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Abstract Newcomb’s problem is viewed as a dynamic game with an agent and a
superior being as players. Depending on whether or not a risk-neutral agent’s con-
fidence in the superior being, as measured by a subjective probability assigned to
the move order, exceeds a threshold or not, one obtains the one-box outcome or the
two-box outcome, respectively. The findings are extended to an agent with arbitrary
increasing utility, featuring in general two thresholds. All solutions require only min-
imal assumptions about the being’s payoffs, and the being is always sure to predict
the agent’s choice in equilibrium. The relevant Nash equilibria are subgame-perfect,
except for risk-seeking agents where for intermediate beliefs, the being may be unable
to ensure perfect prediction without relying on noncredible threats. Lastly, analogies
of Newcomb’s problem to the commitment problem on a continuum are discussed.

Keywords Commitment · Decision theory · Rationality · Time consistency

JEL Classification C11 · C72 · D01 · D81 · D83 · G18

1 Introduction

Suppose a “superior being” claims to be able to predict an agent’s action and, con-
ditional on this prediction, influence his payoffs in a simple game of choice. In this
game, there are two boxes, labelled I and II. Box I is transparent and contains a positive
monetary reward r . Box II is opaque and, unbeknownst to the agent, the being puts in
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it either a monetary reward R (where R > r ) or no reward at all. The reward in box I
remains untouched. The agent faces the choice of either taking both boxes or taking
only box II; his payoff consists of the rewards in the boxes he takes. The being claims
that box II will contain R if and only if the agent takes only box II. What should a
rational agent do?

This problem, devised by William A. Newcomb in 1960 (Gardner 1973) and pub-
lished by Nozick (1969), is now referred to as Newcomb’s paradox because for both
of the agent’s feasible actions a priori reasonable justifications have been advanced
(see also Gardner 1974). Taking both boxes (the “two-box strategy”) seems plausible
because of the following dominance argument: no matter what box II contains, adding
the reward of box I increases the agent’s payoff. Taking only box II (the “one-box
strategy”) may be plausible because a superior being by simulating the agent’s deci-
sion process could anticipate the two-box strategy, which would therefore lead to no
reward in box II and thus a payoff of r , which in turn is less than the reward R the
agent could earn by only taking box II. Lastly, to discourage randomization on the part
of the agent, the being claims to put no reward in box II whenever the agent’s choice
emanates from a mixed strategy, i.e., a randomization over his two pure strategies
(Nozick 1969, pp. 115/143, endnote 1).

In this paper, we resolve Newcomb’s paradox using game theory based on a belief
the agent should reasonably form about the structure of the game, specifically about
the probability p that the being is informed about the agent’s action before placing
the reward. We first consider a risk-neutral agent. Depending on whether the belief
probability exceeds a certain threshold or not, the agent will prefer either the one-box
strategy or the two-box strategy. If the being can observe this belief, then by anticipat-
ing the agent’s choice the being can ensure perfect prediction on the equilibrium path,
where, perhaps somewhat unexpectedly, an agent who thinks ex-post intervention of
the being unlikely, ends up with the low reward r in the unique Nash equilibrium of
the game. If the belief p belongs to the agent’s private information, then the being
can devise a mechanism that leads to full information revelation, guarantees perfect
prediction, and implements the (first-best) one-box strategy, given the two additional
assumptions that the agent’s belief is always strictly positive and that the agent believes
the being may be able to inflict a negative payoff to discourage deviations which there-
fore never occur in equilibrium. If the agent is not risk-neutral, his optimal decisions
are generally described by two different thresholds, corresponding to whether, in equi-
librium, R ends up in box II or not, should the being move first. Still, the being can
solve Newcomb’s problem with zero prediction error in equilibrium unless the agent
is risk-seeking. Faced with a risk-seeking agent of intermediate belief, the being can-
not maintain a zero prediction error in equilibrium without relying on noncredible
threats.

1.1 Literature

Nozick (1969) formulates Newcomb’s paradox and links it to decision theory without
offering a resolution; he leans towards the two-box strategy on account of the “dom-
inance principle” which he also defends in later discussions (Nozick 1993, 1997). In

123



A robust resolution of Newcomb’s paradox 341

the first account of the problem, rewards are set to r = $1,000 and R = $1 million,
and these amounts have been largely maintained in the subsequent literature. Bar-
Hillel and Margalit (1972) argue for the one-box strategy, stating that the “dominance
principle looses its appeal when applied to situations where the states of the world (…)
are affected by the decision maker’s actions” (p. 297). Their solution invokes game
theory where the being acts in order to maximize the probability of being correct.
However, they assume this probability is given exogenously, which makes it generally
inconsistent with the proposed equilibrium of the game. Schlesinger (1974) points
out that the one-box strategy might be interpreted as backward causation, question-
ing the possibility of free will, which he considers in turn inherently unpredictable.1

