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Abstract

I consider two usages of the expression “gauge theory”. On one, a gauge theory is a theory
with excess structure; on the other, a gauge theory is any theory appropriately related to
classical electromagnetism. I make precise one sense in which one formulation of electromag-
netism, the paradigmatic gauge theory on both usages, may be understood to have excess
structure, and then argue that gauge theories on the second usage, including Yang-Mills
theory and general relativity, do not generally have excess structure in this sense.
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1. Introduction

The word “gauge” is ubiquitous in modern physics. Our best physical theories are described,

in various contexts, as “gauge theories”. The “gauge argument” allegedly reveals the un-

derlying “logic of nature” (Martin, 2002). Our theories regularly exhibit “gauge freedom”,

“gauge structure”, and “gauge dependence”. Unfortunately, however, it is far from clear

that the term has some univocal meaning across the many contexts in which it appears. It

is a bit like “liberal” in American political discourse: it shows up everywhere, and no one

knows what it means.

Here I will focus on two strands of usage.1 On the first strand, a “gauge theory” is a the-

ory that exhibits excess structure or, in John Earman’s words, “descriptive fluff” (Earman,

2004).2 On this way of thinking about gauge, there is a mismatch between the mathematical

Email address: weatherj@uci.edu (James Owen Weatherall)
1There are still others—for instance, see Weyl (1952). But I will not attempt a taxonomy.
2This way of speaking is common: see Rovelli (2013), Ismael and van Fraassen (2003), Redhead (2003),

and many others.
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structure used in the theory and the structure we take the world to have, in such a way that

(perhaps) one could remove some structure from the theory without affecting its descrip-

tive or representational power. Most famously, Earman and Norton (1987) argue that the

so-called “hole argument” shows that general relativity is a gauge theory in just this sense;

some have taken this as motivation for moving to a different, perhaps undiscovered, for-

malism for representing spacetime (Earman, 1989).3 Similar considerations have motivated

some views on Yang-Mills theory (Healey, 2007; Rosenstock and Weatherall, 2015).

The second strand of usage concerns a specific class of theories. Here one uses “gauge

theory” to refer to various generalizations of classical electromagnetism that share a certain

mathematical structure.4 For instance, Trautman (1980) defines “gauge theory” as follows:

For me, a gauge theory is any physical theory of a dynamic variable which, at
the classical level, may be identified with a connection on a principal bundle.
(Trautman, 1980, p. 26)

This turns out to be a large class containing most of our fundamental theories, including all

Yang-Mills theories, general relativity, and Newton-Cartan theory. It is in this context that

physicists seem to speak most often of gauge theories, usually as a synonym for “Yang-Mills

theories”.

It is easy to imagine that the two strands are closely related, and in particular, that

all gauge theories in the second sense are also gauge theories in the first sense. But as I

will argue below, this is a mistake. In particular, I will articulate a precise sense in which

electromagnetism—the paradigmatic example on both strands—may be understood to have

excess structure, and thus to be a gauge theory in the first sense. I will then consider whether

3For an argument against this way of thinking about relativity theory, see Weatherall (2015b). For more
on the relationship between the standard formalism of relativity theory and at least one widely discussed
alternative, see Rosenstock et al. (2015).

4Though I will say somewhat more about principal bundles and principal connections below, this will
not be the occasion to review this formalism. For more on this topic, see Bleecker (1981), Palais (1981), and
Weatherall (2014).
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other theories, such as Yang-Mills theory and general relativity, have excess structure in the

same sense. I will argue that they do not. It follows that on at least one precise sense of

what it means for a theory to have excess structure, the two strands of usage described

above come apart.

2. Two approaches to electromagnetism

In what follows, we will consider electromagnetism on the fixed background of Minkowski

spacetime, (M, ηab).
5 In this setting, there are two ways of characterizing models of ordinary

electromagnetism.6

On one characterization, the principal dynamical variable is the electromagnetic field,

represented by a two form Fab on spacetime. The electromagnetic field is required to satisfy

Maxwell’s equations, which may be expressed as ∇[aFbc] = 0 and ∇aF
ab = J b, where

∇ is the Minkowski derivative operator and Ja is a smooth vector field representing the

charge-current density on spacetime. A model of the theory on this characterization might

be written as a triple (M, ηab, Fab), where Fab is any closed two form (i.e., any two form

satisfying the first of Maxwell’s equations).7 Call this formulation of the theory EM1.

