
Models for Modeling*

Michael Weisberg
University of Pennsylvania

Dra of January, 2008 (4e)
Under review. Please do not cite without permission.

1 Two Aquatic Puzzles

In the late 1940s, the San Francisco Bay Area was feeling the growth pains of rapid

development. e need to find new land, to create additional traffic crossings, and

to provide fresh water engendered a number of plans for modifying the Bay to

accommodate the rapid growth. Perhaps the most notorious of these plans was

proposed by John Reber, a former school teacher and theatrical producer.

Reber’s plan was to build two salt-water barriers in the Bay. ese barriers

would consist of earth and rock dams, and their tops would be sealed so that they

could hold new highways and rail tracks. Reber claimed that his plan would pro-

duce 20,000 acres of filled land, increase the deep-water harbor by more than 50
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miles, and conserve almost 2.5 million acre-feet of fresh water. e plan’s critics

worried that it would destroy commercial fisheries, render the South Bay a brackish

cesspool, and create problems for the ports of Oakland, Stockton, and Sacramento

(Jackson & Paterson, 1977).

Among the opponents of the plan was the Army Corps of Engineers, who were

charged with studying the environmental impacts of the various salt water bar-

rier plans. e Corps recognized the benefits that the Reber plan might bring to

the area, but were quite certain that adding salt water barriers to the existing Bay

ecosystem would have serious, unintended consequences. In the meantime, Reber

garneredmuch public support and assured the citizens of the BayArea that his plan

could only bring benefits. e Corps recognized that a battle of words would not

be helpful in advising regional authorities; they needed hard data. But how could

such data be collected without actually building the salt water barriers and risking

harm to the bay?

To better study the plan the Corps built a hydraulic scale model of the San

Francisco Bay. is wasn’t any ordinary scale model. It was the “San Francisco

Bay in a Warehouse,” (Huggins & Schultz, 1967) an immense structure housed in

a Sausalito warehouse that started out at a size of about 1 acre (340  long in the

north/south direction) andhas grown to be about 1.5 acres today. Hydraulic pumps

simulated the action of tidal and river flows in the Bay, modeling tides, currents,

and the salinity barrier where fresh and salt water meet (Huggins & Schultz, 1973).

Armed with this high-fidelity model of the San Francisco Bay, the Army Corps

of Engineers was now in a position to evaluate the Reber plan. Reber’s proposal
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called for a 600 foot wide, 4 mile long earth and rock dam that stretched from San

Quentin to Richmond, and a second barrier 2000 feet wide and 4 miles long, just

south of the Bay Bridge, connecting San Francisco to Oakland. e Army Corps

studied this proposal by building scaled-versions of Reber’s barriers, adding these

to the Bay model, and measuring the changes in current, salinity, and tidal cycles.

As the Corps predicted, the model showed that Reber’s plan would have disas-

trous consequences for the Bay and its ecosystem. e proposed barriers did not

allow for any fresh-water flushing to take place behind them. Far from creating the

fresh water lakes envisioned by Reber, the barriers would actually create stagnant

pools, without the circulation required to maintain healthy aquatic ecosystems.

e possibility of introducing openings in the barriers to allow for water flow was

also explored. is would not, of course, generate fresh water lakes, but it was

thought that this might allow the dams to be built without creating stagnant water

behind them. emodel showed that building such porous barriers was also a very

bad idea because doing so introduced extremely high velocity currents in the Bay.

is would disrupt the normal ecosystem and make navigation in the central part

of the Bay hazardous. e Corps was thus in a strong position to denounce Reber’s

plan on the basis of model-derived data (United States Army Corps of Engineers,

San Francisco District, 1963).

A very different sort ofmodel was built to address another aquatic puzzle. Aer

WorldWar I, there was an unusual shortage of aquatic life in the Adriatic sea. is

seemed especially strange because fishing had slowed considerably during the war.

Most Italians believed that this should have given the natural populations a chance
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to increase their numbers. e well-known Italian biologist Umberto D’Ancona

was on the case. Aer carefully analyzing the statistics of fish markets he discov-

ered an interesting fact: e population of sharks, rays, and other predators had

increased during the war while the population of squid, several types of cod, and

Norwegian lobster had decreased. How could this be? Why did the small amount

of fishing associated with the war favor the sharks?

D’Ancona brought this question to thewell knownmathematician and physicist

Vito Volterra, who approached the problem not by studying the fishery statistics

directly and not by building a physical model, but by constructing a mathemati-

cal model composed of one population of predators and one population of prey

(Volterra, 1926).