He then attempts to rationalize the two-box strategy based on the agent’s following
a well-meaning observer’s imaginary advice. Benditt and Ross (1976), Locke (1978)
and Horgan (1981) give largely intuitive counterarguments. Sorenson (1983) and,
more recently, Burgess (2004) defend the two-box strategy by separating in time the
agent’s conclusion about the contents of box II and the eventual possibility of revising
his decision to also take box I. Horwich (1985) argues for the “evidential princi-
ple” and thus the one-box strategy because “the choiceworthiness of an act depends
solely upon its likelihood of being associated with desirable events” (p. 432), so the
agent should maximize expected utility rather than following “causal decision the-
ory” which relies on the additional assumption that his “act might be a cause of the
desired outcome” (ibid.). The counterargument by Sobel (1988) invokes the possible
endogeneity of the probability that the being predicts the agent’s action correctly, for
the agent a priori cannot “be sure that he cannot falsfify the prediction whatever it is”
(p. 20).

In the early discussions of Newcomb’s paradox, the being’s accuracy in predict-
ing the agent’s choice is justified by past observations of this predictive performance.
Schlesinger (1974) argues that no amount of inductive evidence is able to increase
the agent’s confidence in the being’s prediction performance. Brams (1975) dis-
cusses some analogies to the prisoner’s dilemma game,2 which are again predicated
upon assuming an exogenous probability of the being’s correctly predicting the
agent’s choice which generally turns out to be inconsistent with the pure-strategy

1 Simulating the agent’s full cognitive processes, as proposed by Schmidt (1998) in a realization of New-
comb’s paradox with “backward causation,” would amount to an artificial consciousness; see, e.g., Reggia
(2013) for a recent survey. Libet et al. (1983) perform experiments that show that the conscious execution
of a simple voluntary act is preceded (with 150–800 ms advance) by unconscious (nonrecallable) brain
activity that increases a “readiness potential.” Langan (2002) notes that such evidence is not sufficient to
decide on the predictability of voluntary actions, as the observations likely involved mere subtasks of a
consciously decided supertask.
2 Lewis (1979) obtains a different prisoner’s dilemma where the being is a “replica” of the agent. Sorenson
(1985) notes any finite repetition of this game still produces a two-box strategy in which both players end
up with a low payoff. Cooperative solutions [also proposed by Hurley (1994) as a result of a “collective
illusion of influence”] after infinite or an uncertain number of repetitions are justified by the folk theorem
(Fudenberg and Maskin 1986; Schmidt-Petri 2004); our solution produces a resolution of the paradox
without the need for any repetition and without the somewhat strained assumption of the superior being’s
incarnation as a mere replica of the agent.
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equilibrium.3 The viewpoint in this paper is different, in that the being can in the
end perfectly forecast the agent’s choice, simply based on a robust assumption of
common knowledge about the game that is being played (Lewis (1969); Aumann
1976; Brandenburger 1992). No performance data on repeated versions of the game
or alternative justification of the superior being’s predictive abilities are required
other than the ability to determine the equilibrium of a game, which is then real-
ized based on rational expectations (Muth 1961) on the part of the agent and the
being.

1.2 Applications

Frydman et al. (1982) and Broome (1989) point out that the problem of a government
committing to a policy which tries to implement measures contingent on agents’
actions taken under the policy may be akin to Newcomb’s problem. Indeed, when
the agents anticipate the implemented policy measures, their actions may tend to
undo the effect of these measures. Broome (1989) explains this using the example of
monetary policy, where expanding the money supply leads to increased employment
(ranked best) as long as this measure is unexpected, and otherwise to inflation (ranked
third-best). If, on the other hand, the government does not expand the money supply,
then provided an expansion is expected, it leads to a recession (ranked worst) and
otherwise to no change at all (ranked second-best). As a result, assuming rational
expectations on the part of the agents, the best the government can do is to obtain
inflation, corresponding to the third-best outcome. As Frydman et al. (1982) point
out, this dilemma relates to a problem discussed in a seminal paper by Kydland and
Prescott (1977) where a government seeks to find an optimal dynamic policy. Because
it cannot commit to its future actions, any time-consistent policy [which it has an
incentive to adhere to at any future time; see Weber (2011), p. 191] is suboptimal
compared to what could be achieved with full commitment, when agents believe that
the initially announced policy remains unchanged.

