and S2

* ≡ B* are in K*, |S1| = x and |S2| = z. Since K* is 

closed it contains A* ® B* and hence S1
* ® S2

*, or equivalently, ¬(S1
* & ¬S2

*). Assume p i
* is in 

S1
* and not in S2

*. Since p i
* ├ S1

* & ¬S2
*, and ¬(S1

* & ¬S2
*) is in K*, it follows that ¬p i

* is in K*. 

By (L1), ¬p i  ≡ P  / {p i}, so (P  / {p i)) * is also in K*. However, this contradicts (L2), which says 

that the only subset Q of P such that Q* is in K* is P .  Hence there is no such element p i , so S1 is 

a subset of S2. Hence x £ z, so Bel(A) £ Bel(B), as required for (T4). 

We have actually proved something more general than (T4). Since all that was used was that K* 

contains ¬(A* & ¬B*), it follows that whenever A ® B Î K, then Bel(A) £ Bel(B), provided the 

agent is rational. 

(T5) follows immediately from (T4). Since A ├ T, where T is a tautology, and Bel(T) = 1, 

Bel(A) £ 1. And since ^ ├ A, where ^ is the falsum, and Bel(^) = 0, 0 £ Bel(A). 
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From the definitions of degree of belief, it would not be contradictory to say that (T6) failed to 

obtain. The reason is that Bel(A) = x / y just means that there is some set S of cardinality x such 

that Bel(S) = Bel(A), not that all sets S satisfying Bel(S) = Bel(A) have this cardinality. This might 

make us question the use of ‘=’ signs when discussing Bel( · ). Fortunately, however, we can 

prove that it is a requirement of coherence that (T6) holds. Assume that it doesn’t. So there are 

sets S1 and S2 of different cardinality such that the agent believes both A* ≡ S1
* and A* ≡ S2

* and 

hence by closure S1
* ≡ S2

*. Let S3 be the set (S1 È S2) / (S1 Ç S2). Since S1 and S2 are of different 

cardinality S3 is non-empty. From S1
* ≡ S2

* it follows that the agent believes ¬S3
*, and hence by 

(L3) that S3 is empty. This contradicts our assumption, so S1 and S2 must be of the same 

cardinality, as required for (T6). 

Appendix 3B Proof of Theorem 3.6.1 

I am assuming Bel is such that there is a model satisfying (1), (3) and (4), and trying to prove the 

lower bound on Bel is a BelS function. 

(1) (S Í P  & S* Î K*) ® S = P  

(3) Iff Bel(A) ³ x / y then $S: ((S Í P  & |S| = x) & (S* ® A* Î K*)) 

(4) Iff Bel(A) £ x / y then $S: ((S Í P  & |S| = x) & (A* ® S* Î K*)) 

For any p i  Î P ,  let Ai be the strongest proposition such that p i
* ® Ai

* Î K*. That such a 

proposition exists, and is an element of G, is guaranteed by the fact that K* is finite and closed 

under entailments, and that  G is a field, so if A Î G and B Î G then A & B Î G. I construct a BelS 

function by constructing its associated mass function m as follows. 

Let SA = {p i : p i  Î P  & A = Ai}. For each proposition A in G, m(A) = |SA|  / y. Since the sum of the 

m(A) is 1, m clearly is a mass function and hence generates BelS and Pl  functions. The only task 

is to show that the functions thus generated are the bounds on Bel. For an arbitrary A, let 

Bel(A) = [x1 / y, x2 / y] and BelS(A) = x3 / y. So the task is to prove that x1 = x3. 



§Appendix 3B Proof of Theorem 3.6.1 124 

 

It might be thought that there could be some other cases, such as the possibility that Pl(A) was 

higher than x2. However, this will be dealt with, indirectly, once I have shown that x1 = x3 for 

arbitrary A. To prove this I will first prove the following lemma. 

Lemma 

Assume Bel satisfies the conditions in theorem 3.6.1. Let the bounds of Bel(A) be [x1 / y, x2 / y]. 

Then the bounds of Bel(¬A) are [1 - x2 / y, 1 - x1 / y]. 

Since Bel(A) ³ x1 / y,27 there is a subset S of P such that |S| = x1 and S* ® A* Î K*. Hence 

¬A* ® ¬S* Î K*. But |¬S| = y - x1. So Bel(¬A) £ 1 - x1 / y. Assume this bound is not tight, i.e. 

there is some number x3 > x1 such that Bel(¬A) £ 1 - x3 / y. Then there is a subset S of P such that 

|S| = y - x3 and ¬A* ® S* Î K*. But that implies ¬S* ® A* Î K*, and since |¬S| = x3 > x1 this 

implies Bel(A) ³ x3 / y > x1 / y. This contradicts the assumption that Bel(A) £ x1 / y. The other half 

of the proof, showing the lower bound on Bel(¬A) is 1 - x2 / y is entirely parallel and hence is 

omitted. 

Now it is a general fact about the BelS and Pl  functions generated by a common m function that 

BelS(A) = 1 - Pl(¬A). So if there was a case such that Pl(A) was higher than x2, then it would be 

the case that BelS(¬A) < Bel(¬A). Hence we need only show x1 = x3 

By definition, x3 is the number of p i  such that Ai Í A. Let the set of all such p i  be S. By the 

definition of the Ai, this means S* ® A* Î K*. Hence x1 ³ x3. Since Bel(A) = x1 there must be some 

set T Í P such that T* ® A* Î K*, and |T| = x1. Let p j  be an arbitrary element of T. By the closure 

of K* we know that p j
* ® A* Î K*, hence Aj Í A. So every element of T is, by definition, also an 

element of S. Hence x1 £ x3. From this it follows x1 = x3 as required. 

 

27 when x, y and z are reals with y £ z, by x < [y, z] I mean x < y. Generally when x is a real and S a set of 

reals, by x < S I mean x is less than every element of S. This usage is quite standard. 
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Appendix 3C More on Dutch Book Arguments 

There are many arguments from the betting analysis of degrees of belief to the conclusion that the 

probability calculus provides coherence constraints on degrees of belief other than the ones I 

considered in chapter 2. These include the Savage-style arguments from postulated coherence 

constraints on preferences, as in Maher (1993) and Kaplan (1996) and the ‘depragmatised’ Dutch 

Book arguments as in Howson and Urbach (1989), Christensen (1996) and Hellman (1997). All 

of these as presented make the simple mistake that is fatal to standard Dutch Book arguments of 

confusing use-value for exchange-value, but whereas this was an incurable problem for standard 

Dutch Book arguments it might seem curable here. Since these arguments don’t postulate an 

actual retrade, it might be possible to stipulate, as I did above, that retrade is known to be barred 

and still get the conclusion that’s desired. Even if this problem can be resolved (and I only accept 

for the sake of the argument that it can be) there’s a further difficulty at hand; all of the arguments 

mentioned are question-begging. I have left discussion of these arguments until after chapter 3 

because it is easier to see these arguments are question-begging once we know what’s at issue in 

the dispute. The primary conclusion of these arguments is that degrees of belief functions should 

obey Addition. This is what distinguishes their position from that adopted by, say, Shafer, or 

indeed most writers who deny that the probability calculus provides coherence constrains. 

However, Addition is a premise of every one of their arguments, which destroys their dialectical 

effectiveness. 

The depragmatised Dutch Book arguments are effectively refuted by Maher (1997), so I won’t 

say much about them. Maher is rather harsh on orthodox Dutch Book arguments, thinking they 

are refuted by the declining marginal utility of money. As a rather large class of authors have 

pointed out (particularly Savage who he is openly following) we can avoid this difficulty by 

denominating all bets in tickets to a lottery known to be fair. Now this will be ineffective against 

those who deny that the marginal utility of lottery tickets is constant, but that’s a much smaller 

class than those who deny Addition applies to degrees of belief. The retrade error orthodox Dutch 
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Book arguments make is sufficient to dispose of them, so this mistake of Maher’s is of little 

consequence. 

A typical ‘depragmatised’ Dutch Book argument is the one in Christensen (1996). He does not 

believe that an agent who’s degree of belief in p is x should be prepared to buy a p-bet for x 

dollars. However, he does say that the agent should “evaluate such [trades] as fair” (Christensen 

1996: 456). So degrees of belief may ‘sanction’ (his term) certain odds even if the agent does not 

desire to accept these sanctioned bets. Now making the safe enough assumption that degrees of 

belief that sanction trades which lead to sure loss are defective he concludes that degrees of belief 

which do not satisfy the probability calculus are defective. As Maher (1997: 301-3) points out, 

the argument so far doesn’t get the conclusion Christensen wants. Indeed for some simple Shafer 

functions which are not probability functions no sure-loss trades will be sanctioned. To get 

Christensen’s conclusion, we need the extra premise that if two trades are sanctioned their sum is 

sanctioned. But given the definition of ‘sanction’ this just is the premise that degrees of belief 

must satisfy Addition. So the argument is question-begging against the writer who denies 

Addition. Maher shows that similar problems beset the arguments in Howson and Urbach (1989) 

and Hellman (1997). 

The alternative Maher supports is based around ‘representation theorems’. A similar approach is 

taken by Kaplan; I’ll focus on Maher simply because the issues that arise are exactly the same. 

The basic idea is that it is a requirement on the coherence of an agent’s preferences that there exist 

a probability function and a set of utility functions equivalent up to affine transformation such 

that the agent prefers gamble f to g iff the expected utility of f given the probability function and 

any of the utility functions is greater than that of g. The probability function will give us the 

agent’s degrees of belief in all propositions. Strictly Maher does not quite believe this, the 

argument requires that preferences be complete, and Maher does not think this is plausible. If we 

drop that assumption we get the conclusion that the agent’s degrees of belief should be represented 
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by sets of probability functions, not a single probability function, as has been urged here. 

However, for convenience he assumes first that completeness holds, and I’ll follow this lead. 

Nothing pertaining to the success or otherwise of the argument turns on this point. 

There are a few immediate problems with this approach. Maher needs to assume that if an agent 

has a higher degree of belief in p than in q they will prefer a p-bet to a q-bet. The retrade problem 

could arise here, but maybe we can stipulate that retrade is barred and avoid that problem. For the 

sake of the argument I’ll accept that. The bigger problem is that when it is unlikely that we will 

ever see p or ¬p confirmed we may well prefer a q-bet to a p-bet even if we have a higher degree 

of belief in p .  I would prefer a bet on the Yankees winning the next World Series to a bet on 

Oswald being Kennedy’s assassin, even though I have a higher degree of belief in Oswald’s guilt 

than the Yankees’s success, because betting on the Yankees gives me some chance of getting a 

payout. This point is one of the motivations for the intuitionist approach to probability developed 

in Chapter 8. 

Maher is aware of this point, but his attempt to dispose of it is disastrous. His example is 

comparing a bet on the truth of the theory of evolution, construed as the claim that all life on earth 

is descended from a few species, with betting on its negation (1993: 89). Taking scientists as his 

expert function he asks some biologists which of these bets they would prefer, on the assumption 

that there are extraterrestrials who have been observing earth from its formation and will 

adjudicate on the bet. He is rather happy that they all plump for betting on Darwin. But this is a 

perfectly useless result. The objection was that we can have degrees of belief on unverifiable 

propositions, but our attitudes to bets on these propositions will be quite different to our attitude 

towards bets on verifiable propositions. He has attempted to counter this by simply making the 

problematic proposition verifiable. So the realist who thinks meaning and truth conditions go 

beyond verification conditions will be unsatisfied. And the anti-realist who accepts that 

verification conditions to determine truth conditions is no happier; she will regard the existence 



§Appendix 3C More on Dutch Book Arguments 128 

 

of the extraterrestrials as new evidence. As it happens the evidence will be both evidence for p 

and evidence for ¬p ,  but that isn’t too strange to the intuitionist. So immediately we have a 

problem, although again I’d be prepared to accept for the sake of the argument it can be finessed. 

The major problem for Maher is that his argument is just as question-begging as the Dutch Book 

arguments he criticises, though in a more subtle and interesting way. For Maher’s argument to 

work we have to accept some constraints on preferences, such as Transitivity. The argument is 

only as strong as the argument for these constraints. He has nine axioms which must be justified 

in some way. The most interesting is Independence, which he construes as follows. D is in our 

language a set of gambles and X a set of propositions, f £ g means the agent either prefers g to f 

or is indifferent between them, f º g means that f and g are exactly the same gamble, they have 

the same payouts in all possible worlds, and f º g on A means that on all possible worlds in which 

A, f and g have the same payouts. 

For all f, f ´, g, g´ Î D and A Î X, if f º f ´ on A, g º g´ on A, f º g on 

¬A, f ´ º g´ on ¬A and f £ g then f ´ £ g´ (Maher 1993: 190). 

The idea is that if f and g have the same payouts given some proposition, say A, varying that 

payout cannot make us change our preference between f and g. The most famous examples where 

intuition says this may be violated are the Allais and Ellsburg ‘paradoxes’. Since uncertainty plays 

a larger role in it, I’ll briefly sketch the Ellsburg paradox. An urn contains 90 balls. Thirty of these 

are yellow, and remainder are either black or red in unknown proportion. The payouts for the four 

gambles in question are given in this table. 
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Red Black Yellow 

f 
$1 0 0 

g 
0 0 $1 

f ´ 
$1 $1 0 

g´ 
0 $1 $1 

Many subjects prefer g to f, since they know the chance of a yellow ball being drawn but not that 

of a red ball, but prefer f ´ to g´ since they know the chance of a red or black ball being drawn but 

not that of a black or yellow ball. With these preferences, and setting A to ‘A black ball is not 

drawn’ we can see this violates Maher’s independence axiom. No objection yet, many people are 

just irrational. The real problem arises with Maher’s argument that people who choose in this way 

are irrational. The following two choice trees set out two ‘tree form’ versions of the choices facing 

these subjects. 

The left-hand tree represents the choice between f and g. The subject is told that if a black ball is 

drawn they will receive nothing, but if it is not drawn they will have a choice between betting on 

red and betting on yellow. So far we have a standard enough dynamic choice problem. Maher 

proposes to make it synchronic by requiring that subjects specify in advance what they would do 

if they reached the square, that is if a black ball is not drawn. This, he claims, makes the situation 
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exactly as if the agent was choosing between f and g. Now the right-hand tree is the same as the 

left-hand tree in all respects but one. If a black ball is drawn the agent receives $1, not nothing. 

But the only choice the agent has to make is exactly the same as in the left-hand tree, so they 

ought make the same choice. We can concede to Maher here that it would be irrational to specify, 

in advance, a preference for g over f in the left-hand tree and for f ´ over g in the right-hand tree. 

This is, however, insufficient for his conclusion. 

The problem lies in his assumption that “it seems uncontroversial that the consequences a person 

values are not changed by representing the options in a tabular or tree form” (Maher 1993: 71). 

As Seidenfeld (1994) makes clear, this is exactly what is controversial in these circumstances. 

Indeed this premise, call it Reduction, is expressly denied by a number of heterodox decision 

theorists, and by writers who deny Addition on the occasions they talk about decision theory. 

There is a good reason for this. Let B, R and Y be the propositions that a black, red and yellow 

ball respectively is drawn. Many writers will hold that Bel(B Ú R) may be greater than 

Bel(B) + Bel(R). When evaluating the worth of choosing f ´ in the original, tabular, it seems 

plausible that it is Bel(B Ú R) that matters, not Bel(B) + Bel(R). However, in the tree form problem 

all that matters to f ´ is Bel(B), for the possibility that we won’t need to choose, and Bel(R), for 

the possibility that we do. Strictly Bel¬B(R) · Bel(¬B) seems more relevant, but perhaps that can 

be taken to be Bel(R).  

The point is that Maher has to either assume agents only consider Bel(B) and Bel(R) when 

assessing f ´, not Bel(B Ú R), or that Bel(B Ú R) is some function of Bel(B) and Bel(R) so that we 

can ignore that complication, in his ‘uncontroversial’ assumption. The first option is implausible; 

surely, when comparing f ´ and g´, we just compare Bel(B Ú R) with Bel(B Ú Y). More 

interestingly, I claim that the second is question-begging. Given that virtually everyone agrees 

that in some cases, for example lotteries, degrees of belief should be probability functions, in 

some cases the function which gives us Bel(B Ú R) from Bel(B) and Bel(R) must be addition. 
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Hence he must assume that Bel(B Ú R) = Bel(B) + Bel(R) for the move from tabular to tree form 

to be plausible. But this is just what he was trying to prove, so the argument is question-begging. 

There might be a different argument lurking around here that Maher could fall back upon. He 

might argue that Reduction is so obvious that if this amounts to Addition then Addition too is 

obvious. I suspect this argument has some force with those persuaded by the betting analysis in 

the first place. So we are back where we started, with the plausibility of Maher’s argument 

standing and falling with the betting analysis. Again this is rather pointless from a dialectical 

perspective, since most heterodox theorists reject the betting analysis. Indeed, this thesis is nearly 

unique both in providing a defence of orthodoxy without understanding degrees of belief as 

dispositions to bet, as I’ve done in this chapter, and in providing a heterodox theory both 

motivated and justified by the betting analysis, as I do in chapter 8. 

I ought note in advance that when I get to decision theory in Part two I will accept Reduction. 

However, this assumption plays a quite different role in my argument to that which it plays in 

Maher’s. I already have arguments for Addition, so the close connection between Reduction and 

Addition is a reason for me to accept Reduction, not a reason to suspend judgement, as it is here. 

My decision-theoretic arguments are designed to deduce the consequences of the epistemic 

principles already developed, not, as in Maher, to develop epistemic principles. So what counts 

as question-begging is quite different. 



Chapter 4   

What Probability Is 

4.1 The Probability Relation 

If probability is to be analysed as reasonable degree of belief, then it must be relational. I have 

simply assumed this in previous chapters, but there is a rather simple reason for it. What is 

reasonable to believe depends on what the evidence is. It was reasonable to believe in 1991 that 

George Bush would win the 1991 Presidential election, but not in 1993 to believe that he did. In 

probabilistic language, the reasonable degree of belief in George Bush wins the 1992 Presidential 

election for anyone in 1991 was rather high. However, by 1993 the reasonable degree of belief in 

it became quite low. So consistency demands that probability sentences are also relational in some 

way. They don’t necessarily have to refer directly to the hypothesis whose probability is in 

question and the evidence. The evidence can be, and often is, referred to by rather circuitous paths. 

First, it is more common to refer to a rule for determining the evidence than the evidence itself. 

Secondly, that reference is itself often implicit and determined by context. But a reference to 

evidence will always be there, as both Keynes and Carnap were careful to point out. 

The fact that probability1 [=probability] is relative to given evidence 

and that therefore a complete statement of probability1 must contain a 

reference to the evidence is very important. Keynes was the first to 

emphasise this relativity. The omission of any reference to evidence is 

often harmless if the elliptical nature of the statement was clearly 

recognised. However, this omission was the general custom with earlier 

authors, and it often caused lack of clarity (Carnap 1950: 31, italics in 

original). 

Carnap thought he needed to distinguish two types of probability, one of which he refers to in this 

quote as probability1. This is part of the evidence that probability sentences do contain hidden 
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references to evidence. Carnap thought that the term ‘probability’ was systematically ambiguous, 

and generations of theorists have agreed with him. If probability sentences are read as absolute 

this ambiguity becomes inexplicable, as indeed Carnap thought it was. However, once it is noted 

that they contain hidden references apparent ambiguity can be explained away as changes in 

hidden references. But to see this some background is needed. 

4.1.1 The Relata Are Propositions 

If probability is a relation, what are the relata? Carnap held that they were sentences. I think it 

better to take the relata to be propositions. There are two reasons for this; basically the two 

objections that I made to the syntactic nature of Carnap’s theory in section 1.7. The first, which I 

won’t recount, is that syntax seems little guide to probability in cases where we have doubts about 

the projectability of the predicates being used. The second, which I said very little about there, is 

that often we can’t put our evidence in sentential form. 

If we take evidence to be sentential, we have to buy into arguments about the theory-dependence 

of language and about whether or not we can construct an observation language. In particular, it 

seems that we might be committing ourselves to being on the losing side of these arguments. So 

I borrow a technique from Lewis (1996) in order to construct a unique proposition from our sense 

data. Propositions are simply sets of possible worlds. Proposition p is just the set of worlds in 

which p .  For any possible world w, let w be in p iff w is consistent with all our sense data, over 

our history. We might for some purposes want p to include all worlds which are consistent with 

our current internal states. This would allow us to, for example, give a non-zero probability to the 

proposition that the world was created two seconds ago with all our memories hard-wired into us. 

However, I’ll assume that Lewis’s definition of evidence is generally correct, and that our 

sensations of yesterday are part of our evidence. Now p is clearly a proposition, though it may not 

be clear which proposition it is. This may be due to some vagueness about what qualifies as sense 

data. I am thinking here particularly of phenomena such as blind-sight which might make us think 



§4.1 The Probability Relation 134 

 

that it is a vague matter whether a given world is consistent with a subject’s sense data or not. But 

I have avoided the problem of there being no sentence in any particular language which accurately 

captures all and only our evidence. That such an evidence sentence can’t be given counts against 

taking the relata to be sentences; that I can give an evidence proposition counts for taking the 

relata to be propositions. 

4.1.2 Chance 

Given this definition of probability in terms of a relation between two propositions, we can define 

some related notions, such as objective chance. Various ‘events’, such as the decay of an atom, 

are often held to have an objective chance of happening. Even given all the initial conditions we 

could not in principle say whether or not the atom will decay, just what its chance of decay is. 

Carnap thought that this required a different probabilistic concept, which he christened 

probability2, and analysed in terms of frequencies. Following Lewis (1980), I call the concept 

‘chance’ and claim that it should be understood in terms of propensities, not frequencies. 

However, unlike Lewis, I think chance can be analysed purely in terms of probability itself, or 

degrees of reasonable belief. The point of this subsection is to note what this analysis is, and to 

deal with a technical issue concerning the tensed nature of chance sentences. Defence of the 

analysis is delayed until section 4.3. 

The fundamental fact known about chance is what Lewis calls the Principal Principle (PP). I have 

implicitly assumed this in previous chapters. The PP says that, if an agent knows that the chance 

of p at some time is x and has no other ‘admissible’ information, then the only reasonable degree 

of belief they can have in p is x. Admissible information is, in Lewis’s terms, “information whose 

impact on credence about outcomes comes entirely by way of credence about the chances of those 

outcomes.”  (Lewis 1980: 92) What is admissible is time-dependent. That the suspect fired the 

gun at midday is admissible information at midday, but not at 11am. For my purposes, ‘purely 

historical’ information is always admissible at t. So, at t, if an agent knows the chance of p is x 
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and knows nothing that is strictly about the future, they have no working crystal balls or such 

devices, then the only reasonable degree of belief in p is x. 

Lewis notes one possible analysis of chance that could be derived from the PP, but for reasons 

we’ll look at in later sections denies that it works. The analysis is derived from how we cash out 

‘purely historical’ information. As is well known, it is very hard to cash out the intuitive notion 

of the time that a sentence is about from purely syntactic features of the sentence, such as what 

times are mentioned. Again, a move to propositions saves the day. A proposition is purely 

historical iff it is true in all possible worlds which are an exact match for this world to the present 

time. The history of the world proposition for the present is the conjunction of all such 

propositions. More generally, the history of the world proposition for world w at t is the set of all 

possible worlds which are an exact match for w to time t. Call this proposition Hw, t. So as a first 

approximation, the chance of p at t in w is the probability of p given Hw, t. 

In simpler terms, chance is probability (i.e. reasonable degree of belief) given total history. 

However, while that is a good enough analysis for ‘The chance of p at t is such-and-such’, for the 

apparently simpler sentence ‘The chance of p is such-and-such’, we need a more complicated 

analysis. The following approach might be plausible. If the time is now t, the proposition The 

chance of p is r is the set of worlds w such that the probability of p given the history of w to t is 

r. The problem with this approach is that it makes knowing what time it is a prerequisite for 

knowing the chance of p .  Let w1 be a possible world such that the probability of p given the 

history of w1 to t1, which is some time other than t, is r, but which is also such that the probability 

of p given the history of w1 to t is not r. Then, on this hypothesis, an agent who knows that the 

chance of p is r will know that w1 is not the actual world. This seems a bit strong. An agent who 

doesn’t know whether the time is t or t1 will presumably not have enough information to know 

she is not in w1. 
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So we have to complicate the analysis of chance sentences by using a device also due to Lewis, 

in this case to his (1979b). The chance of p is r is a proposition de nunc. Put relatively formally, 

we can say that the possibility space of which this proposition is a subset is not the set of possible 

worlds but rather the set of tensed possible worlds. A tensed possible world is just a pair of a 

world and a time. The time can be thought of as ‘the time it is’ in that tensed possible world. Now 

when an agent knows what time it is, this knowledge doesn’t allow them to say that certain 

possible worlds are not actual (except perhaps some short-lived worlds). Rather, it allows them 

to rule out all tensed possible worlds except those where the time is what it actually is. Knowing 

The chance of p is r allows an agent to rule out all tensed possible worlds <w´, t´> except those 

where the probability of p given the history of w´ to t´ is r. In our above example, the agent 

couldn’t rule out the possibility that the actual tensed possible world was <w1, t1>, and hence 

couldn’t rule out that w1 was the actual world, as required. 

4.2 Necessitarian Probability 

I find internalism about justification highly plausible. It would be odd indeed if what was 

reasonable for me to believe was unreasonable for a brain in a vat with my sense data, or if what 

was reasonable for the vat-ensconced brain was unreasonable for me. Obviously, what I know 

and what the brain knows could be different; the requirement that what is known is true entails 

that. But the moral of the considerations about what would be reasonable is, I think, that what it 

is reasonable to believe, what degrees of belief are reasonable in a proposition, is determined 

entirely by internally available data. Knowing someone’s evidence determines entirely what it is 

and isn’t reasonable for them to believe. 

There is a larger debate about internalism which I could buy into. But that would be a different 

dissertation. Rather, I’ll let the brain-in-vat considerations flagged in the previous paragraph be 

enough grounds to take internalism more or less for granted. Now, if we’re internalists, we get a 

curious result. Internalism says that what it is reasonable to believe supervenes on evidence. This 
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is a modal or interworld supervenience claim. If it is reasonable in world w to believe p to degree 

d on evidence e, then it must be that it is reasonable in w* to believe p to degree d on evidence e. 

No variation in reasonable degree of belief without variation in evidence. So, continuing our 

example, that a person’s entire evidence is e entails that it is reasonable for them to believe p to 

degree d. And the converse claims also carry through. Had it been unreasonable in w to believe p 

to degree d on evidence e, that would have meant that a person’s entire evidence being e entails 

that it is unreasonable for that person to believe p to degree d. 

To put the same points more dramatically, probability statements are, in their complete form, 

necessary1. If the probability of p given q is less than 0.5, then it must be less than 0.5. This might 

seem like a refutation of our theory. Surely, the objection goes, statements like ‘The Yankees will 

probably win the next World Series’ are empirical. Call this sentence S.  S is false in the actual 

world, but we could imagine worlds in which it is true (or conversely if you like the Yankees’ 

chances). The objection misses an important point. Sentences like S are, as Carnap noted, 

elliptical. S says that the probability of the Yankees winning the next World Series is more than 

0.5, relative to some contextually determined evidence. I think the most natural is the history 

proposition of the world to the present, but it might be something else. I’ll look at this question in 

more detail in the next section. Now it is an empirical matter which proposition that is, and with 

different histories substituted for the elliptical evidence we might get different truth values. But 

the full sentence, with the elliptical clauses cashed out the way they actually are, S becomes 

necessary. 

 

1 Might they even be analytic? Probably not. I argue in section 4.4, that according to a plausible kind of 

relativism about what is reasonable, probability sentences are necessary a posteriori. Even if probability 

sentences are a priori, it requires a rather liberal definition of ‘analytic’ to count these as analytic. 
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Many people think that probability could not be a necessary relation (i.e. that probability 

sentences are either necessarily true or necessarily false), so it is instructive to see how little I 

have used to get this far. The premises are just three. 

1. Probability should be analysed as reasonable degree of belief 

2. Internalism about reasonable belief: what it is reasonable to believe supervenes on 

evidence 

3. Whenever all A-worlds are B-worlds, A entails B. 

Anyone who wants to challenge the notion of necessary probability has to challenge one of these 

premises or the inference from these to the theory that probability is a necessary relation. And I 

hope the above has convinced the reader that this would be a non-trivial exercise. None of this 

should be taken as a recantation of my opposition to logical analyses of probability as in Carnap. 

We can, and do, say that some degrees of belief are unreasonable given certain evidence without 

saying there is a distinctive syntactic relation between the hypothesis and the evidence for it. Just 

because this relation holds in all possible worlds if it holds at all, we aren’t required to assume it 

holds by virtue of syntax. 

4.3 Ambiguity and Relations 

There is one obvious objection to the theory outlined here. I have said that probability is 

essentially relational. However, probability sentences seem ‘absolute’ in some sense. We can say, 

sensibly, that it is probable that Oswald killed JFK, or that the Yankees will win the next World 

Series. Here is seems probability is being applied to single propositions, not pairs of propositions. 

This objection crops up recurrently in the literature, the most recent manifestation being Lowe 

(1996). He thinks the only way of getting around the problem is to understand these absolute 

probabilities as probability conditional on a tautology. 



§4.3 Ambiguity and Relations 139 

 

If that were the only available move the theory would be in difficulty. However, there are better 

moves available. I hold that in all cases where no evidence is explicitly mentioned (and indeed in 

many where it is) there is an implicit reference to evidence. We can regard the sentence as 

elliptical for a sentence in which the reference to all the evidence is explicit. To make this move 

we don’t need any particularly extravagant linguistic tools. Which evidence is being referred to 

will usually be determined by what Lewis calls ‘conversational score’, Quinean principles of 

charity, and perhaps some general conventions. I’ll make some speculations as to the nature of 

these conventions below. It would be nice to know precisely what the conventions are, but for the 

defence against this objection I only need the plausible hypothesis that there are such conventions. 

To note that the tools I am using are not ‘extravagant’, we can see that they are needed to explain 

quantifiers in ordinary language. If we took the domain of any quantifier to be as large as possible, 

then anyone saying “All glasses are empty” would speak falsely. After all there are always some 

glasses somewhere in the universe which are not empty. However, this can sometimes be said 

truly, and the best explanation of that is that the domain of ‘all’ is implicitly restricted to nearby 

things, or to things under consideration. Generally the scope of quantifiers, the set of things ‘under 

consideration’ will be determined by conversational score. However, sometimes that set will 

expand because of new items which are drawn to the attention of speakers. Now we can either 

deal with this by developing more complicated rules for conversational scorekeeping, which is 

what Lewis does, or we can have a less restrictive context and be more reliant on charity 

considerations. Either way, whatever tools we need to explain quantifiers will be sufficient to 

explain the elliptical references that I need, which eliminates, I hope, one potential implausibility. 

We can turn this defence against Lowe’s objection into an advantage of the theory. Since Carnap 

(1945), many writers have held that ‘probability’ is ambiguous, referring sometimes to an 

epistemic concept (either objective, as here, or subjective, as in some other writers) and sometimes 

to objective chance. I can explain the data they rely on by means of the elliptical nature of 
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probability sentences. In the next sub-section I argue that reducing a brute ambiguity, as in 

Carnap, to a mere ellipticality is a theoretical advantage. In the following sub-section I argue that 

the ellipticality theory does better than the ambiguity theory at explaining three general features 

of our usage of probability. Finally I make some speculations about the conventions governing 

implicit references to evidence. 

4.3.1 Ambiguity and Ellipticality 

I need to make clearly my distinction between ambiguous and elliptical terms. The difference is 

best brought out by examples. Bank is clearly ambiguous in that it might refer either to a financial 

institution or a riverside. On the other hand, a term like citizen is what I’ll call elliptical. In various 

contexts, uttering Lisa is a citizen might mean that she’s a citizen of Australia, or Britain, or 

France, or wherever. Which of these is referred to will depend on the conversational score. We 

can always specify which proposition we were referring to by being explicit about what citizen 

meant, eg by uttering Lisa is a French citizen. So, like bank, citizen can refer to different things 

on different occasions. However, unlike bank, all the possible referents of citizen are closely 

related, they have a large common meaning. Indeed, for some purposes we might say that this 

common meaning is the meaning of citizen. It is clear that there is no particular relation between 

financial institutions and river sides that grounds their being referred to by the same word. They 

are not, in the phrase I have used above, different facets of the same concept. So while both bank 

and citizen are ambiguous in a weak sense, they both can mean different things in different 

contexts, in a stronger sense bank is ambiguous and citizen is merely elliptical. 

There are many important terms in philosophy which are elliptical. Definite descriptions like the 

dog will generally be elliptical. Focus on definite descriptions like the King of France can make 

us forget that most of the times we use a definite description we don’t assume there is at most one 

possible referent, but merely a unique contextually relevant referent. Modal terms like possible 

are elliptical; indeed I suspect the ellipticity of possible and probable is linked. More 
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contentiously, I suspect that conditionals are elliptical; this would explain the strong connections 

between different types of conditional (eg indicative and subjunctive) without denying that in a 

weak sense the conditional form can take different meanings. Even our simplest connective and 

is, I think, elliptical. In one sense it carries Gricean implicatures, and in another it doesn’t2. But 

I’m getting away from my main topic. 

Why is reducing an ambiguity to an ellipticality an advantage? There are two closely related 

reasons. The first is a simple appeal to Occam’s Razor. If probability is elliptical there is only one 

distinct ‘thing’ we have to appeal to in explaining its usage, i.e. its meaning. If it is ambiguous 

we have to appeal to each of its different meanings. The fewer abstract theoretical entities the 

better, so the elliptical theory wins. But Occam’s Razor is perhaps dubious, particularly when 

used to argue for quantitative parsimony, not qualitative parsimony.3 Since I am not disposing of 

meanings generally, just reducing the number of them needed, perhaps the appeal is misplaced. 

The second is that the ambiguity theorist has, as I’ll stress below, some explaining to do. If the 

different meanings of probability are so distinct, why does English use the same word for them? 

Indeed, why is this replicated throughout other natural languages? We have invented technical 

 

2 To see what I was getting at, compare the following two utterances. 

 Clark Kent went into the phone booth and Superman came out. 

 In the weekend football results, Essendon beat Sydney and Brisbane beat Carlton. 

The first carries an implication of temporal ordering, but to my mind at least the second does not. It isn’t 

that the implication is cancelled in the second case, it just wasn’t there to begin with. If that’s right we have 

to consider the tricky question of what makes maxims applicable. 

 Even if I’m wrong here, ‘and’ might be elliptical in another sense. Generally ‘and’ carries an implication 

of order. But whether this is temporal order, or order of importance, or some other order will be determined 

by the context. Given the way I’ve set up elliptical terms, this is enough to make it elliptical. 

 The first example above is used by Saul (1997) to make a somewhat different point about implicature. 

3 Though Nolan (1997) has argued that quantitative, and not just qualitative, parsimony is a theoretical 

desideratum. 
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terms like chance and credence for the different meanings, and if the natural language usage of 

these terms was enough like their technical usage, perhaps the ambiguity theorist would have the 

start of an explanation. However, this is clearly not the case; ‘credible’ is undeniably epistemic, 

but we can use ‘chance’ in ordinary English to refer to epistemic probability, not what are called 

in theory objective chances. As I’ll show in the next sub-section, when the ambiguity theorist tries 

to make this explanation by using new principles, like the PP, the explanatory burden simply 

moves, so they have to find a plausible explanation for that principle. 

What is the sense in which elliptical terms have a single meaning? As noted above, we can say 

that meaning is the common part between the possible referents. Alternatively, we can say that 

the meaning for elliptical terms is, like the meaning of indexical terms, just the rule for generating 

a referent from the context. It is in this sense that I want to say that probability has just one 

meaning, that the probability of p given q is the reasonable degree of belief in p given q. More 

generally, the probability of p is the reasonable degree of belief in p on evidence q for some 

contextually specified evidence q. 

4.3.2 Problems for the Ambiguity Thesis 

I claimed above that chance could be reduced to probability given total history. I don’t have a 

knock-down argument for this reduction. But it seems superior to the competition. In particular it 

seems superior to the ambiguity thesis: the claim that there are such concepts as epistemic and 

aleatory probability, and these are ontologically unrelated. As is standard, from now on I’ll refer 

to these concepts as chance and credence. The credence of p for an agent is, on my theory, the 

probability of p given the agent’s evidence proposition. The ambiguity thesis is rarely defended, 

but it is often assumed4, which makes it harder to argue against. Such a thesis can’t, I hold, explain 

the following three facts: 

 

4 People who endorse it include Carnap (1945), Russell (1948), Hacking (1975), Shafer (1976) and Gillies 
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• The one word probability is used to refer to both chance and credence. 

• Chance and credence have the same calculus. 

• Knowledge of chances constrains credences. 

Because of the reduction of chance and credence to the single concept I can explain each of these. 

Ambiguity theorists can, I suspect, explain none of them. Hence there is a strong inference to the 

best explanation in favour of my position. The rest of this sub-section is devoted to setting out 

more precisely what each of these three explicanda are, why my approach can explain them and 

why ambiguity theorists cannot. 

The first is in effect already discussed. I only bring it up to note the general rule that the burden 

of proof falls on those wanting to establish an ambiguity. It could be argued here that it was just 

ignorance on the part of the populace which has led to this confusion between two concepts being 

named with the one word. Alternatively an historical explanation might shed light on why these 

two concepts came to share a name. In this context Hacking’s book on the history of probability 

(1975) might be important. As many ambiguity theorists credit the aleatory / epistemic, or chance 

/ credence, distinction to this book, perhaps something like this is in mind. My explanation for 

the apparent ambiguity is that I argue probability is elliptical, as above. When the elliptical 

evidence is the agent’s evidence proposition probability has an epistemic meaning, when it is the 

history of the world proposition, probability has an aleatory meaning. 

The second refers to the fact that for most theorists, both chance and credence obey the classical 

probability calculus. Some ambiguity theorists have a clear defence here, for they believe that 

chance and credence follow different rules. For example, Shafer (1976) believes that classical 

 

(1991). Gillies believes it is a consequence of taking probability to mean whatever it would be most 

scientifically useful to mean. The influence of Hacking’s argument that aleatory and epistemic probability 

are clearly distinct concepts seems quite widespread in the social sciences. 
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probability logic is appropriate for chances, but not for credence. He argues that the addition 

principle, that when A and B are exclusive Pr(A) + Pr(B) = Pr(A Ú B) doesn’t hold when ‘Pr’ is 

interpreted as credence. So again some ambiguity theorists have an escape. However, those 

theorists who accept that the calculi for the two are the same have, I think, some explaining to do. 

That chance and credence should obey the same calculus is explained on my picture by reducing 

them each to a single concept. 

The third refers to the PP, which makes an epistemological link between chance and credence. I 

can’t find a single argument in the literature for why this link should hold on an ambiguity view, 

even among those who hold onto the ambiguity position and accept the PP. There is an 

explanation for the PP in Bigelow and Pargetter (1990: 154-159), but it doesn’t appear to account 

for the fact that chance statements are tensed, so the explanation here will be different. In any 

case, they take it as a consequence of there being an explanation that the different probabilistic 

concepts we use are, in my terms, different facets of the same concept. 

The explanation on my account of the PP is a bit roundabout, but I hope interesting. There is an 

epistemological principle going back to Locke saying that we should use all the evidence at our 

disposal. In the terms of my theory of probability, our degree of belief in p should be determined 

by the probability of p given all our evidence rather than some portion of it. I’ll call this Locke’s 

Principle. Occasionally, critics of relational analyses of probability such as the one I’m defending 

say that no explanation of Locke’s Principle can be given by holders of that analysis. This 

criticism can be found in Ayer (1957)5. I will first show how Locke’s Principle and my analysis 

of chance explains the PP, and then show how the analysis of chance can help explain Locke’s 

Principle. 

 

5 A somewhat different, but I think also successful, reply to Ayer is found in Chisholm (1989). 
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By my analysis of chance, if we know that the chance of p is n, then we know that if we had all 

the possible evidence, ie all the evidence available to the present, we ought believe p to degree n. 

By Locke’s Principle, we ought act on the maximal available evidence set. In other words, it is 

rationally preferable to have larger evidence sets. The degree of belief which it is rational to 

entertain on a larger evidence set is preferable to one which is rational to entertain on a smaller 

evidence set. But when we know the chance we know the degree of belief we would have on the 

largest possible evidence set, the history of the world to the present. So my analysis of chance and 

Locke’s Principle entail the PP. Hence my analysis can explain the plausibility of the PP. I 

suspect that an ambiguity theory will have a much harder task making such an explanation. 

The analysis of chance also goes some of the way towards making sense of Locke’s Principle. 

When we are considering propositions about the future, e.g. Blue Hands will win the Derby, which 

we’ll call p ,  we have several competing aims. Arguably, it would be ideal to believe the 

proposition if it’s true and disbelieve it if it’s false. Ramsey (1926: 194) for example, says this is 

the ideal of belief. However, in some circumstances this will be irrational. Even if Blue Hands 

will go on to win the Derby it would be irrational to be overly confident of this before the Derby 

is run. Part of the reason for this is that being rational is to have rational habits, and a habit which 

led to overconfidence in Blue Hands’s chances will most likely lead to errors elsewhere. 

Aiming to have a true belief about who will win the Derby is not our only aim. We also aim to 

have justified beliefs and to have our degrees of belief match the chances. The latter requirement 

is a formalisation of the desiderata noted in the previous paragraph that we be neither 

overconfident nor underconfident about any particular horse. If we have less than full information, 

the justified degree of belief in p on our evidence and the chance of p may diverge. However, if 

we knew everything about the history of the world and we were reasonable in our compilation of 

that evidence, by definition our degree of belief in p would be the chance that p .  The motivation 

for Locke’s Principle is that as we get more evidence, as our evidence more closely approximates 
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the history of the world proposition, the reasonable degree of belief in p will be more likely to be 

close to the chance that p .  This last step is something of an assumption, so I can’t take it as a 

demonstration that Locke’s Principle is worthwhile. However, it seems a plausible enough 

assumption to at least motivate Locke’s Principle, and respond to those critics who argue that on 

this analysis of probability there is no motivation for collecting more evidence. 

This section has argued for, in effect, a reduction of chance and reasonable credence to a single 

concept of probability. This entails a rejection of the popular ambiguity theory, although I accept 

that probability is weakly ambiguous or what I call elliptical. The principle argument against the 

ambiguity theory is that it is forced to say that certain facts which are easily explained under this 

analysis are giant coincidences, so it is a long way from being the best explanation. 

As mentioned above, the analysis of chance defended here is due to Lewis, though he didn’t 

accept it because it has a consequence which he found unacceptable. In response, I’ll present a 

short argument as to why this consequence oughtn’t be thought of as unduly odd. The problem is 

that we have an intuitive idea that there is, in most cases, a range of permissible credences. But if 

chance is analysed this way, and chances are numerical, it seems that all reasonable belief 

functions must converge in many circumstances. In particular, whenever any reasonable belief 

function is conditionalised on a history proposition the output must be a single function. (That is, 

the result of conditionalising any reasonable belief function on a history proposition will be the 

same). Now there is a dilemma; do I give up on chances being numerical, or do I give up the 

intuition that there are a variety of different reasonable degrees of belief. It is never said that we 

have to give up the idea that there are several reasonable belief functions. (A reasonable belief 

function for Lewis takes evidence propositions as inputs and has numerical reasonable degrees of 

belief as outputs). It’s just that these disparate functions must have the same result under 

conditionalisation.  
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First, note that to the realist about chances, this will be no substantial problem. Such a person will 

think the history proposition of the world includes facts about chances, so the agent who knows 

the complete history of the world will know the chance of all events that have chances. Since we 

aim to have degrees of belief match chances, at least when nothing better is available, there is no 

reason why such an agent should have any degree of belief in p other than its chance. But the 

agent was arbitrary, so all such agent’s should have the same degree of belief. Lewis is no realist 

about chances, so this is no good as an ad hominen, but it helps frame the debate. 

In particular, the qualification in the above, restricting attention to those events that have chances, 

is important. Anticipating a little the results of chapter 5, it seems plausible that sometimes p has 

no chance, or perhaps more precisely, the chance of p is not numerical. It is simply an assumption 

in Lewis that chances are numerical, and without that assumption he doesn’t have the conclusion 

that any two people who know the history proposition must have the same numerical degree of 

belief in p .  Again anticipating a little, I argue that when the probability of p given q is non-

numerical, i.e. is vague over [x, y] where x < y, then an agent can reasonably believe p to any 

degree in [x, y].6 And when that is allowed, I don’t get the really paradoxical results that make 

Lewis give up this analysis. 

On this hypothesis, enough purely historical information would suffice 

to tell a reasonable believer whether the half-life of radon is 3.825 days 

or 3.852. What is more: enough purely historical information about any 

initial segment of the universe, however short, would settle the half-life! 

