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Abstract
Causal representations are distinguished from non-causal ones by their ability to 
predict the results of interventions. This widely-accepted view suggests the follow-
ing adequacy condition for causal models: a causal model is adequate only if it does 
not contain variables regarding which it makes systematically false predictions about 
the results of interventions. Here I argue that this condition should be rejected. For a 
class of equilibrium systems, there will be two incompatible causal models depend-
ing on whether one intervenes upon a certain variable to fix its value, or ‘lets go’ of 
the variable and allows it to vary. The latter model will fail to predict the result of 
interventions on the let-go-of variable. I argue that there is no basis for preferring 
one of these models to the other, and thus that models failing to predict interven-
tions on particular variables can be just as adequate as those making no such false 
predictions. This undermines a key argument (Dash in Caveats for causal reasoning 
with equilibrium models. University of Pittsburgh. PhD thesis, 2003) against relying 
upon causal models inferred from equilibrium data.

1  Introduction

Dynamic causal models (Iwasaki and Simon 1994; Voortman et  al. 2012; Blom 
et  al. 2020) provide graphical tools for representing and inferring the causal rela-
tionships in systems that are away from equilibrium. While standard causal mod-
eling methods (Pearl 2009; Spirtes et  al. 2000) suffice for systems at equilibrium, 
dynamic causal models further employ time-derivatives and differential equations 
to represent the feedback loops by which dynamical systems maintain their equi-
librium states. Dynamic causal models would initially appear to provide a gener-
alization of causal models that, while important, could nevertheless be put to the 
side when studying systems at equilibrium. Yet Dash (2003) argues that, for a class 
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of dynamical systems, the causal models one would infer from sampling their vari-
ables only at equilibrium will falsely represent the system’s causal relationships, and 
dynamic causal models enable one to specify which these are. On this picture, rather 
than being a complement to equilibrium models, dynamic causal models serve as 
substitute, since for some systems only the dynamic model is adequate. In what fol-
lows, I will argue that Dash misdiagnoses the flaw with equilibrium models, and that 
correcting this misdiagnosis is crucial for understanding the adequacy conditions of 
causal models more generally.

Causal representations are distinguished from non-causal ones by their ability to 
predict the results of interventions. Interventions are typically modeled using the 
do-operator, which, when applied to a variable, breaks all of (and only) the causal 
arrows going into it. While the do-operator is a formal operation, it can be used 
to predict the outcome of physical interventions meeting certain causal conditions 
about how the intervention influences the intervened-upon variable relative to oth-
ers. I will say that a model makes a false prediction about the results of interventions 
in cases where physical interventions on a variable in the model result in a new set 
of causal relationships that could not have resulted from applying the do-operator 
to that variable in the initial model. The Manipulation Postulate (Dash and Druzd-
zel 2001) is the requirement that causal models do not contain variables regarding 
which they make such false predictions. This postulate provides an adequacy condi-
tion on causal models, in the sense that models must obey the postulate in order to 
accurately describe the causal relationships in the system. Given the close concep-
tual connection between causation and interventions, as well as the role that the do-
operator plays in fixing the causal content of a model, it is unclear in what sense a 
model that does not satisfy the postulate can still count as causal.

The manipulation postulate, combined with Dash’s (2003) results, entails that for 
a specifiable class of dynamical systems, the causal models that would be inferred 
from sampling the variables at equilibrium will be inadequate. Contra Dash, I will 
argue that dynamic causal models reveal why one should reject the postulate. At 
issue in this dispute is the relationship between the do-operator and a distinct equi-
libration operator designed by Iwasaki and Simon (1994) to derive equilibrium 
models from dynamic ones. Applying the equilibration operator to a variable that 
is away from equilibrium yields a model of the causal relations that would obtain in 
the system were that variable to reach equilibrium. Certain dynamic causal models 
contain variables such that equilibrating them results in models violating the postu-
late, and applying the do-operator to them results in models that do not (Fig. 1). This 
would seem to be an excellent reason for rejecting the models derived via equilibra-
tion, as Dash does. Moreover, since these models are those that would be inferred 
by applying standard causal search methods to the variables at equilibrium (Dash 
2003, pp. 60–66), they pose a problem not just for modelers applying the equilibra-
tion operator to a dynamic model, but for anyone modeling a system at equilibrium. 
In fact, this issue arises not just for equilibrium systems, but for any system sampled 
at a rate such that the variables have had sufficient time to reach a steady-state in 
response to perturbations.

The manipulation postulate misses that intervening is only half the picture. Just 
as it is possible to treat the do-operator as formalizing a physical intervention, the 
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equilibration operator can similarly be understood as modeling a physical action, 
which I call “letting go”. Unlike the do-operator, the equilibration operator only 
results in non-trivial transformations when applied to dynamic causal models. But 
certain equilibrium models nevertheless describe the causal relationships resulting 
from letting go of a variable. In the class of cases being considered, the equilibrium 
models will either make false predictions about the results of intervening, or lack the 
resources to determine how the system will change as a result of letting go. I argue 
against the manipulation postulate on the basis that it makes an arbitrary distinction 
between these limitations.

The discussion here is compatible with explicating causal relationships in terms 
of interventions. Where the postulate goes wrong is in requiring that a model makes 
no false predictions regarding any of the variables in a model, including those that 
one need not intervene upon to test causal relationships. Certain causal relation-
ships in a model obtain only when one does not intervene on particular variables. 
Dynamic causal models reveal this to be a general phenomenon—some systems will 
have one set of equilibrium causal relationships for the scenario where one inter-
venes on a particular variable, and a separate set of relationships for when one lets 
go of it (which requires not intervening upon it).

While this paper is structured as an argument for rejecting the manipulation pos-
tulate, much more interesting is the reason why it should be rejected. In talking about 
model adequacy, one can distinguish between (A) a characterization of the systems 
to which the models apply, and (B) what the models predict about the systems to 

Fig. 1   High-level map of models, operations and adequacy considerations. Adequacy considerations con-
cern the ability of the models to predict how the system will change in response to the actions modeled 
by the formal operations. Considering intervening without “letting go” leads one to illegitimately privi-
lege 1A and 2A over 1B and 2B



	 N. Weinberger 

1 3

which they apply.1 For causation, there has been limited discussion of (A), beyond 
general claims that a system’s causal relationships are relative to a “causal setup” 
(Hausman 1998, p. 25) or a “causal field” (Mackie 1974). The answer to (B) is more 
straightforward: models predict the results of interventions. What the manipulation 
postulate—and the broader literature—misses is that this is not the only role that 
interventions play. Physical interventions matter not just for establishing causal rela-
tionships in systems to which a model applies, but can also determine whether the 
model in fact applies to a system. As a result of being insensitive to this dual role of 
interventions, the manipulation postulate goes beyond requiring models to predict 
the results of interventions for the systems to which they apply, but rather arbitrarily 
legislates that only the models for certain systems are adequate.