Unlike the myriad properties possessed by two real populations of organisms,

Volterra’s model organisms possessed just a few properties, such as an intrinsic

exponential growth rate for the prey in the absence of predators and a constant

death rate for the predators (Roughgarden, 1979, 434). e result was what we

now know as the Lotka-Volterra model of predation, which is described by the

following two differential equations:

dV

dt
= rV − (aV )P (1)

dP

dt
= b(aV )P − mP (2)

By analyzing the models described by these equations, Volterra solved the puz-

zle of the fishery shortages: His model predicted that intense levels of a general
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biocide, which kills both predators and prey at the same time, would be relatively

favorable to the prey, whereas lesser degrees of biocide favor the predators. From

this he reasoned that heavy fishing, a general biocide, favors the prey and light fish-

ing favors the predator. Because WWI had slowed Adriatic fishing to a trickle, his

model suggested that the shark population would be especially prosperous during

this time of reduced biocide. is is not something that Volterra or anyone else

would have expected a priori. However, armed with the dynamics of his mathe-

matical model, Volterra found a solution to this perplexing problem.

ese two episodes are paradigm cases of scientists solving problems by mod-

eling, the indirect study of real-world systems by the construction and analysis

of models. Contemporary literature in philosophy of science has begun to em-

phasize the practice of modeling, which differs in important respects from other

forms of representation and analysis central to standard philosophical accounts

(e.g. Godfrey-Smith, 2006; Wimsatt, 2007; M. Weisberg, 2007). is literature has

stressed the constructed nature of models (Giere, 1988), their autonomy (Morgan

& Morrison, 1999), and the utility of their high degrees of idealization (Levins,

1966; Wimsatt, 1987; Batterman, 2001; Hartmann, 1998; Strevens, 2006; M. Weis-

berg, forthcoming). What this new literature about modeling lacks, however, is

a comprehensive account of the models that figure in to the practice of modeling.

Instead, most authors have borrowed accounts of models from the semantic view of

theories literature, a family of views which argues that the best analysis of scientific

theories should be conducted in terms of models (Suppes, 1960a; Suppe, 1977).

e semantic view literature provides many starting points and insights from
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which we can build an account of models appropriate to understand the practice

of modeling. Yet the extant literature is not fully adequate for this purpose because

it is focused on models that figure in the foundations of mature theories, not the

process of model construction and analysis. In particular, and most importantly

for the current purposes, this literature has not fully explored the role of theorists’

intentions in all aspects of modeling, including the individuation of models, the

coordination of models to real-world systems, and the evaluation of the goodness

of fit between models and the world.

is paper thus offers a new account of both concrete and mathematical mod-

els, with special emphasis on the intentions of theorists, which are necessary for

evaluating themodel-world relationshipduring the practice ofmodeling. Although

mathematical models form the basis of most of contemporary modeling, my dis-

cussion begins with more traditional, concrete models such as the San Francisco

Bay model. By examining some of the key features of concrete models and their

interpretations, we learn much that can be used in the more complex analysis of

mathematical models.

2 Anatomy of a Concrete Model

Concrete models are real, physical objects that are intended to stand in a resem-

blance relationship to other systems in the world. e phenomena to which a theo-

rist intends hermodel to apply are called the intended targets of themodel. e Bay

model is a paradigm case of a constructed, concrete model, whose target is the San

6



Francisco Bay. Other historically important examples include ancient Greek mod-

els of the planets, Maxwell’s mechanical model’s of the ether, Watson and Crick’s

model of the structure of DNA, and scale models of airplane wings and engines.

Some of these models, such as the Bay and DNA models, stood in successful re-

semblance relations. Others, such as theGreekmodels of the planets andMaxwell’s

ether models failed to resemble their intended targets because those target systems

did not exist.

In addition to models which are literally constructed, scientists can also work

with naturally occurring concrete models: structures and phenomena that already

exist in nature and resemble other phenomenaof interest. Perhaps themostwidely-

used natural models are model organisms (Griesemer & Wade, 1988; Griesemer,

2003; Weber, 2005; Winther, 2006). Fruit flies, for example, are oen called the

“test tubes of molecular biology” because of their ubiquity and utility in genetics.

For mammalian studies, especially those involving medical research, mice, rats,

dogs, and non-human primates can all be studied in place of studying humans.

Of course, fruit fly molecular biology is not the same as the biology of all other

animals, and mice, while similar to human beings in some ways, are obviously

different in many others. No isomorphism exists between these natural models

and target systems, yet for particular purposes, these natural models are similar

enough to intended targets that studying them is a useful proxy.