Sugden (1991) points out that in dynamic games actions can be time-inconsistent,
even though commitment may at the outset be in a player’s best interest. He com-
pares Newcomb’s paradox to the “toxin” puzzle, where a player is promised a large
reward based on his current intention to drink a nonlethal toxin after having received
the reward. More importantly, Sugden (1991) also notes that in games, other players’
actions are generally endogenous and cannot, in principle, be viewed as mere lotteries.
Hence, a player’s strategic choice is not reduced to a mere decision problem in the
tradition of Savage (1954). For Newcomb’s problem, we show that because of rational
expectations the probability of the being’s making correct predictions is endogenously
determined in equilibrium and must be 100 % (except for one special case), provided

3 Using a Bayesian updating argument in the decision-theoretic setting, Rapoport (1975) casts a first light
on the problems associatedwith assuming an exogenous probability that the beingmakes correct predictions
conditional on the agent’s actions. Cargile (1975), Levi (1975) and Eells (1984) provide related arguments
that the probability of a correct prediction must in principle depend on the agent’s choice, and therefore is
endogenous to the problem.
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Fig. 1 Extensive-form representation of the dynamic game G, for p ∈ [0, 1]

the being, in the absence of other pursuits, has just the slightest interest in making
correct predictions.

2 Results for a risk-neutral agent

A risk-neutral agent A and a superior being B play a dynamic prediction game G over
the times t ∈ {1, 1.5, 2}.4 There are two boxes, I and II, where box I is transparent
and box II is opaque. At the end of the game, box I contains an amount r > 0 and
box II contains an amount in X = {0, R}, with R > r , which is under B’s control. An
extensive-form representation ofG is given in Fig. 1; some equivalent implementations
of this game are discussed in Remark 2.

• At time t = 1, the being chooses an amount x1 ∈ X to be placed in box II, and
tells the agent that x1 = R if and only if A’s choice (at time t = 1.5) will be to
take only box II, with probability 1.

4 The somewhat unorthodox choice of the time periods, which includes t = 1.5 (instead of using times
in {0, 1, 2} or {1, 2, 3}), is motivated by allowing for the possibility to collapse the game G into two periods
[see Remark 2(i)] and also by the notational convenience that B’s first and second intervention happen at
times t = 1 and t = 2, respectively.
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• At time t = 1.5, without having observed B’s action in the previous period, the
agent decides to either take both boxes or to take box II alone. Allowing for
randomization between the two possibilities, let a ∈ A = [0, 1] denote the agent’s
chosen probability with which to take both boxes. Thus, with probability a the
agent ends up with box I in addition to box II. When pondering his decision the
agent believes that with probability p ∈ [0, 1], the being can in the next period
observe A’s strategy a and revise the amount placed in box II.

• At time t = 2, with probability p (according to A’s beliefs) B replaces x1 by
an amount x2(a) ∈ X in box II, contingent on A’s strategy a. Otherwise, with
probability 1 − p, the amount x1 remains in box II. Immediately thereafter, both
players’ payoffs are realized. A’s payoff consists of the combined contents of the
boxes he has taken at t = 1.5. B’s payoff is negative (say, equal to −1) if the
chosen actions are inconsistent with the statement at t = 1 and zero otherwise.
That is, B’s payoff is negative if x2(a) �= 1{a=0}R, and it is zero otherwise.

To summarize, A’s strategy consists of the number a ∈ A which describes the prob-
ability with which he ends up with box I in addition to box II. B’s strategy consists
of the tuple x = (x1, x2(·)), where x1 ∈ X is a number in {0, R} and x2 : A → X
is a function. The agent’s belief p is common knowledge.5 At the end of the game,
A’s payoff is the combined contents of all boxes, and B’s payoff is negative whenever
x1 �= a and zero otherwise.6 The agent’s expected payoff is

π(a, x, p) = (1 − p) [ar + x1] + p [ar + x2(a)] . (1)

The three-period dynamic game of incomplete information just described encapsulates
Newcomb’s problem in its standard form. As solution concept we use a subgame-
perfect Nash equilibrium (Selten 1965).7

Remark 1 (Does G represent the Newcomb problem?) The main differences between
the standard exposition of the Newcomb problem and the above game-theoretic for-
mulation is that in G the payoffs for the being and the beliefs for the agent are made
explicit. Regarding the former, our conclusions depend only on the assumption that
B’s payoffs are negative whenever its prediction is incorrect with positive probabil-
ity. As far as A’s beliefs are concerned, they constitute in fact the “secret ingredient”
which allows a resolution of the paradox. The agent’s beliefs imply the being’s ability
to commit to the rules of the game.8 Its value has nothing to do with B’s predictive
accuracy of at least 99.9 % in the standard narrative (see also Appendix 1). In fact,
on the equilibrium path of G the being’s predictive accuracy is 100 %, independent
of p. The formulation of Newcomb’s paradox as a dynamic game of the form G recasts

5 See Appendix 1 for the case of asymmetric information.
6 Without loss of generality, B will never have an incentive to randomize allocations, since doing so would
necessarily result in a negative expected payoff.
7 One can also use a perfect Bayesian equilibrium as solution concept (see Appendix 1), but it turns out
that the corresponding equilibrium refinement, introducing A’s beliefs about which node in his information
set has been reached by B’s preceding action, does not change any of the results.
8 One may also argue that in a fully specified game, no player can violate the rules of the game.
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the problem effectively as a commitment problem (see, e.g., Weber 2014) where the
degree of B’s commitment is determined by A’s beliefs.

