
UC Irvine
UC Irvine Previously Published Works

Title
The Geometry of Conventionality

Permalink
https://escholarship.org/uc/item/2n4396n1

Journal
Philosophy of Science, 81(2)

ISSN
0270-8647

Authors
Weatherall, James Owen
Manchak, John Byron

Publication Date
2014-04-01

DOI
10.1086/675680
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2n4396n1
https://escholarship.org
http://www.cdlib.org/


The Geometry of Conventionality

James Owen Weatherall

Department of Logic and Philosophy of Science

University of California, Irvine, CA 92697

John Byron Manchak

Department of Philosophy
University of Washington, Seattle, WA 98105

Abstract

There is a venerable position in the philosophy of space and time that holds that the ge-
ometry of spacetime is conventional, provided one is willing to postulate a “universal force
field”. Here we ask a more focused question, inspired by this literature: in the context of our
best classical theories of space and time, if one understands “force” in the standard way, can
one accommodate different geometries by postulating a new force field? We argue that the
answer depends on one’s theory. In Newtonian gravitation the answer is “yes”; in relativity
theory, it is “no”.

Keywords: Reichenbach, conventionality of geometry, general relativity, Newton-Cartan
theory, geometrized Newtonian gravitation

There is a long history of debate in the philosophy of natural science concerning the

epistemology of physical geometry. One venerable—if now unfashionable—position in this

literature has held that the geometry of space and time is a matter of convention—that is,

that geometrical facts are so radically underdetermined by possible empirical tests that we

are free to postulate any geometry we like in our physical theories. Such a view, in various

guises, has been defended by Poincaré (1905), Schlick (1920), Reichenbach (1958), Carnap

(1922, 1966), and Grünbaum (1963, 1968), among others.1 All of these authors present the

same basic argument. We may, by some process or other, come to believe that we have

discovered some facts about the geometry of space and time. But alas, we could always,

Email addresses: weatherj@uci.edu (James Owen Weatherall), manchak@uw.edu (John Byron
Manchak)

1For a classic overview of conventionalism about geometry, see Sklar (1974).
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by postulating some heretofore unknown force or interaction, construct another physical

theory, postulating different facts about the geometry of space and time, that is in-principle

empirically indistinguishable from the first.2

Of course, at some abstract level of description, a thesis like this is irrefutable. But at

that same level of abstractness, as has often been observed, it is also uninteresting. We

can be conventionalists about geometry, perhaps, but in the same way that we could be

conventionalists about anything. In this paper we will take up a more focused question,

inspired by the conventionality of geometry literature but closer to the ground floor of

spacetime physics. The question is this. If one understands “force” in the standard way

in the context of our best classical (i.e., non-quantum) theories of space and time, can

one accommodate different choices of geometry by postulating some sort of “universal force

field”? Surprisingly, the answer depends on the theory. In Newtonian gravitation, we will

argue, there is a sense in which geometry is conventional, in precisely this way. But we

will state and prove a no-go result to the effect that no analogous proposal can work in

relativity theory. The upshot is that there is an interesting and perhaps tenable sense in

which geometry is conventional in classical spacetimes, but in the relativistic setting the

conventionalist’s position seems comparatively less appealing.3

The strategy from here will be as follows. We will begin by discussing “forces” and “force

fields” in Newtonian gravitation and relativity theory. We will then turn to an influential

2This is not to say that there are no significant differences between these authors (there are) or that the
argument we describe above is the only one they offer (it is not). To give an example, Grünbaum (1963,
1968) argues that since spacetime points are dense, there can be no intrinsic facts about “how many” of
them lie between two points, and thus metrical facts cannot be intrinsic. But this will not be the occasion
for a detailed discussion of these authors’ views or their arguments for them. As will presently become clear,
our purpose is to ask and answer a related question that we take to be of interest independently of the
details of its relation to these historical debates.

3Of course, there are many reasons why one might be skeptical about claims concerning the convention-
ality of geometry, aside from the character of the force law. (See Sklar (1974) for a detailed discussion.)
Our point here is to clarify just how a conventionality thesis would go if one were serious about postulating
a universal force field in any recognizable sense.
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and unusually explicit version of the argument described above, due to Reichenbach (1958).4

Although the viability of Reichenbach’s recipe for constructing “universal force fields” is

often taken for granted in the literature, we will present an example here that we take to

show that the field Reichenbach defines cannot be interpreted as a force field in any standard

sense.5 We will then use the failure—for much simpler reasons—of an analogous proposal

in the context of Newtonian gravitation to motivate a different approach to constructing

universal force fields. As we will argue, this alternative approach works in the Newtonian

context, but does not work in relativity theory. We will conclude with some remarks on

the significance of these results and a discussion of one option left open to the would-be

conventionalist in relativity theory.

