Skip to main content
Log in

Evolutionary plasticity in prokaryotes: A panglossian view

Evolutionary plasticity in prokaryotes

  • Published:
Biology and Philosophy Aims and scope Submit manuscript

Abstract

Enzyme directed genetic mechanisms causing random DNA sequence alterations are ubiquitous in both eukaryotes and prokaryotes. A number of molecular geneticist have invoked adaptation through natural selection to account for this fact, however, alternative explanations have also flourished. The population geneticist G.C. Williams has dismissed the possibility of selection for mutator activity on a priori grounds. In this paper, I attempt a refutation of Williams' argument. In addition, I discuss some conceptual problems related to recent claims made by microbiologists on the adaptiveness of “molecular variety generators” in the evolution of prokaryotes. A distinction is proposed between selection for mutations caused by a mutator activity and selection for the mutator activity proper. The latter requires a concept of fitness different from the one commonly used in microbiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arber, W.: 1979, ‘Promotion and Limitation of Genetic Exchange (Nobel lecture)’, Science 205, 361–365.

    Google Scholar 

  • Arber, W.: 1990, ‘Mechanisms in Microbial Evolution’, Journal of Structural Biology 104, 107–111.

    Google Scholar 

  • Arber, W.: 1991, ‘Elements in Microbial Evolution’, Journal of Molecular Evolution 33, 4–12.

    Google Scholar 

  • Arber, W.: 1993, ‘Evolution of Prokaryotic Genomes’, Gene 135, 49–56.

    Google Scholar 

  • Beatty, J. and S. Finsen: 1989, ‘Rethinking the Propensity Interpretation: A Peek Inside Pandora's Box’, in M. Ruse (ed.), What the Philosophy of Biology is. Essays dedicated to David Hull, Kluwer, Dordrecht, pp. 17–30.

    Google Scholar 

  • Blot, M.: 1995, ‘Transposable Elements and Adaptation of Host Bacteria’, Genetica 93, 5–12.

    Google Scholar 

  • Brandon, R. and R.M. Burian, eds.: 1984, Genes, Organisms, Populations: Controversies over the Units of Selection, MIT Press, Cambridge Mass.

    Google Scholar 

  • Brandon, R.: 1992, ‘Environment’, in E. Fox Keller and E.A. Lloyd (eds.), Keywords in Evolutionary Biology, Harvard University Press, Cambridge Mass., pp. 81–86.

    Google Scholar 

  • Brock, T.D., D.W. Smith and M.T. Madigan: 1984, Biology of Microorganisms, Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  • Cairns, J., J. Overbaugh and S. Miller: 1988, ‘The Origin of Mutants’, Nature 335, 142–145.

    Google Scholar 

  • Campbell, A.M., et al.: 1977, ‘Nomenclature ofTransposable Elements in Prokaryotes’, in A. I. Bukhari, J.A. Shapiro and S.L. Adhya (eds.), Insertion Elements, Plasmids and Episomes, CSHL, Cold Spring Harbor, pp. 15–22.

    Google Scholar 

  • Charlesworth, B., P. Sniegowski and W. Stephan: 1994, ‘The Evolutionary Dynamics of Repetitive DNA in Eukaryotes’, Nature 371, 215–220.

    Google Scholar 

  • Cooper, W.S.: 1984, ‘Expected Time to Extinction and the Concept of Fundamental Fitness’, Journal of Theoretical Biology 107, 603–629.

    Google Scholar 

  • Darlington, C.D.: 1958, The Evolution of Genetic Systems, Basic Books, New York.

    Google Scholar 

  • Dawkins, R.: 1982, The Extended Phenotype. The Gene as the Unit of Selection, Freeman, San Francisco.

    Google Scholar 

  • Dawkins, R.: 1989, The Selfish Gene. New Edition, Oxford University Press, Oxford.

    Google Scholar 

  • Doolittle, W.F. and C. Sapienza: 1980, ‘Selfish Genes, the Phenotype Paradigm and Genome Evolution’, Nature 284, 601–603.

    Google Scholar 

  • Ettinger, L., Jablonka, E. and nP. McLaughlin: 1990, ‘On the Adaptations of Organisms and the Fitness of Types’, Philosophy of Science 57, 499–513.

    Google Scholar 

  • Fisher, R.A.: 1930, The Genetical Theory of Natural Selection, Clarendon, Oxford.

    Google Scholar 

  • Goodenough, U.: 1984, Genetics, Saunders, Philadelphia.

    Google Scholar 

  • Gould, S.J. and R.C. Lewontin: 1979, ‘The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptionist Programme’, Proc. Roy. Soc. Lond. B 205, 581–98.

    Google Scholar 

  • Hamilton, W.D.: 1964, ‘The Genetical Evolution of Social Behaviour I’, Journal of Theoretical Biology 7, 1–16.

    Google Scholar 

  • Hodge, M.J.S.: 1987, ‘Natural Selection As a Causal, Empirical and Probabilistic Theory’, in L. Krüger, G. Gigerenzer and M.S. Morgan (eds.), The Probabilistic Revolution II. Ideas in the Sciences, MIT Press, Cambridge Mass., pp. 233–270.