Remark 2 (Alternative versions of G) (i) By collapsing the periods t = 1 and t = 1.5
in G into a single period at t = 1, the resulting two-period game Ĝ consists of a
simultaneous-move stage game at time t = 1, followed by B’s decision at time t = 2.
Because in G the agent is at time t = 1.5 unaware of B’s initial choice, the game Ĝ
is equivalent to G. (ii) Conceptually, one can interpret the last period of G as a device
that with probability p ensures the reward in box II is R if and only if a = 0, and with
probability 1− p does nothing. However, while such a device would produce outcome
equivalence with the unique subgame-perfect Nash equilibrium of G, the resulting
one-person game (against a machine) would not deliver a plausible explanation for
the incentive compatibility of the equilibrium with the being’s objectives. Instead, by
hard-wiring B’s equilibrium strategy, this interpretation merely illustrates the fact that
unilateral deviations from A’s equilibrium strategy are not in the agent’s best interest.
(iii) It is also possible to delete the first period in G and think of B’s occurring as
one of two types, the first being able to condition its action on A’s action, and the
second moving without knowledge of A’s action. In that setting, the agent’s common-
knowledge prior belief about the distribution of B’s types is described by p. In that
interpretation of the game, the corresponding Bayes-Nash equilibrium would specify
B’s strategy at time t = 2 as a mapping from types to actions, analogous to the
branches before the last decision nodes in Fig. 1. (iv) To avoid an extensive form
where the belief probability p is relevant for six different events, it is also possible to
introduce Nature as a player that at time 0 randomizes over two possible move orders,9

which induces the belief probability p.

Taking into account that the being explicitly discourages randomization by the agent
(Nozick 1969, pp. 115/143), one obtains10

a ∈ (0, 1) ⇒ x2(a) = 0. (2)

As a result, the agent can never strictly prefer randomization [when a ∈ (0, 1)] to
a pure strategy (when a ∈ {0, 1}). In order to exclude noncredible threats,11 we
limit attention to subgame-perfect Nash equilibria, which can be found via backward
induction, starting in the last period (which contains the only proper subgame of G).

At time t = 2, to avoid the possibility of a negative payoff, B has no choice but to
set

x2(0) = R and x2(1) = 0. (3)

9 Representing the players’ information structure turns out to be more complex for this setup because the
world bifurcates at the beginning of time, instead of (equivalently) realizing at the end of time.
10 Since in equilibrium players know the strategy profile, B would be aware of any randomization.
11 In the absence of subgame perfection, the being can resort to noncredible threats, for example in the
Nash equilibrium, where the agent always takes both boxes and the being always places nothing in box II
(see Sect. 3).
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Combining Eqs. (2) and (3), B’s only possible choice at time t = 2 is

x2(a) =
{
R, if a = 0,
0, otherwise.

(4)

This corresponds to a forcing strategy, which rewards only perfect compliance by the
agent using the strongest possible incentive scheme, independent of p.

At time t = 1.5, the agent chooses a to maximize his expected payoff in Eq. (1).
Taking into account Eq. (4), for all a ∈ (0, 1) it is

π(1, x, p) − π(a, x, p) = (1 − a)r > 0,

so taking both boxes always strictly dominates any nondegenerate mixed strategy the
agent might consider, independent of p. Furthermore,

π(0, x, p) ≥ π(1, x, p)

if and only if

p ≥ q = r

R
.

Hence, as a function of his belief p the agent’s equilibrium strategy is

a(p) ∈
{
1, if p < q,

0, otherwise.
(5)

The agent’s choice depends only on the sign of q − p; it is independent of x1.12 The
dashed black lines in Fig. 2 show A’s payoffs as a function of his belief p, for the two
possible actions of B at time 1 (corresponding to x1 ∈ {0, R}), respectively. The upper
envelope of each strategy (shaded in grey) shows A’s payoffs given his equilibrium
strategy in Eq. (5), for both of B’s possible time-1 actions.