2 � Statics, Dynamics, and Causal Models

In this section, I explain how causal models describe the behavior of systems both 
at and away from equilibrium. I begin with with Simon’s (1953) causal ordering 
method and explain how it represents a system’s equilibrium behavior. I then con-
sider dynamic causal models, which generalize this method to systems away from 
equilibrium. I introduce these models with a single example that can be modeled 
both statically and dynamically. Readers interested in further details may consult 
Simon and Rescher (1966), Iwasaki and Simon (1994), Dash (2003), Weinberger 
(2019, 2020), and the “Appendix” below.

Simon (1953) considered what makes causal relationships asymmetric, given 
that the equations stating scientific laws are typically symmetric. Consider the ideal 
gas law, which states that a gas’ pressure times its volume is proportional to its 
temperature:

This equation is silent regarding the causal relationships among the variables. It 
does not indicate, for example, whether temperature causes pressure or pressure 
causes temperature (or neither). Yet, Simon says, the causal relationships are deriv-
able given a set of equations. Suppose the values of temperature and volume in a 
system can be fixed independently of the other variables. Concretely, the gas might 
be in a sealed container immersed in a heat bath with constant temperature. Since 
these variables’ values are independently set to constants, they can be represented 
with equations as follows:

(1)PV = kT

(2)T =c
2

(3)V =c
3

1  I am grateful to Michal Hladky for helpful discussion regarding this distinction.
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In Eqs. (1)–(3), the values of T and V are given by (2) and (3) and given these 
values equation (1) determines P’s value. Simon’s account, in short, is that a set of 
symmetric equations can be written as a set of asymmetric equations when certain 
sets variables can be solved for before other sets of variables, in which case the for-
mer are causes of the latter. In this case, T and V are causes of P (Fig. 2a), and the 
ideal gas law in (1) can be rewritten as the asymmetric equation:

A causal ordering over the variables is a partial ordering in which effects come later 
than their causes.

Variables whose values are determined independently of the others—such as 
T and V in Eqs.  (2) and (3)—are exogenous. Clearly, the causal ordering depends 
on which variables count as exogenous. Given a gas in a moveable piston, volume 
would not be exogenous. Rather, pressure would be:

For Eqs.  (1), (2), and (4), the causal relations are those in Fig.  2b. We see 
that Simon’s method does not derive causal knowledge without causal assumptions, 
but rather clarifies the assumptions that jointly imply a causal ordering. Notably, 
when it is possible to uniquely solve for a causal ordering, the symmetric equations 
can be rewritten as structural equations in which each variable is given on the left-
hand side of an equation in which its causes are on the right. While (1a) (along with 
(2) and (3)) is one of the structural equations for the fixed-volume system, the mov-
able piston system would have the following structural equation:

While structural equations are often introduced with the stipulation that the vari-
ables on the left asymmetrically depend on those on the right, the causal ordering 
method reveals how to derive this asymmetry from a set of symmetric equations.

Simon’s methods were a key step in the development of more recent (and bet-
ter known) causal modeling methods (Spirtes et  al. 2000; Pearl 2009). Simon’s 
insight was that the existence of a causal ordering depends upon there being a set 
of equations in which distinct equations correspond to autonomous mechanisms.2 

(1a)P = kT∕V

(4)P = c
4

(1b)V = kT∕P

Fig. 2   Graphs for a fixed-vol-
ume system, b moveable piston 
system

2  The significance of autonomous mechanisms for causal ordering is defended in detail in Hausman 
(1998) and Hausman and Woodward (1999). Peters et al. (2017, p.16) provides a clear-cut example of the 
continued centrality of mechanism independence assumptions for causal inference.
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The structural equations derived from his method are central both to causal infer-
ence from probabilities and interventionist theories of causation. Adding independ-
ent error terms to deterministic structural equations yields a probability distribution 
satisfying the causal Markov condition, a core assumption of graphical causal infer-
ence techniques. Additionally, and relatedly, structural equations are interpretable as 
indicating how effects will change given interventions on their causes.

In Sect. 6, I will argue that the models in Fig. 2 correctly describe the way that 
their effect variables respond to interventions on their causes. Perhaps controver-
sially, I maintain that one can intervene on P in the moveable piston system by 
adjusting the mass on top of the piston. As my defense of this claim requires delving 
into thorny issues about interventions on equilibrium variables, I postpone it until 
after my main argument.

Iwasaki and Simon (1994, p. 145) claim that Simon’s initial method was intended 
for “static system[s] of equilibrium equations”. Such equations contain variables that 
are represented as being simultaneous, and there are several ways to interpret such 
simultaneous relationships (Malinsky and Spirtes 2018). In Iwasaki and Simon’s 
framework, these equations represent the variables at a point at which they have 
reached steady-state. The use of simultaneous equations to represent causal relation-
ships need not indicate simultaneous causation. Rather, such equations indicate that 
the variables adjust their values to one another so quickly that we can model the 
relationships as if they were instantaneous. See Anderson (2020) and Weinberger 
(2019, 2020) for further discussion.

The ideal gas law, and the causal models for systems instantiating it, refers to 
variables at equilibrium. In the moveable piston system, changing the temperature 
of the heat bath will change the gas’ equilibrium volume, but not its pressure. In 
contrast, when the system has not yet reached equilibrium and volume is expanding, 
there will be a feedback loop by which pressure and volume influence one another.

The dynamic causal model for the system in which volume is away from equi-
librium is given in Fig. 3 (see “Appendix” for derivation). As before, we have the 
variables temperature (T), pressure (P) and volume (V). Notably, the first- and sec-
ond-time-derivatives of volume indicating its velocity, V ′ , and acceleration, V ′′ , are 
included in the model to indicate that V is not at steady-state, but rather changing 

Fig. 3   Dynamic causal model for the ideal gas system



1 3

Intervening and Letting Go: On the Adequacy of Equilibrium…

over time.3 There are also forces on the bottom ( Fb ) and top ( Ft ) of the piston, with 
Ft determined by the mass (M) on top of the piston and gravity (g). These forces 
combined determine the piston’s acceleration, which in turn determines its velocity 
and then volume. The determination relations among V, V ′ , and V ′′ are not causal 
relations, since they are mathematically related. These mathematical relationships 
incorporate the passage of time into the model. Through integration (taking the 
integral), one can use a variable and its derivative function to predict the variable’s 
value at a subsequent time step. For instance, in Eq. (12) one predicts the value of 
V at a subsequent time step by integrating its derivative V ′ to determine how V will 
change over an interval Δt and combining this result with its prior value (a constant 
not supplied by integration).4 Similarly, one can use the acceleration and velocity 
of V at a time to predict its velocity at a subsequent time. In the graph, the dashed 
arrows from higher- to lower-order derivatives are called integration links. While the 
graph with integration links has cycles, time-indexing the variables yields an acyclic 
graph (see “Appendix”).

