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Abstract We consider a confidence parametrization of binary information sources
in terms of appropriate likelihood ratios. This parametrization is used for Bayesian
belief updates and for the equivalent comparison of binary experiments. In contrast to
the standard parametrization of a binary information source in terms of its specificity
and its sensitivity, one of the two confidence parameters is sufficient for a Bayesian
belief update conditional on a signal realization. We introduce a confidence-augmented
receiver operating characteristic for comparisons of binary experiments for a class of
“balanced” decision problems, relative to which the confidence order offers a higher
resolution than Blackwell’s informativeness order.
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Where observation is concerned,
Chance favors only the prepared mind.
—Louls PASTEUR (1822-1895).!

! Lecture given on December 7, 1854, at the Université de Lille, France. See Eves (1988).
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1 Introduction

A decision maker can sometimes obtain access to information in the form of a sig-
nal (also termed “experiment” or “information source”?) before choosing an optimal
action under uncertainty. The efficient acquisition of information frequently requires
finding the “best” among several such signals. The decision maker uses the informa-
tion provided by his preferred signal to update the prior belief about the distribution
of outcomes conditional on any given decision. In this article, we introduce a “confi-
dence order,” based on likelihood ratios, for comparing different binary information
sources. The confidence order, which is weaker than (i.e., implied by) Blackwell’s
informativeness order, allows the equivalent comparison of information sources, as
long as they “balance” the decision problem. The latter means that the expected gains
from using the information source are similar across different states of the world.
In addition to an order for different information sources, the confidence parameters
provide a natural decomposition of a Bayes update with respect to signal realizations.
The latter facilitates the Bayes belief update, which may allow decision makers to
bypass the need for a complex mathematical model.

There are many practical problems in which an experiment has only two outcomes,
one of which indicates the realization of an uncertain event X, and the other does
the contrary. To fix ideas, let S and S denote the possible outcomes of such a binary
experiment. This experiment, relative to the event X and its complement X, can be
characterized by a contingency table as shown in Table 1, where TP, FP, FN, and TN
represent the number of either obtained or expected “true positive,” “false positive,”
“false negative,” and “true negative” joint realizations of the state of the world together
with the experimental outcome.

Without loss of generality, one can normalize the four entries to sum up to 100%.
The contingency table is then fully specified by two parameters in addition to the deci-
sion maker’s prior belief p = TP+ FN about the probability of X. The two parameters
can be chosen freely, as long as they, in conjunction with p, allow a one-to-one map-
ping to and from the entries of the contingency table. Much of the standard analysis
of the performance of a binary experiment is conducted in terms of its sensitivity =
TP/(TP+FN) andits speci ficity = TN/(TN+FP), which describe the probability of
S conditional on X and the probability of S conditional on X, respectively.? Different
experiments can be compared in terms of their (1 — specificity, sensitivity)-tuples,
corresponding to different points in the square [0, 1] x [0, 1]. When a collection of

2 In information theory, the classical model of communication is an information source generating a mes-
sage that is sent as a signal over a channel (e.g., in the form of electrical impulses on an electric wire; cf.
Shannon and Weaver 1948, p. 7). Thus, from the receiver’s point of view, the information conveyed by
the information source arrives in the form of a signal. In other disciplines, such as economics, the terms
“information source” and “signal” are therefore generally synonymous. In statistics, an experiment is an
information source that produces messages in the form of “outcomes.” Here, we often use the term “signal”
to describe an “experiment” or an “information source,” for the signal is what is ultimately observed by the
receiver.

3 Equivalently, as is usually done in statistics, one can analyze the performance of a binary signal in terms
of its rype-I error = FP/(FP + TN), i.e., the probability of S conditional on X, and its type-II error =
FN/(FN + TP), i.e., the probability of S conditional on X.
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Table 1 Contingency table

X X
S TP FP
S FN TN

such points has been generated by varying a critical parameter within a given experi-
mental setup, the family of experiments is generally referred to as a “receiver operating
characteristic (ROC),” and a curve connecting the points is called an “ROC curve.”
For example, when analyzing the performance of a breast-cancer detection technology
such as mammography, a one-parameter family of experiments is naturally obtained
by moving the diagnosis intensity from “malignant” over “suspicious” and “inde-
terminate” to “benign.” The ROC curve obtained for mammography with respect to
these different thresholds can then be compared with the ROC curve of a different
breast-cancer detection technology, such as magnetic resonance imaging (MRI), with
respect to the same detection thresholds (Kriege etal. 2004; Leach etal. 2005). Such
ROC-curve comparisons are useful in many other decision settings as well, rang-
ing from fraud detection (Cavusoglu and Raghunathan 2004) and biomedicine (Lasko
etal. 2005) to machine-learning applications such as email filtering (Hastie etal. 2001;
Fawcett 20006).

Instead of adhering to the standard (1 — specificity, sensitivity)-coordinates of
the ROC space, as is common practice, we consider here an equivalent parametrization
of binary experiments in terms of appropriate likelihood ratios ¥ and A, which we term
“confidence parameters.” For example, the confidence of a signal realization S as an
indicator for the event X is simply the ratio between the conditional probability of S
given X (i.e., its sensitivity) and the conditional probability of S given not X (i.e., one
minus its specificity). The confidence parameters isolate positive and negative belief
updates, which allow a graphical representation of a Bayes update as a function of
the decision maker’s prior belief p about the probability of X. The appropriateness of
the confidence parametrization for decision problems is highlighted by the fact that
the decision maker’s optimal action depends only on the single confidence parameter
that corresponds to the observed outcome of the experiment. Confidence parameters
therefore naturally align decisions with signal realizations.

In addition to the evaluation of experiments, the confidence parametrization is also
useful for the equivalent comparison of binary experiments in the ROC space. In the
above example of breast-cancer testing, even though the ROC curve for MRI always
lies above the ROC curve for mammography relative to the same detection thresh-
olds (Leach etal. 2005), MRI cannot be considered a substitute for mammography
for the following two reasons (Nemec etal. 2007): first, while for any given detec-
tion threshold MRI has a higher sensitivity, its specificity is generally lower than for
mammography; second, the cost of an MRI is currently about ten times the cost of
a mammogram. In Sect. 3, we show that an ordering based on an increase in the
confidence parameters offers a higher resolution than a comparison with respect to
Blackwell’s informativeness criterion, which requires dominance in both sensitivity
and specificity. We demonstrate that the comparison in terms of confidence parameters
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is valid for decision problems that are balanced in terms of the gains generated from
making appropriate decisions relative to the information source, a condition which can
be satisfied for signals with sufficiently small errors. The question of how to choose
among information sources when their costs are different is discussed in Remark 6.

1.1 Related literature

Bayes (1764) fundamental contribution on how to update beliefs with observed evi-
dence forms the basis for much of the modern theory of choice under uncertainty. Using
a non-Bayesian, frequentist approach, Hoel and Peterson (1949) provide a solution
to the standard classification problem. Their solution maximizes the probability of
a correct classification and is based on earlier work by Neyman and Pearson (1933)
and Wald (1939). Birnbaum and Maxwell (1960) examine the classification problem
from a Bayesian viewpoint and, by tracing the “error probability pattern” for different
experiments, introduce the notion of the now widely used ROC curves. The impor-
tance of likelihood ratios for the binary classification problem was noted by Birnbaum
(1961), who examined the ordering of binary experiments using the tools developed by
Bohnenblust etal. (1949) and Blackwell (1951, 1953). Birnbaum (1962) generalized
these insights in a “likelihood principle,” which postulates that all evidence obtained
by an experiment about an unknown event is contained in the corresponding likelihood
function. This is in contrast to the frequentist view, in which once the decision maker
stops collecting evidence, natural concerns arise about the probabilistic characteristics
of the missing data (one could have obtained by continuing experimentation). Despite
having been qualified by Berger and Wolpert (1984) and Hill (1987) among others,
Birnbaum’s likelihood principle persists to this day. To obtain a visual tool for decision
makers, we instead transform the ROC parameters of sensitivity and specificity for
binary information sources to an equivalent set of likelihood ratios, which we term
“confidence” parameters. Each likelihood ratio, together with the decision maker’s
prior belief about the probability of an uncertain event, is completely sufficient for
obtaining the Bayes update conditional on the corresponding signal realization. This
allows the visualization of the evaluation of information sources in a Bayesian update
diagram. Another reason for the appropriateness of likelihood ratios for updating
beliefs is that Bayes’ rule becomes linear in the relevant realization-specific likeli-
hood ratio when written in terms of odds or log-odds, as suggested by Barnard (1949)
and Lindley (1964).

