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Abstract

Hans Reichenbach famously argued that the geometry of spacetime is conventional in rela-
tivity theory, in the sense that one can freely choose the spacetime metric so long as one is
willing to postulate a “universal force field”. Here we make precise a sense in which the field
Reichenbach defines fails to be a “force”. We then argue that there is an interesting and
perhaps tenable sense in which geometry is conventional in classical spacetimes. We con-
clude with a no-go result showing that the variety of conventionalism available in classical
spacetimes does not extend to relativistic spacetimes.
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Reichenbach (1958) famously argued that spacetime geometry in relativity theory is

conventional, in the following precise sense. Suppose that the geometry of spacetime is given

by a model of general relativity, (M, gab).
1 Reichenbach claimed that one could equally well

represent spacetime by any other (conformally equivalent) model,2 (M, g̃ab), so long as one
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1A relativistic spacetime is an ordered pair (M, gab), where M is a smooth, connected, paracompact,
Hausdorff 4-manifold and gab is a smooth Lorentzian metric. Relativistic spacetimes are models of general
relativity. For background, including details of the “abstract index” notation used here, see Malament (2012)
or Wald (1984).

2Two metrics gab and g̃ab are said to be conformally equivalent if there is some non-vanishing scalar field
Ω such that gab = Ω2g̃ab. Two spacetime metric are conformally equivalent just in case they agree on causal
structure, i.e., they agree with regard to which vectors at a point are timelike or null. Reichenbach did
not insist on conformal equivalence when he originally stated his conventionality thesis, but, as Malament
(1986) argues, given the he argued elsewhere that the causal structure of spacetime was non-conventional,
to make his views consistent it seems one needs to insist that metric structure is conventional only up to a
conformal transformation.
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was willing to postulate a “universal force field” Fab, defined by gab = g̃ab − Fab. Various

commentators have had the intuition that this universal force field is “funny”i.e., that it is

not a “force field” in any standard sense.3 We will begin by presenting a concrete example

that, we believe, undermines the interpretation of as a “force field” at all. We will next show

that in classical spacetimes, there is a robust sense in which arbitrary choices of spacetime

geometry can be off-set by postulating a universal force field, albeit with a rather different

trade-off equation from the one Reichenbach proposed. Indeed, the force field one needs

to postulate in that context is not so funny after all: its behavior is strikingly similar to

standard force fields, such as the electromagnetic field. Turning back to relativity theory,

we will prove a no-go result to the effect that the trade-off equation we describe for classical

spacetimes does not have a relativistic analog. The upshot is that there is an interesting

and perhaps tenable sense in which geometry is conventional in classical spacetimes, but a

the relativistic setting Reichenbach’s position seems much less appealing.4

Consider the following example. Let (M, ηab) be Minkowski spacetime and let ∇ be the

Levi-Civita derivative operator compatible with ηab.
5 Choose a coordinate system t, x, y, z

such that ηab = ∇at∇bt−∇ax∇bx−∇ay∇by −∇az∇bz. Now consider a second spacetime

(M, g̃ab), where g̃ab = Ω2ηab for Ω(t, x, y, z) = x2+1/2, and let ∇̃ be the Levi-Civita derivative

operator compatible with g̃ab. Then ξ̃a = Ω−1
(

∂
∂t

)a
is a smooth timelike vector field on

M with unit length relative to g̃ab. Let γ be the maximal integral curve of ξ̃a through

the point (0, 1/
√

2, 0, 0). One can confirm that the acceleration of this curve, relative to

∇̃, is given by ξ̃n∇̃nξ̃
a = 2

√
2
(

∂
∂t

)a
for all points on γ[I]. Meanwhile, γ is a geodesic

3We get the term “funny force” from Malament (1986), though it may predate him. Other classic
discussions of Reichebach’s conventionality thesis, including various expressions of skepticism, can be found
in Sklar (1977), Glymour (1977), and Norton (1994).

4Of course, there are many reasons why one might be skeptical about claims concerning the convention-
ality of geometry, aside from the character of the force law. (See Sklar (1977) for a detailed discussion.)
Our point here is to clarify just how a conventionality thesis would go if one were serious about postulating
a universal force field in any recognizable sense.

5Minkowski spacetime is a relativistic spacetime (M,ηab) where M is R4 and (M,ηab) is flat and geodesi-
cally complete.
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(up to reparameterization) of ∇, the Levi-Civita derivative operator compatible with gab.

According to Reichenbach, it would seem to be a matter of convention whether (1) γ[I] is the

worldline of a free massive point particle in (M, ηab) or (2) γ[I] is the worldline of a massive

point particle in (M, g̃ab), accelerating due to the universal force field Fab = g̃ab − ηab. But

now observe: along γ[I], the conformal factor Ω is equal to 1which means that along γ[I],

gab = g̃ab and thus Fab = 0. And so, if one adopts option (2) above, one is committed to the

view that the universal force field Fab can accelerate particles even where the field vanishes.