In what follows, the argument will turn on how one should understand terms such as

“force” and “force field”. So we will now describe how we use these terms here.6 By “force”

4 Reichenbach presents this proposal in the context of an argument for the conventionality of space, not
spacetime (Reichenbach, 1958, cf. pg. 33 fn.1). That said, as we read him, he took the (metrical) geometry
of spacetime in relativity theory to be conventional as well, and so one might reasonably think his strategy for
constructing a universal force field was meant to generalize to the spacetime context. In what follows, we will
take this attribution for granted. But whether this is a just reading of Reichenbach does not much matter for
our purposes, since versions of this (mis)reading appear to be endorsed, at least implicitly, in several classic
sources, such as Sklar (1974), Glymour (1977), Friedman (1983), Malament (1986), and Norton (1994).
Indeed, even Carnap (1958, pg. vii), in the preface to the English translation of Reichenbach’s Philosophy
of Space and Time, takes for granted that Reichenbach’s construction applies to the geometry of relativity
theory—that is, to spacetime geometry. So, Reichenbach’s intentions notwithstanding, it is of some interest
that the construction does not work.

5 Regarding whether Reichenbach’s “universal force” should really be conceived as a force, it is interesting
to note that Carnap (1966, pg. 169) proposes the expression “universal effect” instead of “universal force;”
that Grünbaum (1968, pg. 36) and Salmon (1979, pg. 25) both argue that Reichenbach’s universal force
construction is “metaphorical” (though what it is a metaphor for is somewhat unclear); and Sklar (1974,
pg. 99) describes the terminology of universal forces as “misleading” (though he explicitly says universal
forces should deflect particles from inertial motion). But for reasons described in fn. 4, we are setting the
historical question of just what Reichenbach intended and focusing on the specific question we have posed
above. Our claim here with regard to Reichenbach is only that his proposal does not provide an affirmative
answer to our question. That said, we take our question to be the one of interest: if conventionalism requires
not a new kind of force as we ordinarily understand it, but rather some other new kind of entity, presumably
that dampens the appeal of the position.

6What follows should not be construed as a full account or explication of either “force” or “force field”.
Instead, our aim is to explain how we are using the terms below. That said, we believe that any reasonable
account of “force” or “force field” in a Newtonian or relativistic framework would need to agree on at least
this much, and so when we refer to forces/force fields “in the standard sense,” we have in mind forces or
force fields that have the character we describe here.
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we mean some physical quantity acting on a massive body (or, for present purposes, a

massive point particle). In both general relativity and Newtonian gravitation, forces are

represented by vectors at a point.7 We assume that the total force acting on a particle at

a point (computed by taking the vector sum of all of the individual forces acting at that

point) must be proportional to the acceleration of the particle at that point, as in F = ma,

which holds in both theories. We understand forces to give rise to acceleration, and so we

expect the total force at a point to vanish just in case the acceleration vanishes. Since the

acceleration of a curve at a point, as determined relative to some derivative operator, must

satisfy certain properties, it follows that the vector representing total force must also satisfy

certain properties. In particular, in relativity theory, the acceleration of a curve at a point is

always orthogonal to the tangent vector of the curve at that point, and thus the total force

on a particle at a point must always be orthogonal to the tangent vector of the particle’s

worldline at that point.8 Similarly, in Newtonian gravitation, the acceleration of a timelike

curve must always be spacelike, and so the total force on a particle at a point must be

spacelike as well.9

7 Here and throughout, we are taking for granted that our theories are formulated on a manifold. More
precisely, we take a model of relativity theory to be a relativistic spacetime, which is an ordered pair (M, gab),
where M is a smooth, connected, paracompact, Hausdorff 4-manifold and gab is a smooth Lorentzian metric.
A model of Newtonian gravitation, meanwhile, is a classical spacetime, which is an ordered quadruple
(M, tab, h

ab,∇), where M is again a smooth, connected, paracompact, Hausdorff 4-manifold, tab and hab are
smooth fields with signatures (1, 0, 0, 0) and (0, 1, 1, 1), respectively, which together satisfy tabh

bc = 0, and ∇
is a smooth derivative operator satisfying the compatibility conditions ∇atbc = 0 and ∇ah

ab = 0. The fields
tab and hab may be interpreted as a (degenerate) “temporal metric” and a (degenerate) “spatial metric”,
respectively. Note that the signature of tab guarantees that locally, we can always find a field ta such that
tab = tatb. In the special case where this field can be smoothly extended to a global field with the stated
property, we call the spacetime temporally orientable. In what follows, we will limit attention to temporally
orientable spacetimes, and replace tab with ta. For background, including details of the “abstract index”
notation used here, see Malament (2012) (for both varieties of spacetime) or Wald (1984) (for relativistic
spacetimes).