(1986: 131, italics in original) 

It mightn’t be immediately obvious why any short period of historical information would settle 

the half-life. After all, the half-life of an element of radon now depends on the history of the world 

 

6 Or more precisely have a credence in p vague over any sub-interval of [x, y]. 
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until the present. However, each of the possible histories had a certain chance of coming about, 

so we can calculate the chance of a radon element decaying in a given time as the sum across all 

possible histories of the chance of that history times the chance of radon decaying in that time 

given that history. Lewis is assuming a rather strong form of additivity here, surely there are at 

least uncountably many worlds in question, but I’ll let that pass. My point is that there is no 

justification for saying that the chance of each of these histories is numerical. If Lewis doesn’t 

have this, he won’t be able to deduce from initial segments the precise half-life of radon. 

If that is unpersuasive, there is another more defensive response to Lewis. The intuition he relies 

on about the reasonableness of divergence of opinion is developed from our practice in everyday 

life. Now, in everyday life, no one has knowledge of the complete history of the world. Arguably, 

in such circumstances, some intuitions about epistemic practices in our world are inapplicable. 

That is, the cost of accepting a theory in conflict with these intuitions is not as high as it would 

be were the intuitions about matters with which we have greater acquaintance. Even if one doesn’t 

accept my argument above as to why this is so, Lewis’s implicit premise that the intuition is 

applicable is certainly questionable, and hence he has not knocked out the analysis of chance 

offered. 

4.3.3 The Elliptical Referents 

I have argued so far that there is an elliptical reference to evidence in every probability sentence. 

I ought to say something about the content of these references in everyday uses of ‘probability’. 

On my theory this will be an empirical question, so the conclusions of this section are necessarily 

more speculative than the rest of this dissertation. However, I am confident the answers offered 

here is at least approximately correct. 

My claim is that the implicit evidence in “The probability of p is x” or variants on it, is evidence 

which is either available to the speaker, or common knowledge, when p is about the past or present 
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and the total history of the world when p is about the future. There are two rules: future-directed 

probability sentences are talking about chances and other probability sentences about reasonable 

credences given publically available evidence. There may be exceptions to these two rules, but in 

general they are correct. 

The original evidence can be determined by looking at the impact of new evidence, particularly 

new evidence which is conclusive that p .  If the new evidence, call it e, shows the original 

probability sentence was incorrect, then e was in the original evidence. If it shows the original 

sentence is now redundant or in some way superseded, then e was not. Part of the difficulty here 

is that telling whether the impact of new evidence is to show the old sentence was incorrect or 

merely redundant is not straightforward, and in particular is heavily theory-laden. 

When p is about the past, my intuition is that someone can speak truly in ignorance of genuinely 

new evidence that will come out in the future7, but not in ignorance of evidence that is, in the 

context of utterance, taken to be widely known. For example, I think the jurors in the second O. 

J. Simpson trial, who in effect said that it was more probable than not that Simpson killed his 

wife, spoke truly. And I don’t think it would show they spoke falsely if new evidence completely 

exonerating Simpson appeared tomorrow. However, I don’t think that someone who says the 

probability that Simpson killed his wife is extremely low (or for that matter extremely high) would 

be speaking truly, even if all the evidence they had pointed in that direction. One can’t make p 

improbable by deliberately avoiding all evidence pointing to p .  Evidence available to the speaker 

is included in the implicit evidence in order to prevent it ever being proper to say “p but it is 

improbable that p”. 

It is clear from the Simpson case that the relevant evidence cannot be the history of the world. If 

that were so it would be false to say “The probability that Simpson killed his wife is between x 

 

7 And not just by accident. 
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and y” unless x = 0 or y = 1. My intuition is that there are true sentences of that form. So 

probability sentences about past events are not chance sentences. However, it seems that for future 

directed sentences the situation is somewhat different. Someone who says “It is probable that Blue 

Poles will win the 4.15” in between the time that Blue Poles’s trainer has decided to remove him 

from the race and the time this is publically announced to my mind speaks falsely. What they say 

is reasonable, but wrong. And a similar intuition carries across to all other future-directed 

probability sentences. In the earlier case we couldn’t include all the evidence available in theory, 

the history of the world, because that would make all probabilities equal 0 or 1. Here that problem 

is not present, so there is nothing to challenge the intuition that the truth of probability sentences, 

whatever their reasonableness, should be determined by the widest possible evidence set. 

4.4 Isms 

4.4.1 Absolutism, Relationism, Relativism and Objective and Subjective 

All through the preceding material the questions of what makes a credence reasonable, and how 

we know one is reasonable, have been left open. As I showed in chapter 3, sets of precise 

credences which do not conform to the probability calculus are not reasonable. So, anticipating 

slightly the results of the next chapter, credence distributions should be evaluated for 

reasonableness rather than single credences. So the questions become: where do the reasonable 

distributions come from, and how do we know that they are? To answer these we shall look at the 

question of whether, and to what extent, the set of reasonable distributions can change over 

possible worlds. I will consider primarily the question of whether the reasonable distributions are 

determined by social convention, or whether they are fixed by universal principles. That is, I will 

be looking to see what extent my theory should be relativist or conventionalist. 

First, I’ll define the terms mentioned in the title of this sub-section. Necessitarian theories are 

occasionally called subjectivist or even relativist simply because what is reasonable is relative to 
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evidence8. If one wants to distinguish the necessitarian approach from one where probability is a 

physical magnitude, as in Popper’s propensity account, this might be useful, but overall it is not 

a useful notation, for reasons stressed in section 1.8. In part it rests on a misconception that the 

probability of p is a function of one’s evidence. This is not the case. The probability of p given q 

can differ from the probability of p given r, and if we are speaking loosely, not referring explicitly 

to our evidence when talking about the probability of p given some evidence, it might seem that 

if our evidence is different the probability of p is different. But the probability of p given q is 

independent of whether or not q is our evidence. For clarity, and because terms like ‘relativist’ 

and ‘subjectivist’ have useful meanings, I’ll refer to the position that probability must be 

conditional as relationism. If I add to this the position, implicit in what’s above, that the set of 

reasonable distributions is the same in all possible situations, I’ll call the position absolutism. 

Relationism is consistent with all the other positions I’ll discuss; indeed, they all imply 

relationism. 

Relativism and conventionalism both say that the set of reasonable distributions is determined in 

some way by social conventions. Conventionalism says that it is entirely a matter of conventions 

what is reasonable. These conventions are mostly implicit, and in part may be determined by 

entrenchment rules in the way Goodman says. Part of the reason that we can infer that probably 

all emeralds are green from the evidence we have is because emeralds and green are well 

entrenched. And entrenchment rules determine conventions of reasonableness. Relativism is like 

conventionalism in saying that the set of reasonable measures is determined entirely by social 

conventions, such as entrenchment rules. However, according to relativism, the conventions 

rigidly determine the set of reasonable distributions. So on a relativist approach, had the 

conventions been different this wouldn’t have affected the probability relation between any two 

propositions. Because relativism uses rigid designation, if we adopt this theory then there will be 

 

8 For example in Popper’s (1933) he refers to Keynes’s theory as a subjectivist theory of probability.  
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some contingent a priori truths. In particular, it will be true a priori, but only contingently, that 

following social conventions as to what is reasonable, as to what constitute reasonable 

distributions, is reasonable. 

The only difference between relativism and conventionalism is in how they deal with 

counterfactuals. And I think relativism deals with them somewhat more appropriately. It sounds 

very implausible to say that what Sally is doing is rational but that it would have been irrational 

had the conventions been different. It isn’t clear that conventionalism is consistent with the 

internalism I have assumed from the start. If I am being conventionalist then I have to say that the 

society relative to which conventions are determined is so small that it impossible to have people 

in different worlds with the same history but different social conventions, else I would have 

allowed that people with the same histories could have different reasonable degrees of belief. 

So the only plausible construal of conventionalism is where the conventions are set in such a way 

that the agent has evidential access to them. Even if I allow this, the conventionalist is still in 

some difficulty, for reasons set out in section 1.7. The basic problem is that conventionalism 

assumes agents have privileged access to what the conventions in their community happen to be. 

It turns out to be always unreasonable to not believe that the conventions are what they happen to 

be. But this is just an empirical matter, so agents should be entitled to make reasonable mistakes 

about this, as about everything else. So the conventionalist position is implausible. 

Relativism is untouched by these attacks, and there are some positive arguments for relativism. 

The main one has already been mentioned. The absolutist is left relying on implausible notions 

like Moorean intuition to ground reasonable beliefs. She can avoid this by saying evidence about 

conventions ought to affect our judgements about other matters, but only at the cost of denying 

some intuitions about what counts as relevant evidence. Alternatively, the absolutist can say that 

our actual practice of making probability judgements is based on convention, but this is not 
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necessarily optimally rational. Other communities could show us we have been too restrictive or 

too permissive in constructing the set of reasonable measures. Presented in this way, absolutism 

absolves itself of the initial implausibility associated with saying that in a strong sense we have 

latched on to the one true probability logic just through the ‘swamp metaphysics’ of our language. 

In conclusion then, I take it that both relativism and absolutism are live possibilities, but 

conventionalism is not. 

Even if we were to adopt relativism, I don’t think we should stop describing the analysis as an 

objective theory of probability. Carnap says his theory is an objective theory because, “if a certain 

probability1 value holds for a certain hypothesis with respect to a certain evidence, then this value 

is entirely independent of what any person may happen to think” (1950, 43). O’Donnell (1989) 

in his discussion of Keynes makes a similar point. Now whether this holds on a relativist view 

depends on what we take him to mean by ‘independent’. At its most natural it means that had 

people thought differently about what is reasonable, this would make no difference to probability 

values. And that is a claim which the relativist can endorse. I think the most natural thing for the 

relativist to say is that probability is an objective relation, but which objective relation it is is 

determined by what conventions are prevalent in the actual world. 

4.4.2 Contextualism and Belief 

In his (1996) Lewis advocates a contextualist account of knowledge. I want to extend that account 

here to reasonable degrees of belief. On Lewis’s picture, an agent knows that p in a certain context 

iff all the contextually relevant possible worlds consistent with the agent’s evidence are p-worlds. 

Probability functions have as their domain a set of subsets of the possible worlds. As Lewis 

stresses, in practice ‘the possible worlds’ should not be taken to include all the possible worlds 

there are, rather just the relevant ones. Propositions all of whose elements are irrelevant will 

simply not be assigned a probability, or in effect receive probability zero. In this way, context can 

affect what counts as a reasonable probability function. If the context is such that p is not a 
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relevant possibility it might be reasonable to, in effect, assign p probability zero, even if this 

would not be reasonable were the context changed so that p were relevant9. 

The contextualist turn makes it possible to defend a theory which has come in for some heavy 

criticism recently. With all this talk about degrees of belief, the reader might be wondering what 

has become of our familiar absolute concept of belief10. One rather obvious answer is to say that 

an agent believes p just when their degree of belief in p is one11. The objection to this from 

devotees of the betting analysis is to say that we can believe p even when we wouldn’t be prepared 

to bet on p at any (finite) odds. This objection is run, for example, by Maher (1993) and Kaplan 

(1996) who both define belief in terms of cognitive utilities12. The problem with this objection is 

that it equivocates over context. One of the ways that a world can become relevant for Lewis is 

that we consider the possibility that it is actual. Now when we are deciding whether to bet on p at 

extremely short odds, it seems pertinent to consider what would happen if ¬p .  Hence at least one 

¬p world is relevant. If there were no ¬p worlds previously relevant then on all reasonable 

probability distributions the probability of p is 1, because probability distributions are normalised 

measures across relevant worlds, hence the agent’s degree of belief in p might be 1 until the idea 

of the bet is raised, at which stage context changes, and perhaps what degrees of belief in p are 

reasonable change. This is related to the possibility of finkish dispositions to bet mentioned earlier 

that plague crude betting analyses of degrees of belief. In sum, on the contextualist story it is 

 

9 As stated this is trivially the case when p is a proposition which is about the context. It is not intended in 

this trivial sense, as I’m sure most readers will have understood. 

10 And for that matter of ‘knowledge’, but that’s too long a story to enter into here. 

11 Although I will use Lewis’s work to defend this answer it is not one that to my knowledge Lewis endorses. 

12 They each accept the bizarre conclusion that an agent can believe p when their degree of belief in p is less 

than 1/2. Given the broadly functionalist methodology driving the betting analysis, I can’t see how they can 

say an epistemic state such that the agent prefers a ¬p-bet to a p-bet could possibly play the functional role 

of a belief that p and hence be a belief that p .  
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consistent that an agent would believe p to degree 1 yet not accept a bet on p at very short odds 

were it to be offered, hence Maher’s and Kaplan’s first objection fails. 

That objection was intended to show that believing p to degree 1 is not necessary to believe p .  It 

has also been argued that it is not sufficient. Let t be the length of time until this tritium atom 

decays. For all x Î R+, Ch(x = t) = 0, so for all x an agent who knows the chances involved will 

believe t is not x. But this is nonsense: if beliefs must be closed under infinite conjunction this 

amounts to the belief that the atom will never decay, and even if they need not be closed under 

infinite conjunction, the particular beliefs seem implausible. Lewis’s response13 is to say that this 

argument makes a rounding error. The chance that x = t is not zero, rather it is a positive 

infinitesimal. Hence the agent’s degree of belief in x = t should be positive, and hence they need 

not believe that t is not x. If we can accept infinitesimal degrees of belief, this will be a perfectly 

acceptable answer. However, for the reasons mentioned at the end of chapter three, I’m not 

convinced these are acceptable. 

So my conclusion here is somewhat hesitant. If infinitesimal degrees of belief are acceptable then 

belief just means degree of belief 1. If they are not then an agent believes p just in case p is true 

at all points in the possibility space over which the probability functions in their representor are 

defined. In that case believing p to degree 1 will be necessary but not sufficient for belief. The 

only objection to this makes two controversial steps. The first is to infer a disposition to bet from 

the agent’s degree of belief. The second is inferring a conditional about the agents actions from 

that disposition. This amounts to assuming the disposition is not finkish. However, we have good 

reasons for thinking that if the agent has the disposition it will be finkish, so this objection fails. 

 

13 In his (1994). 
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4.5 Lewis’s New Principle 

The story about chances above relies heavily on the Principal Principle (PP). Recently, however, 

Lewis has argued that the PP should be modified to take account of what he calls ‘undermining’. 

The PP is replaced with the descriptively entitled ‘New Principle’ (NP). In this section I will 

argue that the existence of undermining should be more of a problem for particular views of 

chance than for the PP, and that there are independent reasons for thinking views of chance that 

permit undermining are flawed. 

To motivate the differences between the principles we need to say a little more about the role of 

‘admissible’ evidence in the PP. Obviously, just knowing that the chance of p at some time t is x 

doesn’t entail that the only reasonable degree of belief in p is x. After all, if t is ten minutes ago, 

and you now know that p ,  the reasonable degree of belief in p is 1, not x. So we have to restrict 

what else can be known before the PP is applicable. Lewis doesn’t do this completely, but 

speculates that two types of evidence are ‘admissible’. The first, which I have spent some time 

on, are history propositions. The second are what Lewis calls ‘theories of chance’. 

A theory of chance is a set of history to chance conditionals. A history to chance conditional has, 

as the name implies, a history proposition as antecedent, and a proposition about chances at the 

end of that history as consequent. They are admissible because their impact on degrees of belief 

goes entirely via their impact on beliefs about chances. Lewis thinks that history to chance 

conditionals are nomic. Given this, it is worth recalling the theory of laws that Lewis wants to 

defend. 

Among the true sentences, some are quite simple. For example, “Socrates is wise” is about as 

simple a sentence as one could get. Some are quite informative, like the conjunction of all the 

sentences in a history book14. And some manage to do quite well on each of these counts. Those 

 

14 Assuming the book miraculously contains only truths. 
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all men know as the laws. That’s the spirit of Lewis’s theory, but three complications are needed 

to get it right. First, we assess simplicity and strength (informational content) on a system-by-

system basis, not a sentence-by-sentence basis. Secondly, not just any set with a sufficiently high 

reading on informational content and simplicity will do, only the best such set counts as a law. 

However, since Lewis thinks in practice the winner of this contest will be so far ahead of the field 

that debates about how to trade-off simplicity for strength will be moot, this point has little 

practical importance. Finally, simplicity has to be relative to a language; in a language with no 

predicate for wisdom “Socrates is wise” will not be at all simple. So we stipulate that we are 

concerned with the language in which the predicates are the “real” universals. 

These predicates, and the laws which they make up, do quite a deal of work for Lewis. “If you’re 

prepared to agree that theorems of the best system are rightly called laws, presumably you’ll also 

want to say that they underlie causal explanations; that they support counterfactuals; that they are 

not mere coincidences; that they and their consequences are in some good sense necessary; and 

that they may be confirmed by their instances.” (Lewis 1994: 478-9)15 As I mentioned in the 

discussion of Carnap in section 1.7, I am rather sceptical that any such set of predicates which is 

wide enough to support all the ampliative inferences we make (particularly in social sciences) can 

be narrow enough to avoid licensing inferences which are unsound, but for now I’ll let that slide. 

The difficulty Lewis sees with this picture is that laws, being ‘in some good sense necessary’ must 

have no chance of being false. But laws, and hence chance statements, don’t supervene on history: 

the relevant supervenience is on the complete facts about the world past, present and future. This 

opens up the possibility of undermining. Formally, let T be the theory of chance for this world. 

Since T is either a law or the consequence of some laws, the chance of T must be 1. As chances 

 

15 All references in this section, unless otherwise indicated, are to Lewis (1994). 
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don’t supervene on history, there may be worlds which have the same history as this one, but in 

which T is not the law.  

Let F be some particular one of these alternative futures: one that 

determined different present chances than the actual future does. F will 

not come about, since it differs from the actual future. But there is some 

present chance of F. That is, there is some present chance that events 

would go in such a way as to complete a chancemaking pattern that 

would make the present chances different from what they actually are. 

The present chances undermine themselves (482). 

Undermining is certainly peculiar. How it works in practice can be illustrated by taking a simple 

frequentist account of chance16. There is some positive chance that every tritium atom from now 

to the end of the universe will decay in under four days, despite tritium having a half-life of 12.26 

years. The chance may be infinitesimal, but Lewis allows that. Indeed he invokes enough 

infinitesimals to revert back to an idea of Keynes’s, saying that the chance of an event at t is zero 

iff the laws and facts at t rule out that event, and the reasonable degree of belief in p is zero iff p 

is inconsistent with the evidence available. Now if this strange pattern of tritium decays were to 

happen, the chance of a given atom decaying in under four days now would be higher than it 

actually is, because the frequency of decay inside four days would be massively higher. 

This makes undermining look at least possibly inconsistent. Lewis invokes the PP to get a formal 

inconsistency. Let E be any proposition satisfying two conditions. First, it specifies the chance of 

F, the proposition mentioned in Lewis’s quote above. Secondly, it contains no inadmissible 

 

16 This illustration is used by Lewis. 
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information about the future; “it does not give any information about how chance events in the 

present and future will turn out” (483). From the PP we get the equation: 

 Pr(F | E) = Chance(F) 

Now take a particular case, let E be the whole truth about present chances, and F be as above. 

Since F has some chance of coming about Pr(F | E) > 0. But F and E are inconsistent, if F is true 

then chances are different to what they actually are, i.e. E is false. So Pr(F | E) = 0. Contradiction. 

As is common, a distinctive feature of a theory of probability can be mirrored in a non-

probabilistic theory. Usually this mirroring will be between a writer’s probabilistic and absolute 

epistemology. Here the mirroring is between Lewis’s probabilistic and absolute metaphysics. 

Whether or not L is, and always has been, a law is not determined by the present and past ‘history 

of the world’, or the Humean facts to the present. So there may be a future, say G, such that L and 

all other actual laws are true in G but a world with our past and present and G as a future does not 

have L as a law. So is G possible in the ‘good sense’ Lewis mentions? Well it is consistent with 

the laws, so yes. But if G were true, the past would be changed, L would no longer be a law then 

as it actually was. And it is impossible in this sense to chance the past17, so G is impossible. Is this 

a contradiction? Perhaps not; perhaps there is an equivocation on ‘possible’ here, as frequently 

happens in discussions of possibility and time. Still, it seems that laws can undermine themselves 

just as effectively as chances. 

What ought our response be to the possibility of undermining? Lewis responds by qualifying the 

‘admissibility’ criteria in the PP in two ways. The first is to say admissibility admits of degree. 

Some information may be strictly inadmissible, so knowledge of it waives our obligation to 

correlate degrees of belief with known chances, however very nearly admissible, so reasonable 

 

17 As was stressed by Lewis (1976a). 
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degrees of belief must still be close to known chances. Secondly, and self-evidently, the 

admissibility of information may be different for different propositions. A may contain much 

evidence relevant to whether or not p which does not impact on beliefs about the chance of p ,  but 

little information of this kind about q. With these tools in place we can say that information about 

present chances is for almost all propositions almost entirely admissible. This resolves the 

contradiction that Lewis had uncovered in his earlier position. The propositions E and F he used 

were inconsistent, so E is completely inadmissible relative to F. However, relative to most 

propositions E will be almost entirely admissible. 

So the PP cannot be used to generate inconsistent requirements on rational agents. However, 

Lewis still worries that it can be used to generate incorrect requirements. So we get a slight 

modification of the PP. Letting H be the history proposition to the present, T the theory of chance 

for the world, and A any proposition, the old principle said that: 

 Chance(A) = Bel(A | HT). 

We were led into difficulties when A and T were too closely related. The new principle fixes this 

by conditionalising the left hand side as follows: 

 Chance(A | T) = Bel(A | HT). 

This reflects the imperfect admissibility of chance sentences. By such moves, Lewis rescues 

enough of his view of chance to be satisfied. The more obvious response to undermining is to see 

it as a problem for Lewis’s view of chance. His account makes undermining possible, but it 

oughtn’t be possible, so we ought reject Lewis’s view. There are two reasons we might wish to 

regard undermining as impossible. The first is a related set of intuitions about chance, the second 

a plausible principle about chance which is incompatible with the existence of undermining. 
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The intuitions that are incompatible with undermining revolve around the tensed nature of chance 

statements. At some level, a statement that the chance of p at t is x is ‘about’ t. This could be 

cashed out in many ways. We might say that whatever happens beyond t is irrelevant to the truth 

of the statement, that it is possible in theory to know whether or not that statement is true at t, or 

that its truth value cannot be changed by events that happen after t. Any of these renditions will 

make it undermining impossible. On Lewis’s view of chance, there is no sense in which a chance 

statement is about t. As already noted, it may still be contingent in some good sense18 at t whether 

or not the sentence is true, because it might be undetermined whether or not the chance statement 

will be undermined. So we cannot know that chance statements are true, since to know these 

requires knowledge of the laws, and knowledge of those requires unattainable knowledge of what 

will happen in the future. 

We can put the same point in terms of the powers of agents. Tim can’t kill his grandfather, because 

whether or not Grandfather died at a certain time in the past is invariant on whatever subsequently 

happens in either internal or external time. However, on Lewis’s view Tim can affect what the 

chance was of grandfather dying at a past time. What that chance was is not invariant on what 

happens in later external time. 

The objection here mirrors the objection raised by Peter Menzies to Lewis’s analysis of causation. 

As he does with chance, Lewis analyses causation in ‘global’ terms. Whether or not A causes B 

in a given world depends not just on ‘local’ facts about A and B and their immediate environment, 

but on global facts which determine what the laws are for that world. Lewis needs arguments to 

defeat the intuitions that private causation and private chances are possible. 

The second objection to undermining turns on a principle first enunciated by Bigelow, Collins 

and Pargetter (1993), something they call the Basic Chance Principle (BCP). The BCP says that 

 

18 Whether that sense is nomic contingency will turn on definitions of nomic that are at issue here. 
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if the chance of p in world w at time t is x, and x > 0, then there is some world with the same 

history as w to t in which p is true and the chance of p at t is x. The idea behind it is that in saying 

the chance of p is greater than zero, we are saying p is in some sense now possible. That is, we 

are saying in some world like this one, i.e. in which the history is the same and the chance of p is 

the same, p occurs. It follows from the BCP that chances must supervene on history, and hence 

undermining is impossible. If we’re committed enough to theories which insist undermining is 

possible we may have justification for dismissing the BCP as an excessively onerous burden on 

theory, which is what Lewis does. I bring it up here to note there is a general reason for insisting 

on supervenience of chances on history, beyond the intuitions about localness mentioned above. 

These two arguments point against views of chance which permit undermining, and in favour of 

views which make current chances supervene on history to the present. As argued earlier in the 

chapter, some of Lewis’s objections to such a view turn on the unjustified assumption that chances 

are numerical. Once that assumption is dropped, the analysis of chance as ‘objectified credence’ 

I advocated seems to do all the work we could want. And that analysis is compatible with, indeed 

entails, the old PP, so I have no need to move to the new principle. 



Chapter 5   

Supervaluations 

5.1 Introduction 

When we say the probability of p is x, we mean, roughly, the reasonable degree of belief in p is 

x. If we could guarantee that for any evidence there was a unique degree to which it was 

reasonable to believe p ,  that would be the end of the story. This is the path that Carnap followed, 

but as I showed in earlier chapters there are several reasons to think it will not lead to a happy 

ending. Ordinary credences can be vague or imprecise, and there often seems to be different 

credences which are reasonable on a given body of evidence.  

So I have to be more careful when stating the relationship between probability and reasonable 

degree of belief. The idea defended in this dissertation is that when there are many credences 

which are reasonable, probability sentences are vague. And the best approach for interpreting 

vague sentences is the technique of supervaluations. The vagueness in probability sentences 

mirrors the permissible imprecision in reasonable degrees of belief. 

In this chapter I’ll defend the use of supervaluational semantics for probability sentences against 

a number of recent attacks. The only change I make to the orthodoxy here is that I claim that on 

a supervaluational account, sentences containing vague terms have scope ambiguities. Orthodox 

accounts confuse conventional resolutions of this vagueness with the literal or semantic content 

of sentences. Even if my general defence against these attacks fails, there are grounds for thinking 

the supervaluational approach is more plausible when it is applied here than when it is applied 

generally to vagueness. 

In section 2 I’ll set out an orthodox supervaluational account. The orthodoxy may be (slightly) 

wrong, but it is clearly the best way to explain the mechanics of a supervaluational account. In 

section 3 I’ll show how this applies to probability sentences. Williamson objects to 
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supervaluational accounts because, inter alia, they don’t respect Tarski’s T-schema. I think this 

is a sound criticism of the orthodoxy; and in section 4 I introduce an amendment to overcome it. 

This amendment allows for sentences which would ordinarily be supervaluated – e.g. sentences 

containing vague terms, sentences containing definite descriptions – to have a scope ambiguity. 

Section 5 discusses the notion of validity in the context of sentences without truth values. Sections 

6 and 7 respond to other recent objections to supervaluational accounts. Sections 8 and 9 discuss 

the notion of reasonable degrees of belief that I have used in the earlier sections. Section 8 fleshes 

out the arguments discussed in chapter 3 for there being more than one reasonable probability 

function. And in section 9 I argue that it is reasonable (though not epistemically mandatory) to 

have precise degrees of belief in all propositions. 

5.2 Supervaluations 

The simplest introduction to supervaluational semantics is through its account of vague 

predicates. Assume Jack is such that it’s unclear whether he is tall (for an adult male)1 or not. 

Jack, for example, might be somewhat taller than the average adult male, but not a lot taller. 

Neither ‘Jack is tall’ nor ‘Jack is not tall’ would seem like appropriate things to say. We might 

just say it’s vague whether or not Jack is tall. 

Many people have believed we should say that ‘Jack is tall’ lacks a truth value. The 

supervaluationist has a principled reason for saying this, as well as a full story about how ‘Jack is 

tall’ behaves in logical compounds. The core of the story is the set of possible precisifications of 

tall. More generally a precisification will make all of language precise, but we’ll leave that aside 

for now. A precisification V of tall assigns truth values (we’re assuming here that true and false 

 

1 Whether or not someone is tall of course depends on the context. Someone can easily be tall for a jockey 

and not tall for a basketballer. We’ll assume context is invariant in what follows. 
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are the only truth values) to every sentence of the form ‘x is tall’ in accordance with three 

constraints. 

First, all (first-order)2 truths of English must be preserved in the precisification. So if Al really is 

tall, then on every precisification ‘Al is tall’ must come out true. Similarly, if Bill really is not tall 

then on every precisification ‘Bill is tall’ must come out false. Secondly, some conceptual truths 

must be preserved. These are what Kit Fine (1975) calls penumbral connections. If Jack is taller 

than John, there can’t be a precisification according to which ‘Jack is tall’ comes out false, and 

‘John is tall’ comes out true. Even if both Jack and John are borderline cases of tallness, so there 

are precisifications on which ‘Jack is tall’ comes out false and precisifications according to which 

‘John is tall’ comes out true, there can’t be a precisification on which both occur, because no tall 

person is shorter than a not tall person. Thirdly, truth values of compounds in the precisification 

are given by the usual rules. So ‘Jack is not tall’ comes out true iff ‘Jack is tall’ comes out false; 

‘Jack is tall and John is true’ comes out true iff ‘Jack is tall’ comes out true and ‘John is tall’ 

comes out true, and so on for the other connectives. 

There will be uncountably many precisifications, but they will have some things in common. As 

we noted ‘Al is tall’ will come out true on all of them if Al really is tall. ‘Jack is tall and Jack is 

not tall’ will come out false on all precisifications, even if the conjunct which is false differs for 

different precisifications. If Jack is taller than John, ‘John is tall and Jack is not tall’ will also 

come out false on all precisifications, with again the possibility that different conjuncts come out 

false on different precisifications. The supervaluationist defines truth (in English) to be truth on 

 

2 I am using ‘first-order’ in the sense developed by Tarksi. So ‘Snow is white’ is a first-order sentence, 

‘“Snow is white” is true’ is a second-order sentence, and so on. Section 6 will discuss the need for this 

restriction.  
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all precisifications, and falsity (in English) to be falsehood on all precisifications. These will be 

referred to as supertruth and superfalsity. 

It is worth pausing to note some of the effects of this method of evaluating compounds. There can 

be conjunctions which are false despite having no false conjuncts. Conversely, there can be 

disjuncts which are true despite having no true disjuncts. This will be the case when for every 

precisification, one or other disjunct is true, but there is no disjunct true on all precisifications. To 

take the classic example, ‘Jack is tall or not tall’ comes out true even though neither ‘Jack is tall’ 

nor ‘Jack is not tall’ come out true. 

A similar effect arises for existentially quantified sentences. There can be predicates F, G such 

that ‘Some F is a G’ is true even though there is no F, say a, such that ‘Fa and Ga’ is true. This 

will occur when on every precisification some F or other is G, but there is no F which is a G 

according to all precisifications. Conversely, ‘All F are G’ can be false even if there is no a such 

that ‘Fa and Ga’ is false. These general points will be important in what follows, but as I’ll show 

in section 4 there is need for great care in how they are interpreted. 

5.3 Probability Sentences 

As discussed in chapter 4, some probability functions are reasonable and some are not. There are 

still some matters to discuss concerning the distinction, but I’ll assume for now we have it. Each 

of these functions plays the same role in my theory that precisifications play in supervaluational 

accounts of vagueness. The truth value of a sentence according to each function can be easily 

worked out. A sentence like ‘The probability of p given q is greater than 1/2’ is true according to 

a probability function Pr  iff Pr(p  | q) > 1/2. Probability sentences are true simpliciter iff they are 

true on all precisifications, false iff they are false on all precisifications. 

This approach has much pragmatically to recommend it. First, all the theorems of the classical 

probability calculus turn out to be true. So, for example, it is true that ‘For all p ,  q there is an x 
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Î [0, 1] such that the probability of p given q is x’. Given the great amount of work that has been 

put in over the years into developing the probability calculus, it would be unfortunate to have to 

give it all up, or to say that it is inapplicable to actual uses of ‘probability’. The objections to 

unwarranted precision in earlier chapters do not show that we should be rid of such theories; rather 

they show we should be rid of careless interpretations of them. 

In particular it is not the case that there need be an x which makes ‘The probability of p given q 

is x’ true. If we’d ordinarily say the probability of p given q is vague, say vague over the interval 

[0.4, 0.55], then for some x the sentence ‘The probability of p given q is x’ will be neither true 

nor false (i.e. for those x in [0.4, 0.55]) and for all other values of x it will be false. However, the 

existentially quantified sentence will be true because on all precisifications (all reasonable 

probability functions), the probability of p given q takes a precise value. 

Some might view this preservation as a negative: it isn’t just an interpretation of some of the 

theorems of the probability calculus they wanted to throw out. There are, however, other 

indisputable advantages. Say the probability of p  (I’ll omit references to evidence except where 

necessary) is vague over a large interval, and the probability of r given p is some high value, say 

0.9. Hence, the intervals over which the probability of p and the probability of p  & r are vague 

overlap. So, for example, the probability of p might be vague over [0.4, 0.55], and the probability 

of p  & r might be vague over [0.36, 0.495]. The probability of p is clearly greater than that of 

p  & r. On a supervaluationist account this is true, since according to every reasonable probability 

function we have Pr(p)  > Pr(p  & r). On a purely ‘intervalist’ account I doubt this can be shown, 

for reasons given in 3.5.3. 

So we have three reasons for adopting the supervaluational semantics suggested here for 

probability sentences. First, it allows us to keep the theorems of the classical probability calculus. 

Secondly, it explains why we might have thought some of these theorems were inappropriate by 
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showing that some natural interpretations of these theorems are false. Thirdly, it gives the 

intuitively appropriate truth value to comparatives, something that other semantics which allow 

vagueness cannot do. These benefits are distinct from the general benefits of adopting 

supervaluational semantics for definite descriptions or vague terms, such as the natural account it 

provides of compounds. 

There is one other complication which can be resolved by a supervaluational approach. I have 

said in the above that all probability sentences make a reference, either explicit or implicit, to an 

evidence set. When this is implicit there might be some vagueness as to what the evidence is. I 

think the best solution here is again a supervaluational approach. So a probability sentence is true 

iff it is true on all possible resolutions of this vagueness, false iff it is false on all possible 

resolutions of this vagueness, and lacking a truth value otherwise. 

When talking about the probability of a proposition about the future this is not normally a 

problem, as usually this is a reference to chance. So, if I say that the probability of Al Gore 

winning the 2000 election is x, I mean the chance of him winning is x, where chance is defined as 

in the previous chapter. However, for propositions about the past this cannot generally be right, 

because the chance of the proposition being true will be zero or one. So if I say ‘The probability 

the suspect is guilty is at least 1/2’ it mightn’t be clear whether the implicit evidence set is all the 

evidence in the public domain, all the evidence I have, all the evidence that I share with my hearer, 

or some other set. Context will usually narrow the range a little, but it can’t be guaranteed to do 

all the work. In these cases what I say might be true on some resolutions of the vagueness and 

false on others, hence lacking a truth value. 

For these reasons I agree to some extent with the claim in Price (1984) that probability sentences 

can fail to be truth-apt (which I interpret as lacking a truth value) because the reference to evidence 

may not be precise. He says that probability sentences will be truth-apt when there is agreement 
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as to what the evidence is3, but when there is no such agreement there can be disputes where 

speakers say opposing things without either necessarily being mistaken, so their claims are not 

truth-apt. The position adopted here is that when the different implicit evidence sets speakers use 

are close enough without being exactly the same, there can be genuine disputes, and hence truth-

apt claims. For example, I can have a debate with someone about whether Oswald probably killed 

JFK even if we disagree a bit about what counts as evidence, so we can at least presuppose that 

our utterances are truth-apt. What counts as ‘close enough’ in the above definition will depend 

crucially on what is being talked about; for uncontroversial claims it will be defined widely and, 

conversely, for borderline claims it might be defined narrowly. 

One advantage of this position is that we do naturally assign truth values to some probability 

sentences even when the implicit evidence is a bit imprecisely defined. For example, if I say 

‘There is probably no present king of France’, even if it is massively unclear from context what 

is to count as evidence, the utterance seems to be true. On the other hand for more disputable 

claims, such as in the debate about Kennedy’s assassin, imprecision in the definition of evidence 

may destroy the truth-aptness of the claims. All these results sound intuitively plausible, at least 

to my ear. 

5.4 Scope and the T-schema 

Timothy Williamson (1994) claims adopting that supervaluational semantics leads to a denial of 

Tarski’s T-schema. And if the T-schema isn’t all we know about truth, it is, claims Williamson, 

 

3 I disagree with this in general, because of the possibility of imprecision, but since that isn’t what’s at issue 

just here, I’ll assume all probabilities are precise. I also presume that agreement as to what the evidence is 

need only be with an imaginary interlocutor, so that a probability sentence will be truth-apt if we could 

specify what the evidence is, even if this doesn’t happen in the actual conversation. Should this not be the 

case then the truth value of speakers’ utterances will depend implausibly on subsequent utterances of actual 

interlocutors. 
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a large enough part that we shouldn’t give it up. The point of this section is to make two responses 

to Williamson, and to show that at least one of these allows a response to an objection which 

Mark Sainsbury believes refutes supervaluational approaches. 

Say F is a vague predicate. On a supervaluational approach, the sentence ‘Fa Ú ¬Fa’ will always 

be true, for on every precisification of F one or other disjunct is true. However, the sentence ‘“Fa” 

is true or “¬Fa” is true’, need not be true. In particular, if a is a borderline case of being an F, 

then on some precisifications Fa will be false on the precisification, so Fa is not supertrue. 

Further, there will be precisifications according to which Fa is true on the precisification, so ¬Fa 

is not supertrue. So we can have ‘Fa Ú ¬Fa’ true without ‘“Fa” is true or “¬Fa” is true’ being 

true. This result is acknowledged by supervaluationists; indeed something like it is usually taken 

to be one of the distinctive claims supervaluationists make. 

Now if this is right, Williamson notes, we can’t keep the T-schema. For that schema says that for 

any proposition A, the material biconditional ‘A iff “A” is true’ holds. Now, given this, and some 

fairly straightforward logical machinery4, we can deduce the material biconditional (1), where A 

and B are any propositions: 

(1) (A or B) iff (“A” is true or “B” is true). 

Strictly, (1) isn’t an instance of the T-schema, but it is an implication of it. As noted above, if the 

T-schema is taken to be incontrovertible, the supervaluationist has a difficulty. It is a difficulty 

Williamson thinks is inescapable without moving to an epistemic conception of vagueness, 

according to which there is only ever one permissible precisification, but we are ignorant as to 

 

4 To be precise, the standard natural deduction rules Ú-introduction, Ú-elimination and modus ponens. 
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what it is. I will make two responses; the first of which is very similar to one Williamson discusses 

and rejects, and the second of which is quite different. 

The response which Williamson discusses is to claim that there is a disquotational truth predicate, 

trueT. This response was first raised in Fine (1975), though he develops it somewhat differently 

to the way I am doing. ‘“A” is true’ is trueT according to a precisification iff A is true according 

to that precisification, where iff is read as the material biconditional. Williamson acknowledges 

this move rebuts his objection, but claims that once it is adopted there is no reason not to identify 

truth with truthT rather than with supertruth. For example, a plausible truth-functional account of 

validity can be given if this identification is made5. And if we do identify truth with truthT rather 

than with supertruth, Williamson claims we lose all that is distinctive about the supervaluationist 

position. We just fall back into his preferred position, that vagueness is an epistemic phenomenon. 

“Of supervaluationism, nothing remains articulate,” he concludes (1994: 164). 

A different way of running this response is to claim that there is no reason supertrue shouldn’t 

behave like trueT. The standard way of assessing sentences like ‘“A” is true or “B” is true’ is to 

evaluate each disjunct separately. But this goes against a central tenet of supervaluationist theory, 

which says that to determine the truth value of complex sentences containing vague terms we 

 

5 Williamson notes that the supervaluationist might argue that identifying truth with truthT will mean that 

not every sentence will be definitely true or definitely not true, and we might have thought this a flaw in a 

semantic theory. However, he claims that given the existence of higher-order vagueness, even identifying 

truth with supertruth will not preserve this condition. And here some card-carrying supervaluationists agree 

with him. See for example Williams (1976). 

 For what it’s worth, we can also give a plausible truth-functional account of validity if we identify truth 

with supertruth, but validity won’t just mean truth preservation; it must also mean never going from non-

false premises to false conclusions. More on this in later sections. 
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have to look at the truth value of the whole sentence according to each precisification. This rule, 

it seems, needs to be extended to sentences which contain vague terms quoted. 

On this variant of supervaluationism, what ought we say about the truth of ‘“A” is true’ according 

to a precisification? According to that precisification, all terms in A are precise, and hence all 

have just one admissible precisification. Hence this sentence will be true (according to all 

precisifications) according to that precisification iff it is true according to that precisification. In 

a more digestible soundbite, supertruth according to a precisification equals truth according to 

that precisification. Hence (1) will be hold. In the troubling case, it might be impossible to identify 

the true disjunct on the right of the biconditional, but there will be one. 

If this move is made, it becomes impossible to say what is distinctive about the supervaluationist 

approach. To see this, consider a case where we would normally say that Some Fs are Gs is 

supertrue while for any particular F, say x, Gx would not be supertrue, as different Fs are G 

according to different precisifications. All of the following are literally false according to this 

approach. 

(2) There is no x such that ‘Fx and Gx’ is supertrue. 

(3) There is no correct answer to the question, ‘Which F is G?’. 

(4) No F is such that it is a G according to all precisifications. 

All of these have the common feature that they are true if we are speaking from outside the 

supervaluational framework; speaking about that framework without using it. But this cannot be 

done. So says the hard-line supervaluationist. The attempt to say things like (2) to (4) and hence 

capture what is distinctive about the supervaluational position is an attempt to find a linguistic 

‘view from nowhere’. Williamson is right to say that nothing articulate and distinctive remains 

about this supervaluational position. 
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It isn’t clear, however, that there remains nothing distinctive at all about this approach. It can’t be 

said what it is, but perhaps this isn’t too surprising. We shouldn’t be too surprised to learn that 

there are things about a language that we can’t say in that language. That will hold whether the 

language is as precise as the formal language of Principica Mathematica, or as vague as ordinary 

English. We might hint at what is distinctive about the supervaluational position by saying things 

like (2) to (4), but if this variant of supervaluationism is correct, vague languages are rather 

incomplete in the sense that we cannot use them to say things we would like to be able to say. 

The idea is that by saying (2), (3) or (4) we are exploiting the circumlocutional nature of our 

utterances to implicate (i.e. point to) something which can’t be said6. 

I think this position has some attractions (theoretical simplicity for example) but I can’t imagine 

it will persuade anyone. There is a different way. It might be permissible to read (2) to (4) in a 

way in which they come out literally false, but there is also a reading under which they are true. 

All of these sentences have scope ambiguities, and different resolutions of these scope ambiguities 

will lead to differing truth values for the sentences. (2), for example, could be rendered as (2a) or 

(2b), the first false, the second true. 

(2a) According to all precisifications, there is no x such that ‘Fx and Gx’ is true (according to 

all precisifications). 

(2b) There is no x such that according to all precisifications ‘Fx and Gx’ is true (according to 

all precisifications). 

 

6 Interpreted literally, there is a problem with this last paragraph. On every precisification there is nothing 

that can’t be said, so the sentence ‘There is something that can’t be said’ must come out false by virtue of 

being false on all precisifications. I take this to be another confirming instance of Ramsey’s rule: what can’t 

be said can’t be whistled. 
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Once it is seen that there is always going to be a reading like (2a), where the ‘internal’ reading7 

of the sentence is formed by prefixing ‘according to all precisifications’, we see that these scope 

ambiguities are ineliminable. So there is no point trying to eliminate them by adding more and 

more words. Rather we use a convention such that the quantification over precisifications is given 

wide scope in ‘simple’ sentences and narrow scope in ‘complex’ sentences. So according to the 

convention, (2) should be read as (2b)8. 

The scope ambiguity isn’t confined to sentences like (2). On the contrary, ‘Some Fs are Gs’ is 

capable of being read both like (2a) and like (2b). Here, though, the convention is that we read it 

like (2a). Now every instance of the T-schema will hold as long as we disambiguate both sides in 

the same way. The argument purporting to show that, from premises the supervaluationist is 

committed to, an instance of the T-schema is falsified rests, according to this analysis, on a fallacy 

of ambiguity. 

Sainsbury (1988: 41) claims that supervaluationists are committed to denying the existence of 

vague terms. Consider the classic vague term heap. Every precisification of heap can be 

 

7 In contrast to the ‘view from nowhere’ reading. 

8 This convention could be read as a conventional implicature. This would lead to the conclusion that the 

T-schema was literally true, as the left and right sides have the same semantic content, but they have 

differing conventional content. In any case, it is uncontroversial that the different sides have different 

pragmatic properties. 

 There might be a question as to how such a convention could have come about. My best explanation 

would be that because the developers of supervaluational semantics said things like (2), (3) and (4) and 

intended them to be read truly, readers applied the principle of charity and read them as truths. When 

subsequent writers talking about supervaluational semantics use sentences like these, we are reminded of 

the classical usage, and hence interpret them the same way. Thus a convention develops, and it spreads 

again by usage of charity on textbook writings using similar sentences in a similar way. I make no claim 

for the empirical accuracy of this story: however, I do hope that some story like it can be told to explain the 

creation of the convention. 
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summarised by a single number n: piles of sand with n or more grains are heaps, and with less 

than n grains are not heaps.  So Sainsbury notes according to supervaluationist accounts, (5) 

should be true. 