Introducing derivatives into a causal model changes it in subtle ways. Integra-
tion links are the most obvious innovation. While variables not linked by integration 
links are represented as influencing one another instantaneously, variables so linked 
influence one another at a slower rate (since the cause does not influence its effect 
within a time-step, but only after an arbitrarily small lag). So dynamic causal mod-
els distinguish among causal relationships occurring at faster and slower rates.5 Less 
obviously, but just as important, when introducing a time-derivative for a variable 
one also needs to specify that variable’s initial value. In equation (12), the value of 
volume at a time-step depends on its value at the previous time step, and its value 
at some initial time step must be specified in order to predict how it will evolve. 
The need for initial conditions marks an important difference between dynamic and 
equilibrium models. Equilibrium systems are “memory-less” in the sense that since 
variables have fully adjusted to any changes in their causes, the value of a variable 
is fully determined by its causes at that time step. In contrast, volume at a time-step 
depends on its value at the prior time step.

The crucial feature of the dynamic model for what follows is that one can derive 
either of the equilibrium models given in Fig. 2 from it . There are two formal oper-
ations one can apply to a dynamic model: intervention and equilibration. Interven-
tions (also known as manipulations) set a variable to a constant value in a particular 
way (Sect. 4), and can be represented by the do-operator, which breaks the arrows 

3  Dash (2003) replaces volume with the variable height since volume is proportional to height for a fixed 
cross-section and height varies along only one spatial dimension. Here I keep the variable volume to 
avoid labeling the same variable differently across models.
4  While the equations here use discrete time-steps, integration paradigmatically applies to continuous 
functions.
5  When some variable X influences Y at a slower rate, and Y influences Z instantaneously, the influence 
of X on Z is also delayed. More generally, Y serves as a bottleneck (rate-limiting factor) delaying all 
downstream variables from adjusting to changes in X (thanks to Shannon Nolen for pointing this out). So 
dynamic causal models do not just distinguish between faster- and slower-occurring interactions, but also 
partition sets of variables such that variables within subsets influence one another locally and rapidly, 
while causal influences across subsets occur more slowly (Weinberger 2020).
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going into the intervened-upon variable. Interventions on a variable in a dynamic 
model further set its higher-order derivatives to zero. This makes sense—one can-
not hold an object in place without giving it a velocity and acceleration of zero. 
Intervening on volume in the dynamic graph (Fig. 4) yields the same causal relations 
among P, V, and T, as those in the equilibrium model for the fixed-volume system 
(Fig. 2a).

Applying the equilibration operator to a variable whose derivative is in the model 
yields a model in which that variable has reached equilibrium.6Dash (2003) provides 
a schema for deriving the model resulting from equilibrating X (further details in 
“Appendix”): 

1.	 Set all derivatives of X in the model to 0 and remove them from the model
2.	 Delete all equations going into X or its derivatives
3.	 Remap to get the new causal ordering

The second step involves deleting integration equations in addition to structural 
equations. Applying equilibration to volume in the dynamic model (Fig. 4) produces 
the same causal relationships among P, V, and T as those in the moveable piston 
system from Fig. 2b.

Fig. 4   Model map

6  In equilibrating multiple variables, one must equilibrate slower-equilibrating variables no later than 
faster-equilibrating variables (Iwasaki and Simon 1994, p. 166).
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3 � The Red Herring of Commutativity

It is not obviously problematic that there are two distinct equilibrium models for 
the ideal gas system. In fact, existing discussions of such systems making no refer-
ence to dynamics propose these two models (Woodward 2003; Hausman et al. 2014; 
Woodward 2020). The different causal relationships reflect those obtaining when 
different factors are held fixed. Were one to add independent error terms the varia-
bles in each model, the causal models would satisfy the causal Markov condition for 
the resulting probability distributions, though they would be different distributions. 
As the different models correspond to distinct scenarios, there is nothing paradoxi-
cal about this.

So what’s the problem? In Dash’s dissertation (2003) and subsequent work 
(Voortman et  al. 2012) he shows that in cases like our example, the equilibration 
and manipulation (i.e. “do-”) operators do not commute. That is, one gets a differ-
ent graph depending on the order in which one applies the operators. In focusing 
on commutativity, Dash is, of course, assuming that the operators should commute. 
This assumption is warranted for formal operations representing actions such that 
the order in which they are performed makes no difference to the net result. In this 
section I will explain why this is not a good assumption for the class of cases being 
considered.

Let’s begin by getting a feel for the results of sequentially applying the two opera-
tors (Fig.  5). First, when one applies the do-operator and then the equilibration 
operator to a dynamic graph, the equilibration operator has no further effect on the 
graph. So manipulating and equilibrating yields the same result as just manipulating. 
Second, when equilibrating and then manipulating, it is not necessary to imagine 
that one starts with the dynamic graph and then derives the equilibrium graph from 
it via equilibration, as the latter is what one would infer when sampling the system 
at equilibrium. Accordingly, this order of operations amounts to applying the do-
operator to the equilibrium graph. We see that the class of cases in which the opera-
tors do not commute is simply those in which a system’s dynamic and equilibrium 
models differ in their causal orderings.

Differences in the causal ordering between dynamic and equilibrium models may 
be surprising, but they are not obviously problematic. Recall that the dynamic causal 
models can be “unfolded” into models with time-indexed variables (“Appendix”). 
While the causal relationships between the variables in the dynamic and equilib-
rium models appear to reverse, the variable sets being considered are not the same. 
To illustrate with a simpler example, turning on an oven  in a room regulated by 

Fig. 5   Commutativity
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a thermostat may raise the room’s temperature five minutes later, but not an hour 
later. While a shorter-scale model, but not a longer-scale model, might depict the 
oven as causing temperature, any apparent contradiction dissolves once one sees 
that the variables for temperature at different times are distinct.7 In the moveable 
piston example, the differences between the dynamic and equilibrium models are 
more drastic than simply the presence or absence of a causal arrow. Nevertheless, 
the example establishes that differences in the causal relationships across the models 
do not imply that one must be wrong, as the models have different variables.

In the cases Dash considers, the explanation for the differences between the equi-
librium and dynamic causal orderings is as follows. For any dynamic model contain-
ing a dynamic variable that influences its higher-order derivatives via some other 
variables, equilibrating that variable alters the causal ordering (Iwasaki and Simon 
1994, p. 167; Dash 2003, § 2.3.1). Such variables are called indirectly self-regulat-
ing variables. In Fig. 3, for example, V influences its highest-order derivative V ′′ via 
P and Fb . Equilibrating V corresponds to allowing V to reach its equilibrium value 
via a process of self-regulation. The feedback loop in the dynamic graph is neces-
sary in order for the system to reach equilibrium in this manner.8 Intervening on V 
breaks this feedback loop and thus eliminates the conditions that were necessary for 
the system to equilibrate in this way, resulting instead in a distinct equilibrium state.

Once one sees what is going on, it becomes clear why the operators shouldn’t 
necessarily commute. In his lone comment on why commutativity matters, Dash 
describes interventions on the dynamical graph as “shocks" (2003, p. 4) that push 
the system out of equilibrium. But interventions on dynamic graphs as conceptu-
alized by the do-operator are not mere shocks that temporarily move the system 
away from equilibrium, but “clamp” interventions that fix the variable indefinitely 
and determine a new equilibrium.9 That is, intervening on variables in the dynamic 
model is a way of bringing the system to an equilibrium state, and it is a different 
equilibrium state from that which would result from letting the variable reach a sta-
ble value in the absence of such an intervention. Since these are distinct equilibrium 
states of the system, commutativity is not warranted.