8To see this, note that given a curve with unit tangent vector ξa, the acceleration of the curve is given
by ξn∇nξ

a. One can immediately confirm that ξa(ξn∇nξ
a) = 1

2ξ
n∇n(ξaξa) = 0, where the last equality

follows because ξa has constant length along the curve.
9A vector ξa at a point in a classical spacetime is timelike if ξata 6= 0; otherwise it is spacelike. The

required result thus follows by observing that given a curve with unit tangent vector ξa, ta(ξn∇nξ
a) =

ξn∇n(ξata) = 0, again because ξa has constant (temporal) length along the curve. Note that one cannot
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A “force field,” meanwhile, is a field on spacetime that may give rise to forces on par-

ticles/bodies at a given point, where the force produced by a given force field may depend

on factors such as the charge or velocity of a body.10 We understand force fields to generate

forces on bodies, and so there can be a force associated with a given force field at a point

just in case the force field is non-vanishing at that point. (The converse need not hold: a

force field may be non-vanishing at a point and yet give rise to forces for only some particles

at that point.) A canonical example of a force field is the electromagnetic field in relativity

theory. Fix a relativistic spacetime (M, gab). Then the electromagnetic field is represented

by the Faraday tensor, which is an anti-symmetric rank 2 tensor field Fab on M . Given a

particle of charge q, the force experienced by the particle at a point p of its worldline is

given by qF a
bξ

b, where ξa is the unit tangent vector to the particle’s worldline at p. Note

that since Fab is anti-symmetric, this force is always orthogonal to the worldline of the par-

ticle, because Fabξ
aξb = 0. In analogy with this case, we will focus attention on force fields

represented by rank 2 (or lower) tensor fields.11

We can now turn to Reichenbach’s proposal.12 Suppose that the geometry of spacetime

is given by a model of general relativity, (M, gab). Reichenbach claimed that one could

equally well represent spacetime by any other (conformally equivalent) model,13 (M, g̃ab), so

say simply “orthogonal” (as in the relativistic case) because in general, the classical metrics do not provide
an unambiguous inner product between timelike and spacelike vectors.

10Note that there is a possible ambiguity here between a “force field” in the present sense, which may
be represented by a tensor field and which gives rise to forces on particles at each point of spacetime, and
a vector field that directly assigns a force to each point of spacetime. We will always use the term in the
former, more general sense.

11It bears mentioning that in general one can understand the other so-called “fundamental forces” as
acting on particles via a force field represented in just this way, though we are not limiting attention to force
fields that correspond to known forces.

12The caveats of fn. 4 notwithstanding.
13Two metrics gab and g̃ab are said to be conformally equivalent if there is some non-vanishing scalar

field Ω such that g̃ab = Ω2gab. Two spacetime metrics are conformally equivalent just in case they agree on
causal structure, i.e., they agree with regard to which vectors at a point are timelike or null. Reichenbach did
not insist on conformal equivalence when he originally stated his conventionality thesis, but, as Malament
(1986) observes, given that Reichenbach argued elsewhere that the causal structure of spacetime was non-
conventional, to make his views consistent it seems one needs to insist that metric structure is conventional

5



long as one was willing to postulate a universal force field Gab, defined by gab = g̃ab +Gab.
14

Various commentators have had the intuition that this universal force field is “funny”—i.e.,

that it is not a “force field” in any standard sense.15 And indeed, given the background

on forces we have just presented, one can immediately identify some confusing features of

Reichenbach’s proposal. For one, Reichenbach does not give a prescription for how the force

field he defines gives rise to forces on particles or bodies. That is, he gives no relationship

between the value of his field Gab at a point and a vector quantity, except to say that the

force field is “universal”, which we take to mean that the relationship between the force

field and the force experienced by a particle at a point does not depend on features of the

particle such as its charge or species. One might imagine that the relationship is assumed

to be analogous to that between other force fields represented by a rank 2 tensor field, such

as the electromagnetic field, and their associated forces at a point. But this does not work.

Given Reichenbach’s definition, it is immediate that Gab must be symmetric, and thus the

vector Ga
bξ

b can be orthogonal to ξa at a point p for all timelike vectors ξa at p—i.e., for all

vectors tangent to possible worldlines of massive particles through p—only if Gab vanishes

at p. These considerations should give one pause about the viability of the proposal. But

they also make its full evaluation difficult, since it is not clear just how Reichenbach’s force

is meant to work.