On the second characterization, the dynamical field is the four-vector potential, repre-

sented by a one form Aa on spacetime. This field is required to satisfy a single differential

equation: ∇a∇aAb −∇b∇aA
a = J b, where again Ja is the charge-current density. A model

of the theory may again be represented by a triple, (M, ηab, Aa), where Aa is any one form.8

5Minkowski spacetime is a relativistic spacetime where M is R4 and ηab is flat and complete. We focus
on this case for convenience; little of consequence turns on the limitation. Note that we work in the abstract
index notation, following the sign conventions of Malament (2012).

6These two ways of thinking about electromagnetism are described in somewhat more detail in Weatherall
(2015a). Of course, there are also other ways of characterizing the models of electromagnetism—including
using the principal bundle formalism discussed below.

7 One might also stipulate a source term, Jb, along with the model, or perhaps limit attention to models
for which the source term satisfies certain “physically reasonable” conditions. Here it suffices to permit
arbitrary sources, and to “read off” the charge-current density from the divergence of Fab, using the second
of Maxwell’s equations.

8The same remarks apply here as in fn. 7.
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I will call this formulation of the theory EM2.

These two formulations are systematically related. Given any model (M, ηab, Aa) of EM2,

I can always define an electromagnetic field by Fab = ∇[aAb]. Since any Fab thus defined is

exact, it must also be closed, and thus the resulting triple (M, ηab, Fab) is a model of EM1;

moreover, this Fab is associated with the same charge-current density as Aa. Conversely,

given any model (M, ηab, Fab) of EM1, since Fab is closed, it must also be exact, and thus

there exists a one form Aa such that Fab = ∇[aAb].
9 The triple (M, ηab, Ab) is then a model

of EM2, again with the same charge-current density.

However, there is an important asymmetry in this relationship. Given any model of

EM2, there exists a unique corresponding model of EM1, because any smooth one form has

a unique exterior derivative. But the converse is not true: given a model (M, ηab, Fab) of

EM1, there will generally be many corresponding models of EM2, since if Aa is such that

Fab = ∇[aAb], then A′a = Aa+∇aχ, for any smooth scalar field χ, also satisfies Fab = ∇[aA
′
b] =

∇[aAb] + ∇[a∇b]χ, because for any smooth scalar field, ∇[a∇b]χ = 0. Transformations

Aa 7→ A′a of this form are sometimes known as gauge transformations.

It is this asymmetry that, I claim, supports the common view that electromagnetism has

excess structure. The idea is that EM1 and EM2 both have all of the resources necessary

to represent classical electromagnetic phenomena. Indeed, in both cases, one may take the

empirical content of electromagnetism to be fully exhausted by the electromagnetic field

associated with a given model—either directly in the case of EM1, or as derived above in

the case of EM2. But there are prima facie distinct models of EM2 associated with the

same electromagnetic field. Thus it would seem that these models of EM2, though they

differ in their mathematical properties, should be taken to have the same representational

capacities. Intuitively, then, whatever structure distinguishes models of EM2 related by

9This result holds globally because M is homeomorphic to R4. In the case of more general spacetimes,
one would have to work locally; this difference raises interesting issues, but they are not relevant to the
current discussion.
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gauge transformations must be irrelevant to the representational capacities of the models,

at least as long as the empirical content is exhausted by the associated electromagnetic field.

It is in this sense that electromagnetism—or really, EM2—has excess structure.

3. Comparing structure

In the next section, I will make the intuitive argument just given precise. First, however,

I will take a detour through pure mathematics. Mathematical objects often differ in how

much structure they have. For instance, topological spaces have more structure than sets: a

topological space (X, τ) consists in a set X, along with something more, namely a collection

τ of open subsets of X satisfying certain properties. Similarly, an inner product space has

more structure than a vector space, and a Lie group has more structure than a smooth

manifold. In the present section, I will use some basic category theory to capture these

judgments as mathematical relationships between the theories.10

To begin, recall that various mathematical theories may be associated with categories.