At time t = 1, the being uses the common knowledge about the agent’s belief p
[and A’s action a(p) as specified in Eq. (5)] to achieve a nonnegative payoff, by setting

x1(p) =
{
R, if p > q,

0, otherwise.
(6)

Thus if p ≥ q, the being can implementa = 0.As alreadynoted, the agent’s choicewill
not dependon x1.Yet, the being can guarantee a perfect prediction by choosing x1 = R.
If p < q, it is better for the agent to take both boxes, i.e., to choose a = 0. Hence, the
being chooses x1 = 0, and x2(·) applies to out-of-equilibrium behavior as well. The
solid black line in Fig. 2 depicts A’s resulting equilibrium payoff.

12 The potential indifference at p = q is broken, since by Eq. (4) the agent should rationally prefer the
one-box strategy, i.e., a(q) = 0, for in equilibrium it yields R (rather than r when using the two-box
strategy).
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Fig. 2 Risk-neutral agent’s expected payoff, for p ∈ [0, 1]

Proposition 1 For any risk-neutral agent with belief p ∈ [0, 1], there is a unique
subgame-perfect Nash equilibrium (SPNE) (a(p), x(p)), specified by Eqs. (4)–(6). In
this equilibrium, the beingmakes perfect predictions, and the agent selects the two-box
strategy if and only if p < q.

Proof By backward induction x2(a) in Eq. (4) is B’s unique response at t = 2 to
any of A’s feasible actions a ∈ A at t = 1.5. Anticipating this response, A’s unique
optimal action (taking into account footnote 12) is given in Eq. (5). Thus, choosing x1
as in Eq. (6) is B’s only way to guarantee a perfect prediction (and thus a nonnegative
payoff) in equilibrium. ��
Consider the agent’s expected payoffπ∗(p) ≡ π(a(p), (x1(p), x2(a(p))), p) in equi-
librium (also shown in Fig. 2). For p < q, the agent ends up with the low payoff r ,
analogous to the prisoner’s dilemma solutions. The equilibrium in Proposition 1 does
not rely on detailed assumptions about the being’s payoffs, other than that B should
have a preference for making correct predictions; in particular, no assumption incon-
sistent with the general narrative of Newcomb’s problem is made. For p ≥ q, the
agent enjoys the sure payoff R, higher than any solution proposed thus far, except for
the cooperative supergame solution in the repeated prisoner’s dilemma.

3 Results for an agent with arbitrary risk attitude

The setting of the last section is generalized to an agent with an increasing utility
function for money u(·), which represents preferences that are locally nonsatiated. So
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far, Newcomb’s problem has not been considered for agents with a nonneutral risk
attitude.13 Without loss of generality one can select a cardinal representation of the
agent’s preferences such that 14

u(0) = 0 and u(R) = 1; (7)

this simplifies some of the discussion below. The agent’s expected utility becomes

ū(a, x, p) = (1 − p)u(ar + x1) + pu(ar + x2(a)), (8)

for any a ∈ A and x = (x1, x2(·)) as specified in Sect. 2. Using the arguments in
Sect. 2, Eqs. (2)–(3) continue to hold. Hence, at time t = 2 the being sets x2(·) as in
Eq. (4).

At time t = 1.5, when maximizing his expected utility in Eq. (8), the agent cares
about the value of x1. For x1 = 0, the agent’s optimal action is

a0(p) =
{
1, if p < q0,
0, otherwise; (9)

the decision threshold in that case is given by

q0 = u(r) − u(0)

u(R) − u(0)
= u(r) ∈ (0, 1).

Similarly, if x1 = R, the agent’s optimal action becomes

a1(p) =
{
1, if p < q1,
0, otherwise,

(10)

with corresponding decision threshold

q1 = u(r + R) − u(R)

u(r + R) − u(r)
= u(r + R) − 1

u(r + R) − u(r)
∈ (0, 1).

Fig. 3 shows the agent’s expected utility and optimal actions for different utility func-
tions; the line types follow the same logic as in Fig. 2. If x1(p) ∈ {0, R} can be chosen
in such a way that A’s optimal action is

a(p) = 1 − (x1(p)/R), (11)

then B is guaranteed a perfect prediction [in conjunction with Eq. (4)], and thus
a nonnegative payoff. Otherwise a perfect prediction is not possible given the said

13 Contrary to what Rapoport (1975, p. 613) claims, a rescaling of the payoffs cannot reproduce the effects
discussed here.
14 For any increasing utility of money û(·), the equivalent representation u = c1û + c2 satisfies Eq. (7)

with c1 = (
û(r) − û(0)

)−1
> 0 and c2 = −û(0)/

(
û(r) − û(0)

)
.
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A robust resolution of Newcomb’s paradox 349

Fig. 3 Expected payoffs when agent is risk-averse (a) or risk-seeking (b), for p ∈ [0, 1]

specification of x2(·) in Eq. (4), which was obtained via backward induction. We now
show that the existence of a subgame-perfect Nash equilibriumwith perfect prediction,
where
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x1(p) =
{
R, if p > q1,
0, otherwise,

(12)

depends on the relative magnitudes of the decision thresholds q0 and q1.