That said, there is a way to see that Reichenbach’s universal force field is problem-

atic even without an account of how it relates to the force on a particle. Consider the

following example. Let (M, ηab) be Minkowski spacetime and let ∇ be the Levi-Civita

only up to a conformal transformation. Note, though, that requiring conformal equivalence only strengthens
our results. If the conventionalist cannot accommodate conformally equivalent metrics, then a fortiori one
cannot accommodate arbitrary metrics; conversely, if Reichenbach’s proposal fails even in the special case
of conformally equivalent metrics, then it fails in the case of (arguably) greatest interest.

14 A careful reader of (Reichenbach, 1958, pg. 33 fn.1) might notice that he actually characterizes this
field Gab as a potential. This makes the proposal even more puzzling, and so we ignore it for now. For more
on this thought, however, see fn. 26.

15We get the expression “funny force” from Malament (1986), though it may predate him.
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derivative operator compatible with ηab.
16 Choose a coordinate system t, x, y, z such that

ηab = ∇at∇bt −∇ax∇bx −∇ay∇by −∇az∇bz. Now consider a second spacetime (M, g̃ab),

where g̃ab = Ω2ηab for Ω(t, x, y, z) = x2 + 1/2, and let ∇̃ be the Levi-Civita derivative op-

erator compatible with g̃ab. Then ξ̃a = Ω−1
(

∂
∂t

)a
is a smooth timelike vector field on M

with unit length relative to g̃ab. Let γ be the maximal integral curve of ξ̃a through the point

(0, 1/
√

2, 0, 0). The acceleration of this curve, relative to ∇̃, is ξ̃n∇̃nξ̃
a = 2

√
2
(

∂
∂x

)a
for all

points on γ[I]. Meanwhile, γ is a geodesic (up to reparameterization) of ∇, the Levi-Civita

derivative operator compatible with gab. (See figure 1.) According to Reichenbach, it would

seem to be a matter of convention whether (1) γ[I] is the worldline of a free massive point

particle in (M, ηab) or (2) γ[I] is the worldline of a massive point particle in (M, g̃ab), accel-

erating due to the universal force field Gab = ηab − g̃ab. But now observe: along γ[I], the

conformal factor Ω is equal to 1—which means that along γ[I], gab = g̃ab and thus Gab = 0.

And so, if one adopts option (2) above, one is committed to the view that the universal force

field can accelerate particles even where Gab vanishes.

This example shows that Gab cannot be a force field in the standard sense (i.e., as

described above), since a force field cannot vanish if the force it is meant to give rise to is non-

vanishing (or, equivalently, the acceleration associated with that force is non-vanishing). It

appears to follow that, whatever else may be the case about the conventionality of geometry

in relativity theory, the universal force field Reichenbach defines is unacceptable.

The example is especially striking because, as we will presently argue, there is a natural

sense in which classical spacetimes do support a kind of conventionalism about geometry,

though the construction is quite different from what Reichenbach describes. To motivate

our approach, we will begin by considering (an analog of) Reichenbach’s trade-off equation

in classical spacetimes. Suppose the geometry of spacetime is given by a classical spacetime

16Minkowski spacetime is the relativistic spacetime (M,ηab) where M is R4 and (M,ηab) is flat and
geodesically complete.
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(0,1/√2,0,0)

Figure 1: The image of the maximal integral curve γ (depicted by the vertical line) passing through the point
(0, 1/

√
2, 0, 0). According to ∇̃, the acceleration of this curve is 2

√
2
(

∂
∂x

)a
at every point (depicted by the

arrows) even though the “force field” Gab vanishes along the curve. Of course, γ can be reparameterized to
be a geodesic according to the flat derivative operator ∇.

(M, ta, h
ab,∇). Direct analogy with Reichenbach’s trade-off equation would have us consider

classical metrics t̃a and h̃ab and universal force fields Fa and Gab satisfying ta = t̃a + Fa and

hab = h̃ab+Gab. We might want to assume that Gab must be symmetric, since h̃ab is assumed

to be a classical spatial metric. And as in the relativistic case, we might insist that these new

metrics preserve causal structure—which here would mean that the compatibility condition

t̃ah̃
ab = 0 must be met, and that simultaneity relations between points must be preserved

by the transformation, which means that tah̃
ab = 0 and t̃ah

ab = 0. Together, these imply

that GabFb = 0.