To the extent that Dash’s results provide reason to worry about the adequacy of 
models derived from equilibration, it is not because they diverge in their ordering 
from the dynamic model. A greater cause for concern is the fact that the models 
derived via equilibration omit information that is relevant to predicting how the 

7  Such examples may provide counterexamples to the causal Faithfulness condition, which implies that 
variables linked by causal chains will be probabilistically dependent. What to say about this remains 
unresolved, as the literature on Faithfulness has focused on cancelling paths rather than damping. In any 
event, faithfulness should be understood as a helpful simplifying assumption for causal inference rather 
than a candidate adequacy principle for causal models.
8  It is straightforward to show that in a representation of a system containing both X and X′ , X will reach 
a stable steady-state only if X′ is a function of X (Dash 2003, pp. 37–38). In dynamic causal models, this 
function corresponds to the existence of a causal path from X to X′ and such paths are disrupted by inter-
ventions on the feedback loop.
9  Thanks to Jim Woodward and Chris Hitchcock for independently highlighting the importance of distin-
guishing between shock and clamp interventions in this context. To be clear, there is no ambiguity that 
Dash (2003, p. 28) models interventions on dynamic systems as “clamp” interventions.
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modeled system will change as a result of interventions. In particular, they do not 
represent the dynamic feedback loop that maintains the system at equilibrium, and 
thus cannot flag that this feedback loop is destroyed by interventions on variables in 
the equilibrium model. Moreover, the causal relations resulting from these interven-
tions differ from those that could be derived by applying the do-operator to the equi-
librium model. Consequently, in cases where the equilibrium ordering diverges from 
the dynamic one, the equilibrium model might be accused of failing in the most 
basic function of causal models—predicting the results of interventions. In the next 
section, I will briefly review the concept of an intervention prior to using Dash and 
Druzdzel’s manipulation postulate to make this worry more precise.

4 � Interventions and the Manipulation Postulate

A primary use of causal knowledge is for predicting the results of hypothetical inter-
ventions. Learning that users of a drug are less likely to get heart disease is useful 
only if intervening to give patients the drug would reduce their chance of heart dis-
ease, at least for some. Interventions are central to Woodward’s (2003) account of 
causal explanation. On his account, C causes E if it is possible to change E via an 
ideal intervention on C. An intervention on C that is ideal with respect to E deter-
mines C’s value in a way such that any influence of C on E is via C. To give a stand-
ard example, a barometer does not cause rain, since although the barometer reading 
is correlated with future rain, one cannot change the chance of rain by ideally inter-
vening on the barometer—say by installing a widget that holds its display at a low 
value. An intervention on the barometer would fail to be ideal if, e.g., one changed 
the barometer reading by (somehow) intervening on the atmospheric pressure. This 
would change both the barometer reading and the chance of rain, but would not 
influence the chance of rain via changing the barometer reading.

Woodward’s account is in part motivated by graphical causal modeling meth-
ods (Spirtes et al. 2000; Pearl 2009). The causal graph for the barometer example 
is given in Fig.  6a. In it, the nodes are random variables and the directed edges 
(i.e. arrows) represent direct causal relationships. Direct causal relationships are 
often explicated in terms of whether one can change the effect variable via ideally 
intervening on a cause while holding all other variables in the model fixed. Ideal 

Fig. 6   a Causal graph for Barometer example, b an intervention on Barometer Reading 
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interventions disable the relationship between a variable and its prior causes, and 
thus can be represented as breaking the arrows into the intervened-upon variable, as 
in Fig. 6b. Alternatively, one can represent the intervention within the model with 
an intervention (or “policy”) variable, which is a cause of the intervened-upon vari-
able such that, for particular values of the intervention variable, the intervened-upon 
variable does not depend on its other causes in the model.

Given this background, Dash and Druzdzel’s (2001, p. 194) manipulation postu-
late might seem almost trivial. It states that when a variable in a graph is manipu-
lated, this manipulation will at most break the arrows going into the manipulated 
variable.10 Manipulations that are properly represented by the do-operator automati-
cally satisfy the postulate, as they break all of the arrows going into the intervened-
upon variable. The postulate reflects the assumption that interventions on a variable 
only locally influence that variable, and that all influences on other variables are 
only via influencing that variable.

At first glance, the manipulation postulate appears to be simply clarifying the for-
mal operation of an intervention, allowing for the fact that an intervention might be 
“soft” and thus not break the arrows into the intervened upon variable (Korb et al. 
2004). But the manipulation postulate cannot be an analytic truth, since Dash and 
Druzdzel claim that it can be empirically violated. This presupposes that one can 
talk about physical interventions independent of whether they can be formalized 
using the do-operator. Schematically, to argue that the postulate is violated by G, 
one must (1) claim that a particular action that changes one (or more) of the vari-
ables in the system characterized by G should count as an intervention on that vari-
able, (2) posit a graph G′ that represents the causal relationships in the system result-
ing from this action, and (3) show that the edges in G′ are not a subset of those in G. 
In cases where the postulate is violated, I will say that model G makes false predic-
tions about the results on interventions or the relevant variables.

Arguing that a particular action on a variable ought to be characterized as an 
intervention on that variable is a subtle matter. Especially in cases where the action 
results in consequences that are incompatible with the application of the do-oper-
ator, there will be a temptation to argue that the action was not the sort of action 
that the do-operator was designed to model in the first place. But in order for causal 
models to make predictions about actions in the world, it must be possible to spec-
ify the conditions that an action must meet to be represented using the do-operator. 
Although there has been little discussion about how to determine whether a physi-
cal action ought to be represented as an intervention, these causal conditions are 
well-understood.11

Consider the requirement that interventions on a variable need to influence that 
variable’s effects only via their influence on that variable. In reality, many actions 
will not meet this condition, but will be “fat handed”, and such actions should not be 

10  Dash and Druzdzel’s more precise version (slightly modified for exposition) is as follows: If graph G 
consisting of vertices (nodes) V and edges E is a causal graph, and V ′ ⊂ V  is a subset of variables being 
manipulated, then the causal graph G′ for the manipulated system is such that G� = ⟨V ,E⟩ , where E′ ⊆ E 
and E′ differs from E by at most the set directed edges into V ′.
11  See Prescott-Couch (2017) for a discussion that is sensitive to these issues.
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represented using the do-operator. But whether an intervention is fat handed is not 
just a feature of the model, but depends on whether the physical intervention in fact 
influences downstream variables via an avenue not going via the intervened upon 
variable. Similarly, the requirement that the intervention be uncorrelated with causes 
of variables other than the intervened upon variable is also a claim about reality. 
Here I am not suggesting that it is trivial to determine when an action counts as an 
intervention, but only demonstrating that this is a meaningful question.