(5) For some number n, an n-grained collection is a heap, but a (n - 1)-grained collection is 

not. 

This, he claims, is pretty much a denial of the vagueness of heap; vagueness means inter alia, 

having no sharp boundary. The scope ambiguity analysis allows the supervaluationist a reply. (5) 

is ambiguous between (5a) and (5b); (5a) is the reading which is literally true and (5b) is the 

reading which amounts to a denial of the vagueness of heap. But no reading is true and amounts 

to  denial of the vagueness of heap. 

(5a) According to all precisifications, for some number n, an n-grained collection is a heap, 

but a (n - 1)-grained collection is not. 

(5b) For some number n, according to all precisifications, an n-grained collection is a heap, 

but a (n - 1)-grained collection is not. 

So the supervaluationist has two replies to the arguments put by Sainsbury and Williamson. The 

first involves the rather startling claim that once we supervaluate many of the analyses of vague 

sentences, we find they are literally false. There are, on this reply, many things we would like to 

be able to say about sentences with vague terms, but our language doesn’t have the resources to 

say them. The second reply is that sentences containing existential quantifications or disjunctions 

involving vague terms have scope ambiguities. The conclusions to which Williamson and 

Sainsbury believe the supervaluationist is committed can only be drawn by failing to distinguish 

carefully enough the different readings of these sentences. 
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There is an important objection to this view which needs a rather careful argument to refute. I 

have held that disjunctive utterances containing vague terms are ambiguous between their two 

supervaluational readings, and this ambiguity is a scope ambiguity. There is no reason why my 

claim shouldn’t extend to ordinary utterances. So, assuming again that Jack is a borderline case 

of baldness, then (6) should be ambiguous between a reading on which it lacks a truth value and 

a reading on which it is false.  

(6) Jack is bald. 

Now there’s nothing too implausible about the first part of this conclusion. Ex hypothesi, Jack 

isn’t one of the bald things, so we should be able to say (6) is false. On the other hand, since Jack 

is a borderline case of baldness, many writers have thought it correct to deny (6) a truth value. So 

far, then, we don’t have a telling objection. What is a problem is that it looks implausible to say 

that the ambiguity in (6) is a scope ambiguity. A scope ambiguity requires that there is a quantifier 

which could be placed in various parts of the sentence; (6) doesn’t have the required multiple 

insertion points and, hence, is not susceptible to scope ambiguity. I could avoid this problem by 

postulating a brute ambiguity; but this is incredible and in any case would be inconsistent with 

the theoretical position I adopted in the last chapter. Apart from homonyms like ‘bank’, all 

ambiguity should be explainable in principle; and when a word behaves ambiguously in several 

contexts, the same explanation should be given for the range of behaviour displayed. 

To show that the ambiguity in (6) really is a scope ambiguity we need to consider why a sentence 

lacks a truth value. To consider this we must first consider why the sentence might be true. As 

Dummett (1959) stressed, it is a mistake to consider truth in isolation from our practices of 

asserting and believing. We like to believe true sentences; generally we like to assert true 

sentences. We want to make arguments which preserve truth. Any purported account of truth, 

belief, assertion and arguing which does not take these things into account will be mistaken. If 
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we cash out these desires as beliefs about what would happen in ideal conditions (truth is what 

we believe in ideal conditions) we are lead into constructivism, but there is no need to analyse 

them that way. Lewis (1988) has showed there are theoretical reasons for not analysing desires as 

beliefs of any kind. We can accept these points about truth without becoming anti-realists. 

I have given some properties of truth; we have certain desires expressible in terms of it and it has 

a certain place in a theoretical network that includes belief, assertion and argument. Assume I can 

give enough properties to get an analysis of truth. So a sentence is true iff it has property T. The 

analysis is a little misleading; the sentence is T because it is true, not vice versa. It must now be 

decided what will count as an analysis of ‘false’. If I was committed to saying all sentences are 

true or false I could simply say that a sentence is false if it is not T. Given that I am trying to 

analyse what is meant by saying a sentence lacks a truth value, this looks like the wrong path to 

take. 

Rather, I will say that a sentence is false iff its negation is T. This seems to capture the motivation 

of many theorists who deny some sentences truth values; they fear that saying a sentence is false 

commits them implausibly to the truth of some other sentence. Since that other sentence is not 

one they want to assert or believe, not one they would like to have as the conclusion of a good 

argument with true premises, they deny the original sentence is false.  

This raises the rather obvious question, how do we tell what the negation of a sentence really is. 

In the case of (6) this is somewhat non-trivial. Many would argue that the negation of (6) should 

just be (7). 

(6) Jack is bald. 

(7) Jack is not bald. 
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Since (7) is not T, and it is the negation of (6), we conclude (6) is not false. The problem is that 

the second premise here looks dubious. If we accept a Russellian account of definite descriptions, 

we have to say that (9) is not the negation of (8).  

(8) The present king of France is bald. 

(9) The present king of France is not bald. 

Famously, Russell said they were both false9. Yet they stand in the same syntactic relationship to 

each other as (6) and (7), so if negation is a syntactic relationship, (7) is not the negation of (6). I 

don’t take this little argument to show that (7) is not the negation of (6); I do take it to show that 

the relationship between (7) and (6) isn’t as clear as some have supposed10. The official definition 

of the negation of (6) in introductory logic texts is generally (10).  

(10) It is not the case that Jack is bald. 

(11) ‘Jack is bald’ is not true. 

I take it that it is unclear whether (10) should be interpreted as (7) or as (11). The good news from 

the view of the ambiguity theory being defended here is that (10) does seem to have a scope 

ambiguity, and the two readings correspond to (7) and (11). 

(7a) According to all precisifications it is not the case that Jack is bald. 

(11a) It is not the case that Jack is bald according to all precisifications. 

This explains why (6) is ambiguous. The truth value of a sentence depends both on whether it is 

T and on whether its negation is T. Since (6) is not T, it cannot be true. But whether it is false or 

 

9 At least on one reading of (9). 

10 Including Russell himself. He said that in cases of vagueness, where we deny ‘Jack is bald’ and deny 

‘Jack is not bald’, we are committed to denying a case of excluded middle (1923: 88). 
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gappy depends on whether its negation is T. There is a scope ambiguity in its negation, so we can 

say that the truth value of (6) is ambiguous. Finally, whenever the truth value of a sentence is 

ambiguous, that sentence is ambiguous. Hence the ambiguity in (6) is not ‘brute’, it can be 

explained in terms of scope, so the objection fails. 

This analysis of negation is not at all new; something like it appears to be going on in Russell 

(1905: 53). He says that (9) is ambiguous; whether or not it is true depends on whether we regard 

the denoting expression as, in his terms, ‘primary’ or ‘secondary’. It is false if it says the present 

king of France is among the things which are not bald; this is the primary reading. It is true if it 

denies that among the bald things is the present king of France; this is the secondary reading. The 

main difference is that it is clear that the negation of (8) is the secondary reading of (9), whereas 

in this example it does look genuinely ambiguous what should be the negation of (6).  

For ease of reference, I’ll call the first of the two responses listed here strong supervaluationism, 

and the second moderate supervaluationism. The traditional approach is then called weak 

supervaluationism. The names derive from how far the various theories say supervaluational 

approaches should be applied. Since the strong approach seems so unlikely to be persuasive, 

unless otherwise stated I’ll assume the moderate version is correct in what follows. 

5.5 Validity 

Williamson’s other primary objection to the supervaluationist approach to the resolution of 

vagueness is that it lacks a plausible account of validity. Within the supervaluational literature 

there are two definitions of validity: local and global validity. Local validity says that an argument 

is valid iff it is traditionally valid on every precisification. In other words, if whenever all the 

premises are true on a precisification, the conclusion is also true. Global validity says that an 

argument is valid if whenever the premises are all true on all precisifications, the conclusion is 



§5.5 Validity 180 

 

also true on all precisifications. In other words, validity is supertruth preservation. Local validity 

is defended by Dummett (1975), global validity by Fine (1975). 

Williamson claims that since the supervaluationist identifies truth with supertruth, they must 

plump for global validity as the appropriate account of validity. He then notes that this account of 

validity will not allow some intuitively plausible inference rules (in particular reductio ad 

absurdum) and concludes the supervaluationist has some implausible commitments. 

I’ll concede that global validity is an implausible standard of validity. However, I don’t see why 

the supervaluationist should be committed to it. Sentences of the form ‘p entails q’ (or 

alternatively ‘G entails q’) have a scope ambiguity of the sort mentioned above. We can interpret 

(1) as either (1a) or (1b). 

(1) p entails q. 

(1a) According to all precisifications, p entails q. 

(1b) p according to all precisifications entails q according to all precisifications. 

Moderate supervaluationism says that (1a) is at least a legitimate reading of (1). Indeed, since it 

is the only reading licensed by strong supervaluationism, it is perhaps the primary reading. If we 

insist on reading (1) as (1b) then we may be lead to incoherence; but if we insist on supervaluating 

some sentences and not others this is perhaps not too surprising. 

If we interpret (1) as (1a) we get Dummett’s local validity as the proper account of validity for 

supervaluationists. Since local validity preserves all the standard rules of entailment Williamson’s 

argument would collapse. We don’t, when using local validity, use our definition of truth as 

supertruth in our account of validity. Williamson suggests that this implies we are not really 

committed to this definition. Were we to read (1) as (1b) and still use local validity as the 
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appropriate criteria Williamson would be correct here, but, as that’s not what we’re doing, I don’t 

see the objection here. 

Even if we interpret (1) as (1b), global validity is still not the right theory of validity. Such an 

approach assumes that, in effect, we have three truth values11: <true, gap, false> and only the first 

of these is designated. Such an approach runs foul of an objection Dummett (1959) makes to 

Strawson’s account of definite descriptions. Strawson (1950) says that ‘The present king of 

France is bald’ lacks a truth value because it has a non-referring definite description. Dummett 

replies that Strawson hasn’t accurately distinguished lacking a truth value from being false. In 

particular, since ‘gap’ is in effect undesignated in Strawson’s system, it looks like Strawson has 

merely distinguished two types of falsehood rather than distinguished falsehoods from sentences 

lacking truth values. 

To motivate a theory which says that some sentences lack truth values, I have to do something 

which distinguishes ‘gap’ from ‘false’. I made some progress towards that in the previous section; 

false sentences have true negations, gappy sentences do not. I can now make a more direct 

distinction between the two12. ‘Gap’ is, in the best account of validity for three-valued logics, 

neither a designated nor an undesignated value, as the account of validity is not a designated value 

account. Rather, I say that an argument is valid iff it satisfies the following criteria. 

 ‘p entails q’ is valid iff 

 (i) it is impossible for p to be true and q to be not-true; and 

 

11 Strictly ‘gap’ is not a truth value, it is the lack of one, but spelling this out every time would make the 

exposition unreadable, so I presume the reader can remember this caveat. 

12 Neither distinction I am using is redundant. The previous section showed how to determine whether 

particular sentences are gappy or false; this section provides a stronger argument for the claim that there is 

a real difference between these two ‘values’. 
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 (ii) it is impossible for p to be not-false and q to be false. 

It is easy to check this cannot be represented as a designated values account of validity. Such an 

account is quite popular in the literature13, and it’s clear why. Not only does it escape Dummett’s 

objection to Strawson, it preserves contraposition and reductio. ‘p entails q’ is valid iff ‘¬q entails 

¬p’  is valid. And ‘p entails q and ¬q’ is valid, iff for any r, ‘r entails ¬p’  is valid. The motivation 

for this account is the scale of truth values <true, gap, false> mentioned above. An argument is 

valid iff it is impossible in moving from the premise to the conclusion to move ‘down’ the scale, 

either from true to anything else, or from gap to false. 

There are some complications in the story for when we have a set of premises or a set of 

conclusions. And this story will not preserve all the classical rules. For example conditional proof 

is no longer sound; nor is argument by cases, sometimes called Ú elimination. However, the fact 

that even on my non-preferred reading of (1) I can keep reductio and contraposition suggests that 

there is no objection from this direction to the supervaluational approach. 

5.6 Models and Conceptual Truths 

Fodor and Lepore (1996)14 have recently claimed there is a simple objection to supervaluational 

semantics. They claim that the precisifications which are the core of this account do not satisfy a 

mandatory condition on models for a language: that all conceptual truths are true in the model. 

Because of this there is no reason to think ‘truth in all precisifications’ is really truth. 

The objection is built up as follows. Vague terms like ‘bald’ have a penumbra. Assume for the 

sake of the argument that a person with 1/9 of their head covered with their own hair is in this 

penumbra, neither definitely bald nor definitely not bald. If the ratio is wrong, it can be changed. 

 

13 Most recently McDermott (1996); see the references therein for earlier proponents. 

14 All references in this section to this paper unless otherwise stated. 
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All that matters is that there is one, which everyone agrees. Let S be the sentence ‘A person with 

a head-to-hair ratio of 1/9 is bald’. If our assumption is right, S is neither definitely true nor 

definitely false. Indeed, on standard accounts S is neither true nor false simpliciter. 

That S is not definitely true is not something that we discovered by looking at the world. Of course 

we discovered what S means by looking at the world, but once we found that out we worked out 

by conceptual analysis alone that it is not definitely true. So ‘S is not definitely true’ is a 

conceptual truth. Fodor and Lepore then wield what they call principle (P). 

“(P) Conceptual truths must be respected by all classical models, 

including classical valuations.” (521). 

The justification is that a purported model of a language which does not respect conceptual truths 

is not a genuine model. “If there are conceptual truths, then they determine what the topic under 

discussion is, so they must not be flouted on pain of equivocation.” (521). But precisifications do 

not satisfy this criteria. To see this, note that in many precisifications, ‘S is not definitely true’ 

comes out as false, despite being a conceptual truth. In all those precisifications in which it does 

come out as true, the conceptual truth ‘S is not definitely false’ comes out as false. So there are 

no precisifications which satisfy principle (P). 

As well as this general argument for (P), they have an ad hominen against the supervaluationist 

who does not accept it. Say, Al and Bill each have 1/9 of their head covered with their own hair. 

Then there are, according to supervaluationism, acceptable precisifications according to which 

‘Al is bald’ comes out true. There are also acceptable precisifications according to which ‘Bill is 

bald’ comes out false. But there is no acceptable precisification according to which ‘Al is bald’ 

comes out true and ‘Bill is bald’ comes out false. Referring to Fine (1975), Fodor and Lepore 

claim that the supervaluationists’ reason for this is that precisifications must preserve conceptual 

truths, in this case the conceptual truth that baldness supervenes on head-to-hair ratio. So by their 
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own lights, supervaluationists are committed to (P). But there are no precisifications which are 

acceptable according to (P). 

The response to Fodor and Lepore is three-fold. First, some reasons for thinking that (P) need not 

be satisfied by models are discussed. The basic point is that precisifications of English are not 

meant to be meaning preserving at the level they are discussing. It’s no news to say ‘bald’ in a 

precisification means something different from ‘bald’ in English because the former is precise 

and the latter is vague. The second is that we can distinguish acceptable from unacceptable 

precisifications without relying on (P). Finally, it is argued that there is no way to make sense of 

Fodor and Lepore’s positive suggestion, which is that S is gappy, and must be so on all models, 

without using supervaluations. In sum, I don’t dispute that giving up principles like (P) is part of 

the cost of adopting a supervaluational account, but I think the cost can be shown to be rather 

small, and the benefits rather large. 

Fodor and Lepore treat precisifications as languages, so we can talk about the meaning of a word 

in a precisification. It is simpler to treat them as sets of true sentences, or equivalently as 

(complete) functions from sentences to truth-values. In any case, we ought to be able to determine 

the meaning of a word in a precisification from the set of sentences containing that word which 

are true. Let E be the set of first-order truths of English. So ‘Snow is white’ is in E, but ‘“Snow 

is white” is true’ is not in E. Let E* be any maximally consistent superset of E which is closed in 

the following ways: 

 A & B Î E* iff A Î E* and B Î E* 

 A Ú B Î E* iff A Î E* or B Î E* 

 ¬A Î E* iff A Ï E* 

 If A ® B Î E* and A Î E* then B Î E* 

 ‘A’ is true Î E* iff A Î E* 
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E* is a precisification of English iff it satisfies all of these conditions. I’m intending ‘®’ here to 

be read as a natural language conditional; the condition regarding it is redundant if it is read as a 

material implication. This definition is intended to perform two jobs. First, any (first-order) truths 

of English are true in all precisifications. So if Jack is bald then ‘Jack is bald’ will be an element 

of all precisifications.  

Secondly, precisifications preserve what Fine called the penumbral connections, like ‘Taking 

someone’s hair away doesn’t change them from being bald to not-bald’. The way these were 

preserved by Fine suggested that supervaluationists were committed to (P). However, here they 

are preserved not because they are conceptual truths, but because they are first-order. For 

example, ‘Baldness supervenes on hair-to-head ratio’ is a first-order truth, so it will be in E*. 

Returning to our example of Al and Bill, this implies that ‘If Al is bald, Bill is bald’ is in E and 

hence E*. I’m assuming here that if A entails B then ‘If A, B’ is true. Hence there can be no 

precisification in which Al is bald and Bill is not bald. Similarly, we can find general (perhaps 

conceptual) first-order truths which imply that bald people can’t have a higher hair-to-head ratio 

than non-bald people. 

It’s a trivial fact that for one object to model another, it doesn’t have to have all the properties of 

the object being modelled, or indeed all the essential properties. Consider the use of crash test 

dummies to model the behaviour of humans in car crashes. So on a natural reading of ‘model’, 

there is no reason to say that precisifications are not models of English just because they lack 

essential properties of English. There are two ways in which breach of (P) by precisifications 

would cause problems, but neither seem to be realistic possibilities. 

First, if someone were claiming ‘bald’ in E* means the same as ‘bald’ in English, then breaches 

of (P) would be problematic. Meaning-preserving translations ought to preserve conceptual 

truths. But there is a bigger problem with this approach. It would imply that we can work out the 
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meaning of ‘bald’ by just stipulating a cut-off point. Since any stipulation would provide the 

meaning, this would lead to blatant inconsistencies. This clearly isn’t what supervaluationists are 

trying to do. The meaning of ‘bald’ isn’t given by its behaviour in a particular precisification, but 

in the set of them. 

Secondly, there might be a difficulty if there were permutation problems. Granted that E* is a 

model (not an analysis or translation) of English, we have to determine which English words are 

being modelled by particular words in E*. Ideally there will be a function from words in E* to 

words in English. However, there might be multiple plausible functions. Were this to occur then 

E* wouldn’t be a good model, and there might be wholesale difficulties for the supervaluationist, 

because it wouldn’t be clear if the equivalent sentence in the model to a particular sentence of 

English were true or not. However, there is little evidence that there are such problems, and 

hopefully the preservation of all first-order truths in all precisifications prevents such a difficulty 

occurring. If there is a problem on these lines, no objector has yet shown it. 

From this we can determine that the status of ‘Jack is not definitely bald’ in a precisification will 

depend on how we read ‘definitely’. If we read it as a function from predicates to predicates (like 

‘very’) we will assume that this is a first-order truth (if Jack is in the penumbra of bald), and so it 

will be true in all precisifications. On the other hand, if by this we mean ‘“Jack is bald” is not 

definitely true’, then it is a second order truth. This will be true in some models and not in others. 

I assume that what is true in a model is, for reasons given in previous sections, definitely true in 

that model. So this conceptual truth will not be preserved in all models, but we have reasons for 

thinking models need not preserve conceptual truths. 

This answers the letter of Fodor and Lepore’s objections. Precisifications need not obey (P) 

because they are models of English, not analyses or translations of it. And we can capture Fine’s 

penumbral connections without relying on (P), so there is no ad hominen argument for (P). There 
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remains, however, a powerful related problem. Why, given that precisifications are merely models 

for English, should truth on all models mean truth in English? For the first-order sentences, the 

answer is trivial. If a first-order sentence is true on all precisifications which preserve all first-

order truths, then of course it is true. The question is why this should be the case for the higher-

order sentences. 

There is here no quick answer. The long answer turns on four points. First, given that this approach 

works for first-order sentences, there is an argument from theoretical simplicity to use it 

everywhere. This needs little elaboration, but it isn’t that powerful on its own. The second is that 

only supervaluational theories justify saying that some sentences lack a truth-value. The third is 

that, given that some sentences lack a truth-value, only the moderate supervaluational approach 

avoids implausible results. A fourth, which won’t be elaborated but which might have some 

power, is that the supervaluational explanation of the truth-value of compounds with gappy 

components is preferable to its rivals. 

Many of these points have been stressed in previous sections, and there’s no need to recap them 

here. I have made much of the general argument against the existence of ‘gappy’ sentences in my 

replies to some objections of Williamson. We can’t just stipulate that sentences without truth 

values exist, we need to explain what we mean by this, and in particular we need to explain why 

we take being ‘gappy’ to be different from being ‘false’.  

Even if this general hurdle is cleared, we need to explain why some vague sentences should be 

‘gappy’. I have argued above that the easiest way to do this is to show that the negations of these 

sentences are not true. If it can be shown that ‘Jack is not bald’ should be considered the negation 

of ‘Jack is bald’, the task might be complete. The supervaluationist can show this easily; ‘Jack is 

not bald’ is undoubtedly the negation of ‘Jack is bald’ on all precisifications, so it is plausibly its 

negation simpliciter. For other theories, however, the arguments near the end of section 5.4 seem 
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to show this can’t be done. So Fodor and Lepore’s preferred position, that sentences like ‘Jack is 

bald’ are gappy and that’s all there is to the matter, looks flawed. 

Moderate supervaluationists can explain how there can be gappy sentences even though Tarski’s 

T-schema is preserved. This is quite an achievement, as the T-schema threatens the consistency 

of accounts which allow gappiness. Assume that neither A nor ¬A is true. Then by the T-schema 

and modus tollens, both ¬A and ¬¬A are true, which is a contradiction. According to 

supervaluationists, this little argument contains a fallacy of equivocation. However, it isn’t clear 

how non-supervaluational accounts are to avoid it.  

In general I suppose the move will be to render the T-schema impotent, as van Fraassen (1966) 

does in his attempt to defend weak supervaluationism. He claims that we lose the T-schema, but 

this is no great loss as both “A ├ ‘A’ is true” and “‘A’ is true ├ A” are still valid. However, his 

argument for saying these are valid relies on there being no higher-order vagueness, and on 

validity being mere truth-preservation, rather than the stronger rule outlined at the end of the last 

section. Each of these premises seems to be mistaken. 

The argument for supervaluationism here relies, it might be thought, a little too heavily on the 

weaknesses of its rivals. In part that’s not accurate, some of the objections above are to all possible 

opposing accounts, not just those now on the market. However, in part it’s an unavoidable 

problem. The challenge Fodor and Lepore put forward can be easily met for one class of sentences 

(the first-order sentences), the difficulty is just expanding it beyond that. Since the main ground 

for expansion is theoretical simplicity and the coherence of a unified approach, much of the 

discussion is going to be concerned with counting the costs of going this way as compared to 

going another. Once that point is reached, negative arguments seem likely to be most prominent. 

Fodor and Lepore do anticipate somewhat this general line of reply. In a long footnote, they note 

that some critics have suggested the conceptual truths they want precisifications to honour are 
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metalinguistic, higher-level truths. They first suggest this oughtn’t matter. I take it this is the same 

as pressing the question of why, given our justification, we should apply supervaluational 

semantics to higher-order sentences. This objection I’ve already considered. They then claim the 

truths are not higher-level with the following argument. 

The crucial consideration is that you cannot make a man more (/less) 

bald without altering his hair-to-head ratio. So if there is any valuation 

on which [‘Al is bald’] is true (/false /indeterminate) and Al’s head-to-

hair ratio is m / n, then [‘Al is bald’] is true (/false /indeterminate) in 

every valuation in which Al’s head-to-hair ratio is m / n. (523n) 

The question turns on whether (1) is true. 

(1) If A is true on any precisification, it is true on all of them. 

Surprisingly, there is an argument for (1), just the little argument from facts about supervenience 

that Fodor and Lepore give. I take it this can be generalised from sentences about baldness to 

sentences generally. The moderate supervaluationist respects this argument; on their view (1) is 

ambiguous. The standard reading would have it come out at least possibly false. However, there 

is a reading which we get by prefixing ‘According to all precisifications’ to (1), on which it is 

necessarily true. The simple fact which this reading expresses is that according to a precisification, 

it is the only acceptable precisification. However, trying to use that to show there can’t be more 

than one precisification, or that metalinguistic sentences aren’t of a different type to ordinary 

sentences, rests on a fallacy of ambiguity. 

5.7 Local and General Supervaluationism 

I think a broad supervaluational program succeeds; supervaluational semantics are correct for at 

least sentences with vague predicates, and possibly also for ambiguous sentences. However, even 
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if this program were to fail, I think a supervaluational program for probability sentences would 

still succeed, because the objections to supervaluationism seem particularly weak when applied 

here. 

It is conceded that the precisifications that supervaluationists use when interpreting vague terms 

are fictions. All of these precisifications have some features which differ from English; they are 

all precise. On the other hand the precisifications we use for interpreting probability sentences are 

much more natural. Each of them does represent a reasonable epistemic state, even though, since 

all of them are precise, there are reasonable epistemic states which are not precisifications. So the 

differences which Fodor and Lepore stress between models of languages and those languages are 

not real differences here. 

There is also a distinction in terms of theoretical priority. In a natural language the vague terms 

are theoretically prior; we introduce the precisifications as a theoretical device for understanding 

these terms. In this case we start at a more theoretical position. The only contribution of natural 

language is to draw the link between probability and reasonable credences. What counts as 

reasonable will itself be largely determined by theoretical reflection. As it happens, the theory I 

have used here (developed in chapter 3) takes the precise probability functions as the basic 

elements, and allows degrees of belief to be imprecise by allowing them to be vague over a set of 

these functions. In these cases, it isn’t too surprising that we should define truth in terms of what 

is true according to each of these reasonable functions. 

To put this point differently: in understanding probability, as in understanding credences, I take 

comparative, qualitative sentences to be primary. A probability function is reasonable iff it makes 

all of the comparative sentences true. Given that the comparative sentences are primary, and the 

admissible probability functions make all of them true, it is no great stretch to say that true 

probability sentences are just those true according to all functions. If we didn’t have the theoretical 
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arguments for the importance of probability functions (as opposed to just any old functions which 

made the comparative sentences true) this move would look quite unjustified; but with those 

arguments, it looks a little bland. 

So in sum, even if the defences constructed above crack and supervaluational approaches are 

shown not to work for interpreting vague sentences, the specific usage of supervaluational 

semantics here may still be secure. I hope that doesn’t happen. I would like to see a general 

supervaluational program succeed, but I don’t think the fate of my theory of probability depends 

upon it. 

5.8 The Reasonableness of Imprecision 

It is implicitly assumed above that there is more than one reasonable probability function. Some 

arguments for this were mentioned in chapter 3. This section will examine those arguments in 

more detail. There are three important classes of arguments for that conclusion: arguments from 

ignorance; arguments from rational disagreement and arguments from vagueness. 

5.8.1 Ignorance 

There are some propositions about which we have next to no evidence. Classically the probability 

of these propositions was determined by Laplace’s principle of indifference.  So, if we know, for 

example, nothing about a coin that’s about to be tossed, we ought assign equal credence to the 

proposition that it will fall heads if tossed as to the proposition that it will fall tails. In general, the 

principle says that we can infer from the absence of evidence about p and q that the probabilities 

of the two are equal. 

In gaming situations this does not lead to implausible results, but when applied more widely it 

can do so. The classic examples of this are first presented in Bertrand (1889). This example is 

first due to von Kries (1886). A factory makes cubes of random sizes, the largest having a side 
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length of 2cm, and the smallest having a side length of 0. What is the probability that the last cube 

to come off the production line had a side length greater than 1cm on just the evidence we have? 

By applying Laplace’s principle we seem to get the answer 1/2; the evidence that the cube’s side 

length is larger than 1cm is equal to the evidence that its side length is less than 1cm. However, 

we could instead look at the evidence about what the volume of the cube is. We know that the 

volume is at most 8cm3, and for every interval [n, n+1] (0 £ n £ 7) the evidence that the volume 

is in that interval is identical. So the probability the volume is less than 1cm3 is 1/8. But the 

volume is less than 1cm3 iff the side length is less than 1cm. Hence the probabilities of the two 

should be the same. It seems that Laplace’s principle leads to inconsistency. 

The importance of this is that, without Laplace’s principle, there is no way to represent ignorance 

about p through a single probability function15. Since ignorance is, it seems, possible, we should 

be able to represent it. And we should be able to say what epistemic states are reasonable under 

ignorance. If we allow multiple reasonable probability functions, this is possible, as has been 

shown. This argument has some historical importance, as it seems it is what convinced Keynes 

(1921a: ch. 4) to allow degrees of belief to be incommensurable.  

There are several related arguments to this one which are worth stating, but which have little 

independent force. In traditional epistemology, an agent is allowed to not have beliefs about a 

proposition. That is, we distinguish ‘A believes ¬p’  from ‘A doesn’t believe p’ . In natural 

language words which would seem to indicate the latter often are used for the former, but this 

doesn’t mean the distinction isn’t real. 

Many probabilistic epistemologies are not so liberal. So traditional subjectivism demands that an 

agent have a precise credence in a proposition, and that this be 1 less their credence in that 

 

15 This conclusion might be a bit quick; the constructivist theory developed in later chapters promises to do 

just this without Laplace’s principle. But it is clearly right for orthodox probability functions. 
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proposition’s negation. In other words, it demands the agent have an epistemic attitude towards 

that proposition, a demand from which traditional epistemology recoils. The epistemology here 

is probabilistic but it allows reasonable agents to take no epistemic stance towards propositions. 

If an agent has no thoughts at all about a proposition p ,  then their epistemic state will be 

represented by a set of probability functions which includes a function Pr  such that Pr(p)  = x for 

all x in [0, 1]. An argument similar to this one is used in Jeffrey (1983) for allowing probabilities 

to be vague. 

5.8.2 Rational Disagreement 

I take it as a datum that reasonable people can, on the same evidence, have different degrees of 

belief in the same proposition. That is, there is more than one reasonable response to certain 

bodies of evidence. I don’t, for example, regard it as evidence that one or other discussant is 

unreasonable, if participants in a debate about the Kennedy assassination express different 

credences in Oswald’s guilt. The evidence permits some doubt; how strongly that doubt is felt 

seems to vary among reasonable people.16 

In other words, I take it that the possibility for reasonable people to differ in the likelihood of a 

hypothesis given some evidence is something that a theory of probability should be required to 

explain. If there were only one reasonable probability function this explanation would be hard to 

find. However, on the theory adopted here it is easily explained because of the existence of 

multiple reasonable probability functions. 

 

16 This is a little speculative, for ‘reasonable’ here entails ‘coherent’, and few people’s beliefs are fully 

coherent. So we can’t verify this claim by simply finding reasonable people with the same evidence who 

disagree. However, it seems implausible to think the kinds of disagreement mentioned in the text would 

dissipate were the disputants to obtain perfect computational powers. 
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Some people may dispute the intuition on which this argument relies. If so I have no response; I 

hope the other arguments are more convincing. A more important objection to this argument is 

that it looks like an ad hoc move. The possibility of rational disagreement seems to threaten the 

whole project of analysing probability as reasonable degree of belief. It is incorporated only by 

weakening the semantics to allow for imprecise probability statement. If this argument were the 

only ground for allowing multiple reasonable probability functions, the objection would I think 

succeed. But that isn’t the argument I am using here. Like Keynes, I take the need to represent 

epistemic states with minimal evidence as the primary ground for allowing imprecision. That the 

most natural way to do so has this pleasant side-effect, that it allows rational disagreement, should 

count as evidence we’re on the right track. 

5.8.3 Vagueness 

There is a more direct argument for allowing imprecision. Try to determine, to the fifteenth 

decimal place, your credence that the Bulls will win the next N.B.A. title, or the Democrats the 

next Presidential election. It simply can’t be done; credences are not that precise. We have to have 

some way of representing vagueness, and the method used here seems better than the alternatives. 

This argument is a bit quick. It might be responded that we do really have precise credences but 

they are subject to ordinary measurement errors. This is the response Borel (1924) makes to an 

imaginary objection like the one above. It might be, as Williamson (1994) suggests, that 

vagueness is in general an epistemic phenomenon; there is a sharp divide between the tall and the 

not-tall but we are unaware of what it is. Similarly there might be precise credences we have in 

all propositions of which we are unaware. 

Borel’s response would work if there were independent reasons for thinking credences are precise. 

We could then explain away the anomalous introspective evidence as a measurement problem. 

But I don’t see what those independent reasons could be, and without them the most natural 
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interpretation of the evidence, that credences appear imprecise because they really are, seems 

most appropriate. 

Whatever the general merits of Williamson’s resolution of the problem of vagueness that type of 

approach seems inappropriate here17. There is nothing implausible about insisting we can have 

(partial) beliefs of which we are unaware. So we might have a precise credence in the Bulls 

winning but be unaware of it. On a broadly functionalist view, provided we have all the right 

dispositions that go along with believing the Bulls will win to degree 0.4, we do believe that to 

degree 0.4, whatever the introspective evidence. It is, however, just as implausible that we have 

sufficient dispositions to settle our credence to the fifteenth decimal place as that we could 

determine that credence introspectively. 

It might be thought that by considering our dispositions to accept or reject bets at certain odds we 

could settle precisely our credence in a given proposition. Apart from the general objections in 

earlier chapters there is a particular problem here. Assuming we do have dispositions to accept or 

reject any bet is quite implausible. For some bets we simply don’t have dispositions about what 

to do when faced with them. We might, on reflection, choose to accept (or reject) them, but this 

reflection may involve changing our epistemic state. This means that even if an agent does accept 

a bet after being offered it, she needn’t have originally had a disposition to accept that bet. Any 

defence of the claim that all degrees of belief (or even all reasonable degrees of belief) are precise 

will turn out to rely on an implausible claim somewhere, so this direct argument for allowing 

imprecision seems to be quite strong. 

 

17 Williamson hasn’t written about the imprecision in degrees of belief so I don’t know if his general solution 

is intended to apply here. 
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5.9 The Reasonableness of Precision 

I have made two assumptions above which might be considered controversial. The first is that it 

is always reasonable for an agent to believe any proposition to a precise degree. The second is 

that the union of all reasonable probability functions represents a reasonable epistemic state. The 

purpose of this section is to defend these assumptions. For simplicity in this section I’ll use the 

phrase ‘epistemic state’ to refer to a set of probability functions representing an epistemic state. 

I’ll start with the defence of the second assumption. I don’t want to defend the claim that whenever 

C 1 and C 2 are reasonable states then C 1 È C 2 is a reasonable state. I think reasonable states must 

satisfy some kind of continuity principle, so that the agent’s degree of belief in a proposition must 

be an interval. I do, however, want to defend the related claim that whenever C 1 and C 2 are 

reasonable states then some superset of C 1 È C 2 is a reasonable state. This just amounts to the 

claim that whenever two reasonable agents disagree on the probability of some proposition, there 

is a reasonable state which is neutral on the question of which of them is right. That seems 

plausible enough; if all participants in a debate are being perfectly reasonable, there is no 

requirement on a reasonable agent that they make a decision between the participants. From this 

principle it follows straightforwardly that some superset of the union of reasonable epistemic 

states is a reasonable epistemic state. 

The first assumption is a little harder to defend. Some writers have thought that the arguments of 

the last section show more than I’ve intended. They show that under some circumstances, 

particularly when there is little evidence about a proposition, it is unreasonable to believe that 

proposition to a precise degree. This, for example, seems to be the view Keynes takes. On any 

evidence set there is only one reasonable epistemic state, and subsets of that state are not 

reasonable. The position adopted here is that all subsets of reasonable epistemic states are 

reasonable. 
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The first argument for this relies on conclusions not yet justified. In subsequent chapters I will be 

arguing for a decision theory called Caprice. According to this theory, a set of choices and 

dispositions to choose is reasonable iff the agent is reasonable and there is a probability function 

Pi in the agent’s epistemic state such that, for every choice of (or disposition to choose) A over 

B, the expected value of A according to Pi  is at least as great as that of B according to Pi . There 

are no restrictions on how an agent chooses Pi  from her epistemic state18. So an agent whose 

epistemic state is C , where Pi  Î C , will make exactly the same decisions as an agent whose 

epistemic state is {Pi}. If this decision theory is right, it follows that precisifying (i.e. an agent 

moving from epistemic state C  to epistemic state C 1, a subset of C ) can never lead to the agent 

making decisions which would have been irrational according to the coarser epistemic state. So 

from a purely pragmatic perspective, there is no cost to precisifying, hence it is not irrational. 

There is more to being reasonable than not losing money, so I’m sceptical about the force of this 

argument. A stronger argument turns on the possibility of rational disagreement. Assume 

epistemic state C  is the largest reasonable state. There are three possibilities: all subsets of C  are 

reasonable; some but not all subsets of C  are reasonable, and finally that no subsets of C  are 

reasonable. We are wanting to show the first is correct, so assume for now it is false. The second 

seems implausibly arbitrary; what ground could there be for distinguishing the reasonable 

precisifying moves from the unreasonable ones? And the third does not allow reasonable agents 

to disagree, it requires all reasonable agents to have the same (imprecise) degree of belief in a 

proposition on a given evidence set. This is the position Keynes adopted, but it is refuted by the 

possibility of reasonable disagreement. So the first option, which is what I wanted to defend, is 

the only one left standing. 

 

18 This language of choosing Pi  is perhaps a bit misleading. The picture I have in mind is that the agent 

simply makes choices and if she is reasonable the condition will sort itself out. There is no conscious 

decision to choose according to a particular probability function. 
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Chapter 6   

Objections 

6.1 Introduction 

So far I have defended two distinctive views about probability. The first is that probability 

sentences, properly construed, are non-contingent. The second is that the probability relation 

between propositions is not always numerical. In chapter 5, I relied on the technique of 

supervaluations to explain how these non-numerical relations interact. I call any analysis of 

probability which defends the first of these theses a necessitarian analysis, and any analysis which 

defends the second an imprecise analysis. (The imprecision in question is in the values of the 

probability relations, not in the analysis!) The first writer to defend each of these theses was 

Keynes (1921a). Several of the objections that I’ll discuss in this chapter were first made by 

Ramsey and aimed at Keynes’s theory, so before commencing I need to note one important 

difference between my theory and his. Keynes, at least in his Treatise on Probability held a logical 

analysis of probability. Some of the objections to Keynes I’ll discuss are objections to the logical 

analysis, but are not objections to a necessitarian view. To defend my theses, I don’t need to 

respond to these. Indeed, as I pointed out in section 1.7, it is because I accept some of them that I 

reject the logical analysis. 

One other distinct feature of Keynes’s theory should be noted. I mentioned in chapter 5 that we 

could think of the probability of p given q as a function from distributions to elements of [0, 1]. 

Keynes says that probabilities can be non-numerical, but he doesn’t give this analysis of their 

‘internal structure’. He is happy to say the probability of p given q is a, where we might know no 

more about a than a > 0.2 and a < 0.6. By means of some axioms, he shows how we can interpret 

addition and multiplication of these probability-values, but it is rather unclear whether or not 

addition and multiplication still have the same meaning they do in natural language once these 

axioms are added. As a consequence, when I claim that objections of Ramsey’s that are directed 
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at Keynes’s refusal to discuss the structure of probability relations don’t harm my theory, I am 

not attacking Ramsey (his objections usually hit their intended target) but merely showing why 

my theory isn’t doomed because of his work. 

Since Ramsey levelled so many distinct objections to the Keynesian project in his 1926 paper 

Truth and Probability I will spend most of this chapter analysing and where necessary responding 

to those objections. It is commonly assumed, particularly in non-philosophical discussions of 

Keynes’s work1, that the Keynesian theory was fatally wounded by Ramsey’s early attacks on it. 

I will argue that while Ramsey’s attacks seem to work against logical theories, they aren’t overly 

persuasive against necessitarian views. I will argue in chapter 10 that Keynes held a similar, if 

less worked out, view of the value of Ramsey’s attacks. There are several separate arguments 

against Keynes squeezed into Ramsey’s paper. For ease of later reference, I’ll first simply list 

what I take to be the main arguments before attempting any kind of response. 

• There aren’t any probability relations of the kind Keynes requires. 

• If there are such relations, we can’t determine what their value is when the relata are simple. 

• It is mysterious how the probability of p can go from being incomparable with any given 

number to being numerically precise by the addition of evidence. 

• It is unclear why Keynes’s probability relations should obey the laws of the probability 

calculus. 

• Keynes’s theory relies on the discredited Principle of Indifference.  

• Keynes’s theory requires that our evidence be known for certain, but much of the time our 

evidence is vague and uncertain. 

Unlike Keynes, Carnap backed up his necessitarian theory with a detailed calculus for the 

probability logic. For various reasons, this calculus has attracted more attention than the 
 

1 See, for example, Bateman (1996) and Runde (1994a). From a more philosophical perspective, the same 

assertion is made in Zabell (1991: 224). 
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philosophy underlying it. Howson and Urbach (1989) provides one exception, and I deal with 

their objection to Carnap at the end. I suspect their worry is widely shared, and their presentation 

sufficiently representative, so my replies may be relevant to many critics.2 

6.2 There are no such things 

But let us now return to a more fundamental criticism of Mr. Keynes’ 

views, which is the obvious one that there really do not seem to be any 

such things as the probability relations he describes. He supposes that, 

at any rate in certain cases, they can be perceived; but speaking for 

myself I feel confident that this is not true. (161) 

In his original theory, Keynes held that we could perceive directly the probability relations 

between propositions, in the same way that we perceive entailment relations. Some have argued 

that this paragraph was a decisive refutation of Keynes’s Platonist assumptions. It is, of course, 

nothing of the sort. Ramsey does not deny that we can perceive, in some sense of that word, 

entailment relations. Nor does he deny that we can perceive relations, such as having a common 

subject or predicate, which hold between propositions, at least on a Tractarian view of what 

propositions are. All he rejects is that we can perceive the particular relations Keynes posits. 

From the way we have put forward the theory, this is a rather odd thing to say. He couldn’t be 

saying that he doesn’t perceive that there are some pairs of coherent belief states and evidence 

sets which are reasonable and some which are unreasonable. In fact he goes on to say that a person 

who doesn’t draw inductive conclusions from their evidence is unreasonable (197). However, he 

doesn’t believe that such an ‘unreasonable’ person would ‘sin against formal logic or formal 

probability’.  Now this may be so on a narrow construal of ‘formal’. If, however, we are internalist 

about epistemic justification then we are committed to saying that we can perceive that such a 

 

2 All page references in this chapter unless otherwise stated are to Ramsey (1926a). 
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person’s epistemic states are necessarily unreasonable3. So, to perceive that such a person is 

unreasonable is to make a perception which, if it is correct, is necessarily correct.  

On the theory advocated here, if for every value of n we can perceive whether believing p to 

degree n on a certain body of evidence q is reasonable or unreasonable, then we can perceive the 

probability relation between p and q. We won’t ordinarily be able to do this because the 

boundaries between the reasonable and the unreasonable will be vague, but this merely 

corresponds to the probability relation being vague. The crucial point is that there is nothing more 

(or less) to a probability relation than a bundle of facts of the form It is (not) reasonable on such-

and-such evidence to have this degree of belief in p .  Since Ramsey is happy to say we can 

perceive facts of this latter sort, it follows that we can perceive probability relations. 

Ramsey goes on to say that, because other people can’t agree on the value of probability relations, 

he believes no one else perceives them either. In part this criticism is met by the theory of vague 

probabilities set out in chapter 5. There it was argued that reasonable people could have different 

degrees of belief in the same proposition on the same evidence. However, in these cases, the 

probability of a proposition on some evidence isn’t the degree of belief a reasonable person would 

have in the proposition on that evidence. There is no such degree, even if we allow non-numerical 

degrees of belief. Rather there are a range of reasonable degrees, and the value of the probability 

relation is this set. 

6.3 Probability Relations Between Simple Propositions 

If, on the other hand, we take the simplest possible pairs of propositions 

such as ‘This is red’ and ‘That is blue’ or ‘This is red’ and ‘That is red’, 

whose logical relations should surely be easiest to see, no one, I think, 

 

3 This will be false unless we take ‘epistemic states’ to be a rigid designator, which for ease of exposition I 

do. 
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pretends to be sure what is the probability relation which connects them. 

(162) 

Ramsey might concede that we can work out the probability relation between two complex 

propositions such as our entire current evidence and “Oswald killed JFK”. However, as the above 

quote indicates, we can’t tell what the probability relation is between simple propositions. This is 

entirely at odds with the rest of logic, where we are prepared to rely on agreement about the 

relationships between simple propositions to work out the relationships between complex 

propositions. 