Proposition 2 Consider an agent with belief p ∈ [0, 1] and arbitrary risk attitude.

(i) If q1 ≤ q0, then there is a unique subgame-perfect Nash equilibrium (a(p), x(p)),
specified by Eqs. (4),(11) and (12).

(ii) If q0 < q1 and p /∈ (q0, q1), then there is a unique pure-strategy Nash equilibrium
specified as in part (i).

(iii) If q0 < p < q1, then there is a unique pure-strategy Nash equilibrium. In this
equilibrium with a(p) = 1 and x(p) = 0, the being relies on the noncredible
threat of never placing the reward, even when it could be placed contingent on
the agent’s choice.

Proof (i) Assume q1 ≤ q0. If B sets x1(p) = 0 for p < q1 and x1(p) = R for p ≥ q1,
then by Eq. (9) it is a(p) = a0(p) = 0 for p < q1. By Eq. (10) it is a(p) = a1(p) = 1
for p ≥ q1. Moreover, since a1(p) = a0(p) = 0 for p < q1, we obtain A’s optimal
action at time t = 1.5,

a(p) = a1(p),

for all p ∈ [0, 1]. Lastly, at time t = 1 anticipating a(p) and x2(a(p)), the being
expects a nonnegative payoff and would therefore not want to deviate, so Eqs. (4), (11)
and (12) specify indeed an SPNE. This equilibrium is unique, since a(p) and x2(·) are
unique, analogous to the proof of Proposition 1 and any deviation by B at t = 1 leads to
a violation of Eq. (11) and thus to an expected negative payoff due to possibly imperfect
prediction. (ii) Assume q0 < q1 and p /∈ (q0, q1). If p < q0 (resp. p ≥ q1), then A’s
optimal action is a0(p) = 1 (resp. a1(p) = 0). Hence, we obtain a(p) = a1(p) as in
part (i) and therefore the existence of a unique SPNE with the same specifications as
before, for these extreme beliefs p /∈ (q0, q1). (iii)Assumeq0 < p < q1. If x1(p) = 0,
then A’s optimal action is a(p) = a0(p) = 0 which violates Eq. (9). Otherwise,
if x1(p) = R, then A’s optimal action a(p) = a1(p) = 1 again violates Eq. (9).Hence,
no matter what B’s allocational choice at time t = 1, there is a positive probability
of an incorrect prediction, resulting in a negative expected payoff. To improve the
probability 1 − p of failing to choose a correct allocation using pure strategies, the
being would want to randomize in equilibrium, eliminating thus the possibility of
a pure-strategy SPNE. On the other hand, a pure-strategy subgame-imperfect Nash
equilibrium does exist, with B choosing x(p) = 0, i.e., the allocation xt = 0 for
t ∈ {1, 2}, towhich the agent finds it (weakly) optimal to respondwitha(p) = 0,which
satisfies Eq. (11) and thus ensures a perfect prediction. B’s threat of an unconditional
zero allocation is not credible, because were the agent to deviate and take only box II
(a = 0), then B would find it beneficial to respond with x2 = R in order to avoid an
allocation error. ��

123



A robust resolution of Newcomb’s paradox 351

The critical condition q1 ≤ q0 in Proposition 2 is equivalent to 15

u(r + R) − u(R) ≤ u(r) − u(0). (13)

In other words, the utility difference from owning the additional reward r does not go
upwhen the default reward increases from 0 to R. Since u(0) = 0 by Eq. (7), this holds
for all r, R ≥ 0 if and only if the utility is subadditive, so u(r + R) ≤ u(r) + u(R). A
sufficient condition for inequality (13) to hold is that u is concave, i.e., the agent is risk-
averse. In the special case where the agent is risk-neutral, the thresholds are identical,
q0 = q1 = q, and the same results as in Sect. 2 obtain. When the agent is risk-seeking,
that is, his utility function is strictly convex, the inequality (13) becomes false for all
positive r, R with r < R, that is q1 > q0, which according to part (iii) of Proposition 2
implies a region of beliefs for which a pure-strategy SPNE does not exist. The expected
equilibrium utility, ū∗(p) = ū(a(p), (x1(p), x2(a(p))), p) together with the agent’s
optimal actions are shown in Fig. 3a for the “risk-averse” case where q0 > q1 and in
Fig. 3b for the “risk-seeking” case where q1 > q0 (where the dashed bold line in the
shaded area indicates the support of payoffs in a mixed-strategy equilibrium).

