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Synchronization of biological neurons is not only a hot topic, but also a difficult issue in the field of bioelectrical physiology.
Numerous reported synchronization algorithms are designed on the basis of neural model, but they have deficiencies like relatively
complex and poor robustness and are difficult to be realized. Morris-Lecar neuron is considered, and linear active disturbance
rejection control (LADRC) is designed. Only one control input signal is utilized to synchronize membrane potentials of biological
neurons. Meanwhile, in order to verify the robustness of synchronization, sinusoidal signal and parameter perturbations are
introduced in numerical simulations. LADRC can still achieve satisfactory synchronization. Both theoretical and numerical
simulation results show that LADRC is capable of estimating and cancelling disturbances and uncertainties. Neither accurate neural
models nor concrete disturbance signal models are indispensable. A more practical and effective thought is provided to address the

synchronization between neurons.

1. Introduction

Complex and powerful biological nervous systems are com-
posed of a great number of connected neurons. By organizing
and analysing experimental data of membrane potentials
of biological neurons, it is found that synchronization of
neuronal membrane potentials plays a crucial role in bio-
logical information processing and transmission. The syn-
chronization and synchronized degree between biological
neurons are vital for physiological function [1]. Actualizing
the synchronization of biological neurons has become a
hot and difficult topic in bioelectricity physiology, nonlinear
system theory, control, and many other areas.

For quantitative analysis of discharging characteristics,
Hodgkin-Huxley (HH) model [2] was proposed by Hodgkin
and Huxley in 1950s. It is the first mathematic model
that describes dynamics of biological neuronal membrane
potentials, which has turned into a milestone of bioelectric
physiology. Subsequently, various neuronal models describ-
ing different biological neuronal discharging modes have
been proposed, such as FitzHugh-Nagumo (FHN) model [3],

Ghostburster model [4], Hindmarsh-Rose (HR) model [5],
and Chay model [6].

Based on the above models, in order to assist the
abnormal nervous systems to operate normally, scholars
from nonlinear control area began to study how to exert an
external control signal, i.e., an external electrical stimulation,
to drive different discharging modes between neurons to be
synchronized. A variety of quantitative analyses, control, and
synchronization studies have been carried out. For instance,
according to HH neuron model, accurate feedback [7] has
been applied to realize the discharging synchronization
between two HH neurons; under assumptions that all states
are available, nonlinear control is proposed [8], additionally,
when only membrane potential is available, linear adaptive
control has also been designed to realize the discharging
synchronization of HR neurons [8]; when system states and
model are known, stable feedback control [9] based on Lya-
punov stability theory has been designed and the synchroni-
zation of FitzHugh-Nagumo (FHN) neurons is achieved;
adaptive neural network H_, approach proposed in [10] is
utilized to synchronize two Ghostburster neurons.
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TABLE 1: Variables of a Morris-Lecar neuron.
Variables Values
C 5
gL 2
Vv, -60
9ca 4
Ve, 120
9k 8
Vi -80
¢ 1/15
vy -1.2
vy 18
V3 2
Vy 17.4

Morris-Lecar neuron is a kind of simplified biological
neuron model, its asymptotic behaviour has been analysed in
[11, 12]. Gonzalez has explained the pacemaker dynamics in
special parameter space [13]. For the purpose of describing
memory features of Morris-Lecar neuron, fractal dimension
Morris-Lecar neuron model has also been proposed in [14].
In order to achieve the synchronization of Morris-Lecar neu-
rons, linear feedback control [12], adaptive H,, control [15],
and other control algorithms have been reported, respect-
ively.

Actually, two points are of great importance in the syn-
chronization of neurons by external stimulations. Firstly, the
synchronization approach should be robust enough to dis-
turbance. Owing to the weakness of electrical signals created
by neurons, the neuronal membrane potentials are sensitive
to disturbance. Model based control, whose performance
largely depends on the controlled system model, cannot
keep the satisfactory performance in presence of disturbance.
Therefore, control algorithms which are robust enough to dis-
turbance are able to guarantee the synchronization. Secondly,
low power electrical stimulations play a critical role in the
synchronization [16]. As we know, a high power electrical
stimulation is harmful to biological tissues. Therefore, reduc-
ing the power of a stimulation will guarantee the safe of tissues
and lengthen the lifetime of neurological implant.