Note that the false predictions of models violating the postulate are not predic-
tions about an effect’s response to interventions on its causes. Rather they concern 
how the qualitative causal structure of the graph will change in response to inter-
ventions on variables. Failures of such predictions are especially worrisome, since 
interventions play a key role in spelling out the causal content of causal models. 
Spirtes, Glymour and Scheines’ (2000, §3.7.2) manipulation theorem provides the 
conditions that license inferring the results of a hypothetical arrow-breaking inter-
vention based on the passively observed (i.e., unmanipulated) probability distribu-
tion. This theorem is important for understanding the empirical content of causal 
models in cases where one does not experimentally intervene. Spirtes et al. (2000, p. 
51) acknowledge that the manipulation theorem does not apply in cases where the 
direction of the causal relationship between two variables reverses. As the violations 
of the manipulation postulate described do involve reversibility, they fall under this 
stated exception to the manipulation theorem. But to the extent that the manipula-
tion theorem spells out the empirical content of causal models, we need an account 
of the causal relationships in these exceptional cases.

Note that the issue with violations of postulate is not merely that many real 
world interventions are not aptly represented by the do-operator. Stern (2019) pro-
vides cases involving uncertainty regarding whether physical actions should be 
represented as “arrow breaking” interventions represented by the “do-operator” as 
opposed to soft interventions. Since even soft interventions preserve causal struc-
ture, such cases do not violate the postulate.

Violations of the postulate differ from certain less problematic failures of models 
to predict interventions. It is widely acknowledged that causal models posit relation-
ships that obtain  only under a range of interventions on the causes. For instance, 
Hooke’s law, which describes the force exerted by a stretched spring, can be inter-
preted causally even though it no longer applies when the spring is stretched too 
far. Additionally, causal relationships only obtain given certain background condi-
tions—striking a match causes it to ignite only in the presence of oxygen. These 
types of cases are much less problematic than those involving violations of the pos-
tulate. While they suggest that even adequate causal models will apply only in a lim-
ited range of contexts, there is no issue of the causal interpretability of the relation-
ships in the situations to which the models apply.

Dash and Druzdzel (2001) assert that “[a]ll formalisms for causal reasoning take 
the Manipulation Postulate as a fundamental starting point” (194). While they are 
the only writers I know of to label the postulate, it is exceedingly plausible and is 
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widely assumed. In causal models, the omitted arrows are as important—arguably 
more so—as those that are included. If there is no arrow from X to Y, it should 
not be possible to change Y via intervening on X. In violations of the manipulation 
postulate involving interventions on X, such interventions directly influence vari-
ables that are not direct effects of X in the model.12 For lack of a better term, I refer 
to the postulate as an “adequacy criterion”. By this I mean a proposal for how a 
model must relate to its target system in order to count as accurately describing the 
system’s causal relationships. While there clearly is a close connection between a 
model’s being adequate and its predicting the results of interventions, I will argue 
that the link provided by the manipulation postulate is untenable.

5 � Why the Manipulation Postulate Should Be Rejected

To see why the equilibrium graph for the moveable piston (Fig.  2b) violates the 
manipulation postulate, imagine that we intervene on the piston to fix its volume. 
We might do this by inserting a pin into the side of the gas container to hold the 
piston in place (cf. Hausman et al. 2014). This counts as a physical intervention on 
volume, because it holds volume fixed, and, for a given temperature, the equilibrium 
pressure of the system depends on the particular volume to which one holds it fixed. 
We see that any effect on the other variables is only indirectly via volume. If Fig. 2b 
were the correct graph, then modeling this intervention using the do-operator yields 
the prediction that this intervention will at most break the arrows going into V. But 
this is not the case. As a result of the intervention, the causal relations are those 
given in Fig. 2a. As expected, the arrows going into V are no longer there. But now 
there are also arrows from V and T to P that were not in the initial model. We see 
that the equilibrium graph for the movable piston violates the manipulation postulate 
with respect to interventions on V.

The graph for the sealed container makes no similar false prediction, and thus 
does not violate the postulate. It captures how volume and temperature can be exog-
enously fixed, and the values to which they are fixed determines equilibrium pres-
sure. More generally, in all cases where equilibrating and manipulating the dynamic 
graph yield different models, only the models derived from equilibration violate the 
postulate.

Despite its plausibility, the manipulation postulate serves as an arbitrary basis for 
differentiating the equilibrium models. Imagine that instead of inserting the pin into 
the moveable piston to hold the volume fixed, one removes the pin that fixes the vol-
ume and allows the volume to vary. Then, I claim, the correct graph for the system 
is not that in Fig. 2a, but rather that in Fig. 2b. The intuitive defense of this claim 
is that were one to determine equilibrium pressure by adjusting the weight on top 

12  To illustrate, suppose that X → W → Z and the postulate fails due to an intervention on X that breaks 
the arrow W → Z . To influence this relationship, X must influence Z through a path not going through 
W. So X’s altering the relationship between W and Z amounts to its directly influencing Z, despite the 
absence of a direct connection in the model.
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of the piston, this would count as an intervention on pressure, and the equilibrium 
volume of the system would then depend on the values to which pressure and tem-
perature are exogenously fixed. I’ll offer a more detailed defense in the following 
section.

Just as the moveable piston model cannot predict the causal relationships that 
result from inserting the pin, the fixed-volume model cannot predict the causal rela-
tionships that result from removing the pin. Because inserting the pin can be repre-
sented using the do-operator and removing the pin cannot, only the former model 
makes a false prediction about the results of the action. But this does not reflect a 
difference in the adequacy of the models, but rather a blind spot in the formalism. 
One model cannot predict the results of intervening to hold volume fixed, and the 
other cannot predict the result of the symmetric action of “letting go” of volume and 
allowing it to vary. While, for equilibrium models, only one of these actions is cap-
tured by a formal operator—and thus only one model makes a false prediction—it 
remains the case that there are two mutually exclusive actions that one can perform 
on a variable, and each model captures the results of only one of them.

In dynamic causal models, the action of letting go is captured by the formal oper-
ation of equilibration, which yields the causal relationships that would result were 
one to let the equilibrated variable reach steady-state without intervening upon it. 
Of course, whether applying equilibration yields the correct causal relationships is 
precisely what is at issue here. Nevertheless, once one acknowledges that equilibra-
tion—just as much as the do-operator—can be taken to represent a particular type 
of action performed on the system, it becomes clear that interventions cannot be 
treated as a neutral basis for distinguishing between the adequacy of the equilibrium 
models. Intervening and letting go correspond to two ways of bringing the system to 
two distinct equilibrium states that, at least potentially, involve two distinct sets of 
causal relations. Adopting the manipulation postulate amounts to arbitrarily privi-
leging the model for one of these scenarios.

Contra Dash, dynamic causal models do not serve as a basis for choosing between 
equilibrium models. Rather, they reveal why there will be two distinct sets of mod-
els in a particular class of cases. The reason models derived via the equilibration 
operator fail to predict the results of intervening on the equilibrated variable is that 
doing so disrupts the feedback loop required for the system to naturally reach equi-
librium. But the failure is symmetric. Note that the model for the fixed-volume sys-
tem does not merely indicate what would happen were one to intervene, but rather 
only applies under the assumption that one does intervene to hold the volume fixed. 
This is not transparent from the equilibrium model itself, but would be apparent 
from seeing how the model is derived via applying the do-operator to the dynamic 
graph. This is precisely analogous to the way that one could use the dynamic causal 
model to infer that one cannot intervene on the self-regulating variable in the move-
able piston model.