For the equivalent comparison of experiments, Blackwell (1951) introduces “infor-
mativeness,” which he shows to be equivalent to the notion of statistical sufficiency,
as a meaningful partial order of information sources. If an experiment is strictly pre-
ferred in terms of its informativeness, then this experiment can be considered (at least
weakly) more valuable for any decision problem, provided that a decision maker is
allowed to randomize over different available actions if necessary. Unfortunately, the
strong requirement of statistical sufficiency by Blackwell’s informativeness order ren-
ders most information sources indistinguishable. Therefore, to compare information
sources relative to a particular decision problem, there is a need for more resolution.
Lindley (1956) introduces one such criterion based on entropy measures by Shannon
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(1948). DeGroot (1962) showed that generalized entropy methods can in fact be viewed
as equivalent to Blackwell’s informativeness criterion. More recently, Athey and Levin
(2001) restrict attention to a class of “monotone decision problems” (i.e., problems in
which higher posterior beliefs induce higher actions), for which they define a “mono-
tone information order” based on a seminal article by Lehmann (1988). For a class
of “balanced” decision problems, which have similar gains for the optimal decisions
relative to the realization of the state of nature, we introduce a confidence order to
compare information sources in terms of their value to the decision maker. We find
that for any given decision problem the value of a binary experiment is nondecreasing
in at least one of its two likelihood ratios.*

In contrast to much of the earlier literature, the focus of our approach is not to have
an exhaustive ordering for all decision problems, but to provide a simple method for
comparing binary experiments for a large class of decision problems. These techniques
can be used by decision makers with only a minimal need for mathematical modeling
and may therefore be of direct practical value. The power of reparametrization for
obtaining monotone comparative statistics in optimization problems that might not
exhibit monotone behavior at the outset is examined by Strulovici and Weber (2008).
The decision tools in this article can be interpreted as reparametrizations of balanced
decision problems, in part to ensure that the value of information is monotonic in the
confidence parameters.

1.2 Outline

The article proceeds as follows. Section 2 introduces the parametrization of binary
signals using confidence parameters. We then introduce iso-confidence lines in the
ROC space. In Sect. 3, we present a general “standard decision problem” and compare
an information order based on confidence parameters to the considerably stronger (and
thus generally less useful) Blackwell order of signals in terms of their informativeness.
The confidence order can be used for ordering experiments that balance the decision
problem. In Sect. 4, we discuss our findings and their limitations. In the appendix, we
generalize the framework in this article to decision problems and experiments with
nonbinary outcome spaces. We also briefly consider the use of the confidence param-
etrization for the aggregation of different informative signals and for the elimination
of confidence-dominated portions of any given ROC curve.

2 Evaluation of binary experiments

Let the state space X = {X, X be the set of possible realizations (or outcomes) of a
random variable x of interest to the decision maker. The decision maker’s prior belief
about the probability that the outcome X occurs is P(X). When P (X) is either O or 1,
the decision maker is absolutely sure of his prior belief and no experiment is powerful

4 Because of the well-known “monotone-likelihood-ratio” stochastic-dominance order for comparing prob-
ability distributions, we prefer using the term “confidence order” instead of the somewhat more suggestive
term likelihood-ratio order.
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enough to change his mind. We restrict attention to the interesting case where this
outcome is neither certain nor completely impossible so that

0<PX) <l (1

We assume that there is an information source in the form of a random variable s with
realizations in the binary sample space S = {S, §}. To make things nontrivial, we
consider here information sources for which the message S does occur sometimes but
not always so that

0<PS <1 2)

is naturally satisfied. The decision maker may consider S as an indicator for X, char-
acterized by the conditional probability

7w = P(§|X) € (0, 1) 3
of giving a “true positive” indication, and the probability
e=P(S|X) €0, 1) 4)

of giving a “false positive” indication. In relations (3) and (4), we assume that the
message S is not a perfect indicator for X. This covers all interesting applications.’
In addition, by switching the labels of S and its complement S if necessary, we can
restrict attention to the case in which

O<e<m<l. (5)

Otherwise the decision maker could—instead of S—simply take S as an indicator
for X. Relation (5) does not limit generality in any ways; it solely imposes a “proper
interpretation” of messages by the decision maker.

Remark 1 The probability ¢ of obtaining S even though X is not realized is commonly
referred to as type-I error, while its complement, 1 — ¢, is also called the signal’s spec-
ificity. Similarly, the probability 1 — 7 of obtaining a message S even though the
outcome X occurred is referred to as type-II error. Its complement, r, is also called
the signal’s sensitivity. O

Having observed S, the decision maker updates his beliefs using Bayes’ rule,

B P(SIX)P(X)
T PSIX)P(X) + P(SIX)(1 — P(X)

P(X]S) (6)

5 The cases of perfect information (when (e, 7) = (0, 1)) and of one-sidedly noiseless information struc-
tures (when either ¢ = 0 or 7 = 1) can be obtained by taking the limits for k — oo and/or A — oo, where
k and A are given in (9) and (13), respectively.
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The decision maker’s posterior belief P(X|S) in (6) can be rewritten equivalently in

the form
Kk P(X)

1+ —DPX)’

as a function solely of the decision maker’s prior belief P(X) and the parameter

P(X|S) = N

o PBIX)
-~ P(SIX)’

®)

which represents the decision maker’s confidence in S as an indicator for X. From
relations (3)—(5), we conclude that

K =

® |9

> 1. ©))

Thus, if we abbreviate the decision maker’s prior belief about the likelihood of X by
p = P(X), his posterior belief can be obtained from (7) by evaluating the function

Kkp

1+ k—1p (10)

gk, p) =

Fixing « and varying p from O to 1, we thus obtain as the graph of g(k, -) a curve
of the updated beliefs about the likelihood of X conditional on S for any possible
Bayesian decision maker. By changing x > 1, we obtain a family of such curves for
other messages from potentially different information sources that satisfy relations
(3)—(5). If instead of S the message S is realized, the decision maker’s posterior belief
becomes B
P(SIX)P(X)
P(S|X)P(X) + P(S|X)(1 — P(X))

If, as before, p = P(X) der_lotes the decision maker’s prior belief, then his posterior
belief after a realization of § is given by

P(X|S)

(In

1
%) P
g(1/x, p) = —(}) : (12)
I+(GE-1p
where the parameter o
P(S|X 1 -
a= PO _Tze (13)

S PEX) 1o

represents the confidence in S as an indicator for X , analogous to the earlier definition
of k in (8).

Lemma 1 Let«, A > 1. (i) If (k, 1) # (1, 1), then (kk — )(A — 1) > 0. (ii) If & > 1,
then P(X|S) > P(X). (iii) If . > 1, then P(X|S) < P(X).