Active disturbance rejection control (ADRC) is the very
kind of control, which has strong ability to reject disturbance.
By rethinking the essence of control and making a discussion
on control theory (i.e., a model analysis approach or a direct
control approach?) Han clarified the nature of control [17]
in the late 1980s and proposed ADRC [18]. It does not need
faithful model information. Before disturbance corrupting
system output, ADRC estimates and cancels disturbance to
guarantee the system output to be still desired. Therefore, in
presence of disturbance, less oscillations of a control signal
are needed to regulate system output. In other words, less
power is consumed in regulation. So far, theoretical and
applied researches on ADRC have been becoming a hot topic
and numerous results have been reported in such area [19-21].

However, for ADRC, many parameters have to be deter-
mined. Performance of a closed-loop system, to a great extent,
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depends on the experience of tuning parameters. It does
limit the applications of ADRC. In order to reduce difficulty
of parameter tuning, Gao proposed linear active distur-
bance rejection control (LADRC) and provided bandwidth-
parameterization based tuning method for LADRC [22].

In this paper, the synchronization of Morris-Lecar neu-
ronal membrane potentials is considered and LADRC is uti-
lized to reject disturbance and achieve desired synchroniza-
tion. The rest of the paper is organized as follows: problem
description is presented in Section 2, basic LADRC and the
design of linear active disturbance rejection synchronization
are provided in Section 3, simulation results are given in
Section 4, and, finally, the concluding remarks are given in
Section 5.

2. Problem Description

2.1. Morris-Lecar Neuron Model. Morris-Lecar neuron model
can be expressed as follows [12]:

av

CE = Iext 9L (V - VL) - gCaﬁ (V) (V - VCa)
- gxn(V -Vx), @
dn
I =7 (V)(a(V)=-n),

where

a(V) = 0.5(1 +tanh(@)>,

/3(V)=0.5(1+tanh(u)>, @)

V)

(V) = ¢cosh<w>

Vy

V is the membrane potential, I, is the externally applied
DC current, t denotes the time measured in milliseconds,
n is the activation variable for potassium, Vg, Vi,, V; are
equilibrium potentials of potassium, calcium, and leakage
currents, respectively. gx, gc,» gp represent corresponding
maximum conductance of corresponding ionic currents and
C stands for membrane capacitance. v, is the midpoint
potential at which the calcium current is half-activated, v, is
a constant that corresponds to the steepness of the activation
voltage dependence, v; is the activation midpoint potential at
which the potassium current is half-activated, and v, denotes
the slope factor of the potassium activation. ¢ represents a
constant. Here, values of each variable are listed in Table 1.

2.2. Discharge Characteristic of a Morris-Lecar Neuron. Neu-
ron owns different discharge characteristics according to
different values of external electric fields. Discharge charac-
teristics of a Morris-Lecar neuron, when I, = 50 and I, =
200, are shown in Figure 1, respectively.

2.3. Synchronization of Morris-Lecar Neurons. Master and
slave Morris-Lecar neurons are defined as follows:

dv,,
7 = [Iextm 9L (Vm - VL) - gCaﬁ (Vm) (Vm - VCa)
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FIGURE 1: Membrane potential of a Morris-Lecar neuron when I, are different.

1
~ Ixm (Vm - VK)] 6’

ot (1) (@(V,) - ).

% = é [Iexts — 9L (\/s - VL) - gcaﬁ (\/'S) (V’s _ VCa)
- gk (Vs - VK)] + u,

dn, i

= = TV (a(Ve) =ny),

(3)

where footnotes m and s represent the master neuron and
the slave neuron, respectively. u is the external control input,
i.e,, the external electrical stimulation, which drives the slave
neuron to act the same as the master neuron.

In this paper, the synchronization of Morris-Lecar neu-
ronal membrane potentials is to realize lim, , . (V,, - V,) =0
by LADRC.