For the sake of rebutting the manipulation postulate, it is not necessary to argue 
that both equilibrium models are adequate. What matters is that they are on a par in 
terms of adequacy. One might be inclined to argue that in fact neither of the models 
are adequate since they either fail to predict the results of intervening or the results 
of letting go. This would be unappealing, because one of the equilibrium models 



	 N. Weinberger 

1 3

is derived via applying the do-operator to the dynamic graph and saying that such 
interventions could yield inadequate graphs would throw even the adequacy of 
dynamic causal models into question. This is a stark illustration of why, whatever 
one says about the relative merits dynamic models over equilibrium ones, the differ-
ence between them is not properly understood by emphasizing the failure of certain 
equilibrium models to predict the results of interventions.

Rejecting the manipulation postulate is compatible with maintaining that ade-
quate causal models must be able to predict the results of interventions. Although 
the model for the moveable piston cannot predict the results of interventions on vol-
ume, it does correctly depict how volume depends on temperature and pressure. The 
problem with the postulate is its requiring that one can intervene upon any variable 
in a causal model. The ability of certain equilibrium models to predict the interven-
tionist-causal relationships that they do depends on one’s not intervening on certain 
variables. At first, this defense of the adequacy of equilibrium models might seem 
ad hoc, especially since the model does not specify which variables one should not 
intervene upon. Yet the present discussion reveals why requiring causal models to 
predict the results of all interventions is too high a bar, and leads one to make arbi-
trary distinctions between causal models.

6 � Some Subtleties Regarding Interventions

The discussion so far has presupposed that the equilibrium model for the fixed-vol-
ume system satisfies the manipulation postulate and that the equilibrium model for 
the moveable piston correctly predicts the results of interventions on the exogenous 
variables. But whether a particular physical action counts as an intervention can be a 
subtle matter. Here I will address worries about whether the representations of these 
interventions on the system is correct. Doing so will reveal that the prior discussion 
of the running example has glossed over some important subtleties regarding how to 
understand the interventions involved, but I will argue the success of my argument is 
invariant across distinct ways of addressing these subtleties.

There exist two traditions for modeling interventions. The dominant one models 
interventions as changing the values of variables, while there is an alternate tradition 
(e.g. Iwasaki and Simon 1994; Hoover 2001) that models interventions as changing 
parameters. In the latter treatment, for X to cause Y is for it to be possible to change 
the value of Y by intervening on the parameter in the structural equation giving Y 
as a function of X. This change is reflected in the fact that for a fixed value of X 
the value of Y will vary depending on the parameter value. These two approaches 
are sometimes treated as interchangeable,13 although the difference between them 

13  Hoover (2013) provides the most thorough comparison of his own generalization of the Simon 
approach and the approaches of Woodward and Pearl, emphasizing the differences between accounts of 
causality based on the different approaches. See Malinsky (2018) for a recent assertion that “one may 
consistently adopt either framework for a given analysis” (2304). White and Chalak (2009) further 
develop the notion of an intervention on a parameter. Changing the parameter linking X to Y can be mod-
eled as a soft intervention on Y.
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potentially matters for explicating the equilibrium relationships between P on V in 
the different models, as I now explain.

It is essential for my argument that although the graph for the moveable piston 
violates the manipulation postulate, it nevertheless predicts the response of V to 
interventions on P and T. Earlier I suggested one could intervene on pressure by 
placing a mass on top of the piston. This does, in fact, determine what the equilib-
rium pressure will be, which in turn determines the equilibrium volume (along with 
temperature). Nevertheless, considering the physical interpretation of the relevant 
quantities might shake one’s confidence in this description. The pressure of the gas 
corresponds to the force exerted on the bottom of piston per unit area. Placing a 
mass on top of the piston increases the force on the top of the piston. Since the fac-
tors causing these forces are distinct, it seems strange to say that the force on the 
top is a cause of the force on the bottom (and thus pressure). Dash and Druzdzel 
(2001, p. 196) describe this relationship as follows: since at equilibrium the force 
on the bottom of the piston must equal the force on top, fixing the force on the top 
determines what the force on the bottom will be at equilibrium. This explanation 
would suffice to establish this relationship as causal for someone who accepts the 
causal ordering method, but the equilibrium models produced by this method are at 
issue here.

The most direct way to address these concerns about the moveable piston model 
would be to show that placing the mass on top of the piston influences volume only 
indirectly via pressure. But this runs into complications. If we consider the volume 
and pressure of the system away from equilibrium, then the dynamic graph reveals 
that the mass does in fact influence pressure via volume. This by itself does not set-
tle the question of whether the mass influences equilibrium pressure via influenc-
ing equilibrium volume.14 But what does settle it? As we are only considering the 
equilibrium values of these variables, how do we determine whether certain inter-
ventions influence one only via the other? Note that this concern also applies to the 
fixed-volume system, since one needs to clarify why inserting the pin influences P 
via V, given that it determines the equilibrium values of both.

We find ourselves in the uncomfortable situation of lacking an example of a phys-
ical action that indisputably should count as an intervention on pressure. How, then, 
might we convince those who do not already accept the proposed equilibrium model 
for the moveable piston system? Here is where the notion of an intervention on a 
parameter comes into play. By showing that one can change the value of V by alter-
ing the parameter by which P influences V we can provide an independent method 
for justifying the model.

What does it mean to alter a causal parameter? According to Weinberger (2018), 
an intervention on the parameter a in the structural equation Y = aX + UY in one 
model corresponds to an intervention on a variable Z in an augmented model in 
which Z is a cause of Y that influences the magnitude of Y’s dependence on X. To 

14  One might think this question would be settled by assuming the transitivity of causation, though I 
take this assumption to be contentious in the context of dynamical systems that are subject to dampening 
forces.
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illustrate, imagine one were measuring the effect of changing V on P across various 
fixed-volume systems immersed in heat baths of different temperatures. The magni-
tude of the effect of V on P will depend on the temperature of the heat bath. But if T 
is not included in the model, its influence will still be captured by a parameter in the 
structural equation by which V influences P.15 This parameter, by design, depends 
on the value of T, so talk about variation in the parameter in the model with just P 
and V may be reinterpreted as variation in T in the augmented model containing it. 
Continuing along these lines, we see that testing whether V causes P by intervening 
on the parameter in the structural equation amounts to showing that one can change 
the influence of V on P by altering T.

But doesn’t the claim that one can alter the parameter in the equation for P pre-
suppose that V causes P? So what determines that varying T changes a parameter 
in the V → P relationship as opposed to a P → V  relationship. The key fact is that 
in the fixed volume system V’s value is determined independently of T.16 This inde-
pendence ensures that if altering T influences the relationship between P and V, it 
must be a cause of P (since it is not a cause of V). By analogous reasoning, we can 
establish that in the moveable piston setup, pressure causes volume, since pressure 
is set independently of temperature: placing the mass on top of the piston deter-
mines what the equilibrium pressure will be (as it will exactly counteract the force 
due to its weight), but even given this pressure, the equilibrium volume will still 
also depend on the temperature. It follows from this independence that by changing 
temperature one can intervene upon a parameter by which P causes V in a non-aug-
mented model containing just P and V, and thus that P → V .