Given these trade-off equations, a version of Reichenbach’s proposal might go as follows:

the metrics (ta, h
ab) are merely conventional since we could always use (t̃a, h̃

ab) instead,

so long as we also postulate universal forces Fa and Gab. One could perhaps investigate

this proposal to see how changes in the classical metrics affect the associated families of

compatible derivative operators, or even just to understand what the degrees of freedom

are.17 But there is an immediate sense in which this proposal is ill-formed. The issue is

17One might understand Friedman (1983) to have made some remarks in this direction.
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that the metrical structure of a classical spacetime does not have a close relationship to the

acceleration of curves or to the motion of bodies. Acceleration is determined relative to a

choice of derivative operator and in general there are infinitely many derivative operators

compatible with any pair of classical metrics. All of these give rise to different standards

of acceleration. And so it is not clear that the fields Fa and Gab bear any relation to

the acceleration of a body. As in the relativistic example given above, this counts against

interpreting them as force fields at all.

These considerations suggest that Reichenbach’s force field does not do any better in

Newtonian gravitation than it does in general relativity. But it also points in the direction

of a different route to conventionalism about classical spacetime geometry. The proposal

above failed because acceleration is determined relative to a choice of derivative operator, not

classical metrics. Could it be that the choice of derivative operator in a classical spacetime

is a matter of convention, so long as the choice is appropriately accommodated by some sort

of universal force field? We claim that the answer is “yes”.

Proposition 1. Fix a classical spacetime (M, ta, h
ab,∇) and consider an arbitrary torsion-

free derivative operator on M , ∇̃, which we assume to be compatible with ta and hab. Then
there exists a unique anti-symmetric field Gab such that given any timelike curve γ with
unit tangent vector field ξa, ξn∇nξ

a = 0 if and only if ξn∇̃nξ
a = Ga

nξ
n, where Ga

nξ
n =

hamGmnξ
n.

Proof. If such a field exists, then it is necessarily unique, since the defining relation

determines its action on all vectors (because the space of vectors at a point is spanned by

the timelike vectors). So it suffices to prove existence. Since ∇̃ is compatible with ta and

hab, it follows from Prop. 4.1.3 of Malament (2012) that the Ca
bc field relating it to ∇ must

be of the form Ca
bc = 2hant(bκc)n, for some anti-symmetric field κab.

18 Pick some timelike

18The notation of Ca
bc fields used here is explained in Malament (2012, Ch. 1.7) and Wald (1984, Ch. 3).

Briefly, fix a derivative operator ∇ on a smooth manifold M . Then any other derivative operator ∇̃ can be
written as ∇̃ = (∇, Ca

bc), where Ca
bc is a smooth, symmetric (in the lower indices) tensor field that allows

one to express the action of ∇̃ on an arbitrary tensor field in terms of the action of ∇ on that field.
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geodesic γ of ∇, and suppose that ξa is its unit tangent vector field. Then the acceleration

relative to ∇̃ is given by ξn∇̃nξ
a = ξn∇nξ

a−Ca
nmξ

nξm = −2hart(nκm)rξ
nξm = −2harκmrξ

m.

So we can take Gab = 2κab and we have existence. �

This proposition means that one is free to choose any derivative operator one likes (com-

patible with the fixed classical metrics) and, by postulating a universal force field, one can

recover all of the allowed trajectories of either a model of standard Newtonian gravitation

or a model of geometrized Newtonian gravitation. Thus, since the derivative operator de-

termines both the collection of geodesics—i.e., non-accelerating curves—and the curvature

of spacetime, there is a sense in which both acceleration and curvature are conventional

in classical spacetimes. Most importantly, the field Gab makes good geometrical sense as

a force field. Like the Faraday tensor, the field defined in Prop. 1 is an anti-symmetric,

rank 2 tensor field; moreover, this field is related to the acceleration of a body in precisely

the same way that the Faraday tensor is (except that all particles have the same “charge”),

which means that the force generated by the field Gab on a particle at some point is always

spacelike at that point. Thus Gab as defined in Prop. 1 is not a “funny” force field at all.19

It is interesting to note that from this perspective, geometrized Newtonian gravitation

and standard Newtonian gravitation are just special cases of a much more general phe-

nomenon. Specifically, one can always choose the derivative operator associated with a

classical spacetime in such a way that the curvature satisfies the geometrized Poisson equa-

tion and the allowed trajectories of bodies are geodesics (yielding geometrized Newtonian

gravitation), or one can choose the derivative operator so that the curvature vanishes—and

when one makes this second choice, if other background geometrical constraints are met,

the force field takes on the particularly simple form Gab = 2∇[aϕtb], for some scalar field