3. Linear Active Disturbance
Rejection Synchronization

3.1. Brief Introduction to Linear Active Disturbance Rejection
Control. In this paper, second-order linear active disturbance
rejection control is designed to realize the synchronization.
Assuming that a first-order unknown nonlinear controlled
system can be described as

y = £ () + bu @
where y is the system output, w is external disturbance,
f denotes unknown system dynamics, b is the control
coeflicient, and u is the control input signal. Here, LADRC
is utilized, and the control input can be designed as

k,(y,—z) -z
- p()’ 1) =%

b , ()

where k, is the proportional coefficient, y, is the desired
output, lgo is a tunable parameter, z,, z, are outputs of the
extended state observer (ESO), and ESO is designed as

Zr=z,+ 1 (y—2z,) + byu,
| (6)
5,=L(y-z),

where z; estimates the system output y, z, estimates the
integrated disturbance including internal uncertainties and
unmodeled dynamics, and external disturbances, y is the
system output, [;, [, are gains of ESO, and u is the control
input defined in (5).

Ifweletz = [zl,zz]T, e, = ¥ — z,, then extended state
observer (6) can be rewritten as

z=A,z+B,u+Le, (7)
where
[0 l]
A, = ,
00
B -0] ®)
o~ _b() >
L:jﬂ.
L1

For the first-order unknown nonlinear controlled system,
it can be rewritten as

y=f(yw)+bu
=f(ryw)+(b-b)u+bu

2 f by

)

Here, f is defined as f 2 f(y, y,w) + (b — by)u, which
represents the integrated disturbance.
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FIGURE 2: Synchronization structure of Morris-Lecar neurons by LADRC.

According to control input (5), when ESO performs well,
ie,z; =y, z, = f, we have the closed-loop system as

y:7+b0u
:7+kp (7 -21) -2 (10)

:kp(yr_zl)'

Here, a nonlinear controlled system, by LADRC, is
approximately linearized. By setting proper parameters, one
can get the desired performance.

3.2. Closed-Loop Stability of Linear Active Disturbance Rejec-
tion Synchronization. LADRC s taken to realize the synchro-
nization of Morris-Lecar neurons; synchronization structure
of Morris-Lecar neurons is given in Figure 2.

In Figure 2, V,, is the membrane potential of the master
neuron, and V; is the membrane potential of the slave neuron,
respectively. Let x, = [V, nm]T, x, = [V, ns]T, system
model of the master and slave neurons can be rewritten as

X, = Ax; +F(x;),
(11)

%, = Ax, + F(x,) + Bu,

fi(x)
_ Texon + 91V1 = GcaB (Vi) (Vi = Vea) = Gt (Vi = VK))
C
fi(x)
_ Tewis + 91Ve = 9caB (Vo) (Vs = Vi) — gty (Vs - VK))
C

f2 (1) = 7 (Vi) (@ (Vi) = 1) »

fo (%) = 7(Vy) (« (V) = ).
(12)
Consider the disturbance, system (11) can be rewritten as
X, = Ax; + F(xl),
(13)
%, = Ax, + F(x,) + Bd + Bu,

where d is bounded disturbance signal.
. V-V, -
Lete, = x, - x, = [¢] = [nz—n::] be synchronization
error vector, and synchronization error system of Morris-

Lecar neuronal membrane potentials can be obtained from
(13):

é.=Ae +F(x,) - F(x;) + Bd + Bu; (14)
ie.,

. _ 9L d

€ = ?ev+f1 (%) - fi(x) +d +u,

&, = fr(x) - f,(x)).

The first synchronization error equation in (15) can be
written as

(15)

év:%&ev+f1(xz)_f1(x1)+d+”

%gLev‘*fl (%) = fi(x)) +d + (1 —by) u+byu (16)

=G(e,xp, X5, u, d) + by,
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where G(e,,X;,X,,u,d) can be regarded as the integrated
disturbance that includes internal uncertainties, un-modeled
dynamics, and external uncertainties.