    Google Scholar 

  • Hull, D.L.: 1981, ‘Units of Evolution: A Metaphysical Essay’, in U. L. Jensen and R. Harée (eds.), The Philosophy of Evolution, Harvester Press, Brighton, pp. 23–44.

    Google Scholar 

  • Hull, D.L.: 1992, ‘Individual’, in E. Fox Keller and E.A. Lloyd (eds.), Keywords in Evolutionary Biology, Harvard University Press, Cambridge Mass., pp. 180–187.

    Google Scholar 

  • Iida, S. and R. Hiestand-Nauer: 1986, ‘Localized Conversion at the Crossover Sequences in the Sie-Specific DNA Inversion Sequence of Bacteriophage P1’, Cell 45, 71–79.

    Google Scholar 

  • Iida, S. and R. Hiestand-Nauer: 1987, ‘Role of the Central Dinucleotide at the Crossover Sites or the Selection of Quasi Sites in DNA Inversion Mediated by the Site-Specific Cin Recombinase in Phage P1’, Molecular and General Genetics 208 464–468.

    Google Scholar 

  • Ives, P.T.: 1950, ‘The Importance of Mutation Rate Genes in Evolution’, Evolution 4, 236–252.

    Google Scholar 

  • Janzen, D.H.: 1977, ‘What are Dandelions and Aphids?’, American Naturalist 111, 586–589.

    Google Scholar 

  • Kimura, M.: 1960, ‘Optimum Mutation Rate and Degree of Dominance as Determined by the Principle of Minimum Genetic Load’, Journal of Genetics 57, 21–34.

    Google Scholar 

  • Lenski, R.E. and M. Travisano: 1994, ‘Dynamics of Adaptation and Diversification: A 10,000-Generation Experiment With Bacterial Populations’, Proc. Natl. Acad. Sci. USA 91, 6808–6814.

    Google Scholar 

  • Maynard Smith, J.: 1988, ‘The Evolution of Recombination’, in R.E. Michod and B.R. Levin (eds.), The Evolution of Sex, Sinauer, Sunderland, pp. 106–125.

    Google Scholar 

  • Maynard Smith, J.: 1989, Did Darwin Get it Right? Essays on Games, Sex and Evolution, Chapman & Hall, London.

    Google Scholar 

  • Mayr, E.: 1975, The Unity of the Genotype, Biologisches Zentralblatt 94, 377–388.

    Google Scholar 

  • Modi, R.I., et al: 1992, ‘Genetic Changes Accompanying Increased Fitness in Evolving Populations of Escherichia coli’, Genetics 130, 241–249.

    Google Scholar 

  • Murray, B.G.J.: 1990, ‘Population Dynamics, Genetic Change, and the Measurement of Fitness’, OIKOS 59, 189–199.

    Google Scholar 

  • Naas, T., M. Blot, W.M. Fitch and W. Arber: 1994, ‘Insertion Sequence-Related Genetic Variation in Resting Escherichia coli K-12’, Genetics 136, 721–730.

    Google Scholar 

  • Orgel, L.E. and F.H.C. Crick: 1980, ‘Selfish DNA: The Ultimate Parasite’, Nature 284, 604–607.

    Google Scholar 

  • Ridley, M.: 1993, The Red Queen. Sex and the Evolution of Human Nature, Macmillan, New York.

    Google Scholar 

  • Sarkar, S.: 1992, ‘Neo-Darwinism and the Problem of Directed Mutations’, Evolutionary Trends in Plants 6, 73–79.

    Google Scholar 

  • Sengstag, C. and W. Arber: 1983, ‘IS2 Insertion Is a Major Cause of Spontaneous Mutagenesis of the Bacteriophage P1: Non-random Distribution of Target Sites’, EMBO Journal 2, 67–71.

    Google Scholar 

  • Sober, E. and R. Lewontin: 1982, ‘Artifact, Cause and Genic Selection’, Philosophy of Science 49, 157–180.

    Google Scholar 

  • Sober, E.: 1993, Philosophy of Biology, Oxford University Press, Oxford.

    Google Scholar 

  • Stanley, S.M.: 1981, The New Evolutionary Timetable. Fossils, Genes and the Origin of Species, Basic Books, New York.

    Google Scholar 

  • Stearns, S.C.: 1992, The Evolution of Life Histories, Oxford University Press, Oxford.

    Google Scholar 

  • Wilke, C.M. and J. Adams: 1992,‘Fitness Effects of Ty Transposition in Saccharomyces cerevisiae’, Genetics 131, 31–42.

    Google Scholar 

  • Williams, G.C.: 1966, Adaptation and Natural Selection, Princeton University Press, Princeton.

    Google Scholar 

  • Williams, M.: 1970, ‘Deducing the Consequences of Evolution: A Mathematical Model’, Journal of Theoretical Biology 29, 383–385.

    Google Scholar 

  • Wilson, E.O.: 1975, Sociobiology: The New Sythesis, Harvard University Press, Cambridge Mass.

    Google Scholar 

  • Wright, L.: 1973, ‘Functions’, Philosophical Review 82, 139–168.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, M. Evolutionary plasticity in prokaryotes: A panglossian view. Biol Philos 11, 67–88 (1996). https://doi.org/10.1007/BF00127472

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00127472

Key words

Navigation