For instance, there is a category Set, whose objects are sets and whose arrows are func-

tions. There is a category Top, whose objects are topological spaces and whose arrows are

continuous functions. There are also functors between such categories. For instance, there

is a functor F : Top → Set that takes every topological space (X, τ) to the set X, and

takes every continuous map f : (X, τ) → (X ′, τ ′) to the function f : X → X ′. Functors of

this sort are often called “forgetful”, because, intuitively speaking, they take objects of one

category and forget something about them: in this case, they take topological spaces (X, τ)

and forget about τ .

How can one tell whether a given functor is forgetful? There is a simple but insightful

theory available, due to Baez et al. (2004).11 It requires a few further definitions, concerning

10For background on basic category theory, see Mac Lane (1998) or Leinster (2014); due to space con-
straints, I take notions like “category” and “functor” for granted.

11See also Barrett (2013).
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properties that a functor F : C → D may have. First, we will say that F is full if for

all objects A,B of C, the map (f : A → B) 7→ (F (f) : F (A) → F (B)) induced by F is

surjective. Similarly, F is faithful if for all pairs of objects in C, the induced map on arrows

is injective. And F is essentially surjective if for every object X of D, there is some object

A of C and arrows f : F (A) → X and f−1 : X → F (A) such that f−1 ◦ f = 1F (A) and

f ◦ f−1 = 1X . (Such an arrow f is an isomorphism, so essentially surjective functors are

surjective on objects “up to isomorphism”.)

If a functor F : C → D is full, faithful, and essentially surjective, then the functor is said

to realize an equivalence of categories. In such cases, F forgets nothing. Otherwise a functor

is forgetful. In particular, a functor forgets (only) structure if it is faithful and essentially

surjective, but not full. A functor forgets (only) properties if it is full and faithful, but not

essentially surjective. And a functor forgets (only) stuff if it is full and essentially surjective,

but not faithful. In general, a given functor may be forgetful in more than one of these ways,

but not in any other ways: any functor may be written as the composition of three functors

that forget (no more than) structure, properties, and stuff, respectively.

The best way to make this categorization plausible is by considering examples. For

instance, the functor we have already considered, F : Top → Set, forgets only structure.

This is because every set corresponds to some topological space (or other), which means

that F is essentially surjective. Similarly, any distinct continuous functions f, f ′ : (X, τ)→

(X ′, τ ′) must be distinct as functions, so F is faithful. But F is not full, because not every

function f : X → X ′ is continuous, given topologies on X and X ′. So in this case, the

classification captures the pre-theoretic intuition with which we began.

Similarly, we can define categories Grp and AbGrp, whose objects are groups and

Abelian groups, respectively, and whose arrows are group homomorphisms; then there is

a functor G : AbGrp → Grp that takes Abelian groups and group homomorphisms to

themselves. This functor is full and faithful, since it just acts as the identity on group

6



homomorphisms between Abelian groups. But it is not essentially surjective, because not

every group is Abelian. So this functor forgets only properties—namely, the property of

being Abelian. And finally, we can a define a functor H : Set→ 1, where 1 is the category

with one object and one arrow (the identity on the one object). This functor takes every

set to the unique object of 1, and every arrow to the unique arrow of 1. It is clearly full

and essentially surjective, but not faithful, so it forgets only stuff. To see how, note that we

may think of 1 as the category with the empty set as its only object; thus H forgets all of

the elements of the sets.

This classification of functors gives us a criterion for when a mathematical theory T1

may be said to have more structure than another theory T2: namely, when there exists a

functor from the category associated with T1 to the category associated with T2 that forgets

structure. Given two categories, there may be multiple functors between them, and it may

be that not all such functors forget structure, even if there exists one that does. This means

that comparative judgments of “amount of structure” between theories should be understood

as relative to a choice of functor. This flexibility is a virtue: it allows us to explore various

ways in which theories may be related.

4. A Diagnostic Tool

I will now return to the question of interest. To begin, I will use the criterion just developed

to make the intuitive argument at the end of section 2 precise. I will define two categories,

corresponding to the two formulations of electromagnetism already discussed, and then we

define a functor between them that captures the relationship already discussed between EM1

and EM2.