It follows that the field Fab cannot be proportional to the acceleration of a body.

This example shows that Fab is an unusual force field, indeedso unusual that it hardly

deserves the name force at all. This is especially striking because there is a sense, which we

will presently describe, in which classical spacetimes do support a kind of Reichenbachian

conventionality about geometry, though the construction is quite different from what Re-

ichenbach describes. To motivate our construction, we will begin by considering (an analog

of) Reichenbach’s trade-off equation in a classical spacetimes. Suppose the geometry of

spacetime is given by a classical spacetime (M, ta, h
ab,∇).6 Direct analogy with Reichen-

bach’s trade-off equation would have us consider classical metrics t̃a and h̃ab and universal

force fields F a and Gab satisfying ta = t̃a+Fa and hab = h̃ab+Gab. We might want to assume

that Gab must be symmetric, since h̃ab is assumed to be a classical spatial metric. And as in

the relativistic case, we might insist that these new metrics preserve causal structure—which

here would mean that the compatibility condition t̃ah̃
ab = 0 must be met, and that simul-

taneity relations between points must be preserved by the transformation, which means that

tah̃
ab = 0 and t̃ah

ab = 0. Together, these imply that GabFb = 0.

6A classical spacetime is an ordered quadruple (M, ta, h
ab,∇), where M is a smooth, connected, para-

compact, Hausdorff 4-manifold, ta and hab are smooth fields satisfying tah
ab = 0 that can be interpreted as

a “temporal metric” and a “spatial metric”, respectively, and ∇ is a smooth derivative operator satisfying
the compatibility conditions ∇atb = 0 and ∇ah

ab = 0. Classical spacetimes are models of Newtonian grav-
itation and geometrized Newtonian gravitation (sometimes, Newton-Cartan theory). For more on classical
spacetimes, see Malament (2012).
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Given these trade-off equations, Reichenbachian conventionalism about classical space-

time geometry might go something like this: the metrics (ta, h
ab) are merely conventional

since we could always use (t̃a, h̃
ab) instead, so long as we also postulate universal forces Fa

and Gab. One could perhaps investigate this proposal to see how changes in the classical

metrics affect the associated families of compatible derivative operators, or even just to un-

derstand what the degrees of freedom are. But there is an immediate sense in which this

proposal is ill-formed. The issue is that the metrical structure of a classical spacetime does

not have a close relationship to the acceleration of curves or to the motion of bodies. Ac-

celeration is determined relative to a choice of derivative operator, ∇, and in general there

are infinitely many derivative operators compatible with any pair of classical metrics. All

of these give rise to different standards of acceleration. And so it is not clear that the fields

Fa and Gab bear any relation to the acceleration of a body. As in the relativistic example

given above, this counts against interpreting them as force fields at all.

These considerations suggest that Reichenbach’s force field does not do any better in

Newtonian gravitation than it does in general relativity. But it also points in the direction

of a different route to conventionalism about classical spacetime geometry. The proposal

above failed because acceleration is determined relative to a choice of derivative operator, not

classical metrics. Could it be that the choice of derivative operator in a classical spacetime is

a matter of convention, so long as the choice is appropriately offset by some sort of universal

force field? We claim that the answer is “yes”. And, perhaps surprisingly, the universal

force field is not all that funny.

Proposition 1. Fix a classical spacetime (M, ta, h
ab,∇), and consider an arbitrary deriva-

tive operator on M , ∇̃, which we assume to be compatible with ta and hab. Then there exists
a unique anti-symmetric field Fab such that given any timelike curve γ with unit tangent
vector field ξa, ξn∇nξ

a = 0 if and only if ξn∇̃nξ
a = F a

nξ
n, where F a

nξ
n = hamFmnξ

n.

Proof. If such a field exists, then it is necessarily unique, since the defining relation

determines its action on all vectors (because the space of vectors at a point is spanned by
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the timelike vectors). So it suffices to prove existence. Since ∇̃ is compatible with ta and hab,

it follows from Prop. 4.1.3 of Malament (2012) that the Ca
bc field relating it to ∇ must be of

the form Ca
bc = 2hant(bκc)n, for some anti-symmetric field κab.