19Of course, we have not provided any field equation(s) for Gab, and so some readers might object that
they cannot evaluate whether Gab is “funny” or not. At very least, the analogy with the Faraday tensor is
limited, since one cannot expect Gab to satisfy Maxwell’s equations. This is a fair objection to the specific
claim we make here—though it applies equally well to other such proposals, including Reichenbach’s.
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ϕ that satisfies Poisson’s equation (yielding standard Newtonian gravitation). These are

non-trivial facts, but they arguably indicate that some choices of derivative operator are

more convenient to work with than others (because the associated Gab fields take simple

forms), and not that these choices are canonical.20

Now let us return to relativity theory. We have seen that in classical spacetimes, there is

a trade-off between choice of derivative operator and a not-so-funny universal force field that

does yield a kind of conventionality of geometry. Does a similar result hold in relativity?

The analogous proposal would go as follows. Fix a relativistic spacetime (M, gab), and let ∇

be the Levi-Civita derivative operator associated with gab. Now consider another torsion-free

derivative operator ∇̃.21 We know that ∇̃ cannot be compatible with gab, but we can insist

that causal structure is preserved, and so we can require that there is some metric g̃ab = Ω2gab

such that ∇̃ is compatible with g̃ab.
22 The question we want to ask is this. Is there some

rank 2 tensor field Gab such that, given a curve γ, γ is a geodesic (up to reparameterization)

relative to ∇ just in case its acceleration relative to ∇̃ is given by Ga
nξ̃

n, where ξ̃a is the

tangent field to γ with unit length relative to g̃ab? The answer is “no”, as can be seen from

the following proposition.

Proposition 2. Let (M, gab) be a relativistic spacetime, let g̃ab = Ω2gab be a metric confor-
mally equivalent to gab, and let ∇ and ∇̃ be the Levi-Civita derivative operators compatible

20There is certainly more to say here regarding what, if anything, makes the classes of derivative operators
associated with standard Newtonian gravitation and geometrized Newtonian gravitation “special”, in light
of Prop. 1. Several arguments in the literature might be taken to apply. For instance, though he does not
show anything as general as Prop. 1, Glymour (1977) has observed that one can think of the gravitational
force in Newtonian gravitation as a Reichenbachian universal force. He goes on to resist conventionalism
by arguing that geometrized Newtonian gravitation is better confirmed, since it is empirically equivalent to
Newtonian gravitation (with the funny force), but postulates strictly less. (For an alternative perspective
on the relationship between Newtonian gravitation and geometrized Newtonian gravitation, see Weatherall
(2013).) A second argument for why geometrized Newtonian gravitation should be preferred to standard
Newtonian gravitation—one that can likely be extended to the present context—has recently been offered
by Knox (2013). But we will not address this question further in the present paper.

21An interesting question that we do not address here is whether the torsion of the derivative operator
can be seen as conventional.

22Again, this restriction strengthens the result. If the proposal does not work even in this special case, it
cannot work in general; moreover, the special case is arguably the most interesting.
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with gab and g̃ab, respectively. Suppose Ω is non-constant.23 Then there is no tensor field
Gab such that an arbitrary curve γ is a geodesic relative to ∇ if and only if its acceleration
relative to ∇̃ is given by Ga

nξ̃
n, where ξ̃n is the tangent field to γ with unit length relative

to g̃ab.

Proof. Since gab and g̃ab are conformally equivalent, their associated derivative operators

are related by ∇̃ = (∇, Ca
bc), where Ca

bc = −1/(2Ω2) (δab∇cΩ
2 + δac∇bΩ

2 − gbcgar∇rΩ
2).

Moreover, given any smooth timelike curve γ, if ξa is the tangent field to γ with unit length

relative to gab, then ξ̃a = Ω−1ξa is the tangent field to γ with unit length relative to g̃ab.

A brief calculation reveals that if γ is a geodesic relative to ∇, then the acceleration of γ

relative to ∇̃ is given by ξ̃n∇̃nξ̃
a = ξ̃n∇nξ̃

a − Ca
nmξ̃

nξ̃m = Ω−3 (ξaξn∇nΩ− gar∇rΩ). Now

suppose that a tensor field Gab as described in the proposition existed. It would have to

satisfy Ω−1g̃anGnmξ
m = Ω−3 (ξaξn∇nΩ− gar∇rΩ) for every unit (relative to gab) vector field

ξa tangent to a geodesic (relative to ∇). Note in particular that Gab must be well-defined

as a tensor at each point, and so this relation must hold for all unit timelike vectors at any

point p, since any vector at a point can be extended to be the tangent field of a geodesic

passing through that point. Pick a point p where ∇aΩ is non-vanishing (which must exist,

since we assume Ω is non-constant), and consider an arbitrary pair of distinct, co-oriented

unit (relative to gab) timelike vectors at that point, µa and ηa. Note that there always exists

some number α such that ζa = α(µa + ηa) is also a unit timelike vector. Then it follows

that,

g̃anGnmζ
m =

1

Ω2
(ζaζn∇nΩ− gar∇rΩ) =

1

Ω2

(
α2 (µaµn + µaηn + ηaµn + ηaηn)∇nΩ− gar∇rΩ

)
.