The easiest way to shrug off Ramsey’s objection here would be to say that it only directly attacks 

logical analyses of probability rather than necessitarian analyses. However, the point deserves 

some more discussion. After all, even if these examples aren’t central on a necessitarian view, as 

they are on a logical view, we are still committed to saying that there is a probability relation 

between them. 

In previous chapters I have had occasion to identify probability relations with the set of values 

they take. This is a convenient shorthand, though it does lose some information. In this notation, 

I can say quite precisely what the conditional probability of This is red given That is blue is. It is 

the interval [0, 1]. In other words, there is no degree of belief in This is red which is either ruled 

out as irrational or ruled in as the only rational response on this minimal evidence. This response 

to Ramsey doesn’t entirely succeed, because the interval notation isn’t fully informative, but it is 

a start. 

The other response we can make to this objection is that Ramsey’s assessment of simplicity is 

very much related to his Tractarian conception of propositions. This analysis of propositions is 

crucial to the logic of decision he develops, and for which the paper is more well-known. If we 

analyse propositions as sets of possible worlds, and assume possible worlds are the ‘ultimate 
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organic unities’ (177) which are the subject of choices, we cannot use Ramsey’s method for 

determining beliefs and desires. On my preferred analysis of propositions, This is blue will not be 

a simple proposition in any interesting sense. On the contrary, it is as heterogenous a set of 

possible worlds as one could care to imagine. The truly simple propositions will be those which 

are true at one world only. However, the linguistic representation of such propositions will be 

infinitely complex. Hence simplicity is theory-dependent, and even if I agreed with Ramsey that 

not being able to say what the probability relation was between simple propositions was 

problematic, these examples wouldn’t count against my theory. 

6.4 The Sorites Objection 

[I]t is hard to suppose that as we accumulate instances there is suddenly 

a point, say after 233 instances, at which the probability relation 

becomes finite and so comparable with some numerical relations. (162) 

On Keynes’s view, as on mine, when we have observed a billion red round things, and no non-

red round things, the probability that a is red given that a is round is greater than 0.99. That is, it 

enters into numerical comparison. This is necessary if we are to have any projectible predicates. 

However when we reduce the number of observations from a billion to, say, one, the resultant 

probability is not comparible with any numbers, or numerical relations as Ramsey puts it. Ramsey 

seems to think this combination is implausible, because it would require an arbitrary number of 

observations after which the probability does become numerically comparible. 

It is a remarkably weak objection, particularly by Ramsey’s standards. Assume a certain pile of 

sand is not a heap. I can, by adding one grain at a time, end up with a heap of sand. However, I 

don’t have to assume there is some point, say 233 grains, at which it suddenly becomes a heap. 

Given this it is hard to see what the basis of Ramsey’s objection is. As an attempt to give some 

bite to the objection in the previous section it doesn’t seem particularly plausible. 
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6.5 The Probability Calculus 

For now it is easily seen that if partial beliefs are consistent they will 

obey these axioms, but it is utterly obscure why Mr. Keynes’ mysterious 

logical relations should obey them. (188-9) 

As I noted in the introduction to this chapter, for Keynes the probability relation between two 

propositions may be some non-numerical value. There are then two related objections that can be 

made concerning the calculus of these values. The first is that it isn’t at all clear what we mean 

when we add or multiply them. For example, if the probability of p given q is a, and the 

probability of ¬p given q is b, Keynes says we can conclude a + b = 1, but he doesn’t say what 

this might mean. The second objection is that it isn’t clear why he should want it to be the case 

that a + b = 1. I take the results of chapter 3 to provide an answer to this question, though to be 

fair to Ramsey it is an answer which appears nowhere in Keynes. 

So the more important challenge is to the meaningfulness of the mathematical notation in 

Keynes’s theory. If P   is the set of reasonable probability functions, we can identify the probability 

of p given q with a function from P   to [0, 1]. In this notation we’ll have to identify numbers with 

constant functions, i.e. identify 1 with the function, call it 1, such that 1(Pr) = 1 for all Pr . Now 

we have clear concepts of what it is to add and multiply functions, at least with common domains. 

For functions f, g and h, we can easily say f + g = h iff for all x, f(x) + g(x) = h(x). It seems plausible 

enough to say the ‘+’ in the first equation means the same as the ‘+’ in the second4. Similar 

definitions can be given for the multiplication and division of functions. 

Now, with this notation, we can see how it is possible that a + b = 1 (which we are identifying 

with 1) how some probability relations can be non-numerical (because they are not constant 
 

4 Though perhaps ever since Wittgenstein (1953) we ought be a little sceptical about such claims of meaning 

extension. I hope everyone will agree that I have used ‘+’ in an acceptable way, and if Wittgenstein is right 

that will mean I have used it acceptably. 
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functions), and how this doesn’t prevent us applying addition and multiplication operations. Thus 

I presume the challenge as to the meaningfulness of Keynes’s algebra is met, and its justification 

is given by chapter 3. 

6.6 The Principle of Indifference 

Secondly, the Principle of Indifference can now be altogether dispensed 

with; we do not regard it as belonging to formal logic to say what should 

be a man’s expectations of drawing a white or a black ball from an urn; 

his original expectations may within the limits of consistency be any he 

likes; all we have to point out is that if he has certain expectations he is 

bound in consistency to have certain others. This is simply bringing 

probability into line with ordinary formal logic, which does not criticise 

premises but merely declares that certain conclusions are the only ones 

consistent with them. (189) 

This objection isn’t applicable to my theory, but it is worth considering as an objection to logical 

analyses of probability. A logical analysis of probability has to elevate the Principle of 

Indifference to a logical theorem. This might be thought problematic because of the various 

paradoxes of indifference discussed in 5.8.1. Even if I can avoid the paradoxes somehow, and as 

I noted there allowing probabilities to be vague seems to do the trick, there is a lasting impression 

that the ideal solution would have been to not allow the problems to arise. So I suspect the intuition 

Ramsey has, that if we can do away with the Principle we ought, is just the right one to have. 

It may be possible to develop a precise logical analysis of probability which is immune to all of 

the paradoxes, but given the calibre of the theorists who have tried and failed, it seems doubtful. 

It would be more plausible to think an imprecise logical analysis which avoided the paradoxes 

could be developed. The two grounds I have for thinking this won’t be done are, again, that we 
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would expect if it can be done it would have been done already, and that there seems to be a fairly 

mechanical procedure for constructing objections to any approach. 

As it turns out, the formal logic of probability defended here is just the same as that Ramsey 

defended, with the only possible exception being that we might regard the Principal Principle as 

a logical rule. Nevertheless, when we say someone has made a logical error in their allocation of 

degrees of belief, we are just saying that their beliefs are inconsistent. In Ramsey’s terms, the 

person making an error has failed to do something they are ‘bound in consistency’ to do. As 

Carnap points out (1950: 337), the formal component of all theories prior to his shared a common 

logic. So even though Keynes had argued that there were logical restrictions on what degrees of 

belief people could reasonably have in propositions, when he wrote the formal component of his 

probability logic these restrictions were not incorporated. 

There is one infelicity of expression in the Ramsey quote above. When Ramsey says that a man’s 

expectations ‘may within the limits of consistency be any he likes’, the modal may is being used 

rather oddly. He doesn’t mean that having any old expectation would be epistemically acceptable 

all things considered. Rather he means that any expectation which is consistent is logically 

acceptable. As he goes on to say in his discussion of induction, there are restrictions on what is 

epistemically acceptable, i.e. on what is reasonable, which are not logical restrictions. 

Finally, we should note the oddity in the last sentence of the quote from Ramsey. It might not be 

part of logic to criticise the premises that various people hold, but it is part of epistemology 

broadly speaking. All we ought to conclude from what Ramsey says is that the logic of probability 

should have little to say with regard to criticising individual probabilistic judgements. I agree; the 

theory defended here does not make logical criticisms of agent’s whose beliefs are coherent. 

However, the boundaries of critical epistemology are not the boundaries of logic. This is true in 

non-probabilistic epistemology, and it is true in probabilistic epistemology. In sum, I agree with 
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Ramsey that logical analyses of probability rely too heavily on a Principle of Indifference; but I 

disagree with his claim that we have no grounds for ruling as unreasonable any consistent beliefs. 

It is this last possibility which opens up an necessitarian theory of probability.  

6.7 Uncertain Evidence 

I think I perceive or remember something but am not sure; this would 

seem to give me some ground for believing it, contrary to Mr Keynes’ 

theory, by which the degree of belief in it which it would be rational for 

me to have is that given by the probability relation between the 

proposition in question and the things I know for certain. (190) 

There are two responses we can make to this objection. The first is that it doesn’t apply on my 

conception of evidence; the second is that this is a problem for the application of the theory, rather 

than the theory itself. Ramsey’s observation is of undoubted importance for anyone wishing to 

construct a machine which has reasonable beliefs, or if you doubt machines can have beliefs, 

functional states which behave like beliefs and would be reasonable were they believed. However, 

it is unclear why such practical worries should harm the theory under construction here. 

On the view endorsed here, the evidence in a probability relation is a set of worlds in all of which 

I have certain experiences. The worlds can differ from the actual world in any way at all, as long 

as my experiences are held constant. The upshot of this is that my evidence isn’t of the form There 

is a blue book on my desk, but rather I am observing a blue book on my desk. Even the latter isn’t 

a precise representation of the evidence, since my experiences might be being caused by an evil-

demon, but for practical purposes it is as close as we can get in language. In cases considered by 

Ramsey, the evidence wouldn’t be of the form It’s probable I saw a blue book on my desk last 

night. Rather, it would be of the form I am having a dim memory of seeing a blue book on my 

desk. The reasonable degree of belief in the proposition that there was a blue book on my desk 



§6.7 Uncertain Evidence 209 

 

might be moderately high on the basis of the evidence, but the evidence is still something that is 

taken to be certain. 

The other response to make here is that the concept of ‘reasonableness’ I am using requires, at 

least in its technical aspects, superhuman ability. After all, it is unreasonable on this picture not 

to realise what can be entailed from what, not an ability many of us possess. Hence the question 

of how we should incorporate failing memories into the theory is of the same type as the question 

of how we should incorporate failing inferential processors. That is, not a relevant question at this 

level of abstraction. Rather it is something that need to be incorporated in less abstract theories. 

Is it legitimate to brush aside these concerns as, in effect, engineering problems? It is, because 

when we are designing practical systems to approximate ideally rational systems, we have to 

know what it is we’re approximating. The purpose of our theoretical pursuits, vis a vis such 

projects, is to work out where the goal posts are. Once there is agreement on what the theoretical 

aims of a practical rational system are, we can assess how well the system achieves those aims. 

However, without this agreement, we can’t evaluate such systems. Given then that our aim is to 

investigate the ideal, it might be plausible to abstract away from the difficulties such as failure of 

memory that worry Ramsey. 

Kaplan (1996: 36-8) suggests a useful way to understand the demands that theories like this one 

are making. When we say that, for example, epistemic states ought be consistent, we are not 

saying that it is a legitimate criticism of a believer that their belief states are inconsistent. 

However, it is a legitimate criticism of their belief states, something the believer will usually agree 

with, as they’ll attempt to remove inconsistencies brought to their attention. Similarly in the case 

of memory, it is no legitimate criticism of an agent that their memory is less than perfect, however 

it might well be a legitimate criticism of some states of that agent. And again the agent will often 

agree in the sense that they’ll say it is best, other things being equal, to remember more of our 

evidence rather than less. However, here other things are never equal, there are always trade offs 
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to be made, and the agent is only subject to legitimate criticism if in making this trade off they 

don’t take the ideal of perfect evidence retention seriously enough. 

6.8 A Recent Addition - Dependence on A Priori Assumptions 

Most critics of Carnap’s theory of probability have focussed on the technical aspects of his theory. 

There are a few good reasons for doing this. First, his technical theory is interesting for its own 

sake. Secondly, if there are major flaws in the particular technical theory (as seems to be the case) 

this counts against the general approach, both because there is arguably a burden on Carnap and 

his followers to produce a sound technical theory, and more generally because we might suspect 

that if Carnap couldn’t complete this project it can’t be completed. However, it would be nice to 

see in the literature more discussion of the philosophy behind Carnap’s theory, and solid 

objections to it. As my necessitarian approach adopts Carnap’s philosophy, but not his 

technicalities, I incur a duty to answer those objections directed at that philosophy. 

The most serious objection is that Carnap’s method is too a prioristic. The discussion in Howson 

and Urbach (1989: 52-56) seems to be the most substantial presentation of this objection. I say it 

is necessary, and arguably a priori, which functions Pr  are reasonable. For example, let my 

evidence proposition be E, and let q be the proposition that the moon is made of green cheese. 

Then I say it is necessary that Pr(q | E) < 0.9 for all reasonable Pr . Note that every Pr  is, as well 

as being a conditional probability distribution, an unconditional probability distribution, since we 

can define Pr(A) as Pr(A | T). Hence I’m committed to there being a priori probabilities. Howson 

and Urbach object. 

For any conditional probability distribution over the sentences of a 

language necessarily involves the assignment of unconditional 

probabilities to a partition of the space of possibilities representable 
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within L. But what considerations can possibly justify any such a priori 

distribution? (Howson and Urbach 1989: 53-4) 

Any a priori probability distribution ... is going to be arbitrary. For this 

reason we do not regard people who try to evaulate the probabilities of 

hypotheses relative to data as doing exercises in a genuine logic of 

generalised deduction, for we take logic to be essentially noncommittal 

on matters of fact. (Howson and Urbach 1989: 55) 

Howson and Urbach back up these claims by pointing out, rightly, that considerations of 

symmetry or simplicity will not give us the a priori distributions. Any time we try to make the 

distributions symmetrical or simple relative to one set of considerations we will make them more 

skewed and more complex relative to others. I accept this, but not the conclusion they draw from 

it. 

Three relatively inessential points before we start. First, in my story (unlike Carnap’s), 

probabilities are assigned to pairs of propositions, not pairs of sentences, and propositions are just 

sets of possibile worlds. These ‘possibilities’ are in general not representable within any language. 

This I take it is no response at all to their objection. Secondly, I could avoid making my theory a 

prioristic if I let the reasonable probability functions be whatever play a certain role in the actual 

world. That is, I could consistently with my theory say that which probability distributions are 

reasonable is necessary a posteriori. As I noted in section 4.4, the relevant simplicity and 

symmetry considerations might be given by our actual practices. However, that approach has 

problems, and to adopt it just to avoid a charge of a priorism would be untenable. In any case, 

Howson and Urbach could rewrite their objection to deal with this. So I’ll write here as if 

necessary and a priori were interchangable. 
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Thirdly, and this is a bit important, it isn’t true on my theory that a conditional probability 

distribution ‘necessarily involves the assignment of unconditional probabilities’ a priori. Let an 

epistemic state be represented by the set {Pr : Pr(q | E) = 0.2}. One conditional probability is 

quite precisely defined here, but no unconditional probabilities of contingent propositions are 

defined to be sharper than [0, 1]. I suspect the reference to unconditional probabilities was more 

a rhetorical flourish than a crucial part of the argument, which is why I think this point is mostly 

unimportant. 

Those clarifications aside, I can proceed. I trust the reader agrees that having degree of belief 0.9 

or higher in q on evidence E is unreasonable. If not, please reconsider. If so, read on. Following 

Lewis (1980) I have defined reasonable probability functions to be those which licence no 

unreasonable degrees of belief. So we can conclude that all reasonable probability functions Pr  

are such that Pr(q | E) < 0.9, because this just means that having degree of belief 0.9 or higher in 

q on evidence E is unreasonable. Call this conclusion F. Question: Is F empirical or a priori? 

If F is a priori, then I have a response to Howson and Urbach, for I can say that what determines 

the set of reasonable probability functions is just the set of a priori facts like F. Note that their 

claim that logic is noncommittal on matters of fact is clearly mistaken unless we say a priori 

truths are not ‘matters of fact’. This is perhaps a non-standard use of fact, but not an unintelligible 

one. However, on it, F does not turn out to be a matter of fact, so my ‘logic’ is noncommittal on 

matters of fact. 

Hence for their objection to work, F must be empirical. But what evidence could there possibly 

be for F? Or perhaps more strikingly, what evidence could there be for ¬F? What is one meant 

to say about my counterpart who has had exactly the same experiences as I, but believes to degree 

0.9 that the moon is made of green cheese, and does so reasonably. I very much doubt I have such 

a counterpart. This does not show that F is not empirical, it might just show that E entails F. If 
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that were true, it might be the case that F is empirical but nevertheless I could have no such 

counterpart. The problem with that is that it is inconsistent with the conclusions about updating I 

derived in chapter 3. That is, it is inconsistent with my insistence on Conditionalisation. In fact, 

it is inconsistent with virtually any interpretation of conditional probability, as this example 

shows. 

Let E1 be strictly weaker than E. That is, E entails E1 but not vice versa. And let E1 be such that it 

doesn’t entail F. Now say I have a counterpart whose evidence is E1. Perhaps it would be 

reasonable for him to believe q to degree 0.9. Since he doesn’t know F, his evidence is insufficient 

to support it, and for all I’ve said F might be false in his world. So, for all he knows, it is reasonable 

to have probability functions such that Pr(q | E) = 0.9 in the representation of his epistemic state. 

In fact, if I’m right and any precisification of a reasonable epistemic state is reasonable, he could 

reasonably have his degrees of belief represented by just that function. But then were he to learn 

E, there would be nothing he could reasonably do. By conditionalisation,  he would have to have 

degree of belief 0.9 in q. However, he would now know F, so he would know that his 

representative probability function was unreasonable. Hence, he would know that the only thing 

he can reasonably do – i.e. conditionalise – is unreasonable. So his epistemic state provides no 

consistent guidance in a possibility he envisages as possible. But, by definition, no reasonable 

state does this. Hence, his state was unreasonable to start with; so, having a function Pr(q | E) in 

one’s representor is always unreasonable. We can rephrase all this without the assumption that 

precisifications of reasonable degrees are reasonable, but it’s less clear. The point again is that, 

when my counterpart conditionalises on evidence E, he won’t be able to completely precisify. 

So my response to Howson and Urbach is in two parts. First, it is obvious we do believe in F and 

like claims. Secondly, it is implausible to say that F is empirical. So, that necessitarian theories 

are committed to a priori assumptions like F is no mark against them, and may in fact be a benefit. 



Chapter 7   

Philosophical Predecessors 

As has already been mentioned, several authors have argued that imprecise or non-numerical 

degrees of belief ought to be permissible. The aim of this chapter is to look at four recent 

exponents of this view, and in particular at their motivations for allowing imprecision and the 

technical frameworks they develop to deal with them. My discussion of the writer to whom my 

position is closest, Keynes, will wait to a separate chapter investigating the connections between 

Keynes’s theory of probability and his economic theories. 

7.1 Levi 

In several papers and books, Isaac Levi has developed a theory for reasoning and decision making 

which allows that degrees of belief, what he calls credal probabilities, can be imprecise. He also 

allows that values can conflict, which might be captured by allowing utilities to be imprecise, but 

except to the extent this impacts on his epistemolgy that is not a subject I’ll discuss here. In chapter 

9 I’ll discuss Levi’s decision theory, but here I’ll focus more narrowly on his epistemological 

innovations. 

7.1.1 Levi’s Argument for Imprecision 

The argument Levi (1974)1 gives for allowing imprecision is as follows: 

(1) Replacement in bodies of beliefs is only rational if it can be construed as a contraction 

followed by an expansion. 

(2) It is sometimes permissible to replace credal probability functions. 

Therefore, 

 

1 Unless otherwise stated, all references in this chapter are to the subject of the section in which the reference 

occurs. 
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(3) Sometimes it is permissible to not rule out more than one credal probability function. 

That is, vagueness must be allowed, at least between the times that a rational agent has 

one precise credal probability function and the time she has a different one. 

Although I agree with the conclusion, I disagree with each of the premises. Since my objections 

to (1) will show that the argument is unsound, I won’t say much about (2). If the idea behind (2) 

is that evidence can show us our choice of probability function was in error, it is clearly a mistake. 

One of the conditions on a function being reasonable is that its conditionalisation under any 

evidence at all is reasonable. Levi occasionally argues something like this, but in later works, 

particularly Levi (1980), the motivation for (2) is a pragmatist theory of belief. Different 

probability functions, he says, might be warranted if our values change. Without a wholesale 

discussion of what’s wrong with pragmatist epistemologies, I couldn’t give a reasonable account 

of my objection to (2). So I’ll stick to discussing (1). 

The motivation for (1) comes from Levi’s non-probabilist epistemology, so for a while I can 

simply discuss that. In Levi’s theory, rational agents have belief sets which are sets of sentences 

closed under entailment. So rational agents believe all the logical truths, as well as all of maths 

and set theory. They also believe that each one of their beliefs is an item of knowledge. For this 

reason Levi refers to the sets as bodies of knowledge. This is a little misleading since many of an 

agent’s beliefs are clearly not knowledge for the simple reason that they are false. Given this use 

of words, we can’t take Levi’s claim that knowledge is infallible at face value. What he means is 

that if an agent takes herself to know p ,  in effect believes p ,  then ¬p is not, for her, possibly true 

(1980: 13), where ‘possibly’ is interpreted epistemically. In more familiar terms, anything which 

contradicts our beliefs is not a doxastic possibility. 

Now this might seem to conflict with some venerable pragmatist doctrines, particularly the 

doctrine that all of our beliefs are open to revision. In his words, there is a worry that Levi’s 
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infallibilism implies incorrigibilism. That, he assures us, in not the case, though as mentioned he 

does in effect take beliefs about the ‘conceptual scheme’, i.e. maths and set theory, to be 

incorrigible. He allows that corpora can be contracted, and hence allows that agents can give up 

beliefs. But there is a worry as to why an agent would give up a belief which was, to her mind, 

necessarily true. One reason is that the agent might have ended up with an inconsistent corpus of 

beliefs, say by coming to believe some observation sentences. This is clearly plausible, but it’s 

not obvious that any other good reason exists. Certainly, Levi’s attempt to motivate other grounds 

seems quite weak. 

Other good reasons exist for contracting a corpus. Suppose the initial 

corpus contains some theory T1. A second theory T2 contains T1. From 

X’s initial point of view, T2 is certainly false. Yet it may be superior in 

all other respects to T1 as a means for furnishing systematic 

explanations in some domain ... In such cases, X might be prepared to 

suffer a loss of information due to the removal of T1 from his corpus in 

order to be in a position to take the truth of T2 to be seriously possible. 

(1980: 60) 

However, persuasive this sounds in the abstract, in real cases it sounds implausible. Remember 

that T2 isn’t just a theory the agent doesn’t believe, it is a theory believed to be false. Now try to 

imagine a circumstance in which the elegance or systematicity of a theory you believe false, say 

Aristotle on any physical science, or perhaps Marx on any social science, could make you give 

up beliefs you currently have. Maybe I’m just dogmatic, but to my mind if a theory is known to 

be false it doesn’t matter how pretty it is. Still, the point about inconsistency in the corpus 

necessitating contraction probably is enough here. Levi notes that inconsistency can easily arise 

if we make rule-governed expansions, so we need contraction for this reason. 
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He also allows that beliefs can be replaced. An agent can replace a belief in p with a belief in ¬p .  

“Replacements are shifts from corpora to other corpora inconsistent with the initial ones.” (1980: 

63) The history of science, as well as everyday life, tells us that replacements often happen. But 

their justification is, if anything, even weaker than the justification of contractions. From the 

agent’s point of view, replacement amounts to adopting something false as a belief, not just giving 

up a true belief. Levi claims we can get a justification if we ‘decompose’ (his term) the 

replacement into a contraction followed by an expansion. 

We might interpret this in two ways. First, Levi might be making the empirical claim that all 

reasonable replacements consist of contractions followed (at a later time) by an expansion. So the 

decomposition might be a closer analysis of what actually happens. Alternatively, he might be 

claiming that all reasonable replacements can be rationally reconstructed as justifiable 

contractions followed by justifiable expansions, even if these aren’t temporally distinct in the 

mind of the agent. The text isn’t particularly clear on which he intends, but I think each possibility 

is worth investigating. I claim the first turns out to be false, and the second turns out to be 

unjustifiable. 

We can see that the empirical decomposition claim is false by looking at everyday examples. Jack 

reads in the morning newspapers that Smith will be the starting pitcher for the Yankees in 

tonight’s game. He hears this repeated on the lunchtime news. Jack is a fan of Smith, so he decides 

to go to the game to watch Smith. As it will turn out that Smith isn’t the starting pitcher, we can’t 

say Jack knows Smith will be the starting pitcher, but it is something we should say is in his 

corpora of beliefs as Levi puts it. The evidence for this is that Jack believes he knows this, he will 

answer the question ‘Who will start pitching for the Yankees?’ with the answer ‘Smith’ and he 

acts as if he knew Smith was the starter2. 

 

2 It might be objected by some that the criteria for belief being used here is too weak. Even if this were true, 
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Unbeknowst to Jack, Smith gets injured in the pre-game warmup and Jones becomes the starting 

pitcher. Jack only realises this when he walks into the ground, hears on the ground public address 

system that the opening pitch is about to be thrown, looks to the mound and sees Jones pitching. 

He quickly comes to believe, on the basis of his overwhelming sensory evidence, that Jones is the 

night’s starting pitcher. Does he first drop his belief that Smith will start and then adopt the belief 

that Jones starts? No; the two happen at exactly the same time. And this is quite reasonable. So 

Levi’s construal of Jack’s epistemic dynamics can be at best a rational reconstruction. 

If, however, we take the rational reconstruction route, the purported justification of replacement 

becomes implausible. Levi notes that when an agent removes p from their corpus, they leave open 

the possibility that they will at a later time expand to include ¬p ,  which they believe to be false. 

Hence every contraction creates the possibility of expanding into (perceived) error. In 

replacement this possibility is realised. Against the claim that this shows all contraction to be 

unjustified, Levi claims that agents are allowed to be ‘myopic’ (again his term) when contracting. 

Agents are allowed to simply ignore the long-run effects of their actions, in this case the possible 

error to which they’ll be led. The defence of this is simply that the alternatives are worse. “I cannot 

prove that I am right in singing the praises of mypoia. Nevertheless, the alternatives seem far less 

attractive.” (1980: 71) 

The problem with the myopia account is that it is completely implausible on the rational 

reconstruction model. The idea behind it is that when the agent expands her beliefs to include ¬p ,  

she no longer believes p ,  so she isn’t coming to believe a falsehood. And she is allowed to 

 

it’s not something Levi can claim, as he allows beliefs on much weaker evidence than this. In one example 

he allows an agent to believe p even though she knows the objective chance of ¬p is positive (1980: 275). 

In another he lets the agent infer p although her credal probability for ¬p is 0.09 (1980: 136). The 

consistency of this approach seems dubious to me, but I would need much more space to address all the 

possible arguments here. 
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myopically ignore the possibility that she will do this when she originally contracts. But on the 

rational reconstruction view, her beliefs do include p at the very time (or at least right until) she 

believes ¬p .  Given this, she has to myopically ignore a possibility that’s actually happening at 

the time she contracts. This is implausible, so I conclude something’s wrong with Levi’s account 

of replacement. And this implies that this argument for (1) fails, so he has no reason to infer (3). 

7.1.2 Levi’s Calculus 

Despite all that, (3) is correct, so it is worthwhile looking at how Levi incorporates this into his 

account of rational belief. For Levi, rational belief states can be represented by sets of probability 

functions. Anything the agent believes receives probability 1 according to each of these functions, 

though the converse need not hold. The functions are two-place, so conditionalisations on 

propositions with zero credal probability are defined, but not conditionalisations on propositions 

inconsistent with what the agent believes (1980: 221). The functions need only satisfy finite 

additivity; Levi claims the arguments for countable additivity in the literature are generally 

question-begging (1980: 224-7). 

His attitude to updating is a little confusing at first glance. “I myself am willing to endorse 

confirmational conditionalisation even though I reject confirmational tenacity. Consequently, I 

do not think that shifts in credal state due to expansion should be temporal credal 

conditionalisations in all cases.” (1980: 85, my italics). In simple terms, he adopts a position 

similar to van Fraassen (1989), where agents are not required to have exhaustive rules for 

updating, but to the extent they have rules they shouldn’t conflict with conditionalisation. 

However, the story is a bit more complicated than that. 

Levi does think that (ideally rational) agents should have ‘commitments’ as to how to update 

under any information, and these should obey conditionalisation. This is his rule of confirmational 

conditionalisation. However, these commitments are, like everything else, subject to revision. The 
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agent need not tenaciously hang on to them in all circumstances. To insist on this would be to 

adopt confirmational tenacity, and Levi rejects it. So an agent can have a ‘commitment’, but not 

be committed to implementing it3. This strikes me as an unusual use of commitment, and my use 

of scare quotes is intended to be a reminder of this. Hence when some evidence comes in the 

agent can, at that stage, choose to drop some commitments, and hence the new epistemic state 

that’s adopted need not be the conditionalisation of the old one on the evidence. This is what he 

means when he denies all shifts are temporal credal conditionalisations. If we restrict the term 

commitment to those ‘commitments’ the agent is committed to implementing, and insist the agent 

can’t both have a ‘commitment’, and be committed to not implementing it, we get van Fraassen’s 

position as I set out in the previous paragraph. 

In chapter 5 I allowed that any precisification of a reasonable epistemic state was itself reasonable. 

Levi appears to adopt a different position. He explicitly endorses “the contention that one should 

not rule out [probability]-functions unless one has a warrant for doing so.” (1980: 89). However, 

he allows that warrant may be interpreted liberally to include the agent’s values and goals. So the 

difference here is not as wide as it first appears. My argument for allowing arbitrary precisification 

turns on my differences with Levi’s decision theory, which I’ll discuss in the next chapter. 

The most interesting aspect of Levi’s calculus is that he insists reasonable epistemic states be 

represented by convex sets of probability functions. So the set must be closed under linear 

mixtures provided the weights are all non-negative. There is a prima facie argument against this. 

As noted in 3.6.6, Jeffrey (1987) argues that the epistemic state containing just the information 

that A and B are probabilistically independent is reasonable despite not being convex. 

 

3 It isn’t entirely clear from Levi’s text, but possibly we could read this as saying agents must be disposed 

to update by conditionalisation, but this disposition may be finkish. 
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Prima facie claims, however, do not settle the matter, so I ought to look at Levi’s arguments for 

convexity. His arguments rely on his decision theory, which I think is mistaken, but I’ll ignore 

that complication here. The problem is that the argument he gives doesn’t go far enough. He 

argues that the epistemic state represented by just the two probability functions, Pr1(p)  = 0.4 and 

Pr2(p)  = 0.6 (we are only interested here in the truth or otherwise of p) , is unreasonable. I agree; 

indeed, given the Equivalence Analysis, I am at a loss to know what we might mean by saying 

this is an agent’s epistemic state. 

The problem for Levi is that even if states like this one are unreasonable (or meaningless) this 

doesn’t clinch the case for convexity. And he openly admits that he has ‘no proof’ (1980: 192) 

for requiring convexity beyond cases like this one. Consider the following property of sets of 

probability functions. 

Continuity:  A set S  of probability functions is continuous iff for any proposition A and any 

numbers x, y, z, if there exist Pr1, Pr2 Î S  such that Pr1(A) = x and Pr2(A) = y 

and x £ z £ y, then there exists a Pr3 Î S  such that Pr3(A) = z.  

A set of probability functions satisfies Continuity (for short, is continuous) iff the values of Pr(A) 

takes for Pr  in that set is an interval for every proposition A. The set which Levi argues is 

unreasonable isn’t continuous. However, the set Jeffrey argues is reasonable is continuous. This 

suggests that the problem with Levi’s set isn’t its lack of convexity, but its lack of continuity. I 

think the meaning considerations from chapter 3 make continuity a plausible constraint, but its 

purpose here is simply to show that Levi hasn’t refuted Jeffrey’s prima facie objection to 

convexity. 

7.2 van Fraassen 

The most obvious debt this dissertation owes to Bas van Fraassen’s work is his development and 

promotion of supervaluations. Not only did he do much to develop the technique and promote it 
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within the philosophical community, (particularly in van Fraassen (1966)), he has also argued that 

it ought be applied in the case of imprecise credences (van Fraassen (1990)). Some of the most 

interesting applications of this idea to date are also due to van Fraassen. In van Fraassen (1989) 

he uses this idea to develop an analysis of agnosticism to make his agnosticism about unobserved 

entities plausible, and in van Fraassen (1995) he uses the possibility of vagueness to fend off some 

objections to his principle of Reflection. Here I want to concentrate on an interesting technical 

result which I flagged in chapter 3, and which might have some technological implications. 

7.2.1 Why Imprecision Is Allowed 

In this dissertation I’ve taken the line that even perfectly rational agents may have imprecise 

degrees of belief. van Fraassen isn’t as much concerned with what perfectly rational agents think 

as with what everyday agents think. If we had precise credences, he notes, we could only specify 

our epistemic states with an infinite number of judgements. However, since we are finite beings, 

“our expressible opinion must be expressible in a finite number of judgements” (1990: 353). 

Hence our degrees of belief must be imprecise. 

It’s not altogether obvious that this is correct. Provided that we take a dispositional view of 

opinions, and we individuate dispositions finely, it seems we might have an infinite range of 

opinions. The only requirement is that a single physical state must be capable of instantiating 

multiple dispositions. This certainly looks possible. Given van Fraassen’s interests, though, we 

don’t need this argument. For precision requires that our opinion include non-trivial judgements 

about every subject imaginable, and this is clearly false. The possibility I referred to is simply 

irrelevant because it isn’t instantiated. So someone who is interested in how humans with their 

limited resources and interests should reason, or more generally an investigator into 

epistemological norms who places some weight on the dictum ‘ought implies can’, should take 

vagueness in credences seriously. 
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7.2.2 van Fraassen’s Calculus 

What follows is a brief summary of the proof in (1990) that what van Fraassen calls figurehood 

is preserved under conditionalisation, and some comments on the potential importance of this 

proof. A random variable g is a function from a possibility space to reals. Given a probability 

function Pr , we can work out the expected value of g according to Pr , as SPr(w)g(w), where g 

ranges across the possibility space. This will be notated as EPr(g). When the possibility space is 

infinite we need to be more careful to ensure this sum can be calculated. van Fraassen makes all 

the necessary assumptions, but for this sketch I’ll sacrifice a little precision for brevity. Readers 

who know the difficulty will also know how to make the corrections4. We can add random 

variables to constants or to each others, and we can multiply them by constants (or indeed each 

other, though this is less important). In each case the addition or multiplication is simply done 

possibility by possibility. 

Using expected values we can give a standard form for judgements. Say E(g ³ a) is satisfied by 

Pr  iff EPr(g) ³ a. Then a judgement is a Boolean combination of statements of the form E(g ³ a). 

From this we can get E(g £ a), which means the same as E(-g ³ -a), and using these two we can 

express many other judgements. We can interpret ordinary judgements (like ‘A is more probable 

than not’) using indicator functions. The indicator function of A is a random variable IA which 

takes value 1 if w is in A and 0 otherwise. We get the following results: 

 Pr(A) = r iff EPr(IA) = r; 

 Pr(A): Pr(B) = r iff EPr(IA - rIB) = 0 

 

4 There is one aspect in which van Fraassen is considerably more precise than most of the literature. The 

basic possibilities include information about what we are believing. This necessitates quite a few 

complexities which are often ignored; it is more usual (but less accurate) to write as if each element of the 

possibility space is independent of our opinions. 



§7.2 van Fraassen 224 

 

 Pr(A | B) = r iff EPr(IA Ç B - rIB) = 0 

Using these results van Fraassen shows how to express many probabilistic judgements. For 

example we have the following: 

 ‘A is at least as likely as ¬A’: E(IA - I ¬A ³ 0) 

 ‘A is r times as likely as B’: E(IA - rIB = 0) 

 ‘Given C, A seems twice as likely as not’: E((IA Ç C - (2/3)IC) = 0) 

There are, however, some judgements we can’t express. For any function g, the set of probability 

functions satisfying E(g ³ a) is convex. To prove this simply note that the value of g according to 

an equal mix between two functions is simply the average of its value according to those 

functions. And since the intersection of convex sets is itself convex, we can’t express epistemic 

states represented by non-convex sets of probability functions. So for the reasons given in the 

previous section, this language looks like it can’t be expressive enough to say all we want about 

partial beliefs. Nevertheless, it has interesting properties. 

If we take the standard form judgements as basic, we can define an agent’s epistemic state as the 

set of probability functions which satisfy these judgements. A figure is defined as either a finite 

set of judgements of the form E(f ³ 0), or equivalently the set of probability functions which 

satisfy all these judgements5. The complexity of a figure is the smallest number of judgements of 

which it is the intersection. That our mental states are finite is reflected in the claim that (coherent) 

human epistemic states are figures. 

We now get a pair of interesting questions. Is the property of figurehood preserved under 

conditionalisation, and what effect does conditionalisation have on complexity? van Fraassen 

 

5 Since E(f ³ a) is the same as E(f - a ³ 0) there is no loss of generality from this definition. 
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provides a nearly constructive proof that the complexity increases by at most two. First some 

notation. For any set P   of probability functions, let P B be defined as {Pr( • | B): Pr  Î P   and 

Pr(B) > 0}. The second conjunct in this definition is a little restrictive, but this assumption is used 

in the proof. Let |B| be {Pr : Pr(B) = 1}. We will now construct P B. Note that it follows 

immediately from the definition that (P   Ç Q )B = P B Ç Q B, so we can look at single half-spaces. 

That is, we’ll assume P   = E(g ³ 0). 

Every Pr  has an orthogonal decomposition in terms of B for 0 < Pr(B) < 1: 

 Pr  = cP+ + (1 - c)P– , where 0 < c £ 1, P+  = Pr( • | B), P–  = Pr( • | ¬B). 

It follows that EPr(g) = c EP+(g) + (1 - c) EP–(g). If P+  exists then Pr(B) > 0. So q Î P B iff q = P+  

for some Pr  Î P  . And Pr  Î P   iff EPr(g) ³ 0, i.e. c EP+(g) + (1 - c) EP–(g) ³ 0. This can be 

trivially rewritten as c · EP+(g) ³ – (1 - c) EP–(g).  

Now there are two cases to consider. Case 1, there is a probability function q Î |¬B| such that 

Eq(g) > 0. Then for any p  Î |B| there will be a value of c in (0, 1] such that c Ep(g) ³ – (1 - c) 

Eq(g), since when c goes to 0 the LHS will go to 0 and the RHS to -Eq(g). Let c be such a value. 

Hence Pr = cp + (1 - c)q is an element of P   since p and q are its decompositions. Since Pr( • | B) 

= p ,  and p was an arbitrary member of |B| it follows that P B Í |B|. But since every function in P B 

must satisfy Pr(B) = 1, P B Ê |B|, so P B = |B|. 

Case 2 then is when there is no q Î |¬B| such that Eq(g) > 0. In that case for p  Î |B| (and any 

q Î |¬B|), there will be a value of c in (0, 1] such that c Ep(g) ³ – (1 - c) Eq(g) iff Ep(g) > 0. If we 

do have Ep(g) > 0 then again Pr = cp + (1 - c)q is an element of P   since p and q are its 

decompositions. However, if Ep(g) < 0, then for any c, q, if Pr = cp + (1 - c)q, EPr(g) = c Ep(g) + 

(1 - c) Eq(g) < 0, so Pr  Ï P  . This implies P B = |B| Ç E(g ³ 0). 
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So for any half space E(g ³ 0), conditionalisation on B takes it either into |B| or its intersection 

with |B|. The former possibility will occur if there is an element q of |¬B| such that Eq(g) > 0, the 

latter otherwise. In the general case, when P   is a set of half spaces, the same story holds. P B is 

the intersection of those judgements E(g ³ 0) such that there is no element q of |¬B| such that 

Eq(g) > 0, with |B|. And we can write |B| as the intersection of E(IB - 1 ³ 0) with E(1 - IB ³ 0). 

Hence the complexity of P B is at most two more than the complexity of P  . 

What is most interesting about this proof is the possibility it opens up for computational purposes. 

If there is a simple test to determine which case applies for a given judgement, the one non-

constructive part of van Fraassen’s proof, then it will be easy to conditionalise vague epistemic 

states that are figures. Now we noted that the language of figures isn’t quite as expressive as we 

might like, but given how easily they can be updated, this loss might not be excessive. 

7.3 Jeffrey 

In Jeffrey (1983a) there are two reasons given for allowing degrees of belief to be vague, or as 

Jeffrey puts it, for allowing reasonable epistemic states to be representable by “probasitions”, 

which are just sets of probability functions. The first is technical; even if we assume an agent has 

a complete preference ordering over all possible states of affairs, this may be consistent with an 

infinite number of pairs of subjective probabilities and utilities. (See Jeffrey (1983b) for the 

details.) The second is more pragmatic; real people simply don’t have enough preferences or 

dispositions to make it the case that their epistemic state is representable by a single probability 

function. 

Part of the attraction for Jeffrey of this position is that it allows for more tools in the Bayesian 

toolkit than just conditionalisation6. For example, let Ai, for 1 £ i £ n + 1 mean the ith trial was a 

 

6 One of the motivations behind Jeffrey’s paper is to respond to Clark Glymour’s definition of Bayesians 

as those who believe all updating should take place by conditionalisation. 
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success, and Ai be the indicator function of Ai. We needn’t bother what the trial is, it might be 

tossing a coin and seeing if it lands heads, or dropping a plate and seeing if it shatters. Assume 

that we know there have been s successes on the first n trials, and for whatever reason think the 

probability of success on a given trial is constant.7 Hence our epistemic state will be representable 

by the set {Pr : Pr(Ai) = Pr(Aj), 1 £ i £ j £ n + 1}. Since we know that A1 + ... + An = s, our 

expectation for A1 + ... + An ought be s. But that expectation is just Pr(A1) + ... + Pr(An); as each 

term of that expression is equal and they must sum to s, each term must equal s / n. And since 

Pr(An+1) = Pr(A1) for all Pr  in our representor, Pr(An+1) = s / n. This, thinks Jeffrey, is an 

important part of the explanation of the importance of frequency, and it’s all been done without 

conditionalisation, and indeed without saying anything about the probability of success on one 

trial conditional on the success or failure of another. 

The results Jeffrey gives in this area, as can be seen from the above, are hardly of stunning 

technical importance, and his justification is not particularly interesting from the point of view of 

this dissertation, as I’m interested in arguments to the conclusion that even ideally rational agents 

should have imprecise degrees of belief. However, Jeffrey’s endorsement of vagueness is 

historically important for two (related) reasons. First, Jeffrey is arguably a paradigm case 

Bayesian; hence, it is inappropriate for supporters of imprecision in probability to say that the 

enemy are the Bayesians, as is occasionally done. Secondly, it seems Jeffrey’s paper has been 

more influential in converting philosophers to the view that imprecision is rationally permissible 

than any other. Hence it is worthwhile noting here. 

 

7 In the kind of examples that Jeffrey seems to be considering, “textbook trials”, this hardly seems like a 

reasonable step. To see why, consider what happens to the reasoning in the text when s equals n and is 

rather low. 
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7.4 Kyburg 

In many ways the theory of probability developed by Henry Kyburg over a number of years is the 

most similar to the one defended here. In particular he argues that probability is an objective 

relation between a claim and the evidence for it and that the value of this relation is non-

contingent, legislative for rational belief, and not necessarily numerical. However, the differences 

between his position and mine are also substantial. His is a logical, not merely a necessitarian, 

theory of probability. On Kyburg’s story, probability, like provability, is a meta-linguistic relation 

which holds between sentences (not propositions) by virtue of their syntactic properties. As a 

consequence of this, probability relations are language dependent. Further, the interval-values that 

probability relations take are in a sense primitive or unstructured; there’s nothing to say about the 

probability of p, beyond the fact that it is the interval [x, y]. In the theory defended here, it matters 

(particularly for comparatives) which probability functions generated which values in [x, y]. Most 

importantly, all knowledge of probabilities is grounded in knowledge of frequencies. This is not 

the same as analysing probability as frequency, but it does have rather similar consequences. I 

have been deliberately agnostic on the question of how we come to know probabilities; my main 

aim in this section will be to defend my agnosticism against Kyburg’s particular religion. 

This is Kyburg’s summary of his position, which has remained unchanged on these questions for 

over 30 years. 

Roughly speaking, we shall say that a statement has the probability p  

(in general p will be an interval i of reals), relative to a body of 

knowledge, when (a) it is known in that body of knowledge that the 

statement is equivalent to (has the same truth value as) a statement of 

the form ┌a Î b┐; (b) it is known in that body of knowledge that a 

belongs to c; (c) that body of knowledge contains the statistical 

knowledge that the proportion of objects in c that belong to b falls in 
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the interval i; and (d) there is nothing in our body of knowledge that 

conflicts with this assignment of probability. (Kyburg 1974: 156-7). 