7 Pick some timelike geodesic

γ of ∇, and suppose that ξa is its unit tangent vector field. Then the acceleration relative

to ∇̃ is given by ξn∇̃nξ
a = ξn∇nξ

a−Ca
nmξ

nξm = −2hart(nκm)rξ
nξm = −2harκmrξ

m. So we

can take Fab = 2κab and we have existence. �

This proposition means that one is free to choose any derivative operator one likes (com-

patible with the fixed classical metrics) and, by postulating a universal force field Fab, one

can recover all of the allowed trajectories of either a model of standard Newtonian gravita-

tion or a model of geometrized Newtonian gravitation. Thus, since the derivative operator

determines both the collection of geodesics—i.e., non-accelerating curvesand the curvature

of spacetime, there is a Reichenbachian sense in which both acceleration and curvature are

conventional in classical spacetimes. Most importantly, the field Fab makes good geometrical

sense as a force field. Like the Faraday tensor, which represents the electromagnetic field,

the field defined in Prop. 1 is an anti-symmetric, rank 2 tensor field; moreover, this field is

related to the acceleration of a body in precisely the same way that the Faraday tensor is.

So Fab as defined in Prop. 1 is not a “funny” force at all.

It is interesting to note that from this perspective, geometrized Newtonian gravitation

and standard Newtonian gravitation are just special cases of a much more general phe-

nomenon. Specifically, one can always choose the derivative operator associated with a

classical spacetime in such a way that the curvature satisfies the geometrized Poisson equa-

tion and the allowed trajectories of bodies are geodesics (yielding geometrized Newtonian

gravitation), or one can choose the derivative operator so that the curvature vanishesand

7The notation of Ca
bc fields used here is explained in Malament (2012, Ch. 1.7) and Wald (1984, Ch. 3).

Briefly, fix a derivative operator ∇ on a smooth manifold M . Then any other derivative operator ∇̃ can be
written as ∇̃ = (∇, Ca

bc), where Ca
bc is a smooth, symmetric (in the lower indices) tensor field that allows

one to express the action of ∇̃ on an arbitrary tensor field in terms of the action of ∇ on that field.
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when one makes this second choice, if other background geometrical constraints are met,

the force field takes on the particularly simple form Fab = 2∇[aϕtb], for some scalar field ϕ

that satisfies Poisson’s equation (yielding standard Newtonian gravitation). These are non-

trivial facts, but they arguably indicate that some choices of derivative operator are more

convenient to work with than others (because the associated Fab fields take simple forms),

and not necessarily that these choices are canonical.8

Now let us return to the original question, concerning conventionality about geometry in

relativity theory. We have now seen that in classical spacetimes, there is a trade-off between

choice of derivative operator and a not-so-funny universal force field that does yield a kind

of Reichenbachian conventionality. Does a similar result hold in relativity? The analogous

proposal would go as follows. Fix a relativistic spacetime (M, gab), and let ∇ be the Levi-

Civita derivative operator associated with gab. Now consider another torsion-free derivative

operator ∇̃.9 We know that ∇̃ cannot be compatible with gab, but we can insist that causal

structure is preserved, and so we can require that there be some metric g̃ab = Ω2gab such that

∇̃ is compatible with g̃ab. The question we want to ask is this. Is there some (anti-symmetric,

rank 2) tensor field Fab such that, given a curve γ, γ is a geodesic (up to reparameterization)

relative to gab just in case its acceleration relative to ∇̃ is given by F a
nξ̃

n, where ξ̃a is the

tangent field to γ with unit length relative to g̃ab? The answer is “no”, as can be seen from

the following proposition.

8There is certainly more to say here regarding what, if anything, makes the classes of derivative operators
associated with standard Newtonian gravitation and geometrized Newtonian gravitation “special”, in light
of Prop. 1. Several arguments in the literature might be taken to apply. For instance, though he does not
show anything as general as Prop. 1, Glymour (1977) has observed that one can think of the gravitational
force in Newtonian gravitation as a Reichenbachian universal force. He goes on to resist conventionalism
by arguing that geometrized Newtonian gravitation is better confirmed, since it is empirically equivalent to
Newtonian gravitation (with the funny force), but postulates strictly less. For an alternative perspective
on the relationship between Newtonian gravitation and geometrized Newtonian gravitation, see Weatherall
(2013). A second argument for why geometrized Newtonian gravitation should be preferred to standard
Newtonian gravitationone that can likely be extended to the present contexthas recently been offered by
Knox (2013). But we will not address this question further in the present paper.

9An interesting question that we do not address here is whether the torsion of the derivative operator
can be seen as conventional in a Reichenbachian sense.
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Proposition 2. Let (M, gab) be a relativistic spacetime, let g̃ab = Ω2gab be a metric confor-
mally equivalent to gab, and let ∇ and ∇̃ be the Levi-Civita derivative operators compatible
with gab and g̃ab, respectively. Suppose Ω is non-constant.10 Then there is no tensor field
Fab such that an arbitrary curve γ is a geodesic relative to ∇ if and only if its acceleration
relative to ∇̃ is given by F a

nξ̃
n, where ξ̃n is the tangent field to γ with unit length relative

to g̃ab.