Proof (i) Consider first the case where k > 1. By relation (9), we have = > ¢ so that
1 — & > 1 — m and by (13), therefore, A > 1. The converse also holds. Similarly,
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if « = 1, then by (9) and (13) it must be A = 1. The converse also holds. (ii) Let
p € (0, 1) be the decision maker’s prior belief about the likelihood of X. Conditional
on having observed the message S, the decision maker’s updated posterior belief is
P(X|S) =gk, p) =kp/(1 + (k — 1) p) by virtue of (10). Since

agk,p)  d—pp
k(14 —1p)?

forall p € (0, 1) and all ¥ > 1, the decision maker’s posterior belief g («, p) is strictly
increasing in «. Thus, g(k, p) > g(1, p) = 1 for all p € (0, 1). (iii) The proof for
this part proceeds analogously to the one for part (ii), by first showing that g(1/A, p)
is strictly decreasing in A > 1. O

Part (i) of Lemma 1 states that restricting attention to x > 1 is without any loss in
generality, as k > | if and only if A > 1. Therefore, one can always label the messages
of a binary information source such that ¥, A > 1. The message S is then an indicator
for X, whereas S is an indicator for X. Parts (ii) and (iii) of this lemma state that
when the confidence parameters x and A exceed 1, the decision maker’s prior belief
about the likelihood of X increases upon receiving the message S, while it decreases
upon receiving the message S. Thus, increasing one of the two confidence parameters
strictly increases the “spread,” P(X|S) — P(X IS’), in the decision maker’s posterior
beliefs.

The following result shows that the signal description by the probability tuple
(e, m) is equivalent to a description by the confidence parameter tuple («, 1); the two
parametrizations are linked by a smooth one-to-one mapping.

Lemma2 (i) If0 < ¢ < < 1, then (k, 1) = (7/e, (1 — &)/(1 — 7)) > (1, 1).

(ii) If k, A > 1, then
( ) A—1 | Kk—1 (14)
e, ) = 11—
kA —1 kA —1

and0 <e < < 1.

The parameter tuples (g, ) and (k, 1) are directly related by a one-to-one mapping on
our domain of interest. The proof of Lemma 2, which contains a simple inversion of
the relations (8) and (13), is elementary and has therefore been omitted. The key con-
sequence for a decision maker is that he can move seamlessly back and forth between
a description of an information source in terms of (g, 77) or in terms of (k, A). We will
do so in the remainder of the article and refer to (e, ) as an error parametrization
and (x, A) as a confidence parametrization. Figure 1 shows the binary event tree in the
equivalent error and confidence parametrizations.

Example 1 Let the state of the world X represent the presence of a certain disease
in a patient. After a preliminary examination, a doctor’s prior belief about the pres-
ence of the disease is p = P(X) = 50%. The doctor can now perform two different
tests, each of which either produces a “symptom” () or not (S). The first test has a
specificity of 55% and a sensitivity of 70%, corresponding to the error characteris-
tics (¢, m) = (45%, 70%). From relation (14) in Lemma 2, we obtain the equivalent
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S X
K X
S - X
L-e 5 sni-p X

Fig. 1 Binary event tree in error parameters and confidence parameters

confidence parameters, (k, A) ~ (1.6, 1.8). From parts (ii) and (iii) of Lemma 1, we
see that the test outcomes, especially when the symptom is not observed, influence
the posterior beliefs of a Bayesian decision maker. From relations (10) and (12), the
decision maker’s posterior is P(X|S) & 62% in the case of S and P(X|S) ~ 36%
in the case of S. The second test has a specificity of 80% and a sensitivity of 60%,
corresponding to the error characteristics (¢, 7) = (20%, 60%) and a confidence
(x, )AL) = (3,2) > (x,X). Based on this test the doctor can augment his posterior
belief adjustments to 75% in case of S and 33% in case of S. Thus, while the confi-
dence characteristics of the two tests can be clearly ordered, this is not possible for
their error characteristics; since the second test achieves a significant improvement
in the type-II error, from 45% to 20%. The performance in terms of its type-I error,
with an increase from 30% to 40%. We show below that while this makes the two
tests incomparable in the sense of Blackwell, i.e., relative to the set of all decision
problems, it is still possible to order the tests relative to a class of reasonably general
classification problems. This is consistent with our intuition from comparing the two
tests’ confidence characteristics. O

Remark 2 1t is instructive to represent the role of confidence parameters in a diagram,
which we refer to as Bayesian update diagram. For this we first recall that a binary
information source is fully characterized by the two independent parameters 7 and ¢
in (3) and (4), albeit with the inconsequential restriction (5). Both of these parameters
generically influence the decision maker’s posterior beliefs in (6) and (11) so that an
easy graphical representation of the posterior as a function of (p, &, ) is not possible.
The confidence parameters « and A in (8) and (13) have a separate influence, depend-
ing on which message is received from the information source. Conditional on having
observed S, the decision maker’s posterior belief g(x, p) in (10) depends only on p
and «, while conditional on having observed S, the posterior g(1/1, p) depends only
on p and A. Thus, using the confidence parameters « and A, it is possible to construct
the Bayesian update diagram depicted in Fig. 2. The solid lines represent “iso-confi-
dence lines” in the (p, ¢)-space, where g denotes the decision maker’s posterior belief
of the likelihood of X after having observed a signal realization. The curves above the
45° line are iso-x curves (for a realization of §), while the others are iso-A curves (for
arealization of S). The Bayesian update diagram can be used to obtain Bayes updates
graphically, without using Bayes’ rule explicitly (cf. Appendix A). O
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Posterior 4 ) .
Beliet | P(X|[9) P(X
1
T o __ ; ~P(s|x)
.C:/ T /) s P(S|X)
0.8 / / 7 NERAEDS)
// 4 T RSN
/
0.6 Il/ // /i oa
Prior Belief
0 0.2 0.4 P(X)

Fig. 2 Bayesian update diagram

3 Comparison of binary experiments

Before choosing an optimal action in a given decision problem, a decision maker may
acquire information in the form of access to signal realizations that are correlated with
the realization of a random outcome. When the use of one information source excludes
the use of another (e.g., when the decision maker chooses between different designs
of an experiment), to be able to make a choice between different sources or designs,
it is necessary to have a preference order over all available experiments.® Blackwell
(1951) introduced an ordering of signals in terms of their “informativeness,” which
ranks different signals for any stochastic decision problem with a convex action set
and a continuous payoff function. Blackwell’s order is equivalent to the concept of
statistical sufficiency.’” Because of the imposed strength of the Blackwell order, many,
if not most, information sources cannot be compared under it. For example, while read-
ing the local news of the New York Times might be useful for deciding where to dine
in New York City, people living in San Francisco are likely to instead prefer the San
Francisco Chronicle when pondering about where to eat out that night. Thus, in most
practical settings Blackwell’s informativeness criterion is of no use to order informa-
tion sources in terms of their value in a given choice situation. In this section, we first
introduce a “standard decision problem,” relative to which we examine the ordering

6 In Example 1, a doctor had the choice between two different diagnostic tests, and in Appendix B, we
discuss how information from different tests may be combined to form posterior beliefs.

TA signal § is (statistically) sufficient for another signal 5’ if the conditional probability distribution of any
data X, given any realization of §, is independent of the realization of §,i.e., when P(X|5,5) = P(¥]5).
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9(x,p) u(a, X)
pr+(1—pe ~
9(1/K,1—p) u(a7 X)
u(@, X)
p(l1—m)
+(1-p)(1-¢)
u(@, X)

Fig. 3 The standard decision problem

of binary information sources. Historically, the ROC has been used for this purpose.
The confidence order enables a (strict) comparison of many more experiments in the
ROC space than the Blackwell order. It also allows one to eliminate certain portions
from ROC curves, which are confidence-inconsistent (for details see Appendix C).