23If Ω were constant, then the force field Gab = 0 would meet the requirements of the proposition. But
metrics related by a constant conformal factor are usually taken to be physically equivalent, since they differ
only by an overall choice of units.
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But since Gab is a linear map, we also have

g̃anGnmζ
m = αg̃anGnmµ

m+αg̃anGnmη
m =

α

Ω2
(µaµn∇nΩ− gar∇rΩ)+

α

Ω2
(ηaηn∇nΩ− gar∇rΩ) .

These two expressions must be equal, which, with some rearrangement of terms, implies

that

(2α− 1)gar∇rΩ = α
[
(1− α)(µaµn + ηaηn)− 2αη(aµn)

]
∇nΩ.

But this expression yields a contradiction, since the left hand side is a vector with fixed

orientation, independent of the choice of µa and ηa, whereas the orientation of the right

hand side will vary with µa and ηa, which were arbitrary. Thus Gab cannot be a tensor at

p. �

So it would seem that we do not have the same freedom to choose between derivative

operators in general relativity that we have in classical spacetimes—at least not if we want

the universal force field to be represented by a rank 2 tensor field.

One might think there is a certain tension between Prop. 1 and Prop. 2. To put

the point starkly, Prop. 2 could be immediately generalized to semi-Riemannian manifolds

with metrics of any signature. It shows that, in the most general setting, the relationship

between two derivative operators compatible with conformally equivalent metrics can never

be captured by a rank 2 tensor. And yet, Prop. 1 appears to show that in the case of

classical spacetimes, two derivative operators compatible with the same metrics (which are

trivially conformally equivalent) can be captured by an anti-symmetric rank 2 tensor. It

is this freedom that allows us to accommodate different choices of derivative operator by

postulating a universal force field with relatively natural properties. But why does this not

yield a contradiction—that is, why is Prop. 1 not a counterexample to Prop. 2 (suitably

generalized)?

The answer highlights an essential difference between relativistic and classical spacetime
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geometry. Although Prop. 2 could be generalized to non-degenerate metrics of any signature,

it cannot be generalized to degenerate metrics of the sort encountered in classical spacetime

theory. Indeed, this is precisely the content of Prop. 1. The important difference is that in

relativity theory, the fundamental theorem of Riemannian geometry holds: given a metric,

there is a unique torsion-free derivative operator compatible with that metric. Thus if

one wants to adopt a different choice of derivative operator, one must also use a different

spacetime metric. And varying the spacetime metric puts new constraints on what derivative

operators may be chosen. In the case of a degenerate metrical structure, as in classical

spacetimes, none of this applies. A given pair of classical metrics may be compatible with a

continuum of derivative operators. A different way of putting this point is that insofar as the

metric in relativity theory is determined by certain canonical (idealized) experimental tests

involving, say, the trajectories of test particles and light rays, then the derivative operator

and curvature of spacetime are also so-determined. But in classical spacetimes, even if one

could stipulate the metric structure through empirical tests, the derivative operator and

curvature of spacetime would still be undetermined.24

We take the results here to settle the question posed at the beginning of the paper. But

as we emphasized there, the considerations we have raised do not refute conventionalism.

For instance, one might argue that the senses of “force” and “force field” that we described

above, which play an important role in our discussion, are too limiting, and that there is some

generalized notion of force field that could save conventionalism. An especially promising

option would be to argue that a force field need not be represented by a rank 2 tensor field.25

And indeed, given a relativistic spacetime (M, gab), a conformally equivalent metric g̃ab, and

their respective derivative operators, ∇ and ∇̃, there is always some tensor field such that

24Note that this freedom was precisely what motivated us to look to derivative operators as a source of
conventionality in the context of classical spacetimes in the first place.