4 Discussion

Beginning with Nozick (1969) the discussion of Newcomb’s problem has centered on
trying to adjudicate which of two alternative views of the world is correct, a deter-
ministic (“causal”) framework in which future outcomes are fully deductible from
past states or an indeterministic (“evidentiary”) framework in which future outcomes
cannot be predicted with certainty and depend inductively on past states.16 Depending
on which of the two is chosen, solutions to the problem were proposed via a domi-
nance argument (supporting the two-box strategy) or an expected-utility-maximization
argument (supporting the one-box strategy), respectively, with no possible resolution
between these two solutions. Gardner (1973) noted a third approach by Immanuel
Kant which “accepts both sides as being equally true but incommensurable ways of
viewing human behavior” (p. 104). In physics, a version of this third approach was
formulated by Niels Bohr in his “principle of complementarity” which states, roughly
speaking, that reality must depend on the observer (Bohr 1958/1961; Plotnitsky 2012).

Much in the same way as Bohr’s complementarity principle, our proposed solution
depends on the agent, specifically his beliefs in the being’s ability to commit. And the
being, knowing these beliefs, will react to them. For an agent who thinks it unlikely
that the being can condition the content of box II on his action, the two-box strategy
prevails, essentially because of dominance. On the other hand, an agent who thinks
that the being is likely to condition the content of box II on his own action, prefers the
one-box strategy. In this context, the parameter p can also be viewed as continuously
indexing the being’s ability to commit to an allocation at time t = 1, from p = 0 for

15 It is q1 ≤ q0 ⇔ u(r) ≥ (u(r + R) − 1)/(u(r + R) − u(r)) ⇔ u(r + R) − u(r) ≤ 1 = u(R) − u(0).
16 Nozick (1993, pp. 44–45) acknowledges that decisions in Newcomb’s problem may depend on the
relative magnitude of the reward R compared to r and that for larger q = r/R the dominance (“causal”)
argument is less plausible.
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full commitment to p = 1 for no commitment. At the ends of the spectrum one obtains
the two-box outcome (at low reward r ) and the one-box outcome (at high reward R),
respectively. For intermediate values of p, the being’s perceived ability depends on
the agent’s perception of reality, in particular his risk preference. In this interpretation,
Newcomb’s problem is related to commitment measured on a continuum because an
initial action may at least be partially revocable (Henkel 2002;Weber 2014).17 Instead
of a belief, the parameter p then indexes an objective ability by the being to revise the
earlier allocation after the agent selected his strategy. In either interpretation, as in the
Coase problem (see footnote 17), the agent benefits from the other party’s inability
to commit. As much as the being lacks the ability to commit, the agent’s own action
becomes influential in determining the final payoffs of the game.

The solution to Newcomb’s problem presented in Sects. 2 and 3 is robust in the
sense that almost no assumptions were made about the being’s intentions, other than
a preference for making correct predictions.18 The being also does not need very
complex distributional assumptions about the agent’s potential preferences other than
the decision threshold q (resp. q1 in the case with general risk attitude; see Sect. 3).
Even if the being operates in the complete absence of any information about the agent
(see Appendix 1), there is a high chance, given the small q = r/R = 0.001 (using
the standard numbers), that the being’s decisions would lead to correct predictions,
exactly as in the usual narrative of Newcomb’s problem.
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Appendix 1: Asymmetric information

Suppose that information about a risk-neutral agent’s belief is private, or equivalently,
that the being faces a population of different agents with beliefs θ ∈ � = [θ

¯
, θ̄ ],

where 0 ≤ θ
¯

≤ θ̄ ≤ 1. B encounters one of these agents at random.19 From the
preceding analysis we have seen that what matters for the agent’s binary decision is
whether his beliefs are above or below the threshold q = r/R. Hence, when design-

17 The continuum of commitment appears in discussions about the robustness of the Coase conjecture
(Coase 1972) which depends on zero commitment. The degree of commitment available to a monopolist
in the Coase setup varies continuously with the length of time that passes until the price for a durable good
can be changed (Gul et al. 1986); an analogous situation is obtained with varying degrees of perishability
of goods to be sold (Cho 2007).
18 In virtually all extant game-theoretical approaches, the “superior being” is assumed a “replica” of the
agent (see also footnote 2), which amounts to an introspective approach that is difficult to justify for any
concrete instantiation of the game, the original description of which, by Nozick (1969), is asymmetric to
begin with.
19 The situation in Sect. 2 obtains for θ