The technical construal of (d) has changed in response to some problems the early account 

generated, and I’ll outline its evolution below. As should be clear from this quote, Kyburg’s 

construal of evidence is much different to mine. For one thing, he takes evidence to be sentential, 

not propositional. For another, it includes ‘statistical’ sentences, such as sentences about the 

proportions of heads among the tosses of fair coins. Kyburg takes a fundamentally different 

position to the one (implicitly) adopted here on the nature of induction. I construe inductive 

arguments as concluding that something is probable. Kyburg takes them as having a categorical 

conclusion, but with reasoning that is defeasible, or perhaps merely probable. (The distinction 

between these two accounts of induction is given most clearly in Hempel (1965).) Hence Kyburg 

thinks we can include the conclusions of our inductions in our evidence set. These inductive 

conclusions generate statistical statements about frequencies, and these generate probability 

statements. 

This leads Kyburg to make a more dramatic departure from conventional wisdom about rational 

belief sets. Kyburg thinks that we should take as beliefs anything that we believe to at least a 

certain, high, degree, say n. Now imagine a (fair) lottery with more than 1/(1 - n) tickets. For 

every ticket, we will believe to greater than degree n that it will lose, hence we believe it will lose. 

However, we also believe that some ticket will win. Hence we are committed to believing a set 

of inconsistent propositions. This is the lottery paradox, itself due to Kyburg (1961). Many writers 

have taken this as an argument against construing (full) belief as high degree of belief. Kyburg 

takes it to be an argument against requiring rational belief sets to be logically closed. Many of the 

technical complications in his theory arise from this. For example condition (a) above can’t be 

construed as saying p  º (a Î b) is in our evidence set. Rather we construe it as saying there is 

some chain of biconditionals in our evidence set that starts with p and ends with a Î b. And in 
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fact we have to say the same thing about a Î b. It might be that our evidence set merely contains 

a Î d and d Ì b; this has to be sufficient. The complications induced this way don’t seem formally 

necessary to Kyburg’s theory (when explaining some technical aspect of his theory he will 

occasionally assume logical closure for ease of exposition) but they are I think philosophically 

necessary. If we agree that we can have full belief in statistical statements (which he requires) 

then we are forced into his resolution of the lottery paradox and hence must deny closure. 

As I said above, the main technical move in his theory has been the changes in condition (d), the 

randomness condition. Since Kyburg takes an epistemic construal of probability, he seems 

justified in interpreting randomness as ignorance. The question is just what type of ignorance it 

is. The probability of a Î b is the interval i iff it is known that a is a random member of the class 

c, and i is the smallest interval such that the proportion of c’s in b is known to be in i. If all these 

conditions hold, we’ll call c the reference class for the probability judgement. As a first 

approximation, we can read the underlined part of the clause as saying that we don’t know 

anything special about a other than its membership of c. The problem is now to say what is 

‘special’ knowledge. Again as an approximation, we know something special about a if we know 

a is a d, and we know the proportion of d’s in b is j, and i is not a sub-interval of j. This, Kyburg 

hoped in (1974), provided the best trade-off between using the smallest reference class available, 

and using the most precise knowledge we have. 

To illustrate, assume we know of a1 that it is a d, and that d Ì c. We know the proportion of d’s 

in b is [0.3, 0.8], and the proportion of c’s in b is [0.7, 0.9]. Since neither interval is included in 

the other, the information we get about the probability of a1 being a b from examining the d’s and 

examining the c’s clashes, and in this case we use the smaller reference class. Hence the 

probability, on our evidence, of a1 being a b is [0.3, 0.8]. Compare this case with a2, which is 

known to be an e, and it is known that e Ì c. The proportion of e’s in b is known to be in [0.6, 1]. 

In this case the information we get about a2’s probability of being a b from looking at the e’s and 
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looking at the c’s does not clash; one is merely more precise than the other. In this case we don’t 

worry about the size of the reference classes, we just use the more precise knowledge. So the 

probability of a2 being a b, according to our evidence, is [0.7, 0.9]. 

There are more complications (dealing for example with a3 which we know is a d and an e), but 

that’s the basis of the randomness criteria in (1974). However, it turns out to lead to rather odd 

results. With the benefit of hindsight, these oddities seem inevitable given the two-part rule 

adopted. Some cases are always going to fall through the cracks. Let c be the set of all draws 

made from an urn of counters, and d the set of all draws made yesterday. (Hence d Ì c.) Let a be 

a counter that was drawn yesterday. Our knowledge of the frequency of colours drawn amongst 

c and d is given in this table. 

 
 

White Red Blue 

c [0.5, 0.5] [0.25, 0.25] [0.25, 0.25] 

d [0.4, 0.4] [0, 0.6] [0, 0.6] 

 

When we are determining the probability that a is white, the information about c and d clashes, 

so we use the smaller reference class. Hence the probability that a is white is precisely 0.4. For 

red (and mutatis mutandis for blue) the information about c and d does not clash, so we use the 

reference class that gives us the more precise information. Hence the probability that a is red 

(blue) is 0.25. Kyburg is committed to saying that whenever probabilities are precise they should 

obey the probability calculus (these are just set-theoretic tautologies when interpreted as 

statements about frequencies), but here he is committed to a breach of that calculus. The solution 

(in Kyburg (1983)) is to change somewhat the definition of randomness. We now use a smaller 

reference class if it is known to generate clashing information about the predicate in which we are 

interested, or any other (known to be) disjoint predicate. Getting this formally right requires quite 

a lot of technical work – in particular now we have to watch out that this rule isn’t only obeyed 
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for the partition of the possibility space we are using, but also for any refinement of it – but this 

captures the philosophically important aspects of the amendment. 

There has been quite a lot written about the technical aspects of Kyburg’s work, and I don’t 

particularly want to add to it here. Rather, I want to question the philosophical presumptions of 

his theory. In particular, I don’t think the reliance on frequencies and the language-dependence 

of Kyburg’s theory can be defended when we look at how probability is (and ought be) applied 

to the actual world. 

When we are trying to discover the probability of interesting claims about the real world (as 

opposed to the colour of a marble in an urn) Kyburg notes that we may need to be creative in 

discovering the relevant frequencies (1961: 266ff). For example, what makes it true that ‘It is 

probable (given our evidence) that Caeser crossed the Rubicon’ is not the known frequency of 

Caeser-type leaders crossing Rubicon-type rivers. Rather it is, for us, the frequency that historical 

assertions assented to by the vast majority of historians turn out true. That frequency we 

(apparently) know to be high, and hence we can give a high probability to ‘Caeser crossed the 

Rubicon’. For the historians themselves, who could hardly reason this way, they know there are 

records from the time which say the Caeser crossed the Rubicon, and they know the frequency of 

such records being correct, and this frequency underlies their probability judgement. 

However, even with such ingenuity, I doubt it will be possible to discover enough frequencies to 

ground all the seemingly justified probability judgements that are made. For non-experts, the 

move of referring to the frequency of experts being correct can always be used8, so I’ll look at 

how experts should reason. Consider one rather recent case. In early 1998 President Clinton was 

entangled in a scandal over an affair he’d apparently had with a young White House aide, Monica 

 

8 Or at least attempted; in many fields I remain highly skeptical that experts are in general correct, 

particularly in prediction. 
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Lewinsky. This was of itself a minor scandal, but the real danger was that according to some 

allegations, he had lied about the affair under oath, and encouraged Ms. Lewinsky involved to do 

the same. If this were true, he’d have both committed and suborned perjury, and many felt this 

was grounds for impeachment. Given all this, Washington correspondents were frequently asked 

for their assessment of the chances of Clinton being impeached, or perhaps for his relative chances 

for survival on different strategies.9 

I claim that Kyburg cannot explain the use of probability in these reports from Washington, and 

that these reports are, if a little charitably interpreted, correct uses of ‘probability’. This is a 

problem for a theory such as Kyburg’s which does aim to capture uses of probability in natural 

language. More generally, I think the probabilities being discussed were legislative for rational 

belief, but were not based on frequencies, which if true would remove a foundation stone of 

Kyburg’s theory. 

As the crisis unfolded, one of the internet-based news magazines10 listed its daily assessment of 

the chances of Clinton being impeached. I interpret these as claims as to the probability of Clinton 

being impeached given all the evidence publically available11. Their assessment of this probability, 

over the eleven main days of the crisis, was as follows.12 
 

9 At the time of writing, July 1998, the White House seems to have successfully swayed public opinion by 

focusing on procedural matters in the investigation. Hence there is little political will for impeachement 

outside the usual Republican suspects. But what I said in the last footnote holds for my predictions too, so 

don’t hold me too tightly to that guess. 

10 The Slate, at http://www.slate.com. 

11 They were explicitly estimates of the ‘chance’ of impeachment, which amounts to the same thing. They 

weren’t particularly timely measures of chances because of the lag between something happening which 

affects the chance and it becoming publically known, but this doesn’t affect the comments in the text. 

12 As background, between the 21st and 25th more rumours about evidence of the affair appeared, and 

erstwhile Clinton supporters publicly discussed impeachment and, occasionally, urged a resignation. From 
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Day (of January) 21 22 23 24 25 26 27 28 29 30 31 

Probability of 

Impeachment 

25% 35% 40% 45% 45% 40% 38% 35% 34% 30% 21% 

 

Now the real numbers are obviously fuzzier than this, and the particular choice was hardly made 

seriously. In particular we should agree with Kyburg that the probability of impeachment on a 

given day should be an interval rather than a number, and perhaps quite a broad interval at that. 

What I do think should be taken seriously are the comparatives. Except perhaps for the 1% change 

from the 28th to the 29th, all the other day-to-day comparative statements look correct to me, 

given the evidence that was available at the time. I don’t extend this to comparisons between the 

various probabilities quoted on the way up and the way down.13 So it was more probable on the 

23rd he’d be impeached than the 22nd, equally (or perhaps incomparably) probable on the 25th 

that he’d be impeached as on the 24th, and just about every day after that it was getting less 

probable. 

I think a successful theory of probability should be able to explain these comparative statements, 

and be able to say something about the absolute probability statements. I doubt Kyburg’s theory 

could explain the comparatives, but I must be a little cautious because Kyburg has not, as far as I 

can tell, written anything on comparative probability sentences. The strongest theory of 

 

the 26th onwards Clinton was supported as more and more of the rumours turned out to be false, and polls 

showed that not only were most people against impeachment at present, a majority opposed impeachment 

even if the charges were proven, and at the end of the month Clinton’s approval rating hit an all time high. 

13 It’s easy with hindsight, but I don’t know how Clinton’s position could have been considered worse on 

the 27th than the 22nd. Once things started looking good for the President, the media, in order to protect a 

great story and justify their interest in it, overestimated the problems Clinton was in. Hence I’ll only use 

day-to-day comparisons, because they seem the only justified ones. 
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comparatives he could plausibly endorse is the following. Say the probability of p is [xp, yp] and 

the probability of q is [xq, yq]. Then the probability of p is greater than the probability of q iff 

xp > xq and yp > yq. (Perhaps he could say that one of these is allowed to be an equality, but that 

doesn’t sound overly plausible.) Given the way his theory is developed, it would seem more 

appropriate to say that the probability of p is greater than the probability of q iff xp > yq, or 

xp = yq > xq. 

Since what I say is least effective the stronger the theory of comparatives Kyburg adopts, I’ll 

assume he adopts the stronger of the two theories mentioned above. Now Kyburg has to find no 

fewer that nine different reference classes for judging the probability of ‘Clinton will be 

impeached’ over the eleven days of the crisis. If the reference class used on day t is the same as 

that used on day t + 1, then he can’t say the probability of impeachment on day t is different (either 

greater than or less than) the probability of impeachment on day t + 1. I doubt that he could 

reasonably find one reference class; even if I’m wrong about this, I’d have to be wrong in a big 

way for him to find enough reference classes to make every comparative turn out true. 

What reference classes could be used? The class of Presidents who are impeached and removed 

from office doesn’t help; it’s still empty. The class of events predicted by Washington 

correspondents might help for explaining the probability for some people, but not surely for the 

Washington correspondents we are looking at. If we knew that impeachment was an element of 

the class ‘political actions desired by a majority’ we might get somewhere, but that was never 

known, and as it turned out never true. (It was the realisation of this that sent the probability of 

impeachment diving at the end of January.) Perhaps instead of just looking at the frequency that 

Presidents are impeached, we could look at impeachment rates for elected officials (e.g. state 

governors). But it is hardly plausible to say the potential impeachment of a President is a random 

member of the class of potential impeachments of elected officials.  
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There is a more general difficulty for Kyburg here. Even if we had a long string of impeached 

Presidents, so we could judge the frequency of impeachment once a scandal got to such and such 

a stage, it’s hard to see how that could be relevant here. One of the distinguishing features of this 

crisis was the massive involvement of the media, particularly internet-based media. And by 

internet-based media I include traditional newspapers who were concentrating on getting stories 

onto their web sites as quickly as possible, not just the best story for the morning newspaper. 

Some of the most absurd rumours of the scandal appeared through these sources. But these 

rumours not only affected everyone’s perception of the probability of impeachment, there was 

every chance that, by affecting the way the crisis was viewed, they could have had a real effect. 

This affair was nothing like anything that had preceeded it, but that didn’t prevent it being possible 

to make reasonable probability judgements. Indeed, anyone who had all the evidence but didn’t 

form judgements about the probability of impeachment of similar form to that given above would 

be unreasonable. By similar form I just mean believing impeachment was more probable at the 

peak of the crisis, around the 25th, than it was a few days before and after, and believing that at 

these times impeachment was more probable than it was one month previously. But if Kyburg’s 

correct, we oughtn’t to be able to make probability judgements about such sui generis events. 

The theoretical difficulty for Kyburg this raises is that it seems we may have a use, in social 

sciences at least, for ‘pathological’ predicates. For his theory to generate decent results, Kyburg 

needs to rule out pathological predicates like grue. This is related to both the language-dependence 

of his theory, and the need to generate known statistical statements as building blocks. However, 

in social sciences, and generally in making probability judgements about everyday life predicates 

that are broadly pathological may be needed. I don’t mean we necessarily need predicates like 

‘grue’ which change, in some sense, their meaning at the turn of a millennia.14 What we do need 

 

14 Though we should never underestimate the importance of millennial symbolism in politics. Australia is 

currently debating whether it should change from a monarchy to republic on the first day of the new 
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are predicates which, in some sense, shift a little when real factors in the outside world shift. From 

the political scientist’s perspective, President Clinton’s having an affair in this age of mass media 

is a quite kind of different occurrence from, say, President Kennedy’s having an affair. Predicates 

which behave like ‘green before an internet exists, blue otherwise’ have some importance. Kyburg 

claims (1990: 126-130) that his theory can deliver the tools to develop the language of science, 

and this language will help us avoid the grue pitfalls. For the social scientist this seems both 

impossible and undesirable, and that conclusion seems to carry across to everyday life. 

 

millennia. Perhaps we should say it’s debating whether or not to stay as a monalic. Millennial symbolism 

is an important driving force here, and such symbolism is distorting election campaigns the world over. 



Chapter 8   

Constructivist Probability 

It is a standard claim of modern epistemology that reasonable epistemic states should be 

representable by probability functions. I’ll call theories which make this claim classical, which 

seems an accurate enough label. That claim is relaxed in this dissertation only to the extent of 

allowing vague credences, i.e. allowing epistemic states to be vague over a set of probability 

functions. It is the set of functions, rather than a single function, which represents the epistemic 

state. However, there have been a number of authors who have opposed this claim. For example, 

it has been claimed that epistemic states should be representable by Zadeh’s fuzzy sets, Dempster 

and Shafer’s evidence functions, Shackle’s potential surprise functions, Cohen’s inductive 

probabilities or Schmeidler’s non-additive probabilities.1 Indeed the move to allowing vagueness 

has grown to some extent from this opposition to orthodoxy.  

In this chapter I will argue that many of their motivations can be better captured by what I’ll call 

constructivist theories of probability. These theories allow axiomatisations which are virtually 

identical in their formal structure to classical axiomatisations of probability. In the classical 

axiomatisation, however, there is reference to an entailment relation. The principle difference is 

that constructivist theories interpret this as a reference to intuitionist entailment, and classical 

theories as a reference to classical entailment. 

8.1 Motivations for a Constructivist Approach to Probability 

There are four main reasons for grounding the axioms of probability theory in an intuitionist 

entailment relation rather than a classical one. These are: a commitment to verificationism, a 

commitment to anti-realism, preservation of the axiom of addition, and avoidance of direct 

 

1 For more details, see Zadeh (1978), Dempster (1967), Shafer (1976), Shackle (1972), Cohen (1977), 

Schmeidler (1989). 
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arguments for the orthodox approach. Now some of these will be viewed by some people as bad 

reasons for adopting the given position, and I have some sympathy with that view. In particular, 

the verificationist and anti-realist elements of the theory might well be viewed as negatives. These 

arguments are principally directed at showing that by their own lights, various heterodox theorists 

would be well advised to adopt the constuctivist theory outlined here. For this reason, I think that 

this theory is the best competitor to the theory developed in the earlier chapters. 

A standard objection to classical approaches is that they have no way of representing complete 

uncertainty. Because of the failures of Laplace’s principle of indifference, it can’t be said that 

uncertainty about p is best represented by assigning credence 1/2 to p .  Heterodox approaches 

usually allow the assignment of credence 0 to both p and ¬p when an agent has no evidence at all 

as to whether or not p is true. Because these approaches generally require an agent to assign 

credence 1 to classical tautologies, including p  Ú ¬p ,  these theories must give up what I’ll call 

the axiom of addition. 

Addition: For disjoint A, B: Bel(A Ú B) = Bel(A) + Bel(B). 

Where no ambiguity results I’ll also use the term ‘axiom of addition’ to refer to the equivalent 

rule for probabilities. Now in some writings (particularly Shafer) the grounding for this is openly 

verificationist. Shafer says that when an agent has no evidence for p ,  they should assign degree 

of belief 0 to p .  Degrees of belief, under this approach, must be proportional to evidence2. In 

recent philosophical literature, this kind of verificationism is often accompanied by an insistence 

that only intuitionistically valid deductions are sound arguments. 

 

2 This assumption was shared by many of the participants in the symposium on probability in legal 

reasoning, reported in the Boston University Law Review 66 (1986). 



§8.1 Motivations for a Constructivist Approach to Probability 240 

 

A similar kind of argument is made by Harman (1983).  He notes that when we don’t distinguish 

between the truth conditions for a sentence and its assertibility conditions, the resultant logic is 

intuitionist. And when we’re considering gambles, something like this is correct. When betting 

on p we don’t, in general, care if p is true as opposed to whether it will be discovered that p is 

true. A p-bet becomes a winning bet not when p occurs, but when p becomes assertible. So perhaps 

not just verificationists like Shafer, but all those who analyse degrees of belief as propensity to 

bet should adopt constructivist approaches to probability. 

To see the point Harman is making, consider this example. We are invited to quote for p-bets and 

¬p-bets, where p is O. J. Simpson murdered his wife. If we are to take the Californian legal system 

literally, the probability of that given the evidence is strictly between one-half and one. To avoid 

one objection, these bets don’t just pay $1 if the bettor guesses correctly. Rather they pay $1 

invested at market rates of interest at the time the bet is placed. The idea is that if we pay x cents 

for the bet now, when it is discovered that we have bet correctly we will receive a sum of money 

that is worth exactly as much as $1 now. Still, I claim, it might be worthwhile to quote less than 

50 cents for each of the bets. Even if we will receive $1 worth of reward if we wager correctly, 

there is every possibility that we’ll never find out. So it might be that placing a bet would be a 

losing play either way. To allow for this, the sum of our quotes for the p-bet and the ¬p-bet may 

be less than $1. As Harman points out, to reply by wielding a Dutch Book argument purporting 

to show that this betting practice is incoherent would be blatantly question-begging. That 

argument simply assumes that p  Ú ¬p is a tautology, which is presumably part of what’s at issue. 

Harman’s point is not to argue for a constructivist approach to probability. Rather, he is arguing 

against using probabilistic semantics for ordinary propositional logic. Such an approach he claims 

would be bound to lead to having an intuitionist logic for the reasons given above. He thinks this 

would be an error, hence the move to probabilistic semantics is simply an error. Whatever we 

think of this conclusion, we can press into service his arguments for constructivist probability. 
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The second argument for this approach turns on the anti-realism of some heterodox theorists. So 

George Shackle, for example, argues that if we are anti-realist about the future, we will assign 

positive probability to no future-directed proposition. The following summary is from a 

sympathetic interpreter of Shackle’s writing. 

[T]here is every reason to refuse additivity: [it] implies that the certainty 

that would be assigned to the set of possibilities should be ‘distributed’ 

between different events. Now this set of events is undetermined as the 

future – that exists only in imagination – is. (Ponsonnet, 1996: 171) 

Shackle’s anti-realism is motivated by what most theorists would regard as a philosophical 

howler; he regards realism about the future as incompatible with human freedom, and holds that 

humans are free. The second premise here seems harmless enough, but the first is rather difficult 

to motivate. Nevertheless, there are some better arguments than this for anti-realism about the 

future. If we adopt these, it isn’t clear why we should ‘assign certainty’ to the set of possibilities. 

Shackle is here assuming that for any proposition p ,  even a proposition about the future, p  Ú ¬p 

is now true, although neither disjunct is true. Given his interests it seems better to follow Dummett 

here and say that if we are anti-realists about a subject then for propositions p about that subject, 

p  Ú ¬p fails to be true. Hence we have no need to ‘assign certainty to the set of possibilities’. Or 

perhaps more accurately, assigning certainty to the set of possibilities does not mean assigning 

probability 1 to p  Ú ¬p .  

The third motivation for adopting a constructivist approach to probability is that it allows us to 

retain the Kolmogorov axioms for probability, and, in particular, to retain the axiom of addition. 

This axiom has, to my mind at least, some intuitive motivation. And the counter-examples levelled 

against it by heterodox theorists seem rather weak from the constructivist perspective. For they 

all are cases where we might feel it appropriate to assign a low probability to a proposition and 
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its negation3. Hence if we are committed to saying Pr(p  Ú ¬p)  = 1 for all p ,  we must give up the 

axiom of addition. But the constructivist simply denies that in these cases Pr(p  Ú ¬p)  = 1, so 

there is no counter-example to addition. 

The final argument for taking a constructivist approach is that it provides a justification for 

rejecting the arguments of chapter 3. There I provided a new justification for requiring coherent 

degrees of belief to be representable by the classical probability calculus. The justification, 

however, simply assumed classical, rather than say intuitionist, logical reasoning was appropriate. 

The constructivist has a principled reason for rejecting those arguments. The person who adopts 

a classical propositional logic, but a non-classical probability logic, has not. 

8.2 The Morgan - Leblanc - Mares Calculus 

In a series of papers (Morgan and Leblanc (1983a, 1983b), Morgan and Mares (1995)) an 

approach to probability grounded in intuitionist logic has been developed. The motivation is as 

follows. A machine contains an unknown set of propositions S, which need not be consistent. 

Pr(A, B) is the maximal price we’d pay for a bet that S and B intuitionistically entail A. By 

standard Dutch Book arguments, we obtain axioms for a probability calculus which has some 

claim to being constructivist. The point of this section is to point out the shortcomings of this 

approach as a theory of uncertain reasoning from evidence. That is, I point out the implausibility 

of interpreting the axioms they derive as normative constraints on degress of belief. 

The axiomatisations given in the 1983 papers differs a little from that given in the 1995 paper, 

but the criticisms levelled here apply to their common elements. In particular, the following four 

axioms are in both sets. 

 

3 Again, the discussion in Shafer (1976, chapter 2) is the most obvious example of this, but similar examples 

abound in the literature. 
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(C1) 0 £ Pr(A, B) £ 1 

(C2) Pr(A, A & B) = 1 

(C3) Pr(A, B & C) · Pr(B, C) = Pr(B, A & C) · Pr(A, C) 

(C4) Pr(A É B, C) = Pr(B, A & C) 

These four are enough to get both the unwanted consequences. In particular, from these we get 

the ‘no negative evidence’ rule: Pr(A, B & C) ³ Pr(A, B). The proof is in Morgan and Mares 

(1995: 458). Now given the semantic interpretation they have adopted, this is perhaps not so bad. 

After all, if we can prove A from B and S, we can certainly prove it from B & C and S, but the 

converse does not hold. However, for the purposes we have adopted it seems a little implausible. 

In particular, if C is ¬A, it seems we should have Pr(A, B & ¬A) = 0 unless B entails A, in which 

case Pr(A, B & ¬A) is undefined. 

It shouldn’t be too surprising that we get odd results given (C4). Lewis (1976) shows that adopting 

it for a defined connective ‘®’ within the classical probability calculus leads to triviality. And 

neither the arguments he uses there nor the arguments for some stronger conclusions in Lewis 

(1986) rely heavily on classical principles. The 1983 papers by Morgan and Leblanc don’t discuss 

this threat, but the 1995 paper takes it seriously. While Morgan and Mares claim to have escaped 

the threat of triviality, they seem to have done so only by lowering the threshold. 

In intuitionist logic we often take the falsum ^ as a primitive connective, with ^ É A a theorem 

for any proposition A. Hence a set of propositions S is consistent iff it doesn’t entail ^. Now it 

seems plausible, at least from the perspective we’ve adopted, to take the following as an axiom. 

(C^) For consistent B, Pr(^, B) = 0. 

Given consistent evidence, we have no evidence at all that the falsum is true. Hence we should 

set the probability of the falsum to 0. Given Morgan and Leblanc’s original semantic 
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interpretation there is less motivation for adopting (C^), since S might be inconsistent. The 

restriction to consistent B in (C^) is because I take Pr(A, B) to be undefined for inconsistent B. 

Morgan, Leblanc and Mares take it to be set at 1. The choice here is a little arbitrary, the only 

decisive factor seems to be what makes for easier statement of theorems. Intuitionistically, ¬ is 

often introduced as a defined connective, as follows. 

 ¬A =df A É ^ 

Assuming A & B is consistent, it follows from (C4) and (C^) that Pr(¬A, B) = 0. Again, from 

my perspective this is an implausible result. The main purpose of this section has been to show 

that the Morgan - Leblanc - Mares probability calculus cannot do the work I am wanting a 

probability calculus to do. That is, it is implausible to regard their Pr(A, B) as the reasonable 

degree of belief in A given B. Hence the logic they have developed cannot be the constructivist 

one that I argued in section 1 heterodox theorists should endorse. 

8.3 Developing a Constructivist Probability Calculus 

The principle motivation for constructivist approaches to probability was a form of 

verificationism. This should be reflected in a constructivist interpretation of probability sentences, 

and indeed of sentences about degrees of belief. On a classical approach I interpreted Bel(A) = 

1/2 as meaning the agent has the same degree of belief in A as they have in a fair coin landing 

heads if tossed. On the constructivist approach I interpret Bel(A) = 1/2 as meaning that the agent 

has as much evidence for A as they have for the proposition ‘The coin will land heads’. There is 

a difference between the epistemic attitude they take towards A and the attitude they take to the 

coin toss. More evidence could come in for A in the sense that they could (at least in some cases) 

become more confident in A without becoming less confident in its negation. In the case of the 

coin this is not possible. Any evidence for A, like seeing the coin, or hearing someone say, “The 

coin landed heads” will be evidence against ¬A. 
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This difference with the classical approach is reflected in how I model probabilistic beliefs. In the 

classical approach I required that if Bel(A) = 1/2 then there were dummy propositions p1 , p2  such 

that A ≡ p1  is an element of the model, as is ¬A ≡ p2 . I then imposed further conditions reflecting 

the fact that p1  and p2  are modelling exclusive, exhaustive and equally probable propositions. In 

fact, given these conditions, we can deduce ¬A ≡ p2  from A ≡ p1 , and hence it follows that if 

Bel(A) = 1/2 then also Bel(¬A) = 1/2. Since this is not a result constructively that is wanted, I 

need to change something. The considerations of the previous paragraph suggest that I shouldn’t 

require A ≡ p1  to hold in the model. Rather I should just require p1  É A. This is interpreted as 

meaning that for any evidence we have for p1  there is matching evidence for A, but there might 

be more evidence for A to come.  

To ease the exposition, I’ll simply define a constructivist probability function at this stage as any 

function from sentences to reals satisfying the following three axioms, with the justification of 

this description coming later.  

(CP1) 0 = Pr(^) £ Pr(A) £ Pr(A É A) = 1 

(CP2) If A ├ B then Pr(A) £ Pr(B) 

(CP3) Pr(A) + Pr(B) = Pr(A Ú B) + Pr(A & B) 

In Appendix 8A I show that any epistemic state which is coherent under the above definition of 

degrees of belief must be representable by a constructivist probability function. Under the 

simplifying assumption that all degrees of belief are rational numbers, the proofs are entirely 

constructive; however, in the general case where we just assume degrees of belief are real numbers 

I can’t get all the results constructively. 

The entailment here in (CP2) is read intuitionistically. As noted already, these axioms take 

probability to be a function from sentences to numbers, whereas, in the classical case, the domain 

of the function was a set of propositions. That equivalent sentences have the same probability is 
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a theorem we quickly derive from (CP2). Given that, the axioms as stated are just about 

independent. (Once we have 0 = Pr(^) and Pr(A É A) = 1 the rest of (CP1) follows from (CP2)). 

In particular, (CP3) is not entailed by the axiom of addition along with (CP1) and (CP2), as it is 

classically, although the axiom of addition does follow from (CP3) and (CP1). 

8.4 Kripke Trees 

Classically, probability theory is just a special case of measure theory. A probability function is 

a normalised measure over a possibility space. Indeed, a function is a probability function iff it 

can be expressed as a normalised measure over a possibility space. It would be convenient for 

technical purposes if we could find a similar way of characterising constructivist probability 

functions. An attempt to do this will be made here, but it isn’t yet a totally successful attempt. A 

measure-theoretic account of constructivist probability functions will be developed which is 

sound with respect to the axioms given above, but I have no proof that it is complete. That is, any 

function which can be expressed as a measure of the type I am discussing is a constructivist 

probability function, but I don’t have a proof that all constructivist probability functions can be 

so expressed. 

There is still I hope some interest in this measure-theoretic approach. First, it might be 

subsequently proven that the semantics provided here are complete with respect to the axioms set 

out above. Secondly, if it turns out not to be complete, we can always add more axioms to make 

it complete. And if this happens we might have some reason for thinking that the new axioms are 

justified. That is, the measure-theoretic semantics might give us a clearer guide as to what should 

be the coherence constraints on reasonable belief. 

I ought to clarify the direction of the argument here. As in the classical approach, I take the 

definition of quantitative credences to be basic. Whatever coherence constraints there are on 

credences should be justified in terms of these definitions. In the previous section, I noted that the 
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three axioms could be so justified. The measure-theoretic account given here is a different attempt 

to capture the class of coherent functions. To the extent that this approach follows the definitions 

more closely, the coherence constraints derivable from it seem plausible candidates for real 

normative constraints on rational agents. 

In Kripke (1965), a semantics for intuitionist propositional and predicate logic is developed. I’m 

only interested here in the semantics for propositional logic. The semantics is similar in some 

ways to the semantics he had earlier developed for classical modal logic. The semantics is based 

around what are now know as Kripke trees. These are partially ordered sets with a certain type of 

valuation on them. It is a little misleading to think of the elements of the sets as possible worlds, 

and the valuations as saying what is true and false at these worlds. This is misleading because the 

notion of truth at a world employed in this interpretation is non-constructive. 

A better (though still perhaps not entirely accurate) interpretation is to say that elements of the set 

(what we’ll call nodes) are knowledge states. So the valuation assigns to each node the set of 

propositions discovered by that time. We don’t say that propositions not discovered by that node 

are not true there, unless we know that we will not discover the proposition to be true at any later 

node. The formal definitions are as follows4: 

A Kripke tree for a propositional language (i.e. set of proposition letters) L is a triple (K, £, ╟) 

where (K, £) is an inhabited5 partially ordered set and ╟ is a subset of K ´ L  such that: 

(1) "k, k´ Î K, if k ╟ p and k´ ³ k then k´ ╟ p  

We read k ╟ p as k forces p .  We extend ╟ to compounds by the following definitions. 

 

4 The setting out here follows closely Troelstra and Van Dalen (1987: 75-78). 

5 Constructively, saying that a set has elements, is inhabited, is stronger than merely saying it is non-empty. 
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K1 k ╟ A & B iff k ╟ A and k ╟ B 

K2 k ╟ A Ú B iff k ╟ A or k ╟ B 

K3 k ╟ A ® B iff for all k´ ³ k if k´ ╟ A then k´ ╟ B 

K4 not k ╟ ^ 

We then introduce ¬ as a defined connective, ¬A =df A É ^. If we interpret k´ ³ k as k´ is 

subsequent to k then (1) implies that whatever is discovered is not forgotten. (1), K3 and K4 imply 

that we only discover ¬A when we know that we won’t ever discover A. K2 implies that we can 

only discover a disjunct by discovering one or other disjunct. The following tree shows how we 

can discover ¬¬A at a node without discovering A at that node. 

 

At node 0 we have not discovered A. However, we do know that whenever we discover ¬A we’ll 

discover ^. This follows from the fact that we know we’ll never discover ¬A. So node 0 forces 

¬¬A without forcing A. So at 0 neither ¬¬A É A nor A Ú ¬A are forced. 

The following example shows that ¬A Ú ¬¬A is not forced at all nodes. At node 2 we have not 

discovered A and there are no subsequent nodes, so we know we won’t discover A. Hence 2 ╟ ¬A. 

So we don’t have 0 ╟ ¬A. And since 1 ╟ A, we don’t have 0 ╟ ¬¬A. Hence we don’t have 

0 ╟ ¬A Ú ¬¬A. 

 

Kripke models are important because for every sequent which is not intuitionistically valid there 

is a Kripke model with a node which forces all the premises but which does not force the 

conclusion. The original proof of this in Kripke (1965) was non-constructive; however, it has 
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subsequently been constructively proven. None of this is at all new to readers familiar with 

intuitionist logic. However, since at least part of the purpose of this chapter is to promote 

constructivist approaches to theorists presumably unfamiliar with them, a small background is 

probably in order. 

With the Kripke trees, we can develop a measure-theoretic semantics for constructivist 

probability. In short, a constructivist probability function is a normalised measure on a Kripke 

tree. This needs some explaining and some justifying; the explaining first. 

Strictly speaking, since Kripke trees can be uncountably large, we need to be more precise than 

just saying a measure is placed on the tree. Rather, for any tree (K, £, ╟) and language L  we must 

first define a field F  of subsets of K as follows. For any sentence A of L, define KA to be the set 

of nodes of K which force A. (Languages, by the way, are customarily taken to have only a 

denumerable number of sentence letters in them. I’ll follow this convention here. From this it 

follows there are only denumerably many finite sentences of L.) Let F  be the smallest set of 

subsets of K which includes KA for every sentence A, and is closed under complementation, finite6 

intersection and union. 

Now define a measure m on F  to be any function onto reals satisfying the following rules. (D and 

E are arbitrary elements of F. ) 

(m1) m(Æ) = 0 £ m(D) £ 1 = m(K) 

 

6 The definition of F  could be extended to ensure it is closed under countable intersection and union, and 

similarly the definition of measure to ensure it is countably additive. This would of course ensure that an 

axiom stronger than (CP3) was needed. Since constructive approaches were developed out of a desire to 

remove completed infinities from theory, perhaps this would be a mistake, but I don’t intend to go into this 

question here. 
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(m2) If D Ç E = Æ then m(D) + m(E) = m(D È E) 

I then define a constructivist probability function as Pr(A) = m(KA) for any sentence A. A non-

constructive proof that probability functions so defined will satisfy the CP-axioms can be easily 

given. The proof requires the assumption that for any node k, k Î KA or k Ï KA, equivalently that 

k either forces or doesn’t force A. I could perhaps fix this problem by insisting that the trees be 

finite. (Intuitionist logic is complete with respect to finite Kripke trees.) However, that would 

generate problems of its own. For example, there ought be at least one probability function with 

Pr(qi) = 1/i for all i, yet this would be ruled out if we said all probability functions were measures 

on finite trees. 

If I weakened (CP3) to just say that, when A and B are provably disjoint, the probability of their 

disjunction is the sum of their probabilities, then I can give a constructive proof that all probability 

functions defined by a measure will satisfy the axioms. However, there appear to be good reasons 

(from the definition of degrees of belief) to insist on the stronger axiom. Perhaps the best solution 

here is to stipulate that ╟ is decidable by definition. The justification is that the nodes are not real 

states but rather representation of states of inquiry. That is, the nodes are individuated by what 

will be known at each node. Hence we should be able to tell, by virtue of the fact that we can 

individuate the nodes, what will be known there. An alternative solution is to allow that the 

metatheory is classical, but I am aiming here to do as much as possible constructively. 

So assuming ╟ is decidable, I’ll quickly list the proofs that all the probability functions defined in 

this way satisfy the CP-axioms. Since K^ = Æ, and m(Æ) = 0, Pr(^) = 0. Similarly KA É A = K, so 

Pr(A É A) = m(K) = 1. For any A, m(KA) Î [0, 1], hence Pr(A) Î [0, 1]. This proves (CP1). 

Assume A ├ B. Hence KA Í KB. So KB = KA È (KB Ç KA
c 
). Since m(KB Ç KA

c 
) ³ 0, and m(KB) = 

m(KA) + m(KB Ç KA
c 

), m(KB) ³ m(KA). Hence Pr(B) ³ Pr(A), proving (CP2). The proof here 
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would be non-constructive if I wasn’t assuming ╟ is decidable, but this could be fixed if I added 

to the definition of measure that no subset has greater measure than its superset. 

Finally, KA & B = KA Ç KB, and KA Ú B = KA Ç KB by the definition of Kripke trees, so by (m2) it 

follows that m(KA & B) + m(KA Ú B) = m(KA) + m(KB). From this (CP3) follows trivially. This 

requires that KA = (KA Ç KB) È (KA Ç KB
c
), which wouldn’t be a legitimate assumption 

constructively unless I had assumed ╟ is decidable. 

Why might we think that such measures are representations of reasonable epistemic states? In 

contrast to the classical case, it doesn’t make a lot of sense to regard the measure of individual 

nodes as particularly meaningful. Rather, the figure relevant to each node is the measure of its 

descendants. For simplicity, define m´(k) = m({k´: k´ ³ k})7. This is the probability that we will 

reach this node in our explorations; that we will discover all the propositions which are forced by 

this node. This second level probability behaves classically. Note that all classical probability 

functions are constructivist probability functions, but that the converse is not the case. 

The intuitive justification for the measure theoretic semantics is that as we acquire evidence for a 

proposition, we increase the probability that we will discover that proposition to be true. When 

we have little evidence for a proposition, the claim is that we don’t have much likelihood of 

discovering it to be true. This does require a rather generous interpretation of evidence; a method 

for discovering whether or not p is true counts as evidence both for and against p because it 

increases the likelihood of discovering p and discovering ¬p .  Such an interpretation is quite 

natural constructively, but doesn’t make a lot of sense classically. So a motivation for the measure 

 

7 This might not be defined in some cases. Whenever a set of nodes D is not an element of F  we can 

approximate its measure above as the lower bound on {m(E): E É D} and below as the upper bound on 

{m(E): E É D}. 
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theoretic approach can be found within the definition of numerical credences, which as I said 

above remains the core test. 

8.5 Intuitionist Probability 

A constructivist probability function can satisfy Pr(A Ú B) = 1 without satisfying Pr(A) = 1 or 

Pr(B) = 1. To the extent that the assertibility of a proposition is given by its having probability 1, 

this means that an agent can assert disjunctions without being able to assert either disjunct. Since 

the denial of this possibility is sometimes taken to be a distinctively intuitionist claim, it seems 

constructivist probability functions are not intuitionistically acceptable. It seems that it would be 

more acceptable from this approach to use a probability calculus based, say, on fuzzy logic, such 

that the probability of a disjunction is the higher of the probabilities of the two disjuncts. 

We don’t need to be so radical. The intuitionist probability functions can be defined as those 

constructivist probability functions that satisfy the following axiom, (again A and B range over 

all propositions): 

(CP4) If Pr(A Ú B) = 1 then Pr(A) = 1 or Pr(B) = 1. 

I mentioned above that all classical probability functions were constructivist probability 

functions. However, they will not, in general, be intuitionist probability functions. Indeed, by 

letting B be ¬A, the only classical probability functions which will satisfy (CP4) are those that set 

Pr(A) = 0 or 1 for all propositions; what Lewis calls ‘opinionated functions’. 

It’s non-trivial to specify necessary and sufficient conditions on measures such that they satisfy 

(CP4)8. One clearly sufficient condition (which has some independent motivation) is the 
 

8 Part of the difficulty is the role of ╟. Usually if we were trying to find necessary conditions for a condition 

like this we would try to find conditions on triples (K, £, m) such that for any ╟, (CP4) is satisfied. So, as 

in the case of the sufficient condition given in the text, the answer will be independent of ╟. And this 
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following. Say a Kripke tree (K, £, ╟) is grounded iff there is a kg Î K such that for all k´ Î K, 

k´ ³ kg. Then a sufficient condition for (CP4) is that m(kg) > 0. If this is the case then the only 

propositions which receive probability 1 will be those which are forced by every node, and this 

can’t be true of a disjunction unless it is true of one or other disjunct. 

I don’t want to say that rational agents ought to have their degrees of belief be intuitionist 

probability functions; (CP4) is, for reasons I’ll set out soon, an unreasonable constraint. The only 

reason I bring it up is to consider this condition on Kripke trees. I claim that it is reasonable to 

insist that the trees are grounded, but it is unreasonable to require the ground to have positive 

measure. This restriction is important, as we’ll see below, for the interpretation of 

conditionalisation in this theory. 

The nodes represent possible states of knowledge. The paths through the tree represent possible 

chains of discoveries. But all these possible real-world paths have a common starting point, what 

we now know. Hence all the paths in the tree should have a common starting point, and hence be 

grounded. 

This doesn’t impose any new axioms. To see this, note that we can easily turn an ungrounded tree 

(K, £, ╟) into a grounded one (K´, £´, ╟´) in the following way: 

  

 K´ = K È {kg} 

 k £´ l iff k £ l or k = kg 

 k ╟´ A iff k ╟ A or k = kg and "l Î K: l ╟ A 

 

simplifies the theoretical task; a proposed condition is shown to be is necessary by finding a ╟ such that a 

breach of that condition combined with that valuation will lead to a breach of (CP4). But when ╟ is fixed 

this can’t be done. And since m is defined in part in terms of ╟, it doesn’t make sense to let the valuation 

vary as the measure stays constant. 
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By putting the same measure on (K´, £´, ╟´) as we put on (K, £, ╟) we can recover the same 

probability function from a grounded tree that we originally had. So any probability function 

which can be expressed as a measure on an ungrounded tree can be expressed as a measure on a 

grounded tree. 

The above construction relied on the acceptability of giving the ground measure 0. This can lead 

to breaches of (CP4). However, these seem perfectly acceptable. To simplify, we’ll consider 

whether it can ever be reasonable to give probability 1 to A Ú ¬A without giving probability 1 to 

either A or to ¬A. Knowing A Ú ¬A is constructively equivalent to knowing A is decidable in 

principle. And this is weaker than knowing which of these is true. For example, it is constructively 

acceptable to say that a certain large number, say 5691364391 is either prime or not prime without 

being able to say which, simply because we know that there is a way of finding out which is true. 

So we only can’t assert A Ú ¬A when we don’t have evidence to say that A will be decidable in 

principle. It is, however, a little difficult in practice to know how to apply this. The constructivist 

rules for assertibility were developed with specific applicability to mathematics, and there we 

have a much tighter definition of ‘in principle’ than in the real world. To take a simple example, 

should we say it’s decidable ‘in principle’ whether a Democrat will win the 2200 U.S. Presidency. 

No one reading this will, I presume, ever know whether this is true. So ought it count as something 

undecidable? More importantly, can we come up with a rule which determines what is and isn’t 

decidable in principle? 

The main reason this is important is that the reductive definition of quantitative degrees of belief 

only makes sense if it is assumed that lotteries, or at least dummy lotteries, are decidable. I 

assumed implicitly that one could assign probability 1 to the proposition Some ticket will win 

without assigning probability 1 (indeed while assigning probability 1/n) to any proposition of the 
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form This ticket will win. So the definition of decidability has to be set so that these lotteries are 

decidable, but arbitrary future events need not be. 

The best way out of this, I think, is to amend the definition of the dummy lotteries. These were 

already a little fanciful because we assumed the agent knew them to be fair. Let’s add the extra 

assumption that the agent knows them to be fair and decidable. That is, the agent knows that they 

will, shortly, know the result of the lottery. I can then take a rather strict stance on what is 

decidable in the real world. In particular any proposition about the unobserved, be it past, present 

or future unobserved, is not known to be decidable. I am using ‘observed’ in an odd way here 

because we can on this usage observe any decidable mathematical proposition. We can observe 

that is, whatever Brouwer’s ideal mathematician could observe. 

Despite this restrictive use of decidability in relation to real world events, I leave open the 

possibility that we can coherently stipulate a proposition to be known to be decidable without it 

being known whether the proposition is true or false. This is important for getting a reductive 

definition of quantitative degrees of belief, without which we cannot develop a probability 

calculus. So even if there aren’t any falsifying instances of (CP4) in the real world (that is, if a 

rational agent in the real world never believes a disjunction to degree 1 without believing one or 

other disjunct to degree 1) it oughtn’t to be a general normative requirement. 