25This option may even be compatible with our description of force fields above, though much more would
need to be said about how such a field would give rise to forces and what properties it would have.
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we can get a “funny force field” trade-off. Specifically, a curve γ will be a geodesic relative

to ∇ just in case its acceleration relative to ∇̃ is ξ̃n∇̃nξ̃
a = Ga

nmξ̃
nξ̃m, where ξ̃a is the unit

(relative to g̃ab) vector field tangent to γ, and Ga
bc = 2Ω−1g̃ang̃c[n∇̃b]Ω.26,27 That the field

Ga
bc exists should be no surprise—it merely reflects the fact that the action of one derivative

operator can always be expressed in terms of any other derivative operator and a rank three

tensor. This Ga
bc field presents a more compelling force field than the one Reichenbach

defines, for instance, since Ga
bc will always be proportional (in a generalized sense) to the

acceleration of a body, just as one should expect. In particular, it will vanish precisely when

the acceleration of the body does, which as we have seen is not the case for Reichenbach’s

force field.

Ultimately, though, the attractiveness of a conventionalist thesis turns on how much

one needs to postulate in order to accommodate alternative conventions. In some sense,

26 In fn. 14, we observed that Reichenbach characterizes the field he defines (what we call “Gab”) as a
“potential”. We ignored this above, but will comment on it now. Expanding on our treatment of forces
and force fields above, one might add that force fields—such as the electromagnetic field or the Newtonian
gravitational field—can sometimes be represented as the exterior derivative of some lower-rank field. This
lower rank field is the “potential” field. Given that Reichenbach calls the field Gab a potential, and we
have just shown that a higher rank field Ga

bc may be used to represent a kind of universal force in certain
cases, is it possible that we have recovered Reichenbach’s proposal after all? One might first note that
the exterior derivative may only be applied to differential forms, which are antisymmetric; Gab, recall,
is symmetric (and the antisymmetrized derivative of a symmetric field always vanishes). So the direct
route fails. But one can write Ga

bc in terms of a derivative of Gab: specifically, one can confirm that
Ga

bc = −g̃an∇[nGb]c = Ω2g̃an∇̃[nGb]c, where ∇ is the derivative operator compatible with gab and ∇̃ is the
derivative operator compatible with g̃ab. So is Reichenbach triumphant in the end? Sure, if one is willing to
call Ga

bc a “force” and Gab a “potential”, where the relationship is given by either of the expressions just
stated. But we have now wandered very far from the standard usages of these terms, and so the remarks in
the final paragraph of this essay apply.

27It is worth observing that the force on any particular particle arising from the force field Ga
bc can be

written in a highly suggestive—but, we believe, misleading—form, as follows. Suppose one has a particle
whose worldline’s unit (relative to g̃ab) tangent field is ξ̃a. Then the acceleration (relative to ∇̃) that particle
would experience can be written ξ̃n∇̃nξ̃

a = Ga
mnξ̃

mξ̃n = −h̃am∇̃mϕ, where ϕ = ln Ω is a scalar field and
h̃ab = g̃ab − ξ̃aξ̃b is the tensor field that projects onto the vector subspace orthogonal (relative to g̃ab) to
ξ̃a. In this form, it would seem that the force experienced by any particle is just the gradient of a scalar
field, much as in Newtonian gravitational theory. But this is a misleading characterization of the situation
because the orthogonal projection will vary depending on the 4-velocity of a particle, and so the force law is
not merely the gradient of a scalar field. Indeed, as we have seen, if one wants to characterize the force law
in terms of a force field represented by a tensor field on spacetime, one requires a rank 3 tensor; otherwise,
it would seem one has to specify a different force law for every particle in the universe. We are grateful to
an anonymous referee for pointing out this worry.
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one can be a conventionalist about anything, if one is willing to postulate enough—an evil

demon, say. The considerations we have raised here should be understood in this light.

From the perspective of the broader literature on the conventionality of geometry, what we

have done here is clarify the relative costs associated with conventionalism in two theories.

We have shown that in the Newtonian context, one does not need to postulate very much

to support a kind of conventionalism about spacetime geometry: one can accommodate

any torsion-free derivative operator compatible with the classical metrics so long as one is

willing to postulate a force field that acts in many ways like familiar force fields, such as

the electromagnetic field. Of course, one may still resist conventionalism about classical

spacetime geometry by arguing that even this is too much. But whatever else is the case, it

seems the costs of accepting conventionalism about geometry in relativity theory are higher

still. As we have shown, Reichenbach’s proposal requires a very strange sense of “force/force

field”; meanwhile, if one wants to maintain the standard notion of “force field,” then the

universal force field one needs to postulate cannot be represented by a rank 2 tensor field.

So one must posit something comparatively exotic to accommodate alternative geometries

in relativity theory—which, it seems to us, makes this view less appealing.
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