From Figure 2, we can see that y = V-V, . The output z,
of ESO estimates y = V, -V, i.e., the synchronization error
e,, and z, estimates integrated disturbance G(e).

Let h = G(s), and then

¢, =G (e, x;, %, u,d) + byu,
, 17)
GO =h

Lete = [{] = [2:2] be observation error of ESO;
then observation error equation of ESO can be obtained by
subtracting system (6) from system (17); i.e.,

&¢=A,e+Eh (18)

1
A, = R
-1, 0
0
E= .
1

Lemma 1 (see [23]). If h is globally Lipschitz on X, X,, then
extended state observer gain L = [1,,1,]” can be selected to
make observation errors converge to zero asymptotically; i.e.,
lim, , & =lim, & =0.

where

(19)

Lemma 2 (see [23]). If observation errors of the extended
state observer are asymptotically convergent to zero, and then
there exist appropriate parameters, for the closed-loop system,
which can force the synchronization error to converge to zero
asymptotically.

According to Lemmas 1 and 2, we have the following
theorem.

Theorem 3. If h is globally Lipschitz on x,, X,, appropriate
parameters of controller and extended state observer, i.e., k,

and L = [1,,1,]7, can be chosen so as to make synchronization
error system (15) be asymptotically stable; i.e., asymptotic syn-
chronization of the membrane potentials can be realized.

Proof. Substitute linear active disturbance rejection control
law (5) into system (16); considering y, = 0 in synchroniza-
tion, we have

¢, = G(e,x;,X,,u,d) + byu
= —kpz1 +¢&, (20)
=—kpe, + kye +&;
ie.
e, = —kye, +kye +&. (21)

Choosing suitable ESO gain vector L = [;,1,]”, one can
make observation errors converge to zero. At the same time,

suitable control parameter k 5 will drive the tracking error (21)
to converge to zero asymptotically; i.e., synchronization error
between V, and V,, is asymptotic to zero.

Whene, =V, -V, =0,ie.,V,, =V, wehave

&, = (%)~ f,(x)
(Vo) (a (V) = 1) = 7 (V) (e (V) — 1)

=7(vV,)(«(V,)-n,-a(V,,)+n,) (22)
=T (Vm) (nm - ns)
=-1(V,)e,

Since 7(V) = ¢ cosh((V — v5)/v,), then

exp () +exp” ()

5 >¢>0 (23

T(V)=¢cosh()=¢

Hence, the zero dynamic of synchronization error system
(15) is also asymptotically stable.

Therefore, selecting suitable ESO gain vector L = [I;,1,]"
and control parameter k,, one can synchronize the mem-
brane potentials of Morris-Lecar neurons asymptotically. [J

4. Simulation Studies

In order to verify LADRC in the synchronization of Morris-
Lecar neurons, initial conditions are chosen the same as
the ones taken in [12], and three groups of simulations are
performed. In the first group, no disturbance is considered,
and synchronization performance has been compared. In the
second group, numerical results have been compared, and the
synchronization of LADRC has been confirmed in presence
of sinusoidal disturbance. In the last group, parameters of
slave neurons are changed to simulate parameter perturba-
tions of a controlled plant. Results also verify LADRC.

Parameters of LADRC are chosen according to the
approach proposed in [22]. Let control bandwidth w,, band-
width of ESO w,, and control parameter k,, satisfy k, = w,,
w, = 10w,.

Group I. Synchronization is achieved in absence of distur-
bance. Control parameters and integral of absolute error
(IAE, which can be calculated as jlevldt) are present in
Table 2.

In Table 2, k,, k, are the same values chosen as those given
in [12]. IAE, is the IAE value generated by controllers taken
in [12], IAE, is the IAE value produced by LADRC. w,, b, are
parameters of LADRC. Synchronous response and compar-
isons of control inputs are shown in Figure 3. Figure 3(a)
presents the synchronous response of LADRC. Figure 3(b)
exhibits the comparison of synchronization errors between
controllers presented in [12] and LADRC. In Figure 3(b),
e, is the synchronization error generated by LADRC, while
e, represents synchronization error generated by controllers
proposed in [12]. Figure 3(c) is the comparison of e,, which
is produced by LADRC, and e,,;, which is generated by con-
trollers utilized in [12]. Figure 3(d) is the comparisons among
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TaBLE 2: Control parameters and IAE values (in absence of disturbance).