8.6 Updating 

There are several problems with accurately capturing updating within the constructivist 

probability calculus. Some of these can be attributed to the fact that updating, as it is usually 

discussed within the classical literature, essentially uses non-constructive language. Thus, in part, 

the difficulties we discover can be attributed to the non-constructive character of updating rules. 

However, it isn’t clear that they all can be so avoided, and the impossibility of finding a fully 
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justified updating rule within the constructivist approach to probability should count against it to 

some degree. 

To see the problem, just consider a simple example. Say an agent has degree of belief 1/3 in A 

and 1/3 in ¬A. It is as if we have an urn with n red marbles, n black marbles and n white marbles, 

from which we know one will be drawn at random. The agent has as much evidence that A as she 

has that a black marble will be drawn, and as much evidence that ¬A as that a white marble will 

be drawn. So we develop a fiction in which the drawing determines what really happens; if a 

white marble is drawn, ¬A happens; if a black marble is drawn, A happens; and we don’t have 

the evidence to say what happens if a red marble is drawn. 

Classically, discovering A was taken to have the same effect as discovering a black marble will 

be drawn. However, it isn’t clear why this should hold constructively. After all, the agent doesn’t 

know (even in the fictional model) that the only way for A to be true is that a black marble be 

drawn. The drawing of a black marble is a sufficient but unnecessary condition for A. So should 

we treat a discovery that A as being equivalent to finding out that a white marble will not be 

drawn? 

No, and for two reasons. This would seem to have the consequence of saying Pr(B | A) = 

Pr(A & B) / 1 - Pr(¬A), which would imply that in general Pr(A | A) ¹ 1. If we just add to the 

above evidence the knowledge that a white marble won’t be drawn, we don’t have any reason to 

be certain that A will happen. A red marble might mean that A happens, but it might not. Since 

Pr(A | A) = 1 looks like a pretty good candidate axiom, more care is needed with the semantics.  

Secondly, problems arise if we know something about the red marbles. Say we know that half the 

black marbles and half the red marbles are B marbles (i.e. if they are drawn, B will happen). And 

we know the other half of the red and black marbles are ¬B marbles. By the above formulae 
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Pr(B | A) = 1/4, which seems absurdly low, the same way that Pr(A | A) = 1/2 seemed low. 

However, there isn’t a particularly easy way to fix this problem. 

The difficulty is that it seems Pr(B | A) should be set as the greatest lower bound of the possible 

ratio of B marbles left to total marbles left, after taking this new evidence into account. We know 

that all the white marbles have been removed, but we don’t know what has happened to the red 

marbles. We can fix the problem for determining Pr(A | A) by saying we know that all the red 

marbles which really were ¬A marbles have been removed, hence the ratio of A marbles to total 

marbles must be 1. However, for Pr(B | A) the situation is more complicated. There is the 

possibility that all the red marbles which are B marbles are also ¬A marbles. So in the worst case 

scenario, there are n black marbles left, half of which imply B and half of which imply ¬B, and 

n / 2 red marbles left, all of which imply ¬B. So only 1/3 of the remaining marbles are B marbles. 

Hence Pr(B | A) = 1/3. Similar reasoning shows that Pr(¬B | A) = 1/3. However, whatever 

happens to the red marbles, we know they all imply B Ú ¬B. So Pr(B Ú ¬B | A) = 1. Hence 

Pr( • | A) is not a constructivist probability function. 

The only way to get out of this problem is to define Pr(B | A) using Bayes’s rule, however hard 

it is to give a constructivist justification of this using the same approach we used in chapter 3 for 

the classical justification of it. We might be able to get a better motivation using the Kripke trees 

discussed in section 4. The nodes in a Kripke tree were interpreted to be possible states of 

knowledge. If we discover A we must, therefore, move to one of the nodes at which A has been 

discovered. So if we amend the tree by eliminating all those nodes at which A is not forced and 

re-normalise the measure by multiplying through by a constant, we will have a plausible updated 

tree. And the updated measure of KB, i.e. the updated probability of B, will be given by Bayes’s 

rule.  
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There are some problems too with this approach. The first is that it isn’t clear why we should re-

normalise in this approach. We could re-normalise by something akin to imaging, moving the 

measure from the deleted nodes to the nearest undeleted nodes. There’s no reason why we should 

do things this way, but on the other hand I can’t see a knock-down argument as to why we 

shouldn’t. 

The second is that the updated tree will not necessarily be grounded. This is connected to the 

problem I mentioned above that updating might not be a constructively acceptable concept. Again, 

it’s simpler to see what’s going on in the non-probabilistic case. The following sequent is not 

constructively valid. 

 A É (B Ú C) ├ A É B Ú A É C 

This follows from the constructive interpretation of É. There, A É B is interpreted as meaning 

there is a construction which transforms every proof of A into a proof of B. The above sequent 

fails because there might be a construction which transforms every proof of A into either a proof 

of B or a proof of C, but the transformation takes some proofs of A into proofs of B and some into 

proofs of C. 

So we can imagine a rational agent who believes p  É (q Ú r) without believing either p  É q or 

p  É r. Assume that this agent follows the intuitionist rule of never believing a disjunction without 

believing one or other disjunct. And assume too that the agent follows the plausible updating rule 

of coming to believe B iff there is some A such that they believe A É B and discover A. What 

should the agent do upon discovering only that p is true? At first it looks like they should come 

to believe q Ú r without believing either disjunct. But this is misleading, for we cannot say 

constructively that they only discover p .  When they discover p they must discover it by some 

process. And that process will either be one which is also a discovery of q or is also a discovery 
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or r. So they will come to believe one of q and r, but without knowing how they have discovered 

p we can’t know which one. 

The point of the story is that just saying that an agent discovers a certain proposition to be true 

without specifying a process of discovery is not constructively acceptable. In the probabilistic 

case, if the agent updates with respect to any full process of discovery they will, presumably, 

move to a certain node in the Kripke tree, and hence the updated tree will be grounded. Having 

our agents update on a proposition without a discovery process is not constructively acceptable. 

In sum, the only plausible constructivist updating rule is Bayes’s rule. It isn’t obvious that this 

can be justified, implying that there might be no justifiable updating rule. However, this mightn’t 

be a problem if the constructivist can argue that they should not be required to produce an updating 

rule because such rules use non-constructive language. It doesn’t make sense, goes the objection, 

to ask what a rational agent would do if they had discovered A but had no process of discovering 

A. On the other hand if they do have a process of discovery they have more information than just 

A, and this should be used too, and in these cases Bayes’s rule seems unproblematic. 

8.7 Objections 

Despite my promotion of the constructivist approach in the previous section, it is not the approach 

which I am endorsing in this dissertation. As mentioned above, it is a good candidate for the 

second best approach to representing rational states of uncertainty. The advantage it enjoys over 

the precise classical approach is that it has a way of representing complete ignorance. And this, I 

think, is a large advantage. So I think going constructivist would be a forward step for theorists 

who object to the classical approach, even in its imprecise form as advocated throughout this 

dissertation. There are, though, good objections to be raised. I suspect none of these will be good 

ad hominen arguments; they involve, on the whole, rejecting the constructivist program rather 

than specifically showing there to be flaws in the constructivist approach to probability. 
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The first type of objection rests on simply rejecting the philosophical motivation. The motivations 

I mentioned above were verificationism and anti-realism. But neither of these seem at all attractive 

as philosophical theories. The defeat of verificationism is one of the great successes of twentieth-

century philosophy. And while the realism / anti-realism debate has some life left in it, the kind 

of anti-realism needed to motivate this approach to probability seems much too far fetched. 

I used Shackle’s anti-realism about the future to motivate a constructivist approach. And if we’re 

anti-realist about the future we can reasonably have degrees of belief in statements about the 

future, say A, such that Bel(A) + Bel(¬A) < 1. However, if this is plausible for statements about 

the future it seems just as plausible for statements about the past. There is little justification for 

requiring agents’ degrees of belief about past-directed statements to be a classical probability 

function. Hence, to motivate a general constructivist approach we have to give up not only realism 

about the future, but realism about the past. And that just seems implausible. 

The second type of objection turns on the plausibility of classical standards of validity. That is, 

despite all that has been said above, it does seem we can assert A Ú ¬A for any proposition A on 

any evidence whatsoever. Equivalently, we can assert if ¬¬A then A for any A again on any 

evidence. As an objection this is fairly question-begging; it is much like those occasions where 

someone claims they can show their opponent is wrong by simply stating their opponent’s 

position loudly and clearly and exclaiming, “No one could believe that!” Still, sometimes it is 

worth doing. And in fundamental questions, where there is disagreement even about what counts 

as a conclusive argument, it will be difficult to get arguments which at the end of the day aren’t 

question begging. 

Ramsey, in Mathematical Logic (1926b), thought he could dismiss intuitionism on this ground, 

and the extent of his argument was little more than a quote from Lewis Carroll. 
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“It’s very long,” said the Knight, “but it’s very very beautiful. 

Everybody that hears me sing it – either it brings the tears into their 

eyes, or else –”. “Or else what?” said Alice, for the Knight had made a 

sudden pause. “Or else it doesn’t, you know.” (Carroll, 1871, 306) 

Ramsey of course had a conversion to intuitionism (not quite on his death-bed, but in the last year 

or so of his life), so perhaps arguments founded on Carroll’s jokes are not too secure. For many, 

it’s just a Moorean fact that sentences A Ú ¬A are all true. Now Moorean facts come in many 

varieties; some aren’t even facts. There is perhaps a scale with “Moore had two hands” at one 

end, and “A set has more elements than any of its proper subsets” at the other. Every claim on the 

scale is prima facie plausible. Somewhere down the line the claims stop being acceptable without 

argument; presumably, this is a little before they stop being true. 

There is a slightly less question-begging approach. It is well known that we cannot conservatively 

add a classical negation operator to constructivist logic. Assume we have a constructivist 

propositional logic, with ¬ as the negation operator. Then A Ú ¬A is not a theorem. However, if 

we added a classical negation operator ~, so that we had ~~A É A, and (A É ^) É ~A, we would 

be able to prove not only A Ú ~A, (as we want) but A Ú ¬A, which isn’t wanted. Hence 

constructivists have to say that the classical interpretation of the connectives is “unintelligible” 

(Dummett 1977, 11) that they do not understand what the classical connectives mean. But this 

last claim beggars belief. When we look at the work constructivists have done in classical logic 

and mathematics it is perfectly clear they do understand the connectives, perhaps better than most 

of their opponents. 

I don’t expect any of the above to change anyone’s position. It is more a statement of why I don’t 

think a constructivist approach ought, in the end, to be adopted, rather than an argument against 

it. The only argument for this which isn’t question-begging is the difficulty constructivist 
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approaches have in dealing with updating. Even here, there is the possibility of an argument that 

this would be an unfair requirement. So arguably what we have here are differing approaches 

which are each internally coherent and which are effectively immune to external challenge. This 

wouldn’t be a disastrous result; if it were true, my preference for a classical approach would be 

just a matter of taste, and the theory developed in this chapter provides a useful alternative for 

those with different tastes. 

Appendix 8A Proof of Soundness of the Axioms  

This appendix formally sets out the constructivist definition of degrees of belief, and proves that 

this definition entails that (CP1), (CP2) and (CP3) are coherence constraints on degrees of belief. 

Let Bel(A) be a function from sentences to the degrees of belief on an agent. Let G be a finite set 

of sentences, closed under negation, conjunction and disjunction, such that for all A in G, Bel(A) 

is rational, and y be the lowest common denominator of the values Bel(A) takes. Let P be the set 

of dummy propositions {p1 , ..., p y}, which are defined such that the agent has no beliefs about 

any of the p i . In the classical case I could make this last condition strict; here, I need to employ a 

primitive notion of disconnectedness. 

The agent’s beliefs about G are coherent iff they can be modelled by K*, which is a set of sentences 

closed under (intuitionist) entailment, and satisfies the following conditions: 

(1) For all A, x, Bel(A) ³ x / y iff $S: (S Í P  & |S| = x & (S É A Î K*)) 

(2) For all S Ì P ,  S Ï K* 

(3) P  Î K* 

(4) For all i, j ¬(p i  & p j) Î K* 

(5) For all i, A, B if (p i  É A Ú p i  É B) Î K* then p i  É A Î K* or p i  É B Î K* 
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As in the earlier account, for simplicity I sometimes identify a set with the disjunction of its 

elements. From (3) and (4) it follows that, for all i, p i  Ú ¬p i  Î K*, a fact I use in some of the 

proofs below. The justification of (5) is the constructive construal of disjunction. The idea is that 

we can’t be able to say in the model that we either have evidence for A or for B without being 

able to say one or the other. The aim now is to prove that if Bel can be modelled by K* satisfying 

(1) to (4), it must be a constructivist probability function, that is it must satisfy (CP1) to (CP3). 

I have assumed that Bel(A) is a rational number whose denominator is a factor of y. Hence there 

are only finitely many values Bel(A) can take; y + 1 to be precise. We also know that it takes at 

least one value (we’ll prove soon it takes at most one). So if we can prove that Bel(A) is not equal 

to y of these possible values, we will have proven that it must equal the other one. This insight 

allows us to use reductio arguments that are not in general constructively acceptable. 

Assume Bel(^) > 0, so Bel(^) ³ 1/y. Hence there is a p i  such that p i  É ^ Î K*. Since this is the 

same as ¬p i  Î K*, and since P  Î K*, it follows by disjunctive syllogism that P  / {p i} Î K*, 

contradicting (2). As Bel(^) must take some value, this implies it must be zero. 

As A É A is a theorem, so is P  É (A É A). As K* is closed under entailment, P  É (A É A) Î K*. 

So by (1) Bel(A É A) = 1. 

Assume A ├ B. So A É B is a theorem, and hence is in K*. Assume Bel(A) = x / y. So there is an S 

of size x such that S É A Î K*. By modus ponens, this implies S É B Î K*. So Bel(B) ³ x / y = 

Bel(A). This proves (CP2), and as ^ ├ A ├ A É A, this completes the proof of (CP1). 

The proof of (CP3) meets one early difficulty. The following classically valid inference is not 

intuitionistically valid. 

 p i  É (A Ú B) ├ p i  É A Ú p i  É B 
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So I can’t say straight away that evidence for A Ú B is evidence for A or evidence for B. However, 

the following is valid. 

 p i  É (A Ú B), p i  Ú ¬p i  ├ p i  É A Ú p i  É B 

Since I already have p i  Ú ¬p i , the inference goes through. So if p i  É (A Ú B) Î K*, then p i  É A 

Ú p i  É B Î K*, and hence by (5) p i  É A Î K* or p i  É B Î K*. Assume Bel(A Ú B) = x / y, and 

S É (A Ú B) Î K*, with |S| = x. Then for all p i  in S, p i  É A Î K* or p i  É B Î K*. For all p i  not in 

S, p i  É A Ú B cannot be in K* or else (1) would be breached.  

Let SA be the set of p i  such that p i  Î S and p i  É A Î K*, with SB defined similarly. Since SA is the 

largest subset S´ of P such that S´ É A Î K*, so Bel(A) = |SA| / y. Similarly Bel(B) = |SB| / y. Further 

(SA Ç SB) É (A & B) Î K*, and this will not be the case for any larger set, again because if it were 

(1) would be breached. So Bel(A & B) = |SA Ç SB| / y. Finally, because of the results of the last 

paragraph, S = SA È SB, so Bel(A Ú B) = |SA È SB| / y. In general, for finite decidable sets, |SA| + 

|SB| = |SA È SB| + |SA Ç SB|, and this proves (CP3). 



Chapter 9   

Vague Decision Theory 

9.1 Introduction 

Part 1 had two central aims: the interpretation of probability sentences and the discovery of rules 

for reasoning under uncertainty. In the literature, the latter are usually derived by looking at rules 

for decision making under uncertainty. There are good reasons for thinking this gets matters the 

wrong way round. So here, in part 2, I move onto decision making under uncertainty as an 

application of the rules of reasoning already derived. This chapter looks in general at rules; the 

following two chapters apply my conclusions to some economic problems discussed by Keynes. 

Although I call what I’m doing ‘decision theory’, strictly it is only a portion of a proper decision 

theory. The central problem with Dutch Book arguments is that they confuse use-value with 

exchange-value. The same problem I fear pollutes most decision theory. What I’ll really be 

investigating here is the theory of qualitative use-valuation. But that’s an ugly name, and since 

that theory is often called ‘decision theory’, I’ll stick with the ordinary labelling. When I get to 

applications, the distinction between the two fields will need to be more carefully observed. 

The reference to ‘qualitative’ is important here. I take as given the quantitative use-value of 

various gambles, and try to derive their relative value. This looks like it should be a triviality: f 

is more valuable than y iff its quantitative value is higher1. However, the values I take as given 

are interval-valued, or perhaps set-valued, depending on how we develop the theory. So there’s 

no easy bridge available between quantitative and qualitative theory. Indeed it’s unclear whether 

anyone has developed a bridge that meets some rather minimal coherence requirements. For that 

 

1 I’ll use Greek letters throughout to refer to gambles. I won’t define precisely what I count as a gamble, 

because this is fairly standard in the literature. However, following Ramsey, I regard not only betting slips, 

but stocks, cars and dollar bills as gambles. 
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reason, the purpose of this chapter will be largely negative. I will examine many proposals for 

getting from quantitative (but non-numerical) values to quantitative orderings or practical 

proposals, and show where they fail. I’ll then propose a relatively modest theory that seems at 

least plausible. 

As is usual in the literature, I’ll talk about an agent having a choice between various gambles. In 

order to avoid the problems which brought down the Dutch Book argument, I’ll make the 

following assumptions. Whenever an agent has a choice between a set of gambles, unless 

otherwise stated, these conditions hold: 

(i) All gambles are to be settled immediately after the choice is made. That is, if an agent 

has a choice between a p-bet and a q-bet, then immediately after the choice is made, the 

agent will discover whether their chosen bet wins, and receive the appropriate payout. As 

a corollary to this, there is no possibility of retrade, and no alternative trades available. 

(ii) The marginal utility of money is constant and independent of the outcome of various bets. 

(iii) The agent places no value on the discovery of whether a particular bet wins or not. 

Some of these conditions are inapplicable in some of the circumstances in which we want to apply 

decision theory. For example, the failure of (i) and (ii) is important when making investment 

decisions in an inflationary environment. However, it simplifies exposition enormously to assume 

these conditions hold unless otherwise stated. Condition (i) holds even for decision making in a 

decision-tree. What I require there is that the choices in the tree are exhaustive, and that bets are 

settled whenever an ‘end-node’ is reached. 

With these conditions assumed, I can state the central question. Given an agent’s (imprecise) 

degree of belief in each of the relevant propositions, when should an agent trade f for y? This 

divides into two questions: when is trade permissible, and when is it rationally required? I will 

also be interested in some associated questions, such as determining which choices are 
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permissible (or mandatory) from a set of available gambles. The ‘central question’ contains a 

deliberate asymmetry between f and y. I don’t want to rule out theories which say it’s permissible 

(mandatory) to not trade f for y, but not permissible (mandatory) to trade y for f. These theories 

privilege what the agent currently holds. I don’t think such theories work, but this needs argument 

rather than assumption, and I don’t think this privileging of what an agent holds is an argument 

against these theories. 

The agent is reasonable, so their epistemic state can be represented by a set P   of probability 

functions. Each of these functions will assign to each gamble a numerical value. Precisely how 

this is done will depend on how one resolves Newcomblike problems. I won’t buy into this 

argument, but I’ll assume that it has a resolution2. And, since my assumptions mean I can restrict 

my attention to use-value, I’ll assume that the value, according to Pr , of a p-bet is Pr(p) . 

For a bet f, P   will determine a range of expected values for f: [lf, uf]. I’ll assume Continuity, as 

defined in 7.1.2, holds, so the range of expected values will always be an interval. I’ll always 

notate it as if it is a closed interval, but there is no reason to assume this. My use of closed intervals 

is just for simplicity3. It’s very important to remember that [lf, uf] is not the range of possible 

payouts for f; that range will usually be considerably wider, and need not be an interval. I am not 

interested in what the agent thinks f might pay, rather in, roughly, what she thinks f can be 

expected to pay. If her degrees of belief are all precise then, whatever the range of payouts of f, 

lf will equal uf.  

 

2 For my purposes the solution to this problem Lewis gives in his (1981) would work, but any of the similar 

alternative theories he mentions (such as those due to Sobel, Skyrms and Gibbard and Harper) would also 

suffice. 

3 As is the assumption that lf and uf are determined precisely. Because of higher-order vagueness they too 

will be vague, but that need not detain us. 
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Decision theories which allow for imprecise credences fall into two broad categories: structured 

and unstructured. Unstructured decision theories say we can determine the relative merits of f 

and y by just looking at lf, uf, ly and uy. Structured decision theories say we need to look at more; 

in particular, we need to compare the values f and y according to particular members of P . The 

first three theories I’ll look at are unstructured; it can be concluded from the way they fail that no 

unstructured decision theory is plausible. 

The bulk of this chapter is negative; I show why a glut of solutions to our problem given in the 

literature fail. Often I will refer to the advice these solutions give to a contestant in the Monte 

Hall Problem (MHP). This is formally equivalent to the TPP described in chapter 3, but is perhaps 

more enjoyable to think about. A contestant on a game show faces three doors, call them a, b and 

c, with a car behind one and worthless prizes behind the other two. She knows the prize has been 

allocated by a fair chance mechanism. She chooses a door, and then the host shows her that there 

is no prize behind one of the doors she hasn’t chosen. She knows the host will show her a door, 

and she knows the host will choose a door to show her that doesn’t contain the prize. She is 

ignorant, however, of the host’s procedure for choosing which door to show should she have 

originally chosen correctly. For convenience, I’ll use ab (a, b Î {a, b, c}) to refer to the 

proposition that the car is behind door a and the host shows door b. For a small cost (either in 

dollars or regret) she is given the chance to change her choice to the other door which remains 

closed. What ought she do? In chapter 3 I concluded that her degree of belief in ‘I originally chose 

correctly’ (call this p)  should go from precisely 1/3 to a vague interval, possibly as large as [0, 

1/2]. For now I’ll assume that her degrees of belief do become that vague; I’ll discuss the 

plausibility of this for the case as described at the end of the chapter. 

There is something odd about this epistemic state. The contestant knows that whatever the host 

does, her attitude towards p will go from being precise to being vague. Fortunately it will always 

become vague over an interval including the original precise degree, but the interval is guaranteed 
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to grow. As this causes problems for many of the theories which follow, it might be wondered 

whether such odd states can be ruled out as unreasonable. 

The answer is they cannot, at least on pain of ruling out all vague states as unreasonable. 

Seidenfeld (1994) shows that on some simple assumptions4, the requirement that states be immune 

to what he calls dilation is equivalent to the requirement that states be precise. Let P   be a set of 

probability functions, and let min(h | e) and max(h | e) be defined as the minimal and maximal 

values respectively of Pr(h | e) for Pr  Î P  . Let P = {p1 , ..., pn} be a partition of e. That is, the 

elements of P are pairwise disjoint, and their disjunction is e. Then P   is dilated by P with respect 

to h and e if for all i, min(h | p i  & e) < min(h | e) and max(h | p i  & e) > max(h | e). A set P   is 

subject to dilation if there is a h, e, and P such that P   is dilated by P with respect to h and e. 

Since requiring that P   be immune to dilation amounts to insisting that P   be a singleton (or satisfy 

some other even more implausible constraints so that Seidenfeld’s assumptions fail) I don’t think 

that requirement can be plausibly imposed. Hence we must learn to live with the decision theoretic 

consequences of dilation, and the MHP brings out the problem nicely. 

To head off possible objections, I will be assuming something like the principle of 

conglomerability I attacked in chapter 3. Since I will be restricting the scope of the principle to 

finite partitions this isn’t necessarily inconsistent, but it might seem unmotivated. I adopt the 

following rule: 

Restricted Conglomerability 

Let f and y be bets, such that it would be rationally mandatory for an agent to trade f for y were 

she to learn p ,  or were she to learn ¬p .  Then it is rationally mandatory for the agent to trade f 

for y. 

 

4 Basically that there are some probabilistically independent propositions. 
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Now some theorists deny even Restricted Conglomerability because of Prisoners Dilemma and 

Newcomb Problem cases. I don’t want to get into this debate, so I’ll just note that I won’t use the 

rule in a way that ought offend such theorists.5 

In any case, this isn’t the objection which concerns me most. What does concern me is the 

possibility that the arguments in chapter 3 against general conglomerability apply equally here. 

My only ‘argument’ for Restricted Conglomerability is its intuitive plausibility. Given this it 

seems to me quite vulnerable to objections to similar principles supported by the same intuition. 

I really don’t have a response here, except to say that decision theory doesn’t seem to get off the 

ground without a rule like this and giving it up would mean giving up many theories we find 

attractive. No one has put forward an objection like this in the literature, so perhaps it is best to 

wait until such objections are made rather than shadow boxing. I think the possibility for 

objections to the theory of this chapter to work is much greater than for any other part of the 

dissertation, and this assumption might be one of the weak points. 

9.2 Unstructured Decision Theories 

9.2.1 Global Dominance 

Hájek (1998) discusses without endorsing a decision rule called global dominance. This says that 

it is only rationally compelling to trade f for y when ly > uf. It isn’t made clear, but presumably 

whenever uy > lf it is rationally permissible to trade. There is a simple counterexample to this 

 

5 As a rule like conglomerability is usually needed to justify the idea that we ought to value gambles by 

their expected utility, objections to it on the ground that it conflicts with the verdict of utility considerations 

in Newcomblike cases seem to me implausible. Recently, Norton (1998) has argued that we shouldn’t 

accept the verdict of conglomerability in the two-envelope paradox because it conflicts with expected utility 

considerations. Well, he’s right that we shouldn’t accept all of conglomerability’s verdicts here, but that’s 

because they are inconsistent, not because of the clash with expected utility. Again, without some form of 

conglomerability there is no motivation for adopting a rule like ‘maximise expected utility’. 
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approach. Let y be the bet f + $e, where e is some small amount of money such that 

lf + e = ly < uf. That is, in any circumstance where f pays $m, y pays $(m + e). Clearly here it is 

rationally compelling to trade f for y, however the global dominance rule does not require this. 

9.2.2 Maximin 

Gilboa and Schmeidler (1993) advocate a maximin decision rule. I have already given grounds 

for rejecting their updating rule6, but those objections didn’t touch their decision rule. The rule is 

that it is rationally compelling to trade iff ly > lf, and rationally permissible to trade iff ly > lf. 

While this rule doesn’t give any particularly counterintuitive results for static cases, it seems to 

do badly in dynamic settings. Of course it wasn’t designed to be used with Conditionalisation, so 

the objection I’m running isn’t directed at any particular theorist, just at its possible use with the 

Bayesian updating rule. 

Consider again the MHP with the completely ignorant contestant. Initially Bel(ab Ú ac) = 1/3. 

Hence according to the maximin rule the contestant will gladly buy a (ab Ú ac)-bet for 25 cents. 

Assume this trade is made. After the host shows the contestant a door, any door will do, the 

expected value of this bet will now be vague over [0, 50c]. Hence by the Maximin rule, she will 

sell the bet for 20 cents, incurring a sure loss. Hence the Maximin rule, when combined with 

Bayesian updating, leads to dynamic incoherence. 

9.2.3 Maxi 

This problem could be avoided by adopting a decision rule I call Maxi. This says that y is strictly 

preferred to f, i.e. trade is rationally compelling, iff ly > lf and uy > uf. Trade is rationally 

permissible iff ly ³ lf or uy ³ uf. No one to my knowledge has endorsed Maxi in the literature, but 

 

6 In chapter 3. 
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since it is such an obvious weakening of Maximin and other such rules which have been endorsed, 

it is worth some discussion. 

Although there are no simple examples where Maxi gives counterintuitive results, it is in conflict 

with conglomerability in some hoked-up examples. If one was committed to Maxi, I suppose it 

could be said that these were arguments against the sure-thing principle rather than Maxi; or 

alternatively, that in such bizarre examples we can’t expect standard rules to apply. I don’t think 

either of these replies works, but I mention them to note that my objections to Maxi are weaker 

than my objections to other rules. 

Say an agent’s degrees of belief are determined by the family of probability functions satisfying 

the following criteria: 

(i) 0.2 £ Pr(p  | r) £ 0.6 

(ii) 0.1 £ Pr(q | r) £ 0.5 

(iii) 0.3 £ Pr(p  | ¬r) £ 0.7 

(iv) 0.2 £ Pr(q | ¬r) £ 0.6 

(v) Pr(p)  = 0.35 

(vi) Pr(q) = 0.4 

It can quickly be seen that none of these conditions are redundant by considering functions like 

Pr1, defined as follows. Pr1(p  | r) = 0.2; Pr(p  | ¬r) = 0.7, Pr(r) = 0.7, Pr(q | r) = Pr(q | ¬r) = 

0.4. Similar functions show the other six bounds given in the inequalities are non-redundant. 

Given this epistemic state the value of a p-bet will be precisely 35 cents, and the value of a q-bet 

precisely 40 cents. However, if the agent were to discover r, the value (in dollars) of a p-bet would 

be vague over the interval [0.2, 0.6], and that of a q-bet vague over [0.1, 0.5]; that is a p-bet would 

be more valuable, according to Maxi, were the agent to discover r. Similarly if the agent were to 

discover ¬r, the value of a p-bet would go to [0.3, 0.7] and of a q-bet would go to [0.2, 0.6]. Again 

by Maxi, the p-bet would be more valuable. 
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Hence in these circumstances, Maxi gives the result that a q-bet is more valuable than a p-bet (by 

5 cents), however if either r or ¬r were found to be true, it would become the case that a p-bet 

would be 10 cents more valuable than a q-bet. That is, Maxi is in breach of the conglomerative 

principle I have adopted. Given that the problem with Maxi is that it is too strong, in the sense 

that it cannot be that all of the trades which are rationally compelling according to Maxi are really 

compelling we can draw a more important conclusion. There is no rule expressed purely in terms 

of lf, uf, ly and uy which is stronger than Global Dominance but weaker than Maxi. Yet I’ve 

shown that any acceptable rule must be stronger than Global Dominance and weaker than Maxi. 

Hence no acceptable rule can be expressed purely in terms of lf, uf, ly and uy.  

As a special case, the Horvitz-style decision rules advocated by Strat (1990) and Jaffray (1994) 

are incoherent. These advocate that for any bet f we evaluate its expected worth E(f) according 

to this rule. 

 E(f) = rlf + (1 - r)uf. (r Î [0, 1]). 

The operator r is an optimism / pessimism operator. The more optimistic we are the higher r will 

be. Since we now have a numerical utility for each bet, we can simply choose the bet with the 

higher utility. Of course this approach is stronger than Maxi, so if Maxi is too strong, so is this 

approach. Here the fact that the counterexamples to Maxi are so artificial becomes important, 

because Strat and Jaffray are not, it appears, aiming to discover the ideal decision rule, but rather 

trying to find a rule which can be implemented efficiently and gives results which are usually 

correct. Until an example is found in which the recommendations of this approach are implausible 

despite the example being realistic enough, their approach might be well-suited to the task they 

have set themselves. 
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9.3 Levi’s Rule 

For the subsequent rules I’ll be discussing, I need to look more closely at the structure of the 

expectation values, not just at their upper and lower bounds. For any bet, say f, and any element 

Pr  of P  , there is a numerical expectation value of f, which we’ll call EPr(f). In a completely 

general theory, utilities as well as credences would be allowed to be vague, but I’ll stick to the 

simple case of assuming precise utilities. 

All the subsequent rules I discuss have the property that if for all Pr  in P   EPr(y) > EPr(f), then 

y is strictly preferred to f. That is, it is rationally compelling to trade f for y. How the rules differ 

is in what can be done when neither bet is strictly preferred to the other in this sense. For 

convenience, I’ll simply define strict preference to hold between two bets y and f iff 

EPr(y) > EPr(f) for all Pr  in P .   This reduces the scope of discussion to bets such that neither is 

strictly preferred to the other. I will say in this case that the bets are almost indifferent. On pain 

of inconsistency it can’t be said that almost indifference implies indifference. This is because 

almost indifference is intransitive whereas indifference, at least as usually defined, in transitive. 

Levi’s Rule is that when f and y are almost indifferent we should choose the bet which has the 

highest minimum payout (Levi 1974, 1980, 1986). This minimum payout is referred to as the 

‘security level’ of the bet. I’m keeping with Levi’s terminology in referring to choices rather than 

permissible trades; the translation back into terminology I’ve been using is usually trivial. He 

doesn’t mean by this that we ought choose y iff ly > lf. Rather he is referring back to the actual 

payouts of f and y and advocating choice of the bet with the highest possible minimum return, 

or as he puts it security level. As he notes, when applied to three-way choice this implies violation 

of the rule of independence of irrelevant alternatives. That is, under his rule it can be rationally 

required that f be chosen in a pair-wise choice from {f, y}, but also required that y be chosen in 

a choice from the set {f, y, c}. Since he regards the analysis he offers as “impeccable” (1974: 
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411) he concludes that the rule of independence of irrelevant alternatives must be mistaken in 

some way. 

It’s not too surprising that this rule would have to go under such an analysis. After all we can 

regard each of the Pr  as a voter which voices an opinion about which choice is best, and then the 

overall choice becomes the well-known social choice problem of aggregating preferences. 

Arrow’s theorem says that no aggregation rule can satisfy the following four constraints, here 

explained for voters who are probability functions7: 

(1) Pareto. If f is strictly preferred to y in the above sense f will be chosen from {f, y}. 

(2) Collective Rationality. The rule determines a preferred option no matter what the various 

Pr  functions say about f and y. 

(3) Non-Dictatorship. There is no Pr  function whose choice is followed no matter what the 

other functions say. 

(4) Independence of Irrelevant Alternatives. The choice between f and y should not depend 

on what other options are available. 

Levi’s Rule is committed to (1), (2) and (3), hence it would be inconsistent if it satisfied (4). 

However, there are good grounds for preserving (4). Of course, there are good grounds for 

keeping each of these rules, so this argument will necessarily be less than completely compelling. 

I suspect the strongest argument for (4) is its intuitive plausibility; any attempt to explain this 

plausibility will sell it short. Nevertheless, I’ll try. 

Assume an agent, say Lenny, does not satisfy (4). For example, he chooses f from {f, y}, but 

chooses y from {f, y, c}. Assume now he has a choice between {f, y, c}, but the choice 

dynamics are as follows. First, he has to specify whether he wants c or not, and if not he has to 

 

7 Arrow’s Theorem is set out in Arrow (1963). The setting out here closely follows Hausman (1991). 
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say whether he wants f or y. Lenny’s preference is, ex hypothesi, to choose y, but he can’t carry 

out this choice. Presumably he will reject c at the first stage, then he will face a choice between 

f and y. And here he is forced by his own preferences to choose f. Levi (1987) in response to 

this argument claims that Lenny could have adopted at the start a strategy to choose y. Hence, at 

the second stage he will just have to follow his strategy rather than to make a decision about 

whether f or y is preferable. But now the original objection can be restated in a different way. 

Surely it’s a problem for a decision-rule if the only way to consistently implement it is to ignore 

its recommendations at various stages. Alternatively, it might be argued that the amendment to 

the rule to allow strategic choice in this way constitutes a rescission of the original rule and 

substitution of a new rule. The basis for this argument is simply that, according to the amended 

rule, at times agents times are required to act in the opposite way to how they were required to 

act under the old rule. 

Levi tries to minimise this difficulty by saying that it is an ineliminable feature of what he calls 

‘unresolved conflict’. The problem is that he seems to rely here on some equivocations about 

what would count as a resolution of a conflict. This leads to a problem, I fear, at the core of his 

lexicographic approach. Levi thinks that we can have a hierachy of ‘values’, such that if we can’t 

decide between two options using the most important value, we can use lower values to resolve 

it. That’s essentially what is being applied here, with expected value being the highest value, and 

security levels the next. When it is allowed that each of these values might issue non-linear 

verdicts (they might allow us to be unresolved and not just indifferent between choices) the 

lexicographic approach hits problems. The problem is essentially that he seems to be commited 

to saying that some decision making contexts involve a conflict which is essentially unresolved, 

while at the same time saying that there is a resolution of these conflicts!  

Here’s an example he gives. Jones, an office manager, has to hire a new worker to do typing and 

stenographical work. There are three applicants: Jane, Dolly and Lilly. The applicants take tests 
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in typing and stenography. On the typing test their scores are 100, 91 and 90 respectively, on the 

stenography test the scores are 90, 91 and 100. So Jones has a dilemma; does he hire the best 

typist, or the best stenographer, or perhaps someone moderately good at each? 

Levi suggests that there are in fact a continuum of tests Jones could apply. For each b Î [0, 1] we 

can work out a candidate’s b-score as bx + (1 - b)y, where x is their typing test score and y their 

stenography score. For each b test there corresponds an argument for selecting the applicant with 

the highest score on that test. These arguments will often conflict, as in fact they do here. Some 

tests favour Jane, and some favour Lilly. Since, however, none favour Dolly she can be ruled out. 

Now Jones is a liberal, but to a degree: he favours using affirmative action criteria to choose a 

candidate when the continuum of b-tests have failed to be decisive. The affirmative action criteria 

support ranking the applicants as follows: Dolly, Jane and Lilly. Since Jane is the highest ranked 

of the candidates left (not ruled out by the b-tests), she gets the job. 

But there’s a twist to the tale. Just as he’s about to tell Jane she has the job, he finds Lilly has 

withdrawn her application. Now he has to choose between just Jane and Dolly. And since on some 

b-tests Dolly is now the best of the applicants (where b < 0.1) she isn’t ruled out by those tests. 

Hence Jones has to make a decision between Jane and Dolly on affirmative action grounds, and 

ex hypothesi Dolly wins. So Lilly’s withdrawl means that Dolly now gets the job over Jane. 

Levi notes that most decision theorists would demur here. After all, Jones, a poster-boy for his 

decision-theory, has just violated what we’re calling independence of irrelevant alternatives. 

Here’s his defence: 

When Jones chooses Dolly, this does not reveal that he thinks Dolly is 

at least as good as Jane for the job. Jones is in conflict as to who is 

better, all things considered. He chooses Dolly because in the face of 

such conflict among the values to which he is committed, he invokes 
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considerations which otherwise would not have counted for him. When 

he contemplates the three-way choice, hiring Dolly is ruled out because 

of his values. This does not mean that his values have changed or that 

he has inconsistent values. Hiring Dolly is neither better nor worse than 

hiring Jane in the two-way choice. The same remains true in the three-

way choice. This example illustrates an important difference between 

resolving a conflict so that one can choose for the best and failing to 

resolve a conflict. In the latter case, some consideration which 

otherwise would not be taken into account is used to provide counsel as 

to what to do when one cannot choose for the best, all things considered. 

(1986: 34, my italics) 

But this is inconsistent with his description of Jones’s motivation. Jones has made a value 

commitment to hiring on the basis of affirmative action when the b-tests are inconclusive. This is 

why it can be deduced from his general principles (including his ‘tie-breaker’ principles) that he 

will hire Dolly. It is worse, given his principles, to hire Jane over Dolly in the two-way choice, 

contra what is said in the italicised sentence. Levi wants here to have it both ways; Jones’s 

affirmative action commitment is supposed not to be a value of any kind, so that it wouldn’t be 

against his values to hire Jane over Dolly, but it can at the same time be used ‘to provide counsel 

as to what to do’. It is rather hard to see how this is consistent. To paraphrase Ramsey, if Jones 

can’t say what his choice is, he can’t say it, and he can’t whistle it either. If two options really are 

incommensurable, there can’t be a reason for choosing one over the other; that just would show 

that they weren’t really incommensurable to start with. 

As a footnote to all this, at (1986: 82) he says that rational agents may have a hierachy of value 

commitments. This seems to suggest that he favours saying Jones’s commitment to affirmative 
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action is a value, in which case the italicised sentence is simply false, so his general defence here 

fails. 

More difficulties can be made for Levi’s decision theory. Assume we have the followng test 

scores for the applicants. 

 

 Typing Stenography 

Tom 100 90 

Dick 90 100 

Harry 89 99 

 

We have the following affirmative action ordering: Harry, Tom, Dick. If we adopt Levi’s rule, 

we will choose Tom for the position. Dick’s scores dominate Harry, so Harry can’t pass any of 

the b-tests. However, both Tom and Dick pass some, so the affirmative action test applies, and 

Tom is chosen. Now assume that instead of choosing one applicant for a position we have to 

choose two. We could assume that Tom will be chosen, leaving a two-way choice between Dick 

and Harry for the final position, which presumbly goes to Dick.  

It might be thought more efficient, however, to decide whom it would be worst to give the 

position, and hence offer jobs to the other two. The only plausible way to do this is simply to 

reverse our tests. So at the first stage we’ll look at who’s worst on all b-tests, as this is our main 

criterion. If there is more than one person who is worst according to some b-test, we’ll look at 

who does worst by the affirmative action criteria among these. If we apply this method we find 

that the worst person to give the job to would be Tom! The only people who are worst according 

to some b-test are Tom and Harry, and Tom is further down the affirmative action list than Harry. 

So there are two absurd results: the best person to give the job to is also the worst, and we get 

different results to the question of which two people we should hire depending on whether we 
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look for the best two candidates or the worst. For the reasons indicated above, I am unimpressed 

with Levi’s assertions that choices on the basis of ‘tie-breaker’ principles are not real preferences. 

In summary, not only does Levi’s rule give counterintuitive results, it rests on a methodology 

which is suspect because of this equivocation. To add to the counterintuitive results, briefly note 

the problems Levi’s rule has with the MHP. It has just the same problem that the Maximin rule 

has. Initially Bel(ab Ú ac) = 1/3. Hence according to Levi’s rule, a contestant will gladly buy a 

(ab Ú ac)-bet for 25 cents. Assume this trade is made. After the host shows the contestant a door 

– any door will do – the expected value of this bet will now be vague over [0, 50c]. Hence if the 

contestant is offered 20 cents for her bet, by Levi’s rule she will look to security levels. And on 

these, the 20 cents does best, no matter how we formulate the security rule8. Hence by Levi’s rule, 

she will sell the bet for 20 cents, incurring a sure loss. Hence Levi’s rule, when combined with 

Bayesian updating, leads to dynamic incoherence. So there are both theoretical and practical 

grounds for rejecting Levi’s rule. 

9.4 Conservatism 

The rule I am calling Conservatism is perhaps the dominant decision-theoretic rule amongst 

Bayesians who allow degrees of belief to be vague. For endorsements of it, see for example 

Williams (1976) or Seidenfeld (1984) and the references contained therein. The rule is that it’s 

rationally permissible to trade f for y iff y is strictly preferred to f. As noted above, the rule is 

asymmetric. There are circumstances in which it is impermissible to trade f for y, and 

impermissible to trade y for f. This is an oddity but not an inconsistency. If it was the worst that 

could be said for the rule it wouldn’t be much of an objection. There is, however, a stronger 

objection. 

 

8 I.e. in terms of maximising minimal expected returns or maximising minimal actual returns. 
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Assume a Conservative is holding f, and y is a bet which is almost indifferent to f. Further 

assume that f + $10 is strictly preferred to y. The following is a simple-minded objection to 

Conservatism which doesn’t work; I include it to distinguish it from an objection which does 

work. Assume the only trades which are possible are to swap f for y, and, if that swap is made, 

to swap y for f + $10. It would clearly be in the agent’s best interests to make each of these 

swaps, but since they are a Conservative they can’t make the first swap, hence Conservatism is 

an irrational rule. The decision-tree is set out in Figure 1. 

 

Figure 9.1 

Here’s what goes wrong with this objection. When considering the first swap, the Conservative 

won’t be comparing f and y; rather they will be comparing holding f with the possibility of 

having a choice between having y and having f + $10. If they had the latter choice, they would 

choose f + $10, hence the original choice is between f and f + $10. That isn’t much of a choice 

at all, they will clearly choose the f + $10. That is, it is consistent with the Conservative rule to 

accept both trades. 

So this objection fails because it relied on a too simplistic Conservative rule. However, a similar 

objection can succeed. Alter the payout of accepting both trades to f + $5, and assume this is 

strictly preferred to f, but almost indifferent to y. Now the initial choice is a choice between 

holding on to f, and having the choice between holding y or trading it for f + $5. The 

Conservative knows if they have that choice they will hold onto y. So now the initial choice 
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reduces to a choice between holding f and trading it for y. Again, the Conservative here prefers 

to hold f. But this is absurd. Whatever we should end up with in this circumstance, it isn’t f, as 

there is some other option strictly preferred to it. It might be noted that the use of decision-trees 

in this argument, as opposed to the flawed argument given above, is entirely standard. See Raiffa 

(1968). 

There are two ways out of this problem for the Conservative, neither of them particularly 

attractive. The first is to make the move Levi makes above, to say that an agent should adopt a 

strategy for getting through a decision-tree and refuse to reconsider it at later stages. The above 

objections to that move still apply. The other move is to deny the following rule for reducing 

complex bets to simple bets.  