The first category, EM1, has models (M, ηab, Fab) of EM1 as objects, and as arrows has

maps that suitably preserve this structure. For present purposes, we will take these to be

isometries of Minkowski spacetime that preserve the electromagnetic field, so that given
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two models, (M, ηab, Fab) and (M, ηab, F
′
ab), an arrow χ : (M, ηab, Fab) → (M, ηab, F

′
ab) will

be an isometry of (M, ηab) such that χ∗(F ′ab) = Fab. Likewise, we may define a category

EM2 whose objects are models (M, ηab, Aa) of EM2 and whose arrows are isometries of

Minkowski spacetime that preserve the 4-vector potential. Given these categories, the map

defined above, taking models (M, ηab, Aa) of EM2 to models (M, ηab,∇[aAb]) of EM1, becomes

a functor F : EM2 → EM1 that take arrows of EM2—which, recall, are isometries of

Minkowski spacetime with an additional property—to the arrow of EM1 corresponding

to the same isometry. (This action on arrows is well-defined because, given any arrow

χ : (M, ηab, Aa) → (M, ηab, A
′
a) of EM2, ∇[aAb] = ∇[a(χ

∗(A′b])) = χ∗(∇[aA
′
b]).

12) We then

have the following result.

Proposition 1. F forgets only structure.

Proof. F is clearly faithful and essentially surjective. To see that it is not full, consider

the object A = (M, ηab,0) of EM1. The object X = (M, ηab,0) of EM2 maps to A. But now

consider any non-constant scalar field ψ. Then X ′ = (M, ηab,∇aψ) is a model of EM2 and

F (X) = F (X ′) = A. If F were full, then, there would have to be an arrow f : X → X ′ such

that F (f) = 1A, but this is impossible, since by construction, there are no arrows between

X and X ′. �

Prop. 1 provides a precise sense in which EM2 has more structure than EM1: the functor

realizing the natural relationship between the theories forgets (only) structure. Recall that

the intuitive argument was that there are distinct models of EM2 corresponding to a single

model of EM1, and thus there must be features of the models of EM2 that distinguish them,

without making any difference to their empirical content. The present argument, meanwhile,

is that there are models of EM2 that fail to be isomorphic—by the standard of isomorphism

used in defining EM2—even though the corresponding models of EM1 are isomorphic, or

12See Weatherall (2015a) for further details on this functor.
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even identical. This is captured in the formalism by the fact that there are arrows in EM1,

which we may interpret as “structure preserving maps” between models of EM1, that are

not structure preserving maps between models of EM2. The structure that these maps do

not preserve is the structure that, on the intuitive argument, distinguished models of EM2.

I take this to be strong evidence that the formal criterion given by forgetful functors

captures the sense in which electromagnetism has excess structure. And since electromag-

netism is the paradigmatic example of a gauge theory, I take this to be the sense of “excess

structure” associated with the first strand of usage.13 Of course, there may be other senses

in which a theory might be thought to have excess structure, but I will not consider that

question further here. Rather, I will stipulate that the criterion developed here is salient,

and turn to a different question. Do gauge theories in the second sense—that is, the theories

Trautman identifies—have excess structure?

No. First, consider electromagnetism, formulated now as a theory whose dynamical

variable is a connection on a principal bundle over Minowski spacetime—that is, electro-

magnetism formulated as a gauge theory in Trautman’s sense. Call this theory EM3. Models

of EM3 may be written (P, ωα), where P is the total space of the (unique, trivial) principal

bundle U(1)→ P
π−→M over Minkowski spacetime and ωα is a principal connection.14 This

theory is closely related to both EM1 and EM2 as already discussed: given any (global)

section σ : M → P , we may define a 4-vector potential Aa as the pullback along σ of ωα:

Aa = σ∗(ωα). Similarly, we may define an electromagnetic field tensor Fab as the pullback

along σ of the curvature of the connection, defined by Ωαβ = dαωβ, where d is the exterior

derivative on P : Fab = σ∗(Ωαβ). Thus Aa and Fab may be thought of as representatives on

13There are other examples of theories with excess structure in this sense, too—for instance, Newtonian
gravitation, which is also sometimes described as a gauge theory (Malament, 2012, p. 248), may be under-
stood to have excess structure in just this sense. To see this, consider the discussion in Weatherall (2015a,
§6) and observe that the functor from NG1 to GNG given by the Trautman geometrization theorem is
faithful and essentially surjective, but not full.