3.1 The standard decision problem

In order to compare different sources of information that the decision maker might gain
access to, it is necessary to formulate a decision problem including preferences over
action-outcome tuples (Fig.3). We assume that before the random variable x realizes
and after a message from the information source § is observed, the decision maker
chooses an action a from a given nonempty, finite-dimensional, and compact action
set A.Itis customary to assume that the action set A is convex. Convexity of the action
set is without any loss of generality (and is relaxed completely for the confidence order
introduced in Sect. 3.3), as long as the decision maker can randomize over all actions
in A. Nonemptiness and compactness guarantee the existence of an optimal action for
any reasonable (continuous) payoff function that the decision maker may have. The
decision maker’s preferences over tuples of actions and outcomes (a, x) € A x X are
assumed to be representable by a utility function u : A x X — R. As we show below,
trying to compare different informative signals relative to the class of all such decision
makers, i.e., without specifying prior beliefs and without making any further assump-
tions on the utility function u, necessarily leads to a very weak preference order which
renders it impossible to distinguish most signals. It is therefore natural to expect that
sharper criteria for the desirability or “informativeness” of signals must incorporate
particulars of the decision problem: utility function, action set, and beliefs. Given the
informative signal § with possible realizations S and S, the standard decision problem
is to find

8 For details on which preferences allow a utility representation, see Fishburn (1970) or Kreps (1988).
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a* € argmax E [u(a, ¥)| S] = argmax { prru(a, X) + (1 — p)eu(a, X)},  (15)
acA acA

and
a* e arg max E[u(a,%)| 5] = argma({p(l — mula, X)
+(1 - p)1 - oula, X)}, (16)

respectively. The decision maker’s optimal expected utility (also referred to as decision
value) is

V* = p(rula*, X)+ (1 —mu@*, X))+ 1 - p) (su@*, X) + (1 — e)u@*, X)) .

(17)
Without any information, the decision maker’s default utility is
Vi = max E [u(a, X)| = max { pu(a, X) + (1 — p)u(a, X)} . (18)
acA acA

Any continuous function attains its maximum on a compact set so that solutions to the
problems in (15), (16), and (18) exist.

Remark 3 In the standard decision problem, we have implicitly assumed that the
probability of an outcome remains unaffected by the decision maker’s action. It is
easy to imagine decision problems where this assumption is unrealistic. For exam-
ple, when deciding to wear a seat-belt while driving a car, the probability of getting
seriously injured conditional on an accident (event X) clearly depends on the chosen
action. This dependence can easily be incorporated into our framework by choosing
the payoff function u(a, x) appropriately. If P (x|a) denotes the conditional probabil-
ity of x € X given an action a, then (as long as P(x) > 0) it is enough to replace

u(a, x) by t(a, x) = u(a, x) %; the formulation of the standard decision problem
(15) and (16) is therefore without loss of generality. O

3.2 Blackwell’s informativeness order

Given an action a and an outcome realization x, the decision maker obtains the utility
payoff u(a, x). Consider now two informative signals §; and §, with realizations in
the common sample space S. The signal §; is at least as informative as the signal 5,
in the sense of Blackwell if all utilities attainable given s, are also attainable given 5.

Remark 4 The precise definition proceeds as follows. Assume first that the action
space A, in addition to being nonempty and compact, is also convex. Leta : S — A
be a policy that describes how the decision maker chooses an action «(s) € A, con-
tingent on a signal realization s € S. The state-payoff vector relative to the policy o
and the signal § is given by

v(§, o) = (ru(@(S), X) + (1 — mu(a(S), X), eu(a(S), X) + (1 — e)u((S), X)) .
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The set of all attainable state-payoff vectors under the signal § with respect to all
possible (measurable) policies is

V(E):{VGR2:U=U(§,a)anda:S—>A}.

The signal §; is at least as informative as the signal 55 in the sense of Blackwell, if
V(52) € V(51). In the case where the action set .4 is nonconvex, we allow the decision
maker to randomize among elements of .4, which effectively amounts to convexifying
the action set (and, more importantly, it also convexifies the set of all attainable state-
payoff vectors). A randomized policy & must then map S into the set of all probability
distributions over elements of .4, and a corresponding state-payoff vector can then be
defined as the expected value of the state-payoff under the randomized policy. The
definition of the informativeness is from then on analogous to the case where policies
are deterministic. O

Blackwell (1951, 1953) showed that 57 is at least as informative as 5, for any deci-
sion maker facing a standard decision problem as introduced in Sect. 3.1 if and only
if §1 is statistically sufficient for 5.2 We can therefore focus entirely on statistical
sufficiency as determinant for the Blackwell ordering of informative signals. In our
simple context, where we restrict attention to signals with binary messages, either S;
or S; for signal §;, the signal s is statistically sufficient for 5, if and only if there exists
a2 x 2 Markov matrix M such that'?

2] & N ] &1
|:]—7T2 ]—82i|_M|:1—7'[1 1—81i|’ (19)

where (&, 1) = (PGi € Si|X), PGi € S;1X)) fori € {1,2)}. Using the concept of
statistical sufficiency, it is possible to precisely characterize the Blackwell ordering in
terms of the error characteristics of binary experiments.

Proposition1 Let0 < ¢ <7 < land 0 < & <7 < 1. A signal with (P(SI1X),
P(S|X)) = (&, 7) is at least as informative as a signal with (P(S|X), P(S|X)) =
(e, ) ifand only if (—&, ) > (—¢, 7).

Proof By (19) the signal with characteristics (£, 77) is at least as informative as the
signal with characteristics (e, 7) if and only if a 2 x 2 Markov matrix M can be found
such that

9 Kihlstrom (1984) provides an exposition of this result in a Bayesian setting similar to the one chosen
here.

10 A square matrix M is a Markov matrix (or “has the Markov property”) if all its entries are in [0, 1] and
each of its columns sums up to 1.
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It is easy to show that the latter can be accomplished if and only if the inequalities
€ <e and 7 > 7 are simultaneously satisfied. Only if the last two inequalities hold,
the entries of

w_l® & 1'[r e 1 [r—2 e—¢
T l1l—-7 1-¢ l—n7m 1l—¢| A—_—2|lm—7m 7—¢

are in [0, 1] and each of its columns sums up to 1 so that M has the Markov property.
O

In Example 1, we already noted that the Blackwell criterion in Proposition 1 is
generally too restrictive to be able to strictly order two signals (in the sense that
one signal is at least as informative as the other but not vice versa). To compare the
Blackwell order to our weaker confidence order that we introduce in the next subsec-
tion, it is useful to provide an alternative characterization based on what we term the
“Blackwell-derivative.” Let V*(e, ) be the optimal expected utility given a signal of
characteristics (&, 7). From Proposition 1, we can conclude that the Blackwell order
is equivalent to V* being nondecreasing in (—¢, 7). Let us call

A = p (u(a*, X) —u(@*, X)) (20)

the decision maker’s (expected) X-gain from adjusting his action from a* to a* in the
event X. Similarly, . B B
A=(1-p) (@, X)-u@", X)) @10

is termed the decision maker’s X-gain from adjusting his action from a* to a* in the
event X. Since by (5) § is an indicator for X and § is an indicator for X, both of these
gains must be nonnegative, i.e.,

A, A > 0. (22)

The following result effectively restates Proposition 1 and introduces the Black-
well-derivative.

Proposition 2 Let 0 < ¢ < w < 1. Then the (directional) Blackwell-derivative is
Di—eyV* v =v1A + 1A >0, (23)

along any direction v = (v1, v2) € Ri \ {0}.

Proof Letv = (v1, 12) € Ri \ {0}. Using relations (15)—(17) and (20)—(21), as well
as the envelope theorem, we have that

d

D)V = T [p (Tru(a*’ X) + (1 — m)u@, X)) (1 =p) (Su(a*, %)
+ (1 —ou@*, X))]
a * et 3 * - —x -
= S P W@ X) —u@. X)) + el = p) (u@®. X) —u(@. X))}
= (A, A),
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which, by virtue of (22), implies that relation (23) holds.!! O

Proposition 2 states that the directional (“Blackwell”’)-derivative, corresponding to
the slope of the optimal expected value V* along any direction v between (—1, 0)
and (0, 1), must be nonnegative. In other words, the decision value cannot decrease
if (—e&, ) increases, which corresponds precisely to the informativeness criterion in
Proposition 1. We term (23) the Blackwell criterion, which needs to be satisfied for all
standard decision problems. It therefore provides an important baseline comparison
of information sources.