We see that the causal relationships in the equilibrium graphs for the system can be 
explicated in terms of interventions on parameters. Yet the earlier discussion—includ-
ing the formulation and criticism of the manipulation postulate—focused on interven-
tions on variables. This is not necessarily a problem. The two notions of interventions 
can be seen as two distinct ways of characterizing the same causal structure.17 Accord-
ingly, the possibility of explicating the effect of V on P in terms of how it depends on 
the setting of T validates our prior judgment that fixing the volume of the system by 
inserting a pin into the container counts as an ideal intervention on V.

Yet this way of explicating the interventions on the moveable piston system might 
produce a novel problem for my claims about the fixed-volume model. I asserted that 
there is no formal operator corresponding to the action of removing the pin. Since 
the effect of P on V can be explicated as an intervention on a parameter, one might 
suggest that this action is in fact an intervention on P. Whether it is is unclear, since 
although one can intervene on pressure by adjusting the mass, it does not follow 

15  Depending on which systems are being represented, this parameter will reflect either the constant tem-
perature across heat baths with the same temperature or an average temperature across systems with dif-
ferent values of T.
16  The idea that the asymmetric dependency of variable Y on X depends upon the existence of independ-
ent causes of Y traces back to Hausman (1998).
17  This is analogous to the way that Pearl’s (2009) back-door and front-door criteria can each serve as 
bases for identifying a causal effects, even though the former works by conditioning upon causes of the 
cause and the latter requires one to condition on intermediate variables between the cause and effect.
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that removing the pin also counts as an intervention. But the matter is sufficiently 
uncertain that it is worth considering this possibility. If removing the pin counts as an 
intervention on P, then the fixed-volume model violates the postulate, since the set of 
causal relations resulting from removing the pin are not those predicted by applying 
the do-operator. If so, then both equilibrium models violate the postulate.

Although this alternative framing would require changing some details of the 
argument, the net result preserves the conclusions of the previous section. First, as 
already noted, someone invoking the manipulation postulate as a basis for criticiz-
ing equilibrium models cannot reject this equilibrium model, as it is derived from 
the dynamic model via intervention. Accordingly, if the equilibrium model for the 
fixed volume system itself violates the postulate, then the postulate becomes self-
undermining. Second, were one to attempt to model the removal of the pin as an 
intervention variable, this variable would serve as a common cause of pressure and 
volume. This is because the act of removing the pin excludes the act of inserting it 
(which would be another value of the variable) and inserting it counts as an inter-
vention on volume. An action that counts as a common cause of two variables can-
not be an ideal intervention on either of them. But beyond this technical point, the 
observation that the actions of intervening on and letting go of the pin are mutually 
exclusive and jointly exhaustive, yet cannot be represented using an ordinary inter-
vention variable, reinforces my position that it is illegitimate to insist that only the 
model for the intervention scenario is adequate.

I have not provided a rigorous defense of the interchangeability of interventions 
on parameters and variables. In fact, one might take the need to switch to talking 
about interventions on parameters in order to independently motivate our equilib-
rium models as evidence that the two ways of talking are not interchangeable. This 
would open the door to further research into their relationship, and then a proponent 
of the intervention-on-variables approach might invoke the difficulty of unambigu-
ously characterizing the interventions on the equilibrium models’ exogenous varia-
bles as a novel basis for rejecting equilibrium models. For the purposes of this paper, 
however, two important points emerge from the this section’s discussion. First, inter-
ventions on parameters provide a basis for motivating the causal relations in the 
equilibrium models. This is important, because without some basis for accepting the 
equilibrium models in the first place, the result that the manipulation postulate pro-
vides the wrong reason for rejecting them would be of little practical significance. 
Second, despite the existence of multiple ways of understanding the causal relations 
in the models and of characterizing the different interventions that influence them, 
there is no consistent characterization on which the manipulation postulate serves as 
a legitimate basis for privileging certain models as adequate.

7 � Understanding Dynamic Causal Models

This paper has largely focused on what dynamic causal models do not do. They do 
not serve as a basis for distinguishing adequate from inadequate equilibrium models, 
where the former are those whose causal ordering matches that of the corresponding 
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dynamic model. But the fact that they fail to serve this role does not diminish their 
significance. Dynamic models contain important information that is relevant to 
understanding a system’s equilibrium behaviors. The information that an equilib-
rium graph was derived by equilibrating an indirectly self-regulating variable entails 
that the model will make false predictions about the results of interventions on that 
variable. My defence of the adequacy of such graphs does not mean that their inabil-
ity to predict the results of certain interventions—or to provide any indication of 
this inability within the model—is not a practical limitation. Dynamic causal models 
address this limitation by enabling one to flag the variables that one cannot inter-
vene upon in the corresponding equilibrium models while preserving those models’ 
causal relationships. Symmetrically, they can be used to identify the variables that 
must be held fixed rather than let go of.

In the same way that standard causal models have been seen as tools for pre-
dicting the results of interventions, dynamic causal models should be understood 
as tools for predicting the results of interventions and equilibrations. Both of these 
operations correspond to ways of bringing the system to equilibrium. Accordingly, 
the adequacy conditions for dynamic causal models need to be understood in terms 
of their ability to predict certain equilibrium behaviors—specifically, those reflected 
in the equilibrium models. To be clear, in tying the adequacy of dynamic models to 
their ability to predict certain equilibrium behaviors I am not falsely claiming that 
dynamic models only predict the behaviors of systems at equilibrium. Rather, I am 
claiming that it is the structural features of the model—that is, qualitative features of 
the causal graph—that determine its adequacy. These features are operationalized in 
terms of how the model will change given applications of the intervention and equi-
libration operators. By analogy, to say that the adequacy of (standard) causal models 
depends on their ability to predict interventions is not to deny that they can explicate 
causal relations in both experimental and observational contexts.

Once one moves away from seeing dynamic models as arbitrating between ade-
quate and inadequate equilibrium models, one can instead view them as playing a 
unifying role. In the class of cases considered, one can derive either of the equilib-
rium models by applying the do-operator or the equilibration operator to the relevant 
variable in the dynamic graph. Hausman et al. (2014) argue that there is no single 
graphical representation of the fixed- and variable-volume graphs for the ideal gas 
system. While they are correct that there is no single equilibrium graph, the dynamic 
graph for the system can be seen as providing precisely such a representation, as one 
can infer either set of equilibrium relationships from it. But this requires understand-
ing the dynamic model in the way proposed here, rather than as a basis for choosing 
between the equilibrium models.