14Again, see Palais (1981), Bleecker (1981), or Weatherall (2014) for more details on this theory.
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M of the connection and curvature on P . In general, Aa will depend on the choice of section

σ, whereas Fab will not depend on that choice because U(1) is an Abelian group.

Given this characterization of the theory, we can define yet another category, EM3,

as follows: the objects of EM3 are models of EM3, and the arrows are principal bundle

isomorphisms (Ψ, ψ) that preserve both the connection on P and the metric on M : that is,

pairs of diffeomorphisms Ψ : P → P and ψ : M →M such that ψ∗(ηab) = ηab, Ψ∗(ωα) = ωα,

π ◦ Ψ = ψ ◦ π, and Ψ(xg) = Ψ(x)g for any x ∈ P and any g ∈ U(1). Then we may define

a functor F̃ : EM3 → EM1 as follows: F̃ act on objects as (P, ωα) 7→ (M, ηab, σ
∗(Ωαβ)), for

any global section σ : M → P , and F̃ acts on arrows as (Ψ, ψ) 7→ ψ. (Again, this action on

arrows is well-defined. Choose any section σ : M → P . Then Ψ−1 ◦ σ ◦ ψ is also a section

of P . But since Fab = σ∗(Ωαβ) and F ′ab = σ∗(Ω′αβ) are independent of the choice of section,

Fab = (Ψ−1 ◦ σ ◦ ψ)∗(Ωαβ) = ψ∗ ◦ σ∗ ◦Ψ−1∗(Ωαβ) = ψ∗ ◦ σ∗(Ω′αβ) = ψ∗(F ′ab).)

Proposition 2. F̃ forgets nothing.

Proof. First consider an arbitrary object (M, ηab, Fab) of EM1 and pick some Aa such

that ∇[aAb] = Fab. Then given any section σ : M → P and any one-form Aa, we can

define a connection ωα on P by assigning to each point x ∈ σ[M ] the one form π∗(Aa), and

then extending this field on σ[M ] to all of P by requiring it to be equivariant. It follows

that F̃ is essentially surjective. Now consider any two objects (P, ωα) and (P, ω′α) of EM3,

and suppose there exist arrows (Ψ, ψ), (Ψ′, ψ′) : (P, ωα) → (P, ω′α) such that F̃ ((Ψ, ψ)) =

ψ = ψ′ = F̃ ((Ψ′, ψ′)). It follows that (Ψ′ ◦ Ψ−1, 1M) is a vertical bundle automorphism

such that (Ψ′ ◦ Ψ−1)∗(ω′α) = ω′α. But by the equivariance of ω′α, this is only possible if

Ψ′ ◦ Ψ−1 = 1P . Since Ψ and Ψ−1 are bijective, it follows that Ψ = Ψ′. Thus F̃ is faithful.

Finally, suppose there is an arrow ψ : F̃ ((P, ωα)) → F̃ ((P, ω′α)). Then ψ is an isometry of

Minkowski spacetime such that, for any section σ : M → P , ψ∗(σ∗(dαω
′
β)) = σ∗(dαωβ). Fix

σ : M → P . It follows that there exists a section σ̃ : M → P such that σ̃∗(ωα) = ψ∗(σ∗(ω′α)).

We may then define a diffeomorphism Ψ : P → P as follows. For any x ∈ P , there
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exists some g ∈ U(1) such that x = σ̃ ◦ π(x)g. This relationship determines a smooth

map g : P → U(1) satisfying g(xh) = g(x)h for any h ∈ U(1). We then define Ψ by

x 7→ σ ◦ ψ ◦ π(x)g(x) for all x ∈ P . This map Ψ : P → P is a diffeomorphism such that

Ψ(xh) = σ ◦ψ ◦ π(xh)g(xh) = σ ◦ψ ◦ π(x)g(x)h = Ψ(x)h and π ◦Ψ = π ◦ σ ◦ψ ◦ π = ψ ◦ π.

Thus (Ψ, ψ) : P → P is a principal bundle isomorphism. Moreover, since for any x ∈ σ̃[M ],

(Ψx)
∗(ω′α) = (πx)

∗ ◦ (ψπ(x))
∗ ◦ σ∗ψ◦π(x)(ω′α) = (πx)

∗ ◦ (σ̃π(x))
∗(ωα) = (ωα)|x, it follows by the

equivariance of ωα and ω′α that Ψ∗(ω′α) = ωα. So F̃ is full. �

This result shows that EM3 does not have excess structure in the sense that EM2 does.