¯
= θ̄ = p, so � = {p}.
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ing a mechanism (M, ξ) to reveal the agent’s information, B can restrict attention to
a binary message space M = {L , H}, where L is a message that (if truthful) indi-
cates a low type (p < q), and H is a message that (if truthful) indicates a high type
(p ≥ q). For each action-message tuple (a,m) ∈ A×M, the being chooses the alloca-
tion ξ(a,m) = (ξ1(m), ξ2(a,m)). Tominimize the prediction error on the equilibrium
path, B does not randomize allocations, so ξ(a,m) ∈ {(0, 0), (ν, R), (R, ν), (R, R)}
for all (a,m) ∈ A × M, where ν is a real number to be determined below. Analo-
gous to the equilibrium concept chosen in the main text, we limit attention to perfect
Bayesian Nash equilibria.

Proposition 3 When the information about the belief p = θ is private to the agent
and θ

¯
> 0, there is a revelation mechanism under which the agent does not object to

reporting his beliefs truthfully and the being makes no mistakes.

Proof Given a mechanism (M, ξ), let (α, μ) with α : � → A and μ : � → M be
the agent’s strategy. Then

(α(θ), μ(θ)) ∈ arg max
(a,m)∈A×M

{ar + (1 − θ)ξ1(m) + θξ2(a,m)} .

To avoid mistakes, B has no choice but to discourage a ∈ (0, 1) by leaving box II
empty, that is ξ2(a,m) = 0 irrespective ofm; therefore randomization is never optimal
for the agent. Consider an allocation function ξ = (ξ1, ξ2) with ξ1 : M → R

and ξ2 : A × M → R with

ξ1(L) = ξ1(H) = R, (14)

and

ξ2(a,m) =
⎧⎨
⎩

R, if a = 0,
ν, if (a,m) = (1, L),

0, otherwise,
(15)

where the real number ν is determined below. We know for θ < q the agent
prefers (1, L) and for θ ≥ q he prefers (0, H) in the set of deterministic actions
(a,m) in {(0, L), (1, L), (0, R), (1, R)}. That is, any agent reports truthfully whether
his belief is above or below the threshold and otherwise chooses the one-box strategy.

1. θ ∈ [q, θ̄ ]: The agent prefers (0, H) to (1, H), since by Eqs. (14)–(15):

(1 − θ)ξ1(H) + θξ2(0, H) = R > (1 − θ)R

= (1 − θ)ξ1(H) + θξ2(1, H). (16)

Furthermore, (0, H) is (weakly) preferred to (0, L) since either action yields a
sure payoff of R. Lastly, (0, H) is also preferred to (1, L) because

(1 − θ)ξ1(H) + θξ2(0, H) = R ≥ r + (1 − θ)ξ1(L) + θξ2(1, L)

= r + (1 − θ)R + θξ2(1, L),
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for all θ ≥ q = r/R, which is equivalent to ξ2(1, L) ≤ 0.
2. θ ∈ [θ

¯
, q): By Eqs. (14)–(15) the agent prefers (0, L) to (1, L) and to (1, H) if

and only if

R ≥ r + (1 − θ)R + θν.

This inequality is satisfied for all θ ∈ [θ
¯
, q) if B sets

ν ≡ R − r

θ
¯

= −
(
q

θ
¯

− 1

)
R.

Finally, the agent (weakly) prefers (0, L) to (0, H), for he is guaranteed a certain
payoff of R.

This concludes our proof. ��
The mechanism specified in Proposition 3 depends on the being’s ability to deter the
agent from deviations with negative payoffs. The being therefore needs to be able to
credibly threaten the agent, saying something to the effect that if B gets to choose at
time t = 2 and finds that a �= x1 = 0, then box II is likely to “explode” when the agent
opens it. Without this threat, the only other possibility for the being is to revert to the
Nash equilibrium where B never puts any reward in box II, relying on the noncredible
threat discussed at the end of the proof of Proposition 2.

When the agent has a general risk attitude, B is leftwith a similar dichotomyand thus
needs to decidewhether case (iii) in Proposition 2 applies or not. If negative payoffs can
be implemented, then amechanism analogous to the one in Proposition 3 can be found.
Otherwise, B needs to formbeliefs about the populationof agents. For example, if in the
risk-neutral case, agents’ types (beliefs) are uniformly distributed on � = [0, 1], then
for q = 0.001 the being in the equilibrium specified in Proposition 1, assuming p ≥ q,
would make a correct prediction 99.9 % of the time, consistent with the standard
narrative of Newcomb’s problem. Note also that in our resolution of Newcomb’s
problem, the agent does not need to make any assumptions (other than the structure of
the game, which we have tacitly assumed to be common knowledge), but rather just
act according to his beliefs.
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