I have focused here on Iwasaki and Simon’s framework, which remains one of the 
few systematic treatments of dynamic and equilibrium models. One thing that has 
emerged clearly from the discussion is that Iwasaki and Simon’s dynamic models 
are closely tied to the behavior of a system at equilibrium. One might have expected 
a dynamic model to represent the broader dynamics of the system without mak-
ing assumptions about its equilibrium behavior. But that is not what these dynamic 
models are doing. An advantage of Iwasaki and Simon’s approach is that it is a gen-
eralization of Simon’s earlier account, which remains an important framework for 
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thinking about the structural equations in contemporary causal models. Addition-
ally, it should be emphasized that reliance on assumptions about the longer-term 
steady-state behaviors of a system is ubiquitous in dynamical modeling. As Wilson 
(2017) argues, applying differential equations to model concrete systems typically 
requires a slew of additional assumptions, many of which appeal to the steady-state 
behavior of the system.

Given that Iwasaki and Simon’s work is over twenty years old—an eon in aca-
demic time—the reader would be forgiven for questioning whether it is still relevant. 
There has, in fact, been a recent flurry of excellent work high-quality research on 
causation in equilibrium systems and on the relationship between standard causal 
representations and differential equations (see e.g. Mooij et al. (2013); Bongers and 
Mooij (2018)). A survey of the bibliography cited in this rapidly growing literature 
provides evidence that between Iwasaki and Simon (1994) and Mooij et al. (2013), 
work on this topic was relatively sparse.18 Within this more recent literature, the 
work by Tineke Blom (Blom et al. 2018, 2020; Blom and Mooij 2021) is especially 
notable in taking Iwasaki and Simon’s framework as as starting point.19 Having an 
accurate picture of the relationship between dynamic and equilibrium models within 
this frameworks is thus crucial for evaluating recent developments in causally mod-
eling dynamical systems.

As a final point, we must ask: to what extent does the discussion here general-
ize beyond the ideal gas case? Here, as elsewhere, Dash’s dissertation helps. In the 
final chapter, he shows that the class of cases in which equilibration alters the causal 
ordering includes many paradigm physical systems, including simple harmonic 
oscillators, bodies in viscous media, and inverting amplifiers. The discussion here 
generalizes to those examples as well, since in each of them intervening and equili-
brating produce different graphs. The ideal gas case is a useful starting point, since 
both equilibrium systems are familiar. By way of contrast, in the example involving 
a body submerged in a viscous medium, the equilibrium state in which the (upward) 
buoyant and (downward) gravitational forces cancel is more commonly discussed 
than the equilibrium state in which one intervenes on the body by holding it still. 
For this reason, the example is less useful for illustrating the difference between 
models derived from the two operations, but in some ways as effective at showing 
why we ought not take only equilibrium models derived by intervention as adequate.

18  As further evidence, consider the references for research on causally modeling dynamic systems in 
Eberhardt (2017, p. 12). Three out of five sources refer to work by Dash and collaborators.
19  Although here is not the place for a proper comparison between my treatment and Blom et  al.’s, I 
will briefly flag one point of agreement and one point of disagreement. The discussion in Blom et  al. 
(2018) agrees with the present discussion insofar as it assumes that there can be multiple distinct and 
adequate representations of systems at equilibrium, each of which applies given different “constraints”. 
However, Blom et al. (2020); Blom and Mooij (2021) deny the causal interpretability of both equilibrium 
and dynamic causal models of the sorts considered here. This is of course incompatible with both the 
present discussion and the rest of the literature and demands further scrutiny.
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8 � Conclusion

In this article, I have argued that causal models can be adequate despite making sys-
tematically false predictions about the results of interventions on certain variables. 
The seemingly innocuous requirement that adequate models make no such predic-
tions yields arbitrary distinctions between causal models. This is because certain 
equilibrium causal models only obtain when one either intervenes on a particular 
variable to hold it fixed, or lets go of it to allow variation, and the models do not 
internally cordon off these variables from others. Dynamic causal models do provide 
a basis for predicting the effects of intervening or letting go of such variables. But 
this does not undermine the adequacy of equilibrium models. All models apply only 
to particular systems given particular background assumptions, and causal models 
are no different. With the aid of dynamic causal models, I have offered insights into 
the nature of these assumptions and clarified their relation to the semantics of causal 
models.

Appendices

The equations for the dynamic model for the ideal gas system are as follows (Dash 
2003)(numbers match those from Fig. 3 above):

Equations (5) and (9) specify that the mass (M) on top of the piston and the tempera-
ture of the heat bath are exogenous. Equation (6) says that the force exerted on top of 
the piston equals the mass of M times gravity g. Equation (7) uses Newton’s second 
law to derive the acceleration of the piston by combining the forces on the top and 
bottom of the piston to get the net force, which is divide by the mass of the piston 
mp . (8) is the ideal gas law. (10) states that Fb is proportional to P. (11) and (12) give 

(5)M = m
0

(6)Ft = Mg

(7)V �� = (Ft + Fb)∕mp

(8)P = kT∕V

(9)T = t
0

(10)Fb = rP

(11)V
�
t+1

= V
�
t
+ V

��
t
Δt

(12)V
t+1 = V

t
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V ′ and V at a time as a function of their values at the previous time-step and the next 
highest-order derivative at that time-step multiplied by the length of the time-step.

Because using (11) and (12) require the values of V and V ′ at a time in order 
to use their higher-order derivatives to predict their values at a subsequent time, 
the initial values of these variables, V

0
 and V ′

0
 , must be specified exogenously. 

This matters for the causal ordering and can be represented with the following 
equations:

We now derive the dynamic graph (Fig. 3). From V
0
 (13) and T (9), Eq. (8) yields 

the value of P, which, from (10) yields Fb . M is exogenous (eq. (2)) and combined 
with (6) yields Ft . From (7) one can then derive V ′′ and then use equations (11) and 
(12) to derive V ′ and V at subsequent time steps. Note that while the equations were 
presented in the paper to reflect the causal ordering, the method just applied did not 
rely on information about which variables were on which sides of the equals signs.

As noted in the main text, although the dynamic graph appears to be cyclic, there 
exists a non-cyclic representation with time-indexed variables (Fig. 7). In Fig. 7, the 
ordinary causal relationships from the dynamic graph are represented synchroni-
cally, while variables connected by integration links are diachronically related.

Equilibration of V works as follows. In step 1, all of V’s derivatives in the mod-
els are set to zero in the equations and removed as variables from the models. This 
means that (7) is replaced with:

(11) and (12) also contain derivatives of V, but this is moot, since in step 2 both 
these equations are deleted. More generally, while we have been describing Dash’s 
informal sketch of equilibration, in his more rigorous characterization (2003, p. 30) 
he specifies that one must delete the equations for V and all of its higher-order deriv-
ative except its highest order derivative, which gets replaced with 0. In step 3, one 

(13)V
�
0
= v

�
0

(14)V
0
= v

0

(7’)0 = (Ft + Fb)∕mp

Fig. 7   Rolled out graph for the dynamic model in Fig. 3—subscripts in parentheses indicate time steps
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uses the remaining equations to re-solve for the causal ordering. Note that M is still 
exogenous (5) and still determines Ft from (6). From (7’) one can then derive Fb Fb 
combined with (10) yields the value of P. Since T remains exogenous (from (9)), 
one can then use the ideal gas law (8) to derive V from P and T.
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