Remark 5 A good analogy for ordering information sources relative to different clas-
ses of decision makers is stochastic dominance. While the first-order stochastic-
dominance order provides an excellent baseline comparison of probability distribu-
tions, it considers a reference class of decision makers (all those with utility functions
increasing in the scalar outcome) that is too large to be able to order many probability
distributions. The notions of second-, third-, and higher-order stochastic dominance
impose successively weaker criteria on the comparison of probability distributions,
effectively narrowing down the class of decision makers for which the comparison is
valid. For example, second-order stochastic dominance implies a preference over dis-
tributions for all decision makers with utility functions that are increasing and concave
in the scalar outcome. O

3.3 Confidence order

Comparing different informative signals for all possible decision makers with dif-
ferent utility functions # on A x X and different prior beliefs necessarily leads to
a very weak preference order, which makes it impossible to distinguish many, if not
most, signals. It is therefore natural to expect that sharper criteria for the desirability
or “informativeness” of signals must incorporate particulars of the decision problem,
such as the decision maker’s utility payoffs and prior beliefs. Earlier work focusses
on particular classes of decision problems, such as portfolio decisions (Athey 2000),
or monotone decision problems (Athey and Levin 2001). Our ordering criterion based
on the confidence parameters k and A is applicable for comparing binary experiments
for our standard decision problem introduced in Sect. 3.1. We note that our initial
assumption of the convexity of the action set A is not necessary for the confidence
order and can be dropped.

A confidence order for the comparison of binary signals can now be formulated
as follows: a decision maker facing the standard decision problem in Sect. 3.1 is at
least as confident in signal 51, of confidence (k1, A1), as in signal 5,, of confidence
(k2, A2), if

(k1, A1) = (k2, A2). 24)

The “augmented” ROC space in Fig. 4, which contains the iso-confidence lines for
k and A, shows that the confidence order is strictly weaker than the Blackwell order.

T The use of the envelope theorem for arbitrary choice sets (including our action set .A) has been discussed
by Milgrom and Segal (2002).
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Sensitivity
7 = P(5]X)
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Fig. 4 ROC space with iso-confidence lines

The latter requires that
(&1, 1) = (—¢2, M2), (25)

and, indeed, relation (25) implies (24) but not vice versa. The following result char-
acterizes the confidence order based on («, 1).

Proposition 3 Let k, A > 1. Then the components d3V*/dk and dV*/d\ of the con-
fidence-derivative Dy )V * satisfy

- aV* - 1 av*
(A—/{A) <0o<{Aa-({-)A . (26)
oA A oK
Proof Assume that k, A > 1. Using the envelope theorem as in the proof of Proposi-

tion 2 and the chain rule for differentiation, the confidence-derivative can be computed
as follows:

Dy nyV* =

AV* a(e,n)_(_A )[—(x—m K —1 } 1
e, m) Ak, A) ’

—A=1  (k =Dk | @xr—1)2%
(27)
Hence, dV*/dk > 0 if and only if A — (1/X)A > 0,and dV*/9Xr > 0 if and only if
A — kA < 0. The last two relations are equivalent to the confidence criterion (26),
which concludes our proof. O

We term the relation (26) characterizing the confidence order the confidence criterion.
The first inequality in (26) states that the decision value V* is nondecreasing in the
confidence A if and only if the X-gain A is at least as large as « times the X-gain. Thus,
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0

Fig. 5 Monotonicity of the information value in « and A

for the decision value V* to increase in the confidence A of S as an indicator for X, the
gain A from adjusting from a* to a@* for a realization of X has to exceed k A. Similarly,
the second inequality in (26) states that the decision value V* is nondecreasing in the
confidence « if and only if the X-gain A is at least as large as A times the X-gain.
In other words, for the decision value V* to increase in the confidence « of S as an
indicator for X, the gain A from adjusting from a* to a™* for a realization of X has to
exceed AA. When the gains A and A are strictly positive, we obtain a somewhat more
intuitive statement of the confidence criterion in the form

DunV* >0 & A<KandA<A (28)
(K, A) = N xS .

The decision problem is called balanced relative to («, A) if the right-hand side of (28)
is satisfied. It is clear that any decision problem with nonzero gains is balanced if only
the experiment is good enough, i.e., if k, A are sufficiently large. Thus, by relation (28)
it is

k,A> 1 = V¥ isnondecreasing in (k, ). (29)

Figure 5 illustrates the confidence criterion (26) for the monotonicity of V* in «
and A. It particular, it shows that V* is always increasing in at least one of the con-
fidence parameters. It also illustrates that when the gains A and A are similar, then
the decision value V* is increasing in (k, A), i.e.,

AxA = V*is nondecreasing in («, A). (30)
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3.4 Comparison of information orders

The confidence order in Sect. 3.3 is weaker than the Blackwell order in Sect. 3.2.
While the Blackwell criterion (23) in Proposition 2 guarantees the monotonicity of
the optimal decision value V* in the error parameters (—e&, ) for all standard decision
problems, the confidence criterion (26) allows for more flexible monotonicity prop-
erties of V* in the confidence parameters («, 1). Nonetheless, as the examples in this
section show, the confidence order can provide a much sharper criterion for the value
of information and is therefore of use in many practical situations.

Example 2 A decision maker can take one of two possible actions,a = 0 ora = 1.
The cost of taking action a is ca, where ¢ € [0, 1] is a given constant. The gross
utility for choosing @ = 1 corresponds to the realization of a random outcome X in
X = {0, 1}. The decision maker’s utility for action a at outcome x is therefore

u(a,x)y =a(x —rc).

The decision maker is interested in the event X = {1} C &". Given a prior belief of
p = P(X), his expected net payoff is

Elu(a,x)|p,cl=a(p —o).

One can think of ¢ as a cost threshold, above which taking the action a = 1 becomes
beneficial. Such a decision problem is archetypal. For example, many capital invest-
ment decisions can be based on thresholds (Keisler 2004). The decision maker’s opti-
mal default policy a(’g is to choose 1 whenever p > c, to choose 0 whenever p < c,
and to choose either of the two actions if p = c. This leads to the expected default
payoff of Vj" = [p — c],.. Using an informative signal of confidence («, 1) > 1, the
optimal expected payoff becomes

V¥=P(S) gk, p) —cly + 1 —PS)[g(l/x, p) —cly,

where

d+&-DHpr -1

P& = i — 1

An optimal policy conditional on S is to choose the action a* = 1 if and only if the
decision maker’s posterior g(k, 1) exceeds c. If, on the contrary, the decision maker
observes S, it is optimal to choose a* = 1if g(1/A, p) > c. Consider now the value of
the informative signal to the decision maker. The X-gain and X-gain in this example
can be computed using (20) and (21)to A = p(1 —c¢) and A=(- p)c, respectively.
By the confidence criterion (26) in Proposition 3, we therefore have that DE‘K’ = 0if
and only if

(I=p)c—kp(l—c)=0=(1—-p)c—1A/2)pd —o0). €1y
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It is possible to obtain the same inequalities using the following, slightly different
reasoning. If neither a* nor a* is different from ag, then the signal cannot have any
value for the decision maker. Hence, the informative signal can be worth a positive
amount if and only if it has the power to actually change decisions, in which case

(glk, p) —c)(g(l/A, p) —c) <0

must necessarily hold. The last condition is equivalent to
¢ € [P(X]S), P(X|9)] = [g(1/4. p). gk, p)].