Control parameters Values TAE indexes Values
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FIGURE 3: Synchronous performance of Morris-Lecar neurons and the comparison of control inputs (in absence of disturbance).

control input u of LADRC and two control inputs #; and u,

designed in [12].

From Table 2 and Figure 3, it can be seen that LADRC,
compared with two controllers used in [12], is able to get
smaller synchronization error and IAE values with less con-

trol energy.

Group II. For the purpose of verifying synchronization in
presence of disturbance, sinusoidal disturbance (d(t) =
10sint) is taken. Synchronizations have been compared
between controllers designed in [12] and LADRC. Con-
troller parameters and IAE values are shown in Table

3.
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TaBLE 3: Control parameters and IAE values (in presence of sinusoidal disturbance).

Control parameters Values TAE indexes Values
ki 20 IAE, 275.2547
k, 20
e 26 IAE, 21.0479
b, -50

TaBLE 4: Control parameters and IAE values (in presence of parameter perturbations).
Control parameters Values IAE indexes Values
ki 20 IAE, 259.0081
k, 20
w, 26 IAE, 22.7972
b =50

o

In Table 3, k, k,, w,, b, are the same values taken as those
given in Table 2. IAE, and TIAE, are IAE values generated by
controller taken in [12] and LADRC, respectively. Control is
activated at 200 ms, and the sinusoidal disturbance signal is
introduced from 400 ms. Simulation lasts 600 ms. Synchro-
nization response and the comparisons are given in Figure 4.

Figure 4(a) presents trajectories of neurons as time passes;
Figure 4(b) is the phase trajectories between Vi and V. It
will be a line when synchronization is achieved. Obviously,
Figure 4(b) shows that synchronization is obtained. Figures
4(c), 4(d), and 4(e) and IAE values given in Table 3 depict
the fact that, with less control energy, smaller synchronization
errors and IAE values can be obtained by LADRC. Simulation
results manifest that ESO can estimate the disturbance signal
effectively and then disturbance will be compensated to
guarantee satisfactory synchronization.

Group III. For the purpose of verifying synchronization,
parameters of slave neurons have also been changed. Accord-
ing to [13], gca» gx can be chosen from [0, 12] and [0, 24],
respectively. In simulations, gc,, gx of slave neurons have
been changed by 100%; i.e., g, = 8 and gy = 16, from
400 ms to the end of simulation. Controller parameters and
IAE values are listed in Table 4.

In Table 4, k,, k,, w., b, are the same values taken as those
listed in Table 3. Control is also activated from 200 ms, and
the changed parameters (see Figure 5(f)) are introduced from
400 ms. Simulation lasts 600 ms. Synchronization response
and the comparisons are given in Figure 5.

Figure 5 shows that when g, and gy are changed, smaller
synchronization errors can be achieved by LADRC. Both
Figure 5 and IAE values given in Table 4 show the same
fact that, with the help of ESO, LADRC is able to get better
synchronization.

Numerical results show that LADRC is able to achieve
desired synchronization with stronger robustness and less
power. It does satisfy two important issues in the synchro-
nization of neurons with external electrical stimulations.

5. Conclusion

In this paper, LADRC is adopted to discuss the synchroniza-
tion of Morris-Lecar neuronal membrane potentials. Theo-
retically, it has been analysed that LADRC can get asymp-
totic synchronization of neuronal membrane potentials by
selecting appropriate parameters of ESO and controller.
Meanwhile, from numerical results, it has been verified that
LADRC can perform well in the synchronization, no matter
disturbance and (or) uncertainties exist or not.

Precise model is not necessary and less control energy
is needed, both of the facts guarantee that LADRC is able
to achieve better synchronization. Broader prospects in
practical synchronization of membrane potentials in nervous
systems can be expected.
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