Proof. Since gab and g̃ab are conformally equivalent, their associated derivative operators

are related by ∇̃ = (∇, Ca
bc), where Ca

bc = −1
2
Ω−1 (δab∇cΩ

2 + δac∇bΩ
2 − gbcgar∇rΩ

2).

Moreover, given any smooth timelike curve γ, if ξa is the tangent field to γ with unit length

relative to gab, then ξ̃a = Ω−1ξa is the tangent field to γ with unit length relative to g̃ab.

A brief calculation reveals that if γ is a geodesic relative to ∇, then the acceleration of γ

relative to ∇̃ is given by ξ̃n∇̃nξ̃
a = ξ̃n∇nξ̃

a − Ca
nmξ̃

nξ̃m = Ω−3 (ξaξn∇nΩ− gar∇rΩ). Now

suppose that a tensor field Fab as described in the proposition existed. It would have to

satisfy Ω−1g̃anFnmξ
m = Ω−3 (ξaξn∇nΩ− gar∇rΩ) for every unit (relative to gab) vector field

ξa tangent to a geodesic (relative to ∇). Note in particular that Fab must be well-defined

as a tensor at each point, and so this relation must hold for all unit timelike vectors at any

point p, since any vector at a point can be extended to be the tangent field of a geodesic

passing through that point. Pick a point p where ∇aΩ is non-vanishing (which must exist,

since we assume Ω is non-constant), and consider an arbitrary pair of distinct, co-oriented

unit (relative to gab) timelike vectors at that point, µa and ηa. Note that there always exists

some number α such that ζa = α(µa + ηa) is also a unit timelike vector. Then it follows

that,

g̃anFnmζ
m =

1

Ω2
(ζaζn∇nΩ− gar∇rΩ) =

1

Ω2

(
α2 (µaµn + µaηn + ηaµn + ηaηn)∇nΩ− gar∇rΩ

)
.

10If Ω were constant, then the force field Fab = 0 would meet the requirements of the proposition. But
metrics related by a constant conformal factor are usually taken to be physically equivalent, since they differ
only by an overall choice of units.
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But since Fab is a linear map, we also have

g̃anFnmζ
m = αg̃anFnmµ

m+g̃anFnmη
m =

α

Ω2
(µaµn∇nΩ− gar∇rΩ)+

α

Ω2
(ηaηn∇nΩ− gar∇rΩ) .

These two expressions must be equal, which, with some rearrangement of terms, implies

that

(2α− 1)gar∇rΩ = α
[
(1− α)(µaµn + ηaηn)− 2αη(aµn)

]
∇nΩ.

But this expression yields a contradiction, since the left hand side is a vector with fixed

orientation, independent of the choice of µa and ηa, whereas the orientation of the right

hand side will vary with µa and ηa, which were arbitrary. Thus Fab cannot be a tensor at p.

�

So it would seem that we do not have the same freedom to choose between derivative

operators in general relativity that we have in classical spacetimes—at least not if we want

the “universal force field” to take the form of familiar force fields. Of course, one might object

that the force law could well be more complicated. And indeed, given a relativistic spacetime

(M, gab), a conformally equivalent metric g̃ab, and their respective derivative operators, ∇

and ∇̃, there is always some tensor field such that we can get a “funny force” trade-off.

Specifically, a curve γ will be a geodesic relative to ∇ just in case its acceleration relative

to ∇̃ is given by ξ̃n∇̃nξ̃
a = Ga

nmξ̃
nξ̃m, where ξ̃a is the unit (relative to g̃ab) vector field

tangent to γ, and Ga
bc = −(Ω−1δab∇cΩ + Ca

bc), with Ca
bc the field relating ∇̃ to ∇. That

the field Ga
bc exists should be no surprise—it merely reflects the fact that the action of one

derivative operator can always be expressed in terms of any other derivative operator and a

rank three tensor. This Ga
bc field presents a more compelling force law than Reichenbach’s

own universal force field, since Ga
bc will always be proportional (in a generalized sense) to

the acceleration of a body, just as one should expect of a force field. In particular, it will

vanish precisely when the acceleration of the body does, which as we have seen is not the
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case for Reichenbach’s force field. So if one wants to hold on to a Reichenbachian position

regarding the conventionality of geometry in general relativity, one can, though one should

prefer a trade-off equation involving Ga
bc to Reichenbach’s own proposal. Still, a “force

field” represented by a rank three tensor cannot be expected to behave like familiar forces,

and so although this proposal may meet a bare threshold of coherence, it is still unappealing

insofar as it requires one to postulate a novel force field that likely has strange properties.
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