In other words, the decision threshold ¢ and the decision maker’s prior belief p about
a favorable outcome have to be such that
l—p
l—c p

1/x < <«k. (32)

Relation (32), which is equivalent to relation (31), provides tight lower bounds in «
and A for the signal to have a positive value. For example, if p = 0.5 and ¢ = 0.2,
then the confidence criterion (31) requires that & > O for the information value to
be strictly increasing in x, A > 1 (note that k > 1/4 is automatically satisfied). By
the equivalent relation (32), the condition A > 4 (together with x > 1) is also nec-
essary and sufficient for the value of information to be positive. This is illustrated in
Fig. 6.2 O

Remark 6 The natural question arises of how one can compare two signals, s; and
52, when their costs (denoted by C; and C,, respectively) are different. While the
maximum tolerable difference in the signal-acquisition cost can be determined only
as the difference between the respective (gross) decision values they induce, 3 we note
that, as long as the decision maker’s utility is quasilinear in money, the balancedness
condition remains unaffected by the costliness of signals. Further, a priori statements
about which of the two signals is preferable are impossible unless one has bounds on
the rate of change of the decision value in the confidence parameters of a balanced
problem. For example, if it is known that % € [)_/K, V] and % €ly N y3] with
known constants Yer Vs Yi» ¥, then

y (ko —k1) +y, A2 —21) < V3" = Vi < (ko — k1) + Ya(ha — A1)

for (k2, A2) > (k1, A1). This means that as long as the cost difference AC = C; — Cy
between signal 2 and signal 1 is smaller than )_/K(/cz — k1) + 7_/A()L2 — A1) signal 2

12 The value of information in Fig. 6 exhibits the characteristic Radner and Stiglitz (1984) nonconcavity.
This nonconcavity appears irrespective of how the performance of the information source is parameterized.

13 The cash value of information for single-person decision problems has been thoroughly examined by
LaValle (1968). In strategic situations, the value of additional information might well be negative, even
when it is being sold by one decision maker to another (see Weber and Croson 2003 for an example).
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V- vy

is preferable, whereas signal 1 is a better deal if the cost difference AC exceeds
Yie(ka — k1) + v2. (Ao — A1). O

4 Discussion

The examples in this article illustrate the usefulness of considering binary information
sources in terms of their confidence parameters (k, 1) instead of the standard error
parameters (&, 7). A key reason for this is that the confidence parameters naturally link
the performance of the information source to the different messages it can send, thus
rendering the Bayes update after a given signal realization dependent solely on a single
parameter and the decision maker’s prior belief. This establishes a direct correspon-
dence between the magnitude of a Bayes update and the confidence parameters, which
also allows for a simple graphical Bayes update (cf. Appendix A). Relative to an event
X, the parametrization idea naturally generalizes to any information source with an
arbitrary number of messages, i.e., to any partition Pg = {S;};c7 of the sample space
S.'* where T is a countable index set. It is enough to define a (generalized) confidence
ki (X) € [0, oo) for any possible realization S; by setting «; (X) = P(S;|X)/P(S; 1X)
for all i € Z. Hence, the confidence parametrization presented in Sect. 2 generalizes
to any information source relative to any event X.!> Nonetheless, by doing this, one

14 The partition Pg of S has at most countably many elements S;, which are pairwise disjoint and whose
union is equal to S (up to a set of Lebesgue-measure zero).

15 1n the general case, the Bayesian update diagram can also be used to find the posterior belief P (X|S;) =
g(k;(X), p) (corresponding to relation (34)), by either using the upper portion of the diagram for k = «; (X)
when «; (X) > 1 or else using its lower portion for A = 1/k; (X) > 1.
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invariably associates a given message with a given event, and it is therefore simpler
to think of the information source as binary in the first place.

The equivalent comparison based on confidence parameters can be generalized to
nonbinary information sources as follows: if—relative to an event X—the confidence
parameters k; (X) of one source weakly exceed the confidence parameters «; (X) of
another source, for all i € Z, a decision maker is said to be at least as confident in
the first source as in the second as an indicator for X. With this definition, all our
results in Sect. 3 carry over in the more general framework, which is detailed for any
finite outcome and sample space in Appendix D. The Blackwell order still implies the
confidence order, which proves to be a useful weaker order than Blackwell’s infor-
mativeness criterion. Such a generalization is of mostly a theoretical rather than a
practical interest. The diagrams in Figs. 2 and 4 may be applicable by real-world
decision makers, without requiring much knowledge of probability theory.'® The con-
cept of X- and X-gains helps in deciding (via the confidence criterion (26) in Prop-
osition 3) whether binary information sources for a given decision problem can be
effectively compared using the confidence order. One of the key heuristic insights in
Sect. 3 is that if these adjustment gains are similar, then the confidence order leads to
a sharp distinction of information sources (cf. Fig. 5).

Acknowledgements The author would like to thank an anonymous reviewer, Sam Chiu, Ron Howard,
Elisabeth Paté-Cornell, Ross Shachter, and Jeffrey Strnad for helpful suggestions and discussions.

Appendix
A. Graphical methods

The following examples illustrate the use of the Bayesian update diagram (Fig. 2) and
the confidence-augmented ROC space (Fig. 4) for the evaluation and comparison of
binary information sources.

Example 3 A decision maker’s prior belief about the probability that an important
event X occurs is p = P(X) = 50%. To update his beliefs, the decision maker can
conduct a binary experiment with realizations S or S. This experiment has as error
characteristics (g, ) = (0.25, 0.5). From Lemma 2, we obtain the equivalent con-
fidence parameters, (k, ) = (7/e, (1 —¢)/(1 — w)) = (2,3/2). Figure 7 shows
how to use the Bayesian update diagram to find the decision maker’s posterior beliefs,
P(X|S) ~ 67% in the case of S and P(X|S) ~ 40% in the case of S. The diagram
also shows that using an experiment with higher confidence («, ):) = (3,10) > (k, 1),
the decision maker can increase the spread in his posterior belief adjustments, to 75%
in case of S and 9% in case of S. O

16 In contrast to the Bayes update, the graphical comparison of information sources via iso-confidence
lines in the ROC space as presented in Appendix A does not generalize to general information sources in
a straightforward manner. The reason is that the confidence-augmented ROC space, which directly corre-
sponds to the parametrization of the signal characteristics in terms of P(S;|X) for all i € Z, has as many
dimensions as there are elements in the index set Z.
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F Y

Fig. 7 Bayesian updates in Example 3

While the last example illustrates the straightforward use of the Bayesian update
diagram in Fig. 2 to find posterior beliefs, given prior beliefs and confidence charac-
teristics of a binary signal, there are other ways in which the diagram can be used.
In certain situations, the posterior beliefs might be given, the signal characteristics
known, and one seeks the relevant prior beliefs. Or, it may be the case that one wishes
to find the appropriate confidence characteristics of a test that has the power to change
a given prior belief into a given posterior belief, consistent with Lemma 1.

Example 4 A prosecution lawyer is interested in obtaining forensic evidence that
could prove the guilt of an accused “beyond a reasonable doubt.” While the precise
probability standard for the required burden of proof may be disputable, for any given
probability standard, say, 90% to fix ideas, the lawyer can focus on the x needed
to convince the most conservative juror, whose prior belief the lawyer estimates at
p € (0, 1).17 For instance, if p = 10%, then from the Bayesian update diagram she
can conclude that the proof must be the realization of a signal with confidence parame-
ter k somewhere between 50 and 100. Alternately, for a given piece of evidence whose
probabilistic characteristics can be judged fairly, the lawyer can use the diagram to
estimate the lowest prior that was necessary to lift beliefs above the required standard
of proof. It is clear that the defense team can use the diagram in exactly the opposite
way, introducing evidence with a A as large possible to cast doubt on the defendant’s
guilt. As long as different, successively introduced pieces of evidence can be consid-
ered statistically independent, it is possible to cycle several times through the diagram,
each time using a newly obtained posterior belief as the prior belief when considering
the next piece of evidence. O

17 Our discussion is notwithstanding the question whether a juror is actually capable to perform correct
Bayesian inferences; see Kaye and Koehler (1991) for a discussion of this question.
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Fig. 8 Comparing information sources a in ROC Space, b in confidence space (cf. Example 3)

The application in Example 2 represents a class of recurring binary classification
problems, in which one of two possible classification actions is costly and its payoff
depends on the realization of a random variable. The confidence order precisely orders
signals of different values, whereas the Blackwell criterion is unable to distinguish
certain signals. The latter point is made more precise by reconsidering Example 3.