Reduction: If C(b, c) = d  for any d Î {b, c}, then C(a, (b, c)) = C(a, d). 

To explain the notation, by C(a, b) = a I mean that in a choice between holding a and trading it 

for b, it is rationally compelling that a be chosen. The underlining on a indicates that a is what 

is currently held; this is important because by the Conservative’s lights C(a, b) = a and 

C(a, b) = b is consistent. C(a, (b, c)) = d (d Î {a, (b, c)}) means that the choice between 

holding a and trading it for b with the knowledge that this can in turn be traded for c. Note that I 

don’t assume C(a, b) is always defined. 

I don’t have any particularly strong arguments for Reduction, but it does have a high degree of 

intuitive plausibility. It is hard to see what other approach could be taken. As was shown in chapter 

3, there is a close relationship between adopting Reduction as a decision-theoretic principle and 

adopting Addition as a constraint on credences. Since I have argued that Addition is a constraint, 

because it follows from the Equivalence Analysis, I have a justification for Reduction. If anyone 

thinks it is possible to justify avoiding Reduction and hence can avoid this problem I might not 

have much of a reply. I don’t know of any such justification, and I can’t see how it could be 
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intuitively plausible, but I’m not going to try and write knock-down objections to as yet 

unformulated justifications. 

9.5 Caprice 

To set out the correct decision-rule, Caprice, I need a new piece of terminology. Say y is almost 

preferred to f according to P   iff for all Pr  in P  , EPr(y) ³ EPr(f). When no ambiguity results I 

omit the ‘according to P ’. Clearly whenever y is strictly preferred to f it is almost preferred, but 

the converse is not true. Unlike strict preference, almost preference is not anti-symmetric. Bets y 

and f can each be almost preferred to the other. 

The core idea behind Caprice is that there should be as few restrictions on rational choice as 

possible apart from the rule that, whenever y is strictly preferred to f it is irrational to choose f 

over y. Unfortunately, as it is, this won’t do, because it permits the following irrational course of 

action. Recall the earlier example where f and y are almost indifferent, as are f + $5 and y. If 

there were no rational restrictions on trade between almost indifferent bets then there would be 

no grounds for criticising the trader who first swaps f + $5 for y and then swaps y for f. Yet 

presumably it should be possible to subject this person to rational criticism. 

I think the best thing to say about this case is that neither trade is itself irrational, but they are an 

irrational combination. In most decision-theories on the market this option is ruled out by 

stipulation; a set of trades is irrational iff one member of that set is irrational. There is, however, 

no reason to make such a restriction. Consider this analogy with belief. It seems plausible to say 

that it is reasonable to believe Oswald killed Kennedy and reasonable to believe he didn’t, but it 

isn’t reasonable to believe both that Oswald killed Kennedy and that he didn’t. A set of beliefs, 

each reasonable on its own, might be unreasonable in combination. I am simply claiming we can 

say the same about decisions. A set of decisions, each reasonable on its own, might be 

unreasonable. 
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Because of this intuition, the Caprice rule must be expressed in terms of the reasonableness of 

sets of decisions. This can be applied easily to simple choices by looking at singleton sets. The 

notation #(a, b) = d (d Î {a, b}) means that d is chosen (by the agent under consideration) in a 

pairwise choice between a and b. This is a different concept to the earlier C(a, b) notation in two 

respects. First, it is descriptive not normative. Given that I am usually discussing ideal agents this 

isn’t as big a difference as it might normally seem. Secondly, #(a, b) can be defined, even for 

rational agents, when C(a, b) is not. If a and b are almost indifferent, but when faced with the 

choice between them the agent chooses a, then C(a, b) is undefined (according to Caprice), but 

#(a, b) = a. 

Caprice: A set S of choices of the form #(ai, bi) = ai (i Î {1, ..., n, ...}) is rationally 

permissible according to P   iff there is some non-empty subset G  of P   such that 

for all i, ai is almost preferred to bi according to G . 

Caprice is only defined in terms of pairwise choices. If a is chosen in a three-way choice between 

a, b and c, we say #(a, b) = a and #(a, c) = a. This can easily be extended to n-way choices. 

Hence a single n-way choice, with n > 2, can be regarded as a many-element set of pairwise 

choices. 

Note two immediate consequences of this rule. First, when we are just considering a single choice 

between almost indifferent bets f and y, either choice is acceptable. In trading terms, it is 

permissible but not compelling to trade f for y. This is the motivation for calling the rule 

‘Caprice’. Secondly, any set of choices which leaves the trader with a position such that they 

would strictly prefer to be back where they started is not rationally permissible according to 

Caprice. Hence Caprice as specified captures the two important intuitive requirements on 

decision-rules. 
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I haven’t yet specified how Caprice should be applied to choices between nodes of a decision-

tree, because here there isn’t much to say. In cases like that set out in Figure 9.1, the Capricious 

decision-maker can simply decide which end-point she wants to end up with, and follow the tree 

to that point. Provided her original n-way choice is permissible, every pair-wise choice she makes 

will be permissible. I showed above that the only way for the Conservative to avoid absurd 

decisions was to be closed-minded in the sense that she had to deliberately decide not to reflect 

at various stages in the tree about whether her initial strategy should be carried through. By 

comparison, the Capricious agent can be completely reflective. 

There is one interesting special case of Caprice, which I’m adopting from Smets (1994). It isn’t 

Smets’s preferred approach for a couple of reasons, not least being that Smets advocates using 

the Dempster-Shafer updating rule, but the terminology and idea is largely his. An agent whose 

degrees of belief are vague over the set of probability functions in P  , whose ‘representor’ in van 

Fraassen’s terms is P  , has P   as their credal probability function. They arbitrarily select an 

element Pi  from P   to use for decision-making purposes; this is their pignistic probability.  

(‘Pignistic’ is from the Latin pignus, meaning to bet.) When making a choice between gambles 

they choose that gamble a such that EPi(a) is maximised. An agent who does this will never do 

anything wrong according to Caprice. 

I noted at page 275 that any decision-rule would have to give up one of Arrow’s constraints (1) 

through (4). Caprice gives up (2). It says that sometimes given the composition of P   we simply 

can’t say which of two bets should be chosen. If this pignistic approach is followed, in a sense (2) 

is kept at the cost of (3). The pignistic probability function becomes the dictator in Arrow’s sense. 

This might be an improvement; I leave it up to the reader to decide whether or not it is.  

There is one odd result as a consequence of adopting Caprice. An agent is told (reliably) that there 

are red and black marbles in a box in front of them, and a marble is to be drawn from the box. 
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They are given the choice between three bets. a pays $1 if a red marble is drawn, nothing 

otherwise, b pays a certain 45 cents, and c pays $1 if a black marble is drawn. Is it rationally 

permissible for the agent to choose b, again assuming constant marginal utility of money? 

Levi (1974) writes as if it is obvious that choosing b is irrational. This is a cornerstone of the 

‘impeccable’ analysis which leads to a dismissal of (4) but receives almost no justification. Jeffrey 

(1983) defines Bayesian approaches to decision-making so that choosing b is not Bayesian, but 

of course it isn’t an obvious truth that only Bayesian approaches are correct. Dempster (1988) 

claims that choosing b is permissible, and perhaps even compelling, though it appears he is 

motivated by the maximin rule, which I showed above is flawed. 

I only bring this up to note that Caprice says it is not rational to choose b. To see this, assume we 

choose b. We will now show that G  must be empty. Let p be the proposition that the marble to 

be drawn is red. Since b is almost preferred to a according to G , for every Pr  in G  it follows that 

Pr(p)  £ 0.45. However, since b is almost preferred to c according to G , for every Pr  in G  it 

follows that Pr(p)  ³ 0.55. There is no Pr  satisfying each of these constraints, hence G  is empty. 

It doesn’t however, appear at all intuitively compelling that it should be irrational to choose b. A 

defender of Caprice has to either explain away this intuition or, like Levi, simply deny that the 

intuition exists. The first of these choices is possible. One approach already noted is to say a 

choice of b reflects an irrational commitment to Maximin. Another is to say that it reflects a failure 

to internalise fully the assumption that the marginal utility of money is constant. I suspect that is 

what explains my intuition that b is an acceptable choice. I don’t think this raises a huge problem 

for the defender of Caprice – some questions are always going to be spoils to the victor – but it is 

a little disconcerting. If there is to be a strong attack on Caprice, I suspect it will be built around 

cases like this one. 
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9.6 Arguments For Caprice 

Apart from the fact that it avoids the pitfalls of its more well-known rivals, there are two positive 

arguments for Caprice. Each of them is essentially the reverse of an argument I used against Levi. 

I’ll call them the arguments from Arrow and Buridan. 

The argument from Arrow notes that the four principles Arrow gave, (1) to (4) above, are 

inconsistent. Hence we must give up one of them. As there is strong intuitive support for Pareto, 

Non-Dictatorship and Independence of Irrelevant Alternatives, it seems the correct decision 

theory must give up what Arrow calls ‘Collective Rationality’, but what is perhaps better called 

Completeness in our context. There must be some choices about which our decision theory is 

silent. Since Caprice, unlike its popular rivals, satisfies this constraint, this is something in its 

favour. Of course this is not an argument against other incomplete rivals of Caprice. However, 

one strength of Caprice is that the class of decisions over which it is silent is quite a natural class. 

I doubt there could be a smaller class than this which is equally natural. 

This leads to the argument from Buridan. Given the way I have set out the problem, when f and 

y are almost indifferent, there is no reason to choose one over the other. The agent really is in the 

position of Buridan’s ass. Of course like the ass the agent may be well advised to choose either f 

or y over some less attractive alternatives. Unlike all its rivals, Caprice takes this conclusion 

seriously. If there is no reason to choose f over y or vice versa, there really is no reason. It doesn’t 

go and say this and then find a reason. 

In particular, it must be really inexplicable why an agent chooses f over y or vice versa in such 

cases. Should there be such a reason, it must be traceable to the beliefs and desires (or more 

generally partial beliefs and preferences) of the agent. The assumption of incomparability is just 

the assumption that those beliefs and desires don’t determine a choice. Hence any decision theory 

must agree with Caprice’s ‘no explanation’ conclusion. Given this, it is hard to see how the theory 

can differ from Caprice. 
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It might be thought that Caprice breaches this ‘no explanation’ rule in an important case. Say the 

expected value of f is vague over [$30, $40], and that an agent has just sold a unit of f for $32. 

According to Caprice, if she now buys a unit for $38, or indeed any price over $32, she will have 

acted irrationally. Does this mean that either (i) the value of f is now vague over merely [$30, 

$32] or (ii) the value is unchanged but she now has a reason for not buying f for more than $32? 

According to the objection, I have ruled out (i) and (ii), but I am committed to one of them. 

The objection is in part correct, I have ruled out (i) and (ii). However, I am not committed to their 

disjunction. Were the agent to now buy f for $38, that would not of itself be an irrational act, 

however it would take her from having performed a set of rational acts to having performed a set 

of irrational ones. The only reason one would think this implies the last act is irrational is if one 

was wedded to the idea that a set of acts is irrational iff it includes an irrational act. By that 

principle, an agent can only move from a rational to an irrational set by performing an irrational 

act. However, that is a principle I gave reasons for rejecting in setting out Caprice. 

Again the analogy with belief is instructive. If the agent believed yesterday that Oswald killed 

Kennedy, she can’t rationally believe today that Oswald didn’t kill Kennedy unless she ceases to 

believe that he did kill him. But, and here’s the difference, yesterday’s beliefs can be more easily 

undone than yesterday’s trades. If she could cease to have sold f for $32 yesterday, she can 

rationally buy it for $38 today. Sometimes this will be possible (if the sale has a ‘cooling off’ 

period), but usually it will be just as fixed as the rest of the past. It is because she can change her 

beliefs, but not her trades, that we judge an agent’s trades diachronically, but her beliefs largely 

synchronically9. When we keep all this in mind, we won’t unduly focus on her last trade and judge 

it too harshly. 

 

9 At least when she is moving between acceptable beliefs. If precision were mandatory, then less flexibility 

would be permitted. 
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9.7 Monte Hall Again 

Now that I have the correct rule for updating vague degrees of belief (conditionalisation) and for 

decision-making with vague degrees of belief (Caprice) I can provide some advice to our 

contestant on the MHP. Recall that the contestant is, ex hypothesi, completely ignorant about 

which rule the host will use for showing her a door given that she has chosen the door which hides 

the car. Let p be the proposition that she has chosen this door. Her updated degree of belief in p 

should be vague over the interval [0, 1/2]. The bet f pays whatever is behind the door she has 

chosen, and the bet y pays whatever is behind the other closed door less some small amount. 

Hence f and y are almost indifferent, so she can rationally choose either door. 

Note that if she had been committed to making decisions according to Levi’s Rule or 

Conservatism she would be committed to keeping f, that is not switching10. I have argued above 

that any of these options are errors, but if my arguments fail they provide an argument to the effect 

that switching is irrational. However, this only goes through if the representation of ignorance I 

have used is correct, as does the argument from conditionalisation and Caprice that it is not 

rationally compelling to switch. 

And it seems this representation is a mistake. I was assuming that it was rational for the 

contestant’s degree of belief in ab to be vague over [0, 1/3]. (‘ab’ is the proposition that the prize 

 

10 None of these approaches justify the rather odd conclusion of Moser and Mulder (1994) that it would be 

irrational to switch doors in a one-off Monty Hall game, but it would be irrational to stay if playing a repeat 

version of the game 100 times. To see why this is odd, consider the first of these games. By assumption it 

is better to not switch doors in the one-off game. So the cost of switching must be offset by gains in later 

games. But the games are totally independent, so what is this gain? Alternatively, and perhaps more 

controversially, run a backward induction argument showing that by Moser and Mulder’s lights it is wrong 

to switch on the last game of the 100, hence it must be wrong to switch on the 99th, and so on. From their 

text it appears they have applied Dempster-Shafer updating rule (or something like it) to the single case. 

However, when considering the long-run case good common sense has overcome bad theory. 
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is behind the door she chose, a, and the host will open door b.) This means that it would be 

permissible to be disposed not to pay any arbitrarily small sum for a bet which pays an arbitrarily 

large sum if ab, and nothing otherwise. This, on reflection, seems unreasonable behaviour. It 

might be reasonable to refuse such a bet if it were offered (the offer being good evidence against 

ab), but the disposition seems unreasonable. I don’t want to argue the contestant must have degree 

of belief precisely 1/6 in ab, as is sometimes suggested. (See, for example, Horgan (1995).) 

Reason it seems would have our contestant be vague over an interval around 1/6, but not all the 

way to 0. Since the possibility of the interval going so low is central to the argument that it is 

permissible to not change doors, that argument fails. It is, as many have suggested, unreasonable 

to stay with the original door. 



Chapter 10   

Keynes and Probability 

10.1 Introduction 

I have earlier described the theory defended in this thesis as a Keynesian theory of probability. In 

this chapter I want to defend that description. The purpose of this is twofold. First, there is some 

scholarly interest in accurately tracing the ancestry of ideas. Secondly, and more importantly, 

Keynes thought that his theory of probability led to distinctive theories in economics. I don’t think 

he’s right about this, for reasons I’ll set out in the next chapter, but my argument turns on the 

theory of probability defended here being faithful to Keynes’s account. 

In the next section I’ll set out the theory of probability Keynes advanced in his Treatise on 

Probability (1921a), and show how my theory captures the crucial elements of his. In some 

respects Keynes’s theory is internally inconsistent: the detailed rendition does not capture the 

explicit motivating ideas. The theory here is closer to the spirit of Keynes’s approach in these 

cases than its letter. Whether this is taken as charitable interpretation or friendly revision is 

probably not very important. 

In section three I’ll note how Keynes incorporated his philosophical insights into his economics. 

This will be elaborated in the next chapter, when I look at the details of part of his theory of 

unemployment. The most important element of this section is a theory of Keynesian ‘uncertainty’ 

which there is strong evidence to show he adopted. 

There has been much debate in recent years over precisely what theory of probability Keynes was 

using when he wrote his General Theory (1936), and in particular how much the attacks of 

Ramsey and, perhaps, Wittgenstein had led him to abandon claims he had made in the earlier 

book. Much of this debate seems to assume that Keynes’s early theory was such a tight package 

that it couldn’t be amended without being lost. Hence we have arguments about whether Keynes 
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kept or abandoned his early theory. There is no doubt that he conceded some attacks were 

justified, but the evidence is consistent with his abandoning no more than a couple of relatively 

unimportant theses. In the last section I’ll look at the claim he adopted a radically different theory 

of probability, a conventionalist theory. Again I argue the evidence is consistent with no change 

having occurred, and, a little more tentatively, I argue that it is inconsistent with his having 

adopted a conventionalist view. For convenience, in what follows I’ll refer to the Treatise on 

Probability and General Theory as the TP and GT respectively1. 

10.2 Keynes’s Pure Theory of Probability 

The TP was Keynes’s first major academic work. An early version of it was submitted as a 

fellowship dissertation in 1908, and after that was rejected a revised version was submitted in 

1909. For various reasons it was not published for 12 years, with again significant revisions being 

made. Included in these revisions was a long discussion of statistical reasoning which arose from 

a public debate he had with Karl Pearson about the foundations of statistics. Although there is 

little evidence of it in his early books, Keynes started working theories about expectations into 

his economics as early as 1910 (Skidelsky 1983: 208; Keynes 1910: 46-7). 

Keynes said hardly anything about probability for 10 years after his book was published. He didn’t 

even make much of an effort to respond to scholars who contacted him about it, with more worldly 

concerns being pressing. In 1931, he made some passing comments in his review of Ramsey’s 

 

1 Strictly speaking, it wouldn’t hurt my story if Keynes had moved to a ‘vague subjectivist Bayesian’ 

position as in, say, Jeffrey (1983). This is precisely the position Runde (1994) has him adopt. I don’t think 

a great deal in his economics depends on probability relations being objective, though everything turns on 

their being vague. Since my story would be hurt if Keynes had made the amendments suggested by others 

(e.g. Bateman (1996)) a small interpretative detour is justified. 
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book. Then in the General Theory, published in 1936, and the subsequent debate, he made some 

references to his theory of probability. 

The basis of Keynes’s theory is that probability is reasonable degree of belief, and this is a logical, 

non-numerical relation of ‘arguments’, which are just ordered pairs of propositions2. The 

probability of an argument is what it is by virtue of logical laws alone, in just the way that an 

argument is either valid or invalid by virtue of logical laws alone. Indeed, Keynes thinks that the 

theory of valid arguments is just a special case of his theory of probable arguments, an argument 

being valid just in case it has probability one.  

Not only are these probability values non-numerical, they are not always comparable. Probability 

is a non-linear as well as a non-numerical relation. In Keynes’s terminology, the probability of an 

argument could be a, where a is a non-numerical degree of belief, comparable to some but not 

all numerical degrees of belief and to some but not all non-numerical degrees of belief. However, 

he says nothing about what type of entity a must be to have these properties. Because of this some 

later writers (eg T. Fine (1973), Runde (1994a)) have thought that Keynes’s theory was best 

classified as a theory of comparative probability. In one sense it isn’t, because it does make sense 

to talk about the probability of an argument being equal to some number, not just to compare the 

probabilities of different arguments. However, in a more important sense they are correct, because 

we know nothing about entities like a – which are the value of probability relations – except how 

they enter into comparisons. It seems that saying the probability of an argument is a is just 

shorthand for saying which comparisons between it and other probabilities are true. 

Keynes might dispute this last analysis. He does develop a rather sophisticated calculus of these 

values, which impressed some rather distinguished logicians at the time. However, this calculus 

gives little insight into the nature of the values. As I remarked in chapter 6, when we derive 

 

2 By non-numerical I don’t mean that it never takes numerical values, just that sometimes it does not. 
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a + b = c in a Keynesian system, where the Greek characters refer to the values of probability 

relations, there is no guarantee that ‘+’ means what we mean by plus. In the absence of such a 

guarantee, or a more comprehensive analysis of what such derivations mean, it seems perfectly 

fair to classify Keynes’s theory as comparative. 

The other distinctive feature of Keynes’s theory, and possibly the one which has aroused the most 

interest in the subsequent literature, is his concept of ‘weight’. The probability of p given q tells 

us, in a sense, how the evidence q is balanced between p and ¬p .  Keynes thought it might be 

important in some contexts, particularly decision making, to know not only how the evidence was 

distributed, but how much of it there was. Thus for every argument he postulated not only a 

probability, but also a ‘weight’, which is intended to be a measure of the comprehensiveness of 

the evidence. If this all sounds a bit vague, it is because the original is just as vague. 

As the relevant evidence at our disposal increases, the magnitude of the 

probability of the argument may either decrease or increase, according 

as the new knowledge strengthens the unfavourable or the favourable 

evidence; but something seems to have increased in either case, – we 

have a more substantial basis upon which to rest our conclusion. I 

express this by saying that an accession of new evidence increases the 

weight of an argument. New evidence will sometimes decrease the 

probability of an argument, but it will always increase its ‘weight’ (TP: 

77, italics in original). 

Keynes modifies this slightly, saying strictly irrelevant evidence does not increase the weight of 

our argument. Finally Keynes introduced a new notation, which he thought essential to the 

progress of the subject. Given the lack of popularity of his notation, and the progress in the theory 

of probability since his time, his predictive skills seem to have failed here. However, for 
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expository purposes, it is sometimes convenient to adopt his notation. The essentials are to use 

p  / q = a to mean the probability of p on evidence q is a, where a may, but need not, be a real 

number, and to use V(p  / q) = b for the weight of the argument from q to p .  

The rest of this section aims to show how the theory of this dissertation captures the essential 

elements of Keynes’s theory. Some parts of the translation are straightforward. Let P   be the set 

of all reasonable probability functions. Then the set P of values which Pr(p  | q) takes, for Pr  Î P   

corresponds in a straightforward way to Keynes’s non-numerical degrees. These sets are 

sometimes comparable with numbers. For real x, we say P  > x iff for all elements y of P ,  y > x. 

And this holds if we replace ‘>’ throughout with ‘=’, ‘<’, ‘³’ or ‘£’. And sometimes the degrees 

cannot be compared with a real, as when none of these happen. Similarly the sets can sometimes 

be compared with each other, and sometimes not. Using Keynes’s notation, p  / q > r / s iff for all 

Pr  Î P  , Pr(p  | q) > Pr(r | s). Again this holds if we replace ‘>’ throughout with any other 

comparative. And since it is possible that no such comparative sentence is true, probabilities can 

be incomparable. Finally, we can now add probabilities in a way that makes it clear we are using 

the ordinary concept of addition. p  / q + r / s is the set {x: $Pr  Î P  : Pr(p  | q) + Pr(r | s) = x}. 

A similar definition applies to multiplication and division3. 

So far the connection seems quite close. Since the membership of P   is non-contingent I almost 

capture Keynes’s idea that the value of p  / q can always be determined by logic. As I showed in 

chapter 1, there are good grounds for parting with Keynes on this point, but not for going all the 

way to subjectivism. A bigger departure comes with the translation of weight. 

 

3 For some purposes it might be better to translate p  / q as a function from P   to [0, 1], which takes every 

Pr  to Pr(p  | q). Then the talk of equality, inequality, incomparability, addition and multiplication is 

interpreted just as we ordinarily would for functions. For example where f and g are functions with a 

common domain f > g iff for all x, f(x) > g(x), and so on for the other definitions. 
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Keynes’s explicit pronouncements about the weight of arguments are inconsistent with his 

notation and with the underlying idea behind his concept. I think both problems arise because 

Keynes says that even though p  / q =  r / q, V(p  / q) might be different from V(r / q). The analysis 

of weight I will adopt denies this, and thus avoids the pitfalls that beset Keynes.  

The notational flaw first. By representing the weight of the argument from q to p as V(p / q), 

Keynes writes as if weight is not a two-argument function, with arguments p and q, but a one 

argument function, with the argument p / q. Recall that p / q is Keynes’s notation for what I’d 

write Pr(p  | q). This confusion in evident at the top of page 79 of the TP where Keynes says “Let 

us represent the evidential weight of the argument, whose probability is p / q, by V(p / q)” (my 

italics). Taken literally this seems to assume that there is only one argument with probability p / q, 

that is the one from q to p .  Since this can’t be right, the most natural reading of this sentence is 

to replaced the italicised ‘the’ with ‘any’. Alternatively, we should write the weight V(p ,  q). 

The problem is not, however, just a notational one. There is an argument that arguments of equal 

probability should have equal weight, something which Keynes denies. The problem arises 

because of disjunctive evidence. 

One of the reasons Keynes  wants to say that arguments of equal probability can have different 

weights is because he thinks that when p  / (q Ù q1 Ù q2) = p  / q, but not p  / (q Ù q1) = p  / q, then 

V(p  / q Ù q1 Ù q2) > V(p  / q). This follows from his strict principle of irrelevance. Information q3 

is strictly irrelevant to the argument from q to p iff there is no conjunction q1 Ù q2 such that q1 Ù q2 

is logically equivalent to q3 and it isn’t the case that p  / q Ù q1 = p  / q.4 

 

4 This is to be distinguished from p  / q Ù q1 ¹ p  / q. By the formal definitions of comparatives I’ve given, 

that would only be true if for all Pr  Î P  , Pr(p  | q Ù q1) ¹ Pr(p  | q). The expression in the text is intended 

to be true just in case this holds for some Pr  or other. If the theory of chapter 5 is correct, the two 

expressions have identical semantic content, but different conventional content. That, of course, is enough 
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This move to a strict principle of irrelevance appears to make it impossible for Keynes to ever say 

that a proposition is irrelevant to an argument. Let q3 be any proposition such that p  / q Ù q3 = 

p  / q and q3 is in an intuitive sense irrelevant to the argument from q to p .  For example, let p be 

the proposition that the die I am about to roll will land with six facing up, q be the background 

evidence, and q3 be that it is now raining in New York. Now the extra evidence is divisible into 

two components q3 Ú p and q3 Ú ¬p .  The conjunction of these components is logically equivalent 

to q3, and each of them appear to be relevant pieces of information. Unless q3 / q = 1, 

p  / q Ù (q3 Ú p)  > p  / q. So it seems by Keynes’s test, whether or not it is raining in New York is 

relevant to whether or not this die will land six. This information is relevant just because it is 

divisible into relevant components. Keynes notes this general move when discussing the principle 

of indifference on page 65 of the TP, but doesn’t pick it up here. Carnap (1950: 420) seems to be 

the first to note that Keynes’s strict concept of irrelevance is degenerate for the reason listed here.5 

What is less frequently noticed in the Keynes literature is that the strong theory of irrelevance is 

central for Keynes’s theory of weight. We are trying to find out whether or not p ,  and our current 

information is q. Assume that the strict concept of irrelevance is inapplicable when evaluating 

weight, so there is some information q1 which is irrelevant, but which is divisible into relevant 

components. The weight of our belief in p  (i.e. the weight of the argument from our evidence to 

p)  will be unchanged if we find q1, as it is irrelevant. However, if we discover q1 by discovering 

its components sequentially then, if weight increases upon the acquisition of relevant evidence, 

 

to communicate the relevant point! 

5 It seems quite amazing that no one picked this up before Carnap. Whitehead read the TP twice as one of 

Keynes’s fellowship examiners, and Russell presumably read it closely before giving a strong endorsement 

of its formal work in Russell (1922). And while the other logicians with whom Keynes was in contact 

weren’t in the same class as Russell and Whitehead they were still quite proficient. And Keynes notes that 

this decomposition of a proposition causes some difficulties for his rendition of the Principle of Indifference 

just five pages after he states the strict principle of irrelevance.  
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the weight of our belief will have risen. So the weight of our beliefs will depend not just on what 

our evidence is, but on the order in which we acquired it. This is absurd, so it must be that weight 

doesn’t always increase upon acquiring relevant evidence, and may in fact decrease. 

This argument reinforces the intuitive idea that when p  / q = r / s then V(p / q) = V(r / s). The 

analysis of weight in my theory does this, as well as capturing I hope the spirit of Keynes’s theory, 

although it departs radically from the letter of it6. Let P again be the set of values that Pr(p  | q) 

takes for Pr  Î P  . Then P will be an interval, and V(p  / q) is simply the one less length of that 

interval.7 As noted in the last chapter, the possibility of dilation means that we might be certain 

that on reception of the result of a trial (i.e. learning q1 or learning ¬q1) the weight of the argument 

from our evidence to p might go down.8 This is odd, but considerably less odd than the 

alternatives. It is a consequence of my analysis of weight that when we know the chance of p ,  the 

 

6 There is a sense in which my departure from ‘what Keynes really meant’ isn’t that great. If we adopt 

semantic externalism, then Keynes’s references to ‘weight’ will refer to whatever it is in the world that best 

satisfies his descriptions of the role it plays. And that, I am confident, is what I have captured. Similar 

remarks will apply to ‘probability’ and other terms. Such an interpretation takes Keynes’s intention for his 

referring terms to have referents more seriously than his particular description of those referents. 

7 A similar suggestion for capturing this concept is made in Kyburg (1961: 225), though the interval in 

question has a somewhat different meaning in his theory. 

8 This is also a consequence of the quite different analysis advanced in Runde (1990). He suggests we 

analyse weight as the ratio of known to unknown evidence, then immediately gives this an epistemic 

interpretation, so that weight becomes a ratio between how much we know and how much we know we 

don’t know. Since new evidence might show that there is even more evidence we don’t know, weight might 

go down with new evidence. I don’t see, however, what the grounds are for the epistemic turn here; weight 

in Keynes seems to be objective enough that there could be a divergence between its value and our best 

estimate of it. 
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weight of our argument to p is maximised. As we’ll soon see, this is a position which Keynes 

adopted when he applied his theory to economic matters in the 1930s. 

10.3 Keynes’s Applied Theory of Probability 

Since the publication in 1983 of the first volume of Skidelsky’s biography of Keynes there has 

been a surge in interest in Keynes’s philosophy. A large motivation for this is the possibility that 

Keynes’s philosophical beliefs play an important role in his economic theories. Like all modern 

economists, Keynes was aware of the role of expectations in determining the value of goods. 

Whenever we consider deferring consumption today in the hope of greater consumption 

tomorrow, our decision will depend crucially on our expectations of what tomorrow will be like; 

on our partial beliefs about tomorrow. The story is in fact a little more complicated. Since 

tomorrow we might decide to defer consumption again, it also depends on our expectations about 

two days time, and hence about three days time, and so on. 

Here there is obviously a role for some theory of probability. However, many theories of 

probability fail to capture an important fact about this decision situation. We know more about 

tomorrow than about next year and more about the next year than the next decade. Keynes can 

represent this by saying that the weight of the argument from our evidence to propositions about 

tomorrow is greater than that of the argument from our evidence to propositions about next year. 

However, there is no way in which theories which say our degrees of belief ought be precise can 

do this. This applies whether the theories are subjectivist (like Ramsey) or logical (like Carnap). 

So Keynes has extra resources to bring to this problem, and he uses them. 

It would be foolish, in forming our expectations, to attach great weight 

to matters which are very uncertain. (In footnote:) By “very uncertain” 

I do not mean the same thing as “very improbable”. Cf. my Treatise on 

Probability, chap. 6, on “The Weight of Arguments”. (GT: 148) 
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He elaborated on this in a famous passage from a 1937 article responding to critics of his theory. 

By ‘uncertain’ knowledge, let me explain, I do not mean merely to 

distinguish what is known for certain from what is only probable. The 

game of roulette is not subject, in this sense, to uncertainty; nor is the 

prospect of a Victory bond being drawn. Or again, the expectation of 

life is only slightly uncertain. Even the weather is only moderately 

uncertain. The sense in which I am using the term is that in which the 

prospect of a European war is uncertain, or the price of copper and the 

rate of interest twenty years hence, or the obsolescence of a new 

invention, or the position of private wealth holders in the social system 

in 1970. About these matters there is no scientific basis on which to 

form any calculable probability whatever. We simply do not know. 

(1937a: 113-4) 

Finally, in some 1938 he indicated the effect this uncertainty might have on decision theory. The 

context is a letter he wrote to Hugh Townshend, a former student, who appears to have been the 

first to inquire about the connection between the TP and GT. 

One arrives presumably at the numerical estimates [of expected values] 

by some system of arranging alternative decisions in order of 

preference, some of which will provide a norm by being numerical. But 

that still leaves millions of cases over where one cannot even arrange 

an order of preference. When all is said and done, there is an arbitrary 

element in the situation. (1938a: 289) 

O’Donnell (1991) claims there are obviously distinct senses of uncertainty underlying these three 

quotes. Call these the 1936, 1937 and 1938 senses, by reference to the year from which the quote 
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is drawn. I doubt that there are such distinct senses in play. There is a simple concept of 

uncertainty which can perform all the roles Keynes asks of it, and so the simplest explanation of 

the data is that Keynes was using that concept. 

 ‘Uncertainty’ has been distinguished in economics from pure risk (such as we face at the roulette 

table) ever since Knight’s Risk, Uncertainty and Profit (1921). However, Knight’s distinction was 

based on a frequentist theory of probability, so it isn’t overly important here. Say that p is 

uncertain for an agent with evidence q iff p  / q is non-numerical9. More generally, say p is more 

uncertain the smaller the weight of p  / q.10 

Since non-numerical probabilities are usually associated with having little evidence, this captures 

the 1936 sense of uncertainty11. The examples from the 1937 quote seem to match my definition, 

at least given some plausible assumptions about when the probability of p would be numerical. I 

also suspect we can translate ‘calculable’ from the last line as ‘numerical’. Finally, non-numerical 

probabilities will easily lead to non-comparable goods. Say the probability of p is vague over [x, 

y], with x < z < y. Then a p-bet will be incomparable with z cents. Further, incomparability (as 

compared to indifference) can’t arise without this type of uncertainty. 

As there is a simple sense of uncertainty which is definable in straightforward terms (indeed the 

definition uses no terminology not in Keynes) and which does the work needed for all three 

 

9 Or in the functional terminlogy of footnote 3, if p  / q isn’t translated to a constant function. This suggestion 

first appears in Lawson (1985). 

10 I.e. if x and y are the greatest and least values respectively such that x £ p  / q £ y, the uncertainty of p is 

measured by y - x. 

11 There are counterexamples, as in Monte Hall type cases, but we can be very confident that Keynes was 

ignorant of these. And we can be confident that these don’t threaten the claim in the text as to what is 

‘usual’. 
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quotes, I disagree with O’Donnell’s claims that Keynes was using uncertainty differently every 

time. The main difference between our interpretations is that O’Donnell thinks the 1937 quote 

relied on the ‘unknown probabilities’ which are also introduced in the TP. We can all be ignorant 

of logical entailment relations. ‘Snow is white’ entails (at least on traditional definitions of 

entailment) Fermat’s Last Theorem, but most of us were ignorant of that until very recently. 

Similarly, thought Keynes, we can be ignorant of logical probability relations. O’Donnell claims 

this is what is being referred to in the last line of the 1937 quote. He is forced to make the 

(empirical) claim that we are more often ignorant of these relations when the evidence is small, 

and he does this. The first problem with O’Donnell’s position is that it is hard to see what the 

evidence for this could be. I am quite certain of the probability of ‘My carpet is blue’ given just 

‘Snow is white’; it is represented in my terminology by the interval [0, 1]. The second is that 

given the audience for this paper (it was printed in the Quarterly Journal of Economics) it would 

be unusual to base one’s theory on the logical shortcomings of agents. I agree with O’Donnell 

that these shortcomings are hardly sufficient to say Keynes’s agents are ‘dim-witted’, but I still 

think it would be an odd assumption for Keynes to make in that forum without more explicit 

acknowledgment. The third problem for O’Donnell’s interpretation is that it seems to make 

uncertainty an ‘on-off’ property, rather than one admitting of degrees, as in my account. Yet 

Keynes’s examples show he intended uncertainty here to come by degrees. Even if none of these 

arguments work, on general methodological grounds I prefer my interpretation because it is the 

simplest one that explains all the data. 

There is a more important question on which I am in almost complete agreement with O’Donnell. 

In his (1989) he puts forward the most sustained defence of the position that Keynes’s 

philosophical outlook was, in broad terms, unchanged throughout his life12. This is despite the 

 

12 The different senses of uncertainty aren’t a change of view on O’Donnell’s theory, they are different 

facets of a multifacted concept. 
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evidence that Keynes adopted a conventionalist epistemology (which I’ll discuss in the next 

section) and that in his 1931 review of Ramsey’s book he appears to yield to Ramsey on some 

crucial questions. I am in general agreement with O’Donnell on these points and there is little 

need here to repeat his arguments. There is however one point on which I do think Keynes 

abandoned the TP position, and this may explain Keynes’s apparent yielding to Ramsey on some 

points. 

In the review of Ramsey, Keynes notes how the scope of logic, which looked so broad under 

Russell and Whitehead, was gradually reduced by Ramsey and Wittgenstein until it looked like 

logic had no content at all. I think this is a sign that Keynes abandoned the position that his 

probability relations were logical. He didn’t give up on their objectivity, he just now thought there 

were objective standards of rationality that were extra-logical. These objective standards, as 

opposed to logic, would provide the foundations of probability. Without going for a line-by-line 

exegesis, I’ll just note that Keynes’s text supports the claim that it was on this point that Keynes 

yielded to Ramsey. 

That much seems quite well grounded; what follows is rather speculative. A year before Keynes’s 

review of Ramsey appeared, Gödel announced his incompleteness theorems. These were widely 

taken to cast doubt on Russell and Whitehead’s program of incorporating all of maths into logic. 

If Keynes knew of this result and that reaction (which is at least possible, but is hardly certain) 

this might have convinced him there were objective epistemic norms (i.e. conformity with 

mathematical reasoning) which were not strictly logical, and this would have made his 

abandonment of the claim his probability relations were logical less dramatic. There is no 

reference to Gödel in Keynes’s review, which might look like evidence against my speculation 

that he was influenced by Gödel on this point, but on the other hand there is no reference in it to 

anyone at all outside Cambridge! 



§10.4 Keynes and Conventions 304 

 

This isn’t intended as a criticism of theorists who say that Keynes’s theory of probability was 

little changed over his life. I suspect that, from Keynes’s point of view, this was a little change. 

Another little change he may have made was dropping the view that his probability relations were 

non-natural13. The difficulty facing all sides in this debate is that Skidelsky’s summary of Keynes’s 

later view seems unimpeachable: “[After 1921] Keynes no longer thought about probability, 

though probability permeated his thought.” (Skidelsky 1992: 73) If Skidelsky’s right, then the 

correct approach is what I’ve adopted. The only role for probability in Keynes’s later thought is 

in application. 

10.4 Keynes and Conventions 

Many authors argue that Keynes adopted a conventionalist, intersubjectivist theory of probability. 

See, for example, Bateman (1996), Davis (1994), and Gillies (1988). I’ll focus on Bateman’s 

account, as it’s the most comprehensive and most recent. It isn’t always obvious what is meant 

by such a theory. In particular, it isn’t clear whether it is meant to be an empirical or a normative 

theory; whether Keynes is apparently claiming that we ought set our partial belief by convention 

or that we in general do. Since the empirical theory would be consistent with his objectivist norms, 

and stress is on the change in his views, I conclude that the claim is that this is a new normative 

view. According to this view, being reasonable is analysed as conforming to conventions; this 

contrasts with the TP’s position that being reasonable involves just making reasonable judgements 

in particular cases. This is not a very standard epistemological position, but something similar is 

often endorsed in ethics. In ethical language, it is a move from an act-based to a rule-based 

epistemology. Bateman marshals the evidence that Keynes moves from an objectivist to a 

 

13 I wonder if he might have been convinced they were not by Ramsey’s analysis of theoretical terms 

(Ramsey 1929a). This could be pressed into giving a naturalist reading of apparently non-natural terms, but 

I rather doubt Keynes would have seen this, or even considered it an interesting object of study compared 

to his other projects at the time. 
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conventionalist position in ethics as evidence for this epistemological shift, but this doesn’t seem 

of overwhelming significance14. 

Here’s the closest Bateman gets to a definition of what he means by an intersubjective theory of 

probability. 

When probabilities are formed according to group norms, they are 

referred to as intersubjective probabilities ... I take it to be the case that 

in a world of subjective probabilities some individuals will form their 

own estimates and others will form them on the basis of group norms 

(50n). 

This makes it look very much like an empirical theory, since it refers to how people actually form 

beliefs, not how they ought. So his intersubjectivism looks perfectly consistent with Keynes’s 

objectivism. I am completely baffled by the ‘world of subjective probabilities’. I wonder what 

such a world looks like, and how it compares to our world of tables, chairs and stock markets? 

Fortunately there is a theory which does the work Bateman needs. Ayer (1936) rejects orthodox 

subjectivism about probability on the grounds that it doesn’t allow people to have mistaken 

probabilistic beliefs. But he can’t admit Keynesian probability relations into his sparse ontology. 

The solution he adopts is to define probability as degree of rational belief, but with this caveat. 

 
14 If Keynes had adopted a framework which implied a tight connection between epistemological and ethical 

norms, such as utilitarianism, this would be important, since he couldn’t change ethics and keep his 

epistemology. But such frameworks aren’t compulsory, and, given the vehemence with which Keynes 

denounced utilitarianism (Keynes 1938b, 445), it seems he didn’t adopt one. Further, there is substantial 

evidence that, by the time the TP was completed, Keynes had already adopted a rule-based ethics as in 

effect a response to the war. See Keynes (1921b: 298) for the most compelling such evidence. Hence there 

was no connection in Keynes’s mind between ethics and epistemology on this point. 
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Here we may repeat that the rationality of a belief is defined, not by 

reference to any absolute standard, but by reference to part of our own 

actual practice (Ayer 1936: 101). 

The ‘our’ is a bit ambiguous; interpreting it to refer to the community doesn’t do violence to the 

text, though it is just as plausible that it refers to a particular agent. The ‘part of our practice’ 

referred to is just our general rules for belief formation. These aren’t justified by an absolute 

standard; they are justified by the fact they are our rules, and presumably by their generality. 

Given Bateman’s views about metaphysics15, it seems quite reasonable to suppose he’d follow 

Ayer on this point. 

The evidence that Keynes adopted such a position is usually taken to be some passages from the 

GT and the 1937 QJE paper I quoted above. Here’s the key points from the two quotes Bateman 

uses to support his view. 

In practice we have agreed to fall back on what is, in truth, a convention. 

The essence of this convention – though it does not, of course, work out 

quite so simply – lies in assuming that the existing state of affairs will 

continue indefinitely, except in so far as we have specific reasons for 

expecting a change (GT: 152). 

How do we manage in such circumstances to behave in a manner which 

saves out faces as rational, economic men? We have devised for the 

purposes a variety of techniques, of which much the most important are 

the three following: ...  

 

15 He thinks that ‘analytic philosophy is the last place one would expect to find metaphysics’ (Bateman 

1996: 39) 
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(3) Knowing that our own individual judgement is worthless, we 

endeavour to fall back on the judgement of the rest of the world which 

is perhaps better informed. That is, we endeavour to conform with the 

behaviour of the majority or the average. The psychology of a society 

of individuals each of whom is endeavouring to copy the others leads 

to what we may strictly term a conventional judgement (Keynes 1937a: 

115). 

There are two problems with using this evidence the way Bateman does. The first is the old one 

that they seem expressly directed to empirical questions, though in economic writings with their 

assumptions of rationality such appearances can be deceptive. The more important one is that 

Keynes is attempting to answer a very specific question with these passages; in ignorance of the 

question, we can easily misinterpret the answer. 

How much ought one pay for a share in company X? Well, if one intends to hold the share come 

what may, all that matters is the expected prospective yield of X’s shares, appropriately 

discounted, as compared to the potential yield of that money in other uses. But as Keynes 

repeatedly stresses (GT: 149; Keynes 1937a: 113-4) we have no basis for forming such 

expectations. Were this the only reason for investing then purely commercial investment may 

never happen. 

There is another motivation for investment, one that avoids this problem. We might buy a share 

in X today on the hope that we will sell it next week (or next month or perhaps next year) for 

more than we paid. To judge whether such a purchase will be profitable, we need a theory about 

how the price next week will be determined. Presumably those buyers and sellers will be making 

much the same evaluations that we are. That is, they’ll be thinking about how much other people 

think X is worth.  
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We have reached the third degree where we devote our intelligences to 

anticipating what average opinion expects the average opinion to be. 

And there are some, I believe, who practice the fourth, fifth and higher 

degrees (GT: 156). 

There is simply no solution to this, except to fall back on convention. That is, we are forced into 

a conventionalist theory of value, at least of investment goods. But this doesn’t mean that we have 

a conventionalist epistemology. On the contrary, it means that our ordinary (objectivist) 

empiricism is unimpeded. For the question that Keynes has us solve by reference to convention 

is, what is the value of X? This is equivalent to, what will be value of X be, or again, to what are 

the conventional beliefs about X’s value? A question about the state of conventions needs 

answering; and, as good empiricists, we answer it by observing conventions. 