To extend this to other gauge theories in the second sense, however, requires more work.

The reason is that the criterion we have been using requires us to have two formulations,

both of which are taken to be descriptively adequate and empirically equivalent, which we

then compare. In other cases of interest, though, such as non-Abelian Yang-Mills theory or

general relativity, it is not clear that we have a plausible second theory to consider.

Still, there is something one can say. It concerns the role of “gauge transformations”

between models of EM2, as described at the end of section 2. These are maps that relate

models of EM2 that have the same representational capacities even though they are not

isomorphic. The criterion of excess structure described here, meanwhile, requires the exis-

tence of a functor between categories of models that fails to be full—or in other words, a

standard of comparison between the theories relative to which one formulation has “more”

arrows than the other, or alternatively, relative to which one of the formulations is “missing”

arrows.15 This suggests a rule of thumb for whether a theory, or a formulation of a theory,

has excess structure in the sense described here: namely, if the theory has models that are

not isomorphic, but which nevertheless we interpret as having precisely the same represen-

tational content. Indeed, whereas the criterion discussed above tells us when on theory or

15This way of speaking may be made somewhat more precise, by showing how adding arrows corresponding
to gauge transformations to EM2 can lead to a new category that is equivalent to EM1. See Weatherall
(2015a).
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formulation has more structure than another, this second criterion evaluates whether any

alternative formulation could have less structure and still do the same descriptive work—at

least without equivocating between physical situations we now think are distinct.

How can we put this rule of thumb to work? Suppose you are given a theory and a

collection of maps taking models to models with the same representational capacities—that

is, one is presented with a candidate “gauge theory” and a class of “gauge transformations”.

One may then ask: are these gauge transformations naturally construed as isomorphisms of

the models of the theory, understood as mathematical objects? If the answer is “yes”, then

it would seem that these maps do not signal excess structure, since these maps would not

be “missing” from a natural category of models; conversely, if the answer is “no”, then there

likely is excess structure in the formulation.

Applying this diagnostic to some examples of gauge theories in the second sense above, we

immediately see that the moral concerning EM3 generalizes to other Yang-Mills theories. For

instance, models of an arbitrary Yang-Mills theory with structure group G may be written

(P, ωA
α), where P is a principal G-bundle over some spacetime (M, gab) and ωA

α is a principal

connection on P .16 In this setting, a “gauge transformation” is often defined as a (vertical)

principal bundle automorphisms (Ψ, 1M) relating models (P, ωA) and (P,Ψ∗(ω
A
α)).17 But

these maps are just a special class of connection- and metric-preserving principal bundle

isomorphisms, and so although they do map between models with the same representational

resources, they are not “extra” maps, in the sense of the gauge transformations of EM2. So

Yang-Mills theory does not have excess structure in the sense discussed here.

Likewise, for general relativity, we characterize models of the theory as relativistic

spacetimes, (M, gab). Here “gauge transformations” are often taken to be diffeomorphisms

ϕ : M → M relating models (M, gab) and (M,ϕ∗(gab)).
18 But once again, these maps are

16Again, for more on the notation used here, see Weatherall (2014).
17For instance, see Bleecker (1981, §3.2).
18For instance, see Wald (1984) or Earman and Norton (1987).
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just isometries—i.e., they are just isomorphisms of Lorentzian manifolds. So here, too, there

is no excess structure.

5. Conclusion

I have isolated two strands of usage of the expression “gauge theory” in physics and phi-

losophy of physics. According to one, a gauge theory is a theory that has excess structure;

according to the other, a gauge theory is any theory whose dynamical variable is a connection

on a principal bundle. I then endeavored to make precise the sense in which the paradigmatic

example of a gauge theory (according to both strands)—classical electromagnetism—may

be construed as having excess structure. From this discussion, I extracted a general criterion

for when a theory has excess structure. From this criterion, I argued that gauge theories

in the second sense need not have excess structure—and indeed, Yang-Mills theory and

general relativity should not be construed as having excess structure in the sense that one

formulation of electromagnetism does.
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