Example 3 (continued) A decision maker needs to decide between two different exper-
iments, with respective confidence parameters («, A) = (2, 3/2) and («x, )AL) = (3, 10),
in order to update beliefs about an important event. Our earlier discussion already
showed that the Blackwell order cannot distinguish between the two experiments. In
Fig. 8a and b, region B describes all the tests in the ROC space (cf. also Fig. 4) that are
Blackwell-preferred to («, A). Regions C and C’, on the other hand, contain all signals
which are not in B but still dominate («, A) in the confidence order. The regions C,C,
and B are defined analogously, only that they contain the experiments that are dom-
inated by the point («, A) in the confidence-sense or Blackwell-sense, respectively.
From Fig. 8, it becomes evident that the confidence order makes significantly more
information sources comparable than the Blackwell order. If the cost of the decision
maker’s action is given by ¢ and the state of the world is described by a random payoff
of either 0 or 1, then we are back to the same decision problem as in Example 2.
Since V* is nondecreasing in the confidence parameters, we can conclude that the
experiment (k, 1) must be strictly preferred to the experiment (k, ). O

Many real-world decisions need to be taken quickly and in the presence of sub-
stantial uncertainty. It is often impossible to carefully construct a probabilistic model
and use sound decision-analytic tools to select optimal actions. Real-world decision
makers often lack the training and intuition necessary to integrate different pieces of
information and to then correctly update their probability assessments. For example,
credit approval decisions have to be made online and are based on a very limited
amount of information; a juror in court needs to update her subjective beliefs about
a defendant’s guilt in a room filled with other jurors; a doctor needs to decide about
how to best come-up with a reliable diagnosis while a patient is waiting; and, if she is
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ever to finish her pile, an admissions officer has to quickly integrate pieces of evidence
such as transcript and reference letters when deciding about whether or not to extend
an offer to an applicant. A common feature of these choice situations is that a human
decision maker is confronted with a fairly simple classification decision (e.g., yes/no)
or with a simple information acquisition problem (e.g., which piece of evidence or
test to select). The techniques for visualizing the Bayes’ belief updates following
the realization of informative signals and for graphically comparing different binary
information sources and experiments can be used ad hoc and without first generating
a formal model of the decision problem. The strength of the Bayesian update diagram
(Fig. 2) and the confidence-augmented ROC space (Fig. 4) is that these visual aids can
be used to make fairly precise normative judgements without a lot of formal analysis.

B. Information aggregation in confidence parameters

At the end of Example 4, the question arose how it may be possible to aggregate dif-
ferent pieces of evidence. Such problems of information aggregation are ubiquitous
in real-life decision problems and are encountered whenever decision makers have
access to multiple information sources. Clemen and Winkler (1993) take a general
perspective for the aggregation of information based on influence diagrams, where the
different information sources might be weighted differently (e.g., depending on the
varying importance of the different expert opinions). For the purposes of discussing
the confidence order, here we make the demanding assumption that the decision maker
knows the joint probabilistic behavior of his different information sources.'® The con-
fidence parametrization of information sources in terms of (k, A) is particularly well
suited for obtaining a description of an aggregate information source in terms of the
characteristics of its constituent information sources, at least when those sources are
statistically independent conditional on the event of interest. The following lemma
provides a general solution for the aggregation of two information sources. More than
two experiments can be aggregated by applying the result several times in a row.

Lemma 3 Let 51 and 55 be two information sources on the common sample space S.
(i) If the events S1, S» C S, with 0 < P(S11X), P(821X) < 1, are statistically inde-
pendent conditional on X, then the decision maker’s possible posterior beliefs are

P(X|S1 N $2) = glkik2, p),
P(X|S$1N82) = gk1/22, p),
P(X|S1 N S2) = glka/21, p),
P(X|S1 N S$2) =g(1/(A142), p),

(33)

depending on the joint realizations of the two signals. (ii) If the events Sy and S, are
statistically dependent conditional on X, then the decision maker’s posterior beliefs

18 Much of the literature on the aggregation of information sources deals precisely with the question of how
to generate a reasonable probability distribution for the joint experiments when combining the observations
from the available information sources.
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can be obtained as

(34)

P(S|X
P(X|S>=g( (G1X) )

Psix) "

where S € {S1 N S, S1 N 5,85 N8, 8N 5’2} is the relevant joint event.
Proof (i) Consider first the case where the decision maker observes the message
S1 N S2. Because of the assumed conditional independence of the two signals, it is

P(S1 N S$2|X) = P(S11X) P($2|X) = k1k2,

where k1 and «7 are defined as in (8). Thus, by setting k = x1k2 and S = §1 N S we
obtain the first relation in part (i) of Lemma 3. The other relations hold by analogous
arguments. (ii) The assertion follows directly from Bayes’ rule (6) and the definition
of g in (10),

oL p P(S|X
o = st~ (5 7)
I+ (P(Su?) B 1) p
for any S € {S1 N Sy, S1 ﬂgz, .§1 NSy, §1 HSQ}. O

From Lemma 3, we conclude that conditionally independent information sources can
be aggregated by multiplying their event-specific confidence characteristics. Morris
(1977) has obtained an analogous multiplicative result for combining the judgements
of independent experts. Part (ii), which is a generalization of part (i), states that whether
information sources are statistically independent or not, it is always possible to form
posterior beliefs using relations (8) and (9) by taking S as the appropriate joint event
generated by the realizations of the two constituent signals. In that case, the confidence
ratio P(S|X)/P(S|X) can be any nonnegative number and does not have to be > 1.

Example 4 (continued) The prosecution lawyer introduced at the beginning of Exam-
ple 4 is now interested in determining what “confidence” his case needs in order to
convince the most conservative juror on the panel. With an estimated prior of p for
the most conservative juror and a required burden of proof of at least 90%, the pros-
ecution lawyer can try to assemble different pieces of evidence with an aggregate
confidence of at least « > (0.9/(1 — 0.9))(1 — p)/p. This lower bound is obtained
from solving (7) for «, given a left-hand side of 0.9. For example, when p = 10%,
the minimum aggregate confidence needed is 81. This number (which can also be
obtained approximately using the Bayesian update diagram in Fig. 2) would still need
to be multiplied by the aggregate confidence A of the defense team’s case for proving
the defendant’s innocence, in order to yield a conviction. Thus, if the lawyer estimates
the defense team’s A at 10, it would be a good policy for the prosecution team to strive
for an aggregate « of at least 810. The aggregation can be performed pairwise using
Lemma 3 repeatedly. Naturally, these results are indicative only of the strength of the
evidence needed, as jurors may not be perfect Bayesian decision makers or may be
naive in interpreting the evidence presented in court (Froeb and Kobayashi 1996). O
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The last example illustrates the fact that the confidence parametrization of binary
signals and the Bayesian update diagram in Fig. 2 can be used to solve the “inverse
problem” of finding the minimum confidence needed to ensure that a decision maker
(e.g., a juror) update aprior belief to a prescribed threshold level. We group such
applications in the realm of robust decision making, since they focus on performance
guarantees for worst-case scenarios. The example also illustrates the odds interpre-
tation of the Bayes update in relation (7) (cf. Barnard 1949; Lindley 1964). Indeed
if we denote by h = p/(1 — p) the decision maker’s “prior odds,” and by h(s) =
P(X]|S)/(1— P(X]S)) the decision maker’s “posterior odds” conditional on receiving
the message S, then (7) can be written equivalently in the form

h(S) = kh, (35)

which relates prior odds and posterior odds in a simple proportional relationship. Sim-
ilarly, if h(S) represents the posterior odds conditional on receiving the message S,
then

h(S) = (1/M)h. (36)

The odds interpretation of Bayes’ updating formula in (35) and (36) is useful for
determining critical confidence parameters as appropriate ratios of prior and posterior
odds. In Example 4, the prior odds are & = 0.1/(1 — 0.1) = 1/9 and the posterior
odds are fz(S) =0.9/(1 —0.9) = 9, which by virtue of (35) implies the lower bound,
K > h(S)/h = 8.