An analogy may help here. Here’s something that Hempel believed: to gain rational beliefs about 

the colour of ravens, one has to look at some birds. Did this mean he had an ornithological 

epistemology? No; he had an empiricist epistemology which when applied to a question about 

ravens issued the directive: Observe ravens! Similarly Keynes’s belief that to answer questions 

about value, i.e. about conventions, one has to look at conventions, does not imply a 

conventionalist epistemology. It just means he has an empiricist epistemology which when 

applied to a question about conventions issues the directive: Observe conventions! 

There might be another motivation for using conventions, again consistent with Keynes’s 

objectivist empiricism. Sometimes we may have not made enough observations, or may not have 

the mental power to convert these to a theory. So we’ll piggyback on someone else’s observations 

or mental powers. This seems to be what’s going on in the quote from Keynes (1937a). Or even 

better, we’ll piggyback on everyone’s work, the conventions. To see how this is consistent with 

an objectivist epistemology (if it isn’t already obvious) consider another analogy. 
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What is the best way to work out the derivative of a certain function? Unless your memory of 

high-school calculus is clear, the simplest solution will be to consult an authority. Let’s assume 

for the sake of argument that the easiest authorities to consult are maths texts. It seems like the 

rational thing to do is to act as if the method advanced by the maths texts is the correct method. 

Does this mean that you have adopted some kind of authoritarian metaphysics of mathematics, 

where what it is for something to be correct is for it to be asserted by an authority? Not at all. It 

is assumed that what the textbook says is correct, but the authoritarian has to make the extra claim 

that the answer is correct because it is in the textbook. This is false; that answer is in the textbook 

because it is correct. In sum, the authoritarian gets the direction of fit wrong. 

Similarly, in the ‘piggyback’ cases, the intersubjectivist gets the direction of fit wrong. In some 

circumstances, I might assume that if p is ‘average opinion’, then it is reasonable to believe p .  

But I wouldn’t say it is reasonable to believe p because p is average opinion, as the 

intersubjectivist does; rather, I say that assuming p is average opinion because it is reasonable to 

believe p .  

The evidence so far suggests Keynes’s statements are consistent with his denying 

intersubjectivism. I might be able to go further and show they are inconsistent with his adopting 

that theory. After the quote on GT page 152 he spends the next page or so defending the use of 

conventions here. The defence is, in part, that decisions made in accord with conventions are 

reversible in the near future, so they won’t lead to great loss. If he really were an intersubjectivist, 

the use of conventions would either not need defending, or could be defended by general 

philosophical principles. Secondly, there is this quote which in context seems inconsistent with 

adopting a conventionalist view. 
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For it is not sensible to pay 25 for an investment which you believe will 

yield 30, if you also believe that the market will value it at 20 three 

months hence (GT: 155).16 

The context is that he is discussing why reasonable professional investors base their valuations 

on convention rather than on long-term expectation. Hence the ‘you’ in the quote is assumed to 

be reasonable. Hence it is reasonable, Keynes thinks, to believe that an investment will yield 30, 

and that conventional wisdom is that it will yield much less. But if all reasonable beliefs were 

formed by accordance with conventional wisdom, this would be inconsistent. Hence Keynes 

cannot have adopted a conventionalist epistemology. 

 

16 This might be considered odd if we take a market-orientated view of ‘yield’. We could plausibly just view 

the yield of an investment as the value the market will place on it three months hence. Indeed the argument 

in Chapter 12 of the GT, from where the quote is drawn, would support such a view. However, Keynes has 

made it clear from the context that he intends ‘yield’ to refer to the real returns of the investment over its 

lifetime, a question on which a sensible investor can disagree with the market. 



Chapter 11   

The Economic Consequences of Uncertainty 

11.1 Uncertainty, Investment and Unemployment 

“Employment was a problem because investment was; and investment was problematic because 

of the uncertainty of its return.” (Shapiro 1997: 83) 

This is a nice two-line summary of an important part of Keynes’s theory of unemployment. A 

large part of the revival of interest in Keynes’s philosophy of uncertainty in recent times, as 

represented by its central place in five anthologies produced about Keynes this decade, is because 

of its connection to his radical views on unemployment. In this chapter I will investigate the idea 

that the distinctive features of Keynes’s theory of probability, in particular his allowance that 

degrees of belief be non-numerical, have economic implications. My main conclusion is negative; 

there is no distinctive philosophical theory here which is (a) correct and (b) has interesting 

economic consequences. 

It is worth briefly going over the broader economic theory into which Keynes’s views about 

uncertainty are meant to fit. Unemployment, or at least involuntary unemployment1, is a monetary 

phenomenon for Keynes. The two crucial premises, which are well beyond the scope of this 

dissertation, are: (1) that demand for money is not, even indirectly, demand for labour and (2) that 

decreasing the price of labour will not, ceteris paribus, increase demand for labour. Given these 

premises, a shift in demand from investment or consumption goods to money will lead to a 

 

1 To be distinguished not just from voluntary unemployment, but from ‘frictional’ unemployment resulting 

from the delay in matching demand and supply of labour. It has been argued in recent times that there is no 

involuntary unemployment in Western economies in the sense Keynes specifies. Given the breadth of the 

frictional and voluntary categories (‘voluntary’ unemployment includes unemployment caused by 

voluntary decisions of government to, say, prohibit some kinds of industry) this claim isn’t quite as absurd 

as it first appears. 
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decrease in demand for labour, and this decrease cannot be rectified by a change in price. Both 

premises are very controversial, and it is a little controversial whether this is the correct way to 

represent the argument. But these questions I set aside for a different project. Here the task is to 

see whether uncertainty might cause an increase in the demand for money, or equivalently a 

decrease in the demand for investment goods, and hence by these premises an increase in 

unemployment. 

It should be stressed that the kind of uncertainty in question here is epistemic. Some writers, such 

as Paul Davidson (1994) and Rogers and Rymes (1997) have written as if some kind of aleatory 

uncertainty is needed for the argument to go through. “By an uncertain world, we mean one in 

which the knowledge which we must have in order to know fully, if stochastically, the 

consequences of our acts is in principle unattainable” (Rogers and Rymes 1997: 304). My quibble 

is with the ‘in principle’. For me, an uncertain world is one in which some rational agents are 

sometimes in a situation in which it is reasonable for them to have non-precise degrees of belief 

about propositions whose truth is relevant to their economic decisions. This imprecision may be 

‘in principle’ removable if, for example, the chance of all propositions is precise2, but that doesn’t 

make the situation any more certain. 

 

2 Is this true of our world? I hesitantly guess yes, just because the ways in which it could be false seem so 

implausible. Here’s the two best possibilities for constructing propositions with non-numerical chances. 

Perhaps the laws of chance only apply to ‘basic’ events, satisfy an additivity principle no stronger than 

denumerable additivity, and some propositions about which we are interested, say that the Yankees will 

win the next World Series, are really disjunctions of non-denumerably many basic events. In this case the 

proposition will behave like a non-measurable set, and have ‘inner’ and ‘outer’ chances, but no precise 

chance. Each of the premises here seems questionable. Second possibility. Perhaps for some systems the 

relevant laws of nature are not ‘dynamic’ laws, but only ‘comparative static’ laws. So it is a law that once 

a system is disturbed that it will revert, quickly, to an equilibrium state. However, when there are multiple 

equilibria there are no laws about which one will be actualised, and in practice there are no stable 
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Davidson’s discussion suggests that there is a reason for resisting this characterisation of 

uncertainty. The problem he sees is that in a world with resolvable uncertainty the competitive 

pressures of the market will, in the long-run, select those agents whose degrees of belief match 

the chances3. There are three problems with this argument. First, even if it works and in the long-

run uncertainty is resolved, it isn’t clear why this is interesting, or at least why it ceases to be 

interesting to examine what happens in the short-run. As Keynes stressed, developing new 

variants on “When the storm is over the seas will be flat” is not much of a theoretical challenge. 

Secondly, when it is true, and known, that the costs of resolving uncertainty in this way will be 

prohibitive, that a resolution is in principle possible seems somewhat irrelevant. Imagine trying 

to determine who to bet on for the next baseball season by working out the objective chance of 

each team winning! Thirdly, and perhaps more controversially, it isn’t obvious why in the long-

run those agents whose degrees of belief match the chances will be selected. After all, the agents 

who are selected will be those whose predictions turn out to be correct. So lucky guesses will 

confer greater survival advantage than beliefs developed in accord with chances. Maybe the game 

goes for so long that luck will run out; maybe there are so many agents starting off who are just 

guessing that some of them will outlast those who know the chances. A priori it seems hard to say 

which is true. So if numerical chances for all events exist, it isn’t clear that even in the long-run 

market participants will know what they are. Hence I feel confident in restricting my attention to 

epistemic uncertainties. 

 

frequencies of reversion patterns. If markets, or ecologies, or complex machines are merely governed by 

such laws then again we may have events with imprecise chances. But again this seems just too mysterious 

to be real. Whether or not either of these speculations is correct does seem irrelevant to whether an investor 

in the copper market is really in an uncertain situation. 

3 Davidson doesn’t really run this argument, but is concerned that his classical opponents will have recourse 

to it if he allows uncertainty to be resolvable in principle. 
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11.2 Two Consequences of Uncertainty 

Uncertainty impacts on demand for investments and money in two related ways. These ways are 

not distinguished in the literature, but it will help my exposition to have the distinction clear. First, 

uncertainty may reduce demand for investment directly by making a person who would otherwise 

be tempted to invest more cautious and hence reluctant to invest. Secondly, if this direct impact 

is widespread enough, it will increase the demand for money, and hence its price. But the price 

of money is just the market rate of interest. And the return that an investment must be expected 

to make before anyone – even an investor not encumbered by uncertainty – will make it is the rate 

of interest. I will call this the indirect impact of uncertainty on investment. 

This needs explaining in some more detail. Keynes takes the amount of consumption as a given 

(GT: 245). Or more precisely, for any period he takes the amount of available resources that will 

not be allocated to consumption as a given. There are three possible uses for these resources: they 

can be invested, they can be saved as bonds or loans, or they can be hoarded as money. There are 

many different types of investment, but Keynes assumes that any agent will already have made 

her judgement as to which is the best of these, so we need only consider that one. There will also 

be many different length bonds which the agent can hold. So as to simplify the discussion, Keynes 

proposes just treating these two at a time, with the shorter length bond called ‘money’ and the 

longer length loan called ‘debts’ (GT: 167n). Hence the rate of interest is the difference between 

the expected return of the shorter bond over the life of the longer bond and the return of the longer 

bond. So the rate of interest that we are interested in need not be positive, and when the two bond 

lengths are short will usually be zero. It is usually presumed in discussions that the rate is positive, 

and I’ll generally follow in making that assumption4. Now, Keynes presumes that an agent will 

only allocate resources to investment if investment looks to be at least as worthwhile as holding 

 

4 The empirical evidence seems broadly consistent with the theory that the rate of interest on an n-year bond 

is simply determined by the expected return on bank money over that time. On that theory all the rates with 

which we are concerned will be zero. 
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money, and at least as worthwhile as holding debts. In other words, he makes the standard 

reduction of n-way choice to a set of 2-way choices5.  

Now, usually, if someone is of a mind to invest, they will not favour holding money over holding 

debts. The only motivation for the latter, given positive interest rates, could be a desire to have 

accessible command over purchasing power, and investment foregoes that command. So, in 

practice we only need look at two of the three possible pairwise choices here. I will ignore for 

most purposes the choice between investing and holding money, and only look at the money-debt 

choice and the debt-investment trade-off. 

Holding a debt provides a relatively secure return in terms of money. Relatively secure because 

there is the possibility of default. In practice this means that there isn’t a sharp distinction between 

debts and investments, rather a continuum with say government bonds at one extreme and long-

term derivatives at the other. Some activities which have the formal structure of ‘debts’, like say 

provision of venture capital, will be closer to the investment end of the continuum. Unlike debts 

then, investments as a rule do not have a secure return in terms of money. In most cases they do 

not even have a precise expected return (GT: 149; Keynes 1937a: 113). 

Now Keynes does not presume that this means that people never invest unless the expected return 

on the investment is greater than the expected (indeed, known) return on debts. He says explicitly 

that were this true then ‘there might not be much investment’. Instead he says that investment 

under uncertainty depends on ‘confidence’ (GT: 150). So the following looks compatible with his 

position. Let the expected value of investing a certain sum be [a, b], and the expected value of 

buying a debt with that money be c. Then the agent will invest iff (1 - r)a + rb ³ c, where 

 

5 Standard, but I bring it up because the modern theorist who’s decision theory is closest to the one Keynes 

seems to adopt, Levi, explicitly rejects it. 
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r Î [0, 1] measures the  ‘state of confidence’6. Now when a crisis erupts, r will go to 0, and 

investment will dry up. In such cases the decision theory is similar to the one advanced by Levi. 

In general this is exactly the theory advocated by Strat (1990) and Jaffray (1994). Since we’re 

interested in a theory of unemployment, we’re primarily interested in the cases where r is quite 

low, in which cases we can say uncertainty is reducing investment. 

That last statement might seem dubious at face value. In part what I mean by it is this. When r is 

low, the value of a set of bets will in general be more than the sum of the value of the bets taken 

separately. Because individual investors are fearful of exposure to uncertainty, which is 

presumably what r being low means, sets of investments which if undertaken collectively would 

be profitable (and everyone agrees that they would) will not be undertaken individually. This not 

only shows the important role uncertainty plays, but it suggests a reason that theorists have 

thought government intervention might be appropriate in times of crisis. Alternatively, if r is low 

then the value of an investment, how much we will be prepared to pay for it, will probably be 

lower than our best estimate of its expected return, assuming the latter to be near (a + b)/2. 

I’ll focus more closely on the ‘indirect’ effects of uncertainty in section 4. The central idea is that 

the rate of interest, being the price of money, is completely determined in the market for money. 

But this market itself has some rather strange properties. After all, money is barren, and it can 

generally be traded for something which is not barren. So, as Keynes puts it, why would anyone 

‘outside a lunatic asylum’, want it? Why wouldn’t the demand for money drop to zero as soon as 

the rate of interest is positive? 

 

6 In case the reader fears I am being absurdly formal with an essentially informal idea, Keynes had such a 

variable, there described as measuring the ‘state of the news’, in early drafts, but it didn’t survive to the 

final stage. So my proposal isn’t a million miles from what Keynes intended merely by virtue of being 

algebraic. 
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Because, partly on reasonable and partly on instinctive grounds, our 

desire to hold money as a store of wealth is a barometer of the degree 

of our distrust of our own calculations and conventions concerning the 

future. Even though this feeling about money is itself conventional or 

instinctive, it operates, so to speak, at a deeper level of our motivation. 

It takes charge at the moments when the higher, more precarious 

conventions have weakened. The possession of actual money lulls our 

disquietude; and the premium which we require to make us part with 

money is the measure of the degree of our disquietude (Keynes 1937a: 

116). 

So more uncertainty means more demand for money means higher interest rates. The rest of the 

story is standard. Even the confident agent will be disinclined to invest once the rate of interest 

rises. Using the little decision theory outlined above, more uncertainty means the gap between a 

and b grows, which if r is low will tend to reduce (1 - r)a + rb, the ‘certainty equivalent’ of the 

expectation of the investment’s worth7. On the other hand, uncertainty on the part of the 

community will tend, for similar reasons, to increase c. Either way, investment suffers, and hence 

so does employment. 

11.3 Uncertainty and Money 

There is something very odd, from an economic point of view, about all that we have done so far. 

Let’s take a simple example where concerns about uncertainty are supposed to lead to an agent 

holding money rather than investments. Say shares in Company X are currently priced at $1, and 

for simplicity assume that X does not pay dividends, so the expected return on holding X’s shares 

 

7 Keynes suggests at GT: 24n that for mathematical purposes we will have to reduce expectations to 

‘certainty equivalents’, and seemed to hold this belief throughout the debate on the book. 
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is just the expectation of X’s share price at the end of the period8. Assume this expected return is 

vague over [$0.8, $1.5]. Then any agent such that r < 2/7 will prefer to hold money rather than 

dip into the market. In particular the agent with maximal uncertainty aversion, in a non-technical 

sense of aversion, who sets r at zero will hold money. But there is a sense in which this is exposing 

oneself to more uncertainty rather than less. The expected value of $1, in terms of X’s shares, at 

the end of the period is ex hypothesi vague over [2/3, 5/4]. If we hold a share we are certain to 

have something that will be worth one share, however if we hold a dollar our expectation of its 

value can’t be made more precise than being more than two-thirds of a share and less than five-

quarters of a share. Surely if we dislike uncertainty we’ll hold the share. Well, at least we deserve 

an explanation as to why one kind of uncertainty is given such a central place and other kinds are 

completely ignored. 

Keynes has an explanation, and in a sense it’s philosophically rigorous. He argues, or perhaps 

assumes, essentialism about money. Indeed the title of chapter 17 of the GT is ‘The Essential 

Properties of Interest and Money’. These essential properties are entirely functional. As Hicks 

puts it, “Money is defined by its functions ... money is what money does” (Hicks 1967: 1). The 

sense in which this is rigorous is that the assumption is only that agents try to minimise uncertainty 

relative to whatever is money in their world, whatever plays the functional role of money. Hence 

the solution to the problem posed in the previous paragraph is guaranteed to be non-arbitrary9. 

As a first approximation, we can say the functional role money plays is that it is a medium of 

exchange. Keynes doesn’t think this is quite the essential property; rather he says that money is 

 

8 I’m also abstracting away from tax considerations. 

9 The essentialism here is, I think, different to the type of essentialism that has become philosophically 

popular since Kripke (1972). In particular we don’t say here that money is whatever plays a certain 

functional role in the actual world. Rather we say that money is what plays a certain functional role in the 

world under consideration. It is not just a priori, but necessary that money has certain functional properties. 
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essentially ‘liquid’, and perceived to be liquid. This means that if we hold money we are in a 

position to discharge obligations and make new purchases as they seem appropriate with greatest 

convenience and least cost. Even this isn’t what’s given as the official essential property of 

money. To make the proof that demand for money is not demand for labour easier Keynes takes 

the essential properties of money to be its negligible elasticities of production and substitution10. 

But he makes clear that these are important because of their close connection to liquidity 

(GT: 241). Indeed, when he comes to define a non-monetary economy, he simply defines it as one 

where there is no good such that the benefits it confers via its liquidity, its ‘liquidity premium’ 

exceeds the carrying costs of the good. So the properties of having a negligible elasticity of 

production and substitution seem necessary but insufficient for something to be money. 

That money is liquid will explain why uncertainty in terms of it is important. At the end of the 

day, the point of holding investments, bonds or money is not to maximise the return in terms of 

such units; it is to be used somehow for consumption. Hence we prefer, ceteris paribus, to store 

wealth in ways which can be easily exchanged for consumption goods as and when required. 

Further, we may be about to come across more information about productive uses for our wealth, 

and if we do we would prefer to have the least inconvenience about changing how we use wealth. 

Money is going to be the best store of wealth for each of these purposes. The strength of these 

preferences is the liquidity premium which attaches to money. 

 

10 As all of Keynes’s units are defined in terms of labour, elasticity of production is defined to be “the 

response of the quantity of labour applied to producing it to a rise in the quantity of labour which a unit of 

it will command” (GT: 230). Put simply, elasticity of production measures the tendency of supply to rise in 

response to higher prices. Elasticity of substitution measures the tendency of consumers to choose goods 

other than the one in question as its price rises. Again, Keynes defines the price of money in terms of wage-

units. 
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So Keynes’s story here is essentially a ‘missing markets’ story. If there were markets for every 

kind of transaction there would be no liquidity premium attaching to money, and hence no reason 

to be averse to uncertainty in terms of money returns as opposed to uncertainty in terms of X’s 

shares returns. It is worthwhile to note here a methodological difference between decision 

theorists and economists. In decision theory it is common to specify what choices an agent does 

have. These will usually be finite, or at least simply specified11. In economics it is more common 

to specify what choices an agent does not have, which markets are  ‘missing’. In a sense the 

difference is purely cosmetic, but it can change the way problems are looked at. Since Keynes 

requires here some markets to be missing, it might be worth investigating what happens here from 

the more restrictive framework ordinarily applied in decision theory. 

In some decision-theoretic contexts we can have a preference for liquidity even when we are 

completely certain about what our choices are and what their outcomes will be. Say we are in a 

game where the object is to maximise our money over 2 days. We start with $100. On day 1 we 

have a choice of buying a ticket which will pay $200 at the end of day 2, and is non-transferable, 

or doing nothing. On day 2, if we still have our $100, we can buy with it a voucher which pays 

$300 at the end of day 2, or doing nothing. Obviously the best strategy is to do nothing on day 1, 

and buy the voucher on day 2. The point is just that money here has enough of a liquidity premium 

on day 1 that we are prepared to hold it and earn no interest for that day rather than buy the ticket 

(or two day bond) which will earn interest. So uncertainty is not a necessary condition for liquidity 

premiums to exist. On the other hand perhaps it is necessary for liquidity premiums to exist in a 

world something like ours, where agents neither have all the choices they would have in a perfect 

market, nor as few as in this simple game. If we added a market for tickets and vouchers to our 

simple game the prices would be fixed so that money would lose its liquidity premium. Keynes 

 

11 An agent’s choice may range over a continuum, but the description of the type of choices open will usually 

be quite brief. 
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suggests something like this is true for the worlds he is considering: “uncertainty as to the future 

course of the rate of interest is the sole intelligible explanation of the type of liquidity preference 

[under consideration]” (GT: 201). However, here he merely means lack of certainty; there is no 

proof that if every agent had precise credences liquidity preference ought disappear. So it looks 

like uncertainty in the sense I’m interested in, vague reasonable beliefs, does no theoretical work. 

Perhaps this is a bit quick, as the little game I considered is so far from a real-life situation. So I 

will look more closely at the effects uncertainty is supposed to have. Since it has received the 

bulk of the theoretical attention, I start with the indirect effects of uncertainty. 

11.4 Uncertainty and Liquidity Preference 

As noted above, Keynes thinks the question of why money is demanded at all, why we don’t all 

move from holding money into holding debts as soon as the rate of interest goes positive, needs 

answering. And he thinks the answer here will be particularly relevant to theories about the rate 

of interest. If the market in general is at equilibrium then the market in trades between any two 

goods must also be in equilibrium; in particular it cannot be that there are people holding money 

who would be prepared to buy debts at the current interest rate. So if the equilibrium interest rate 

is positive, there must be some people who would prefer to hold money than hold debts. This fact 

Keynes takes to be central to the correct theory of the rate of interest12. Hence to determine what 

the rate of interest will be, and what will cause it to change, I need to determine what causes a 

demand for money. 

 

12 Saying why precisely Keynes takes equilibrium in this market, rather than say the market between debts 

and investments, to be of central importance would take us too far from our topic. If that market is taken to 

be central then we get a theory of the rate of interest in terms of the productivity of investment. In general 

Keynes’s reasoning here is that there are other markets which can adjust to bring equilibrium to the debt-

investment market whatever the rate of interest, but this is not so for the debt-money market, but we need 

to say more to make this a full response. 
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Keynes distinguishes four motives for holding money (GT: Ch. 13; Keynes 1937b: 215-223). Two 

of these, the transactions motive and the finance motive, need not detain us. They just relate to 

the need to make payments in money and on time. The third, the speculative motive, is often 

linked to uncertainty, and indeed Keynes does so (GT: 201). But ‘uncertainty’ here is just used to 

mean absence of certainty, that is the existence of risk, which is not how I’m using ‘uncertainty’. 

The idea behind the speculative motive is that if an agent believes the rate of interest is about to 

rise (the value of debts is about to fall) it is better to hold money now and buy the debts after the 

change. This holding is described as speculative because it is just a gamble on a change in the 

market. Now if all players in the market were certain as to future movements of the rate of interest, 

there could be no speculative motive, so the speculative motive requires the absence of certainty, 

but this is not particularly interesting. How a roulette wheel will land is not certain, but we 

wouldn’t say it is subject to uncertainty in this sense. As Runde (1994b) points out, an agent who 

is certain as to future movements in interest rates may still hold money for speculative reasons, 

as long as other agents who are not so certain have made mistaken judgments. The fourth motive 

will hold most of my attention. Keynes argues that we may hold money for purely precautionary 

reasons. 

To provide for contingencies requiring sudden expenditure and for 

unforseen opportunities of advantageous purchases, and also to hold an 

asset of which the value is fixed in terms of money to meet a subsequent 

liability fixed in terms of money, are further motives for holding cash 

(GT: 196). 

I should clarify what is meant by ‘unforseen’ here. It doesn’t include all purchases or 

contingencies such that it was not forseen that they would (probably) happen. Rather, it is limited 

to those purchases or contingencies such that it was not forseen that something of that vague type 

would happen, or at least that not as many things of that type would happen as actually did. For 
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example, if some part on an old car breaks down and needs replacing this would be classed as 

‘forseen’ not because it could be predicted that particular part would break down, but rather that 

some part or other would break down. Although Keynes is not explicit on this point, he makes 

just this distinction when distinguishing between voluntary and involuntary losses arising from 

the use of capital equipment (GT: 56) and it seems reasonable to assume he’d make a similar 

distinction here. 

There are a number of attempts in the literature to explain why uncertainty leads via the 

precautionary motive to demand for money13. I will be looking at four of these here. The first two 

give uncertainty virtually no role in determining the rate of interest. The second two profess to 

have a major role for uncertainty, but it is arguable that they don’t succeed. The aim of the survey 

is to determine whether there is a plausible explanation of the role of uncertainty that gives it a 

substantial role in setting the rate of interest. I accept, at least for the sake of the argument, that 

missing markets and transaction costs might have a role in causing a demand for money, as 

described in the previous section, and this may be a factor in setting interest rates. Hence the 

existence of uncertainty is not necessary for interest rates to be positive. The aim here is to see 

whether there are theoretical reasons for thinking uncertainty makes a substantial difference. 

The classic in the literature is Tobin’s 1958 ‘Liquidity Preference as Behaviour Towards Risk’. 

As the name suggests, in Tobin’s model agents demand money because they are risk averse. Say 

money has a constant return of 0 and the return on debts is determined by a random variable which 

is normally distributed with mean q > 0 and standard deviation s. Then agents will spend A on 

debts, until their risk aversion function b, which is increasing in A and s, equals q. The theory is 

that the value an agent places on buying a particular debt is q - b, so when q = b there is no point 

in buying more debts. However, good this is as an analysis of the folk concept of ‘liquidity’, or 

 

13 The following survey is indebted to Runde (1994b). 
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of Keynes’s theory of liquidity (and Runde (1994b) argues persuasively that it does badly on both 

counts) it goes nowhere towards explaining the distinctive role of uncertainty in liquidity 

preference. 

A slightly different slant on liquidity preference is provided by Maclachlan (1993). She defines 

the liquidity of an asset in terms of the expected transactions costs in trading that asset for some 

other should the desire arise. This again recalls the need for missing or imperfect markets to 

explain the importance of money in Keynes’s theory. The orthdox explanation for the value of 

any economic variable is to determine some equations which that value must satisfy in 

equilibrium, and show that these equations plus some values that we take as exogenous determine 

the value in question. Maclachlan rightly argues that this approach obliterates the distinction 

between causation and correlation that a good theory ought preserve. She argues that the only two 

possible causes for the existence of a positive rate of interest are the desire for liquid assets, in the 

sense she has defined ‘liquid’, or the expectation of what Schumpeter called ‘super-normal’ 

profits. 

While the focus on causation is appropriate, I have doubts about Maclachlan’s methodology. She 

dismisses various potential causes of the rate of interest being positive14 by showing that they are 

compatible with the rate being zero. If this were sound it would rule out various causal 

explanations which we take to be sound. I drop a ball and it falls to the floor. Half way down it is 

moving at a certain velocity v. Why does it have this velocity? Indeed, why does it have any 

velocity? The answer to the second question will surely be ‘gravitational attraction’, and that will 

be a major part of the answer to the first. Now I throw the ball straight up in the air and watch it 

climb then fall to earth. At the top of its path its velocity (relative to the earth) is zero. Yet it is 

under just the same gravitational attraction as it was in the first example. Does this mean that we 

 

14 For example productivity and time preference. 
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can’t say gravity is a cause of its velocity in the first example? No; gravity is not only a cause, it 

is the primary cause, and it is a ‘positive’ cause. The ball does not have the velocity it has despite 

the best efforts of gravity, as is the case when it is travelling upwards. So on methodological 

grounds it is no objection to saying F is the cause of interest rates being positive (and taking 

roughly the particular value they do) to say F might occur and rates might yet be zero. 

This methodological diversion is a little irrelevant to our main purpose however. I have accepted 

that transaction costs might cause a demand for money. The question here is whether uncertainty 

has any particular causal effects. And on Maclachlan’s account the answer would have to be no. 

She provides no reason for agents in uncertain worlds with imperfect markets to have different 

attitudes towards liquidity than agents in risky worlds with imperfect markets. 

Makowski (1989) defines uncertainty as ‘risk plus the possibility of learning’. On his theory 

uncertainty, of this type, leads to liquidity preference because agents prefer to keep their options 

open until the new information comes in. Because some markets are missing, in particular markets 

for trading some investments for others, keeping options open means holding money. Runde 

(1994b) gives a number of ways we might cash out this notion of uncertainty, some of which are 

quite similar to our concept of there being multiple reasonable degrees of belief. However, I doubt 

that uncertainty is really doing any work here, as the following example brings out. 

A fair coin is to be tossed and then two fair dice are to be rolled. Say p is true iff the coin falls 

heads and the dice fall double-six, or if the coin falls tails and the dice do not fall double-six. 

Assume some agent knows that the coin and dice are fair. Hence she knows that the chance of p 

is one-half. Since it is true that when an agent knows the chance of A then A is not uncertain15, p 

 

15 This follows from my definition of uncertainty and the Principal Principle, but there might by a question 

as to whether such a conclusion has always been made. Given the quote from Keynes (1937a) defining 

uncertainty in the previous chapter this seems to be how he is using the term ‘uncertainty’, and this is 
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is not uncertain here. Now assume that this agent will learn the result of the coin toss before the 

market. There is definitely a ‘possibility of learning’ here. Jones and Ostroy (1984) attempt to 

capture a similar idea to Makowski’s through the variability of beliefs. Again, here the agent’s 

beliefs about p are very highly variable; she currently believes p to degree 1/2, but soon she will 

believe it to nearly degree 1 or 0. And given some simple assumptions about the markets – 

basically that our agent is barred from selling on bets – she has an incentive to hold money until 

she learns how the coin falls and then place her bets. So we can get all the crucial features of 

Makowski’s account without allowing in any uncertainty. 

As I stressed earlier, showing this is not enough to show that uncertainty bears no load in 

Makowski’s story. However, there are reasons for thinking this example is in its essential features 

perfectly general. What is important in his story is that an agent is (probably) about to learn some 

information that will be a guide as to what investments are most valuable. Hence she wants to be 

in the best possible position to take advantage of this information, i.e. hold the most liquid assets. 

That story seems coherent, and it seems plausible enough to suggest it frequently occurs. 

However, I didn’t say whether the agent’s initial beliefs were precise or imprecise in that story. 

Indeed, that seems altogether irrelevant to the story. So whether the initial situation is one of risk 

or uncertainty doesn’t matter. That is, there is no theoretical reason here for saying uncertainty 

plays an important role. 

 

standard among theorists who have followed Knight in making a distinction between risk and uncertainty. 

This point may have been obscured by the fact that many of these theorists held unusual or anachronistic 

theories of chance (particularly frequentist theories) and that they didn’t refer to chances explicitly, but 

despite this the assumption is widely shared. In particular, this conclusion seems to be drawn by Hart (1942) 

and Tintner (1941) – the earliest theorists to suggest representing uncertainty by sets of probability functions 

– whom both Makowski (1989) and Jones and Ostroy (1984) credit as authorities. 
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Finally, Paul Davidson (1988, 1991) argues that uncertainty arises whenever agents do not have 

sufficient knowledge to calculate the numerical probability of an event. He gives this a rather 

frequentist gloss, but that’s not necessary. His idea is that we know what the probability of p is 

when we know the frequency of p-type events in the past and we know the future will resemble 

the past in this respect. The latter is cashed out as saying p is governed by an ‘ergodic process’. 

We can replace all this by saying that p is subject to uncertainty whenever we don’t know its 

objective chance, whether or not objective chance ought be analysed by frequentist approaches. 

Davidson then argues that since for most p we don’t have this knowledge16, we have to adopt 

‘sensible’ approaches like holding money. 

Runde (1994b) objects that Davidson’s story is incoherent. On Davidson’s theoretical story there 

are only two epistemic states relative to p that are possible. An agent can know the chance of p ,  

in which case their degree of belief is set equal to it, or they are completely uncertain about it. In 

the latter case there can be no reason for taking some action rather than another. Now the reason 

that it is ‘sensible’ to hold money is that we expect money to be liquid. But we don’t know the 

chance of money remaining liquid; whether or not money remains liquid is not determined by an 

ergodic process. Hence we have no reason for letting that partial belief be a guide to action. 

This is a fair criticism, but it can be met by amending the theory rather than by giving it up. On 

my theory, if an agent knows the chance of p, she will have a precise degree of belief in p .  When 

she doesn’t he degree of belief will, in general, be vague but not totally vague. As with Keynes, I 

have uncertainty come in degrees. This amendment is enough to rescue Davidson. An agent might 

not know the chance that money will go illiquid in the next short period of time, but she might 

 

16 His reasoning here is rather dubious. He seems to think that human actions being governed by ergodic 

processes is inconsistent with the existence of free will. This is a rather strong form of incompatibilism, 

and even less plausible than the ordinary kind. Nevertheless, we can be confident that agents rarely know 

the chances of events that are relevant to their wealth. 
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know enough for it to be reasonable to have a degree of belief which is vague over, say, [10-8, 10-5] 

in that proposition. And those numbers are small enough that it may still be sensible to hold some 

money when the expected return on other investments really is vague. So I have to turn to the 

question of whether it really is sensible to prefer fixed to uncertain returns. Since that is just the 

question I must answer when looking at whether there is a direct effect of uncertainty that makes 

people prefer bonds to investments, I turn to that question now. 

11.5 Uncertainty and Indecision 

As Keynes repeatedly stressed, investment is not like a game of chance where the expected results 

are known in advance. And this fact is part of the explanation for the extreme instability in 

investment levels compared to other economic variables17. 

The state of long-term expectation ... does not solely depend on the most 

probable forecast we can make. It also depends on the confidence with 

which we make this forecast (GT: 148). 

Businessmen play a mixed game of skill and chance, the average results 

of which to the players are not known by those who take a hand. If 

human nature felt no temptation to take a chance, no satisfaction (profit 

apart) in constructing a factory, a railway, a mine or a farm, there might 

not be much investment merely as a result of cold calculation (GT: 150). 

Human decisions affecting the future, whether personal or political or 

economic, cannot depend on strict mathematical expectation, since the 

 

17 At GT: 103 Keynes quotes Simon Kuznets’s research showing that between 1929 and 1932 gross 

investment levels in the United States fell by over 75% and net investment by over 95%. While nothing as 

dramatic has subsequently occurred, investment remains one of the most volatile economic indicators. 
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basis for making such calculations does not exist ... it is our innate urge 

to activity which makes the wheels go round, our rational selves 

choosing between the alternatives as best we are able, calculating where 

we can, but often falling back for our motive on whim or sentiment or 

chance (GT: 162-3). 

The liquidity premium ... is partly similar to the risk premium, but partly 

different; – the difference corresponding to the difference between the 

best estimates we can make of probabilities and the confidence with 

which we make them (GT: 240). 

Our desire to hold money as a store of wealth is a barometer of the 

degree of our distrust of our own calculations and conventions 

concerning the future (Keynes 1937a: 116). 

As mentioned earlier, the most charitable reading of Keynes is to say he held what I referred to in 

Chapter 9 as a Horvitz-style decision rule. If the expected return of an investment is vague over 

[a, b] then its ‘value’ is given by (1 - r)a + rb, where r Î [0, 1] is a measure of confidence. By 

the 1937 article he has become more interested in the special case where confidence has collapsed 

and r is approaching 0. This theory would explain all the quotes here, provided we make the safe 

assumption that ‘cold calculation’ would only have us spend x on an investment with expected 

return [a, b] when a ³ x. In particular any interpretation of the underlying decision theory here 

will have to give some role to ‘whim or sentiment or chance’, and I give it a variable, ‘r’. With 

this theory I have the extensions needed to avoid Runde’s objection to Davidson. I have a 

continuum of degrees of uncertainty, rather than a raw dichotomy, and I have an explanation of 

why it is ‘sensible’ to prefer gambles with known expected returns, at least when r is relatively 

low. 
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This theory is meant to serve two related purposes. It is meant to show why we might prefer 

money to debts, even though our best estimate of the expected return of the debts is positive; and, 

again, it is meant to show why we might prefer debts to investments even when our best estimate 

of the expected return of the investment is higher. And I think if the decision rule stipulated were 

plausible, it would show that uncertainty did have an economic effect. In particular, I think it 

would show both that in times of crises when r heads down, the level of investment will decrease 

even with other things being equal, and that collective action can be justified even when individual 

action is not18. 

The decision theory doesn’t, however, seem plausible. First, there are the technical problems 

presented for this theory in chapter 9. I won’t go over these again, except to note that they gave 

implausible results whenever we could expect uncertainty to increase in the near future. When 

this was the case, these theories make recommendations which we know they would reverse 

whatever information comes in. If it is stipulated that the only possible types of information that 

will come in will not increase uncertainty, this problem goes away. I leave it to the reader to 

determine how much such a restriction would limit the applicability of this theory, because I think 

there is a more serious philosophical objection. 

The problem is just the one I raised against Levi’s two-step decision theories. What precisely is 

r supposed to represent? If it is some kind of belief, its effects should have been incorporated into 

the degrees of belief. If it is some kind of desire, its effects should have been incorporated into 

the evaluation of each of the states. This objection could be avoided, perhaps, if Keynes was trying 

to argue against the theory that investors just maximise dollar expected returns. It isn’t entirely 

clear who Keynes does think he is arguing against at some points. But if this is his enemy he is 

fighting a straw man, one who is vulnerable to much simpler objections. Whoever thought that 
 

18 That is, the government can make sets of investments which are expected to be profitable even though 

none of the individual investments are expected to be profitable. 
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all investment is profit driven, that no one ever went into business because they thought it would 

be fun to run a newspaper? Keynes’s only viable opponents here are saying that investors calculate 

the expected return, in utils, of each possible investment and choose the one whose returns are 

highest. Now, perhaps, for many investors dollar returns are the most important factor in 

determining util returns, but they are certainly not the only factor. 

If r represents something which is neither a belief nor a desire, then it is hard to see what effect 

it could have on action. Perhaps there are some exceptions to the Humean belief-desire model of 

explaining agent’s actions, for example in actions which are caused by the agent’s values, but 

these exceptions are a million miles away from the kind of cases Keynes considers. And Keynes 

doesn’t seem to appeal to such exemptions. After all, he describes investment decisions made 

where the ‘cold calculations’ do not determine what should be done as being made by ‘whim or 

sentiment or chance’. Now whims and sentiments are surely desires, although chance is in a 

different boat. If he had just said ‘chance’ here, he may have committed himself to the decision 

theory I called Caprice; and since there turn out to be good arguments for Caprice, this would 

have been a prescient move. But he didn’t make it; rather Keynes, like Levi, seems to be 

committed to a kind of mental state which must both be and not be a desire to do the work he 

requires of it. So even if the technical objections based around Monte Hall type cases are not 

persuasive because the counterexamples are so fantastic, there are philosophical objections to this 

position based around its implausible assumptions about mental causation. 

11.6 Disquietude 

There are some comments from Keynes that suggest this reading is unfair. Rather than having a 

distinctive decision theory, he perhaps has a distinctive theory about what ought to enter into the 

decision-theoretic calculations. The standard theory for why there is a demand for insurance is 

the falling marginal utility of money. Agents purchase insurance, and accept a lower expected 

dollar return because with insurance their expected util return, at the end of the duration of the 
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insurance, is higher than if they hadn’t purchased. This is the story given in, for example, 

Friedman and Savage (1952), where the existence of demand for insurance is taken as evidence 

for the declining marginal utility of money. But there is another reason agents might buy 

insurance. They might simply feel happier, over the duration of the insured period, knowing that 

they have insurance and are hence exposed to fewer risks or uncertainties than otherwise. If this 

is true, then their expected ‘wealth’ in both dollars and utils at the end of a period might be lower 

if they insure than if otherwise, but it will be worthwhile because of the benefits during the period. 

Keynes suggests that this same desire for quietude can cause a demand for money. I presume, 

though it isn’t entirely clear, that this desire should be included within the precautionary motives 

for holding money. 

There are not two separate factors affecting the rate of investment, 

namely, the schedule of the marginal efficiency of capital [the expected 

return of investments] and the state of confidence. The state of 

confidence is relevant because it is one of the major factors determining 

the former (GT: 149). 

For the fact that each individual investor flatters himself that his 

commitment is “liquid” ... calms his nerves and makes him much more 

willing to run a risk (GT: 160). 

The possession of actual money lulls our disquietude; and the premium 

which we require to make us part with money is the measure of the 

degree of our disquietude (Keynes 1937a: 116). 

A liquidity premium ... is not even expected to be rewarded. It is a 

payment, not for the expectation of increased tangible income at the end 
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of the period, but for an increase sense of comfort and confidence 

during the period (Keynes 1938b: 293-4) 

This explanation of the demand for certain returns is in some ways conservative and some ways 

radical. It is conservative because it doesn’t immediately change the technical properties of 

preference. Many of the heterodox theories of preference which have been advocated as responses 

to the Allais and Ellsburg paradoxes19 drop such theoretical restrictions as transitivity. A more 

dramatic response would be to say that the nature of a gamble changes when compared to a certain 

return. So when choosing between a and a certain million dollars, what matters is not the 

attractiveness of a, but of a´ which is defined as being ‘a when one of the choices is a million 

dollars’. As Sobel (1989: 273-5) points out such theories have to drop the assumption that it is 

intelligible to make pairwise comparisons between any two goods. We cannot, for example, even 

compare a´ with $500,000, and hence there is nothing remotely corresponding to the value of a´. 

By contrast, the theory Keynes appears to be advocating is it least in principle conservative on 

this front. Agents are still going round maximising expected utility, only now it is expected utility 

over a period, not at the end of the period. 

But it isn’t all conservative. Explaining economic decisions in terms of the disquietude of the 

investor is to discard the distinction between investment and consumption. It was always known 

that there were some goods that were not comfortably categorised, particularly cars, but this move 

makes every good in part a consumption good. This isn’t important just because some helpful 

classifications have to be questioned. Rather, its importance flows from its implications for the 

norms for investment. It is always irrational to make an investment which will incur a sure loss. 

This principle is used to derive wide-ranging implications for decision-theory. But it is not 

irrational to make a consumption decision which will result in sure loss at the end of a period in 

 

19 Many of these are discussed in Chapter 9. 
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exchange for goods during that period. It is not always irrational to pay ten dollars for a movie 

ticket, even though this will incur a sure loss in the sense the buyer will surely have less wealth 

at the end of the movie than if they had not bought the ticket. 

Given this, some of the technical complaints I raised against the Horvitz-style decision rule in 

chapter 9 might miss their target. Indeed, even the philosophical complaint about the role of r 

might be irrelevant. If the expected returns only measure how much various gambles will be worth 

at the end of the period20, then some desires have not yet been included in our calculations. That 

is, we can say that r represents some desires without being accused of double-counting. So far 

this all seems to work, and explain the role of uncertainty. Indeed, I think this is the best extension 

of Keynes’s views in this area. 

While there seem to be few theoretical objections which can be raised at this point, there is a 

rather telling empirical objection. The only role given to disquietude in this theory is in deciding 

between alternatives where the returns on at least one are uncertain. But it seems implausible that 

disquietude could have this effect, but have no effect when choices are being made between 

alternatives where at least one is risky. I doubt the feelings of disquiet would be any different 

were I to have a large fortune riding on a roulette wheel or a baseball game. Disquietude arises 

because we don’t know what will happen; maybe for some people it is greater when we don’t 

know the expected returns, but I doubt it. Again, perhaps there is an explanation for demand for 

money in the real world to be found here, but uncertainty plays no role in the story, or at best a 

small cameo. 

11.7 Summary 

The last two chapters have investigated whether Keynes was correct in thinking that there are 

interesting economic consequences of his philosophical views. Chapter 10 argued that the best 

 

20 I am assuming the measurements here are conducted in utils. 
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interpretation of Keynes’s theory of probability is the theory advocated in this dissertation. In 

particular I provide an explanation of weight which is consistent with the motivation behind its 

introduction in the TP and use in the GT, although not with its explicit formulation in the TP. 

However, this chapter showed that this theory bears no load in economic theorising. However we 

interpret Keynes’s views about the demand for money, or for returns which are more stable in 

terms of money, any work which is supposed to be done by uncertainty can be done just as well 

by risk. Indeed there seems to be no situations in which uncertainty is supposed to play a causal 

role in which risk wouldn’t have the same effect. This is not to say that Keynes is wrong here. If 

anything his theories are strengthened at this point by the fact that he doesn’t need a controversial, 

if correct, theory of uncertainty. 
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