Remark 7 Aggregating different information sources generally leads to a new infor-
mation source with more than two messages. While there are useful applications of
this within our framework (cf. Example 4), we restrict attention in the main text to
binary information sources to be able to formulate graphical methods for evaluat-
ing and comparing information sources. Appendix D introduces a generalization for
nonbinary decision problems and experiments. O

C. Confidence-consistent ROC curves

When considering an experimental method that is represented as an ROC curve (as
in Fig. 9a) in terms of its confidence properties, one may be able to eliminate some
portions of the curve from consideration if they are confidence-dominated by other
points of the curve. The Blackwell order allows such an elimination only if the ROC
curve is not monotonically increasing. The confidence order, by contrast, also allows
the elimination of certain nonconvexities that naturally appear when ROC curves are
generated by interpolating experimental data points. To identify dominated points, one
first considers an equivalent representation R = {(k(d), A(d))}4ep of the ROC curve
in confidence parameters (cf. Fig. 9b) and eliminates from R any strictly dominated
points, so that the remaining truncated graph R is given by

R={k,\)eR: (kAN <®EINER = (k1) =&,

@ Springer



Simple methods for evaluating and comparing binary experiments 283

—
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Fig. 9 Elimination of confidence-dominated designs from an ROC curve (a) by restricting attention to
confidence-undominated points of the equivalent representation (b) in (k, A)-coordinates

Transforming the truncated graph R back into ROC space, one obtains a (generally
discontinuous) receiver operating characteristic that does not contain any experiments

that are confidence-dominated by other experiments on the curve.!®

D. Generalization to nonbinary state and sample spaces

We now provide a generalization of the binary framework to decision problems with
any finite state space X = {Xop,..., X,} and experiments with any finite sample
space S = {So, ..., S}, where m, n are given positive integers.zo Form =n =1,
we recover the binary situation discussed in the main text. To keep things nontrivial,
we assume that the decision maker’s belief p; = P(X;) about the likelihood of the

outcome X; is neither O nor 1 so that
pi € (0, 1)
for all i. The information source (experiment) is characterized by nontrivial conditional
probabilities
mij = P(S;1X;) € (0, 1)
for all i, j. Analogous to the binary situation, we refer to the likelihood ratio

P(S;1X:)
Kij = ————=—_
P(S;1X;)

19 Flach and Wu (2003) offer a different rationale for eliminating nonconcavities (referred to as “non-
convexities” in their framework) by constructing the convex hull of the empirical ROC curve, under the

assumption of linear tradeoffs between different objectives.
20 A generalization to more general (measurable) outcome and sample spaces is straightforward but is

beyond the scope of this article.
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as the confidence of the message S as an indicator for the event X;. A value of k;; < 1
means that S; tends to disconfirm the realization of X; and should therefore be viewed
as an indicator for X;, the complement of X;. On the other hand, if «;; is > 1, then
the decision maker’s posterior belief conditional on the realization of S; exceeds his
prior, i.e.,

kij>1 = PX;lS;) > pi.

The latter implication (and its converse) holds, because, by virtue of the same argu-
ments as in Sect. 2, the decision maker’s posterior is

P(X;|S;) = g(kij, pi)s

where the function g(-) is given by (10). As a result, the Bayesian update diagram
(Fig. 2) can be used, depending on the magnitude of «;;, by either replacing « by
kij > 1 orreplacing A by 1/k;; > 1. We consider the standard decision problem of
finding the optimal action

n
a’ € arg max iiiu(a, X;
J gaeAlzpl iju( z)]

i=0

for all signal realizations j € {0, ..., m}. All other primitives of the decision problem
are defined as in Sect. 3.1. Analogous to the binary situation, the decision maker’s
action contingent on the message S; depends only on x; = (ko . .., kimj), DOt On any
other characteristic of the information source. Since for any event X; the conditional
probabilities P(S;|X;) sum up to 1, i.e., Z’fzo mij = 1, we can choose a reference
message, say So, and express the conditional probabilities ;¢ by the conditional prob-
abilities for the other messages, i.e.,

n
mo=1- Y mj,
J=1

for all i, and then we obtain for the expected value of the decision problem
n n
vE=>"pi @y X0 + > my (@), X0 - utag, X))
i=0 j=1
In other words, the decision value is obtained as the sum of the expected value of the

decision conditional on the reference message, plus the (expected) X;-gains A;; of a;‘
over ag,

Ajj = pi (u(a;f, Xi) — u(ag, Xi)),
weighted by the conditional probabilities 7;;. In other words,
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n,m
V* = 123 + E JT,'.,'A,'./,
i,j=0

where ij = > piu(ag, X;). Note that in the binary case it was possible to switch
the reference message with the state of the world considered (taking as reference mes-
sage always the signal realization that represents the strongest indicator for a given
state), which led to the nonnegative gains A and A in (20) and (21). This convenient
definition for the binary case proves to be cumbersome in the general situation. Hence,
the X;-gains A;; can have either sign, depending on how a;‘f compares to a; in terms
of the decision maker’s payoffs given the outcome X;.

To find how the decision value V* changes in the confidence parameters «;;, we
first note that all these parameters cannot be chosen independently. Indeed, if we let

wj = (mj, ..., ) and p = (po, ..., pn), then
o — ( — pi)mij
Y (pm)) — pimij

which implies that p;;; = «;;(p - 7;)/(1 — p; + pikij), whence (by summing over
i) the consistency condition

n

z PiKij -1

— (L= pi) + pikij

for all j. We therefore term one outcome, without loss of generality X, a reference
state and restrict attention to changes of k;; relative to states and messages other
than this reference state and other than the reference message, i.e., for i, j > 1.
Given a matrix of confidence parameters K = [k; j]Z’jm:O (with elements satisfying the
above consistency condition), the corresponding matrix of conditional probabilities

,m

= [nij]ﬁj:() is given by
= Q(, p),

where O(K. p) = [Qij(K, p)Ii"/Ly € {lyij1i Lo t kij = (L= pi)yij/(p - yj —
PiYij)s 2 p—o ik = 1}. The following result (which is a simple consequence of the
chain rule of differentiation) summarizes how the decision value V* changes as a
function of the confidence parameters of the experiment.

Lemma 4 The change of the decision value V* in the confidence parameter «;; is
given by

where qij = 00;;(K, p)/0kij.
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In our confidence order a signal with confidence-parameter matrix K (weakly) dom-
inates a signal with confidence-parameter matrix K, denoted K > K, if and only
if

(kij — D(&ij —«ij) =0

forall Z, j. In other words, K is (weakly) dominated by K if for any confidence param-
eter «;; in K that exceeds 1, the corresponding confidence parameter &;; exceeds k;;
(at least weakly), while the converse is true (i.e., k; i < kij)if k;; < 1. Therefore, a
decision maker can be more confident in a signal if messages become stronger indi-
cators for (or against) any given outcome X; in X. Hence, in the context of general
finite outcome and message spaces we say that a decision problem is “balanced” if

n
ki[( = ZA,’jqijz().
i=0

Remark 8 We now show that the above generalized confidence-order condition re-
duces to the balancedness conditions in the binary case, where m = n = 1. In that case,
k11 = 1/ko1 = K, and kg9 = 1/k10 = A, where—without any loss in generality—we
have that «, A > 1. Furthermore, with X = Xand X| = X itism =1 — T = T,
01 =1 —700 =¢,and Ay = A, Ajg = Agp = 0, and A9 = —A. The function
Q(K, p) corresponds in the binary case to the mapping in Lemma 2,

1 [ak=1) a-—1
Q(K”’)—m_l[ x(x—u]’

Kk —1

and is independent of the decision maker’s prior belief p. Differentiating Q with
respect to (k, 1) yields the expression on the right-hand side of (27) so that we imme-
diately recover the binary balancedness condition (or confidence criterion) in the form
(28) from the more general approach. O
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