A more complex, but substantially similar, case involves the use of natural ex-

periments in population dynamics, geology and climatology (Richardson, 2006).

In this case, there isn’t a particular object or organism that stands in for another or-
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ganism or class of organisms. Rather, a dynamic phenomenon taking place in time

becomes a model for targets that are inaccessible temporally or spatially. High-

pressure water quickly diffusing through rocks in one place might serve as a useful

model for low pressure, long-diffusing water in another. While the relationship

between these models and theorists’ targets are very similar to natural models, far

more emphasis is put on behavior than on structural similarity in these cases.

Finally, a variant of the natural experiments studied by geologists are natural

population experiments studied by anthropologists. For example, Jared Diamond

(1999) argues that geographical factors and the availability of crops and animals

for domestication are two of themajor factors which determine how effectively one

population can dominate another when they come in contact. Diamond’s goal in

developing this theory is to explain the success that Europeans had in conquering

the Americas and Africa. ese interactions are so complex and took place on

such a large scale that the most effective strategy for determining the operating

mechanisms was to study small-scale, regional conflicts. e Maori people from

northern New Zealand, for example, nearly exterminated the Moriori from the

Chatham Islands when the former invaded. eMoriori had reverted to a hunter-

gather lifestyle because Polynesian tropical crops could not grow in the Chatham’s

cold climate, while the Maori had a relatively advanced agricultural society, which

allowed for military specialization. eMaori andMoriori case illustrates some of

the causal factors at play in the larger-scale questions discussed inDiamond’s book.

Like the Army Corps studying the Reber plan’s consequences with the Bay model,

this natural experiment allowed more direct comprehension of the operant causes
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without trying to extract them directly from the intended target.

To give a more thorough account of concrete models, we must first ask exactly

what kinds of things count as concrete models and how these models are to be

individuated. In some ways, the answer to this first question is rather easy. ere

are few limits on the kinds of things that can serve as concrete models. Even the

simplest objects or phenomena stand in many kinds of resemblance relations to

other things. ese resemblance relations can form the basis of the use of these

objects as models, where one thing stands for at least some of the properties of the

other. Simple and complex machines, paper and plastic shapes, organisms, and

highly complex scale models such as the Bay model all count as concrete models

and all stand in myriad resemblance relations to real-world target systems.

How do these concrete objects become scientific models, as opposed to merely

objects? ey weren’t intrinsically scientific models and no magic makes them so.

Concrete objects become scientific models because scientists intend them to serve

as models. e intention that a concrete and steel structure which can be flooded

with water should be amodel of the San Francisco Bay is whatmakes that structure

a model and what orients it towards its intended target.

Because the spatio-temporal boundaries of concrete models are determined by

theorists, not intrinsically, individuating a single model from classes of models and

parts of models is not complex. eir individuation simply follows the intentions

of their users. e same object may be a whole model for one theorist and a part

of a larger model for another. Nevertheless, we should take care to distinguish

between the models themselves and our representations of them, what I will call
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Figure 1: Technical drawing of the San Francisco Bay model showing the model’s
scale (1:10,000) and orientation. is drawing shows that the portion of the model
representing the Suisun Bay and San Jaquin Delta was rotated 43 degrees so that it
could fit in the warehouse.

model descriptions. When we talk about models, write about them, or show a pic-

ture or diagram, we are employing a model description. In Figure 1, for example,

we see a technical diagram for the Bay model, which is a model description of the

Bay. Figure 2 is another kind of model description, this time a photograph.

In the case of the diagram of the Bay model and the Bay model itself, the rela-

tionship between model and model description is uncomplicated. e diagram is

intended to be an accurate description of some of the properties of the Bay model,

specifically the scale and orientation of its features. is relationship can be de-

scribed with standard semantic notions such as truth and reference. If the diagram
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Figure 2: Photograph of a segment of the SF Bay model showing its representation
of the Golden Gate Bridge.

is accurate, then it will truthfully describe the properties of the model. Of course,

the model is almost certain to have properties not mentioned in the diagram, for

example small imperfections in the concrete or the steel superstructure. Standard

community conventions about how to read technical diagrams tell theorists that

this is simply not specified one way or another. In this respect, the diagram is

more abstract then the model, leaving the imperfections in the concrete and other

details about the model itself vague.

It is important for theorists to know what is le vague or abstracted away on

the one hand, and what is being asserted to be absent. For example, if the diagram

of the Baymodel does not include a drawing of the sump pump at themouth of the

Bay model, it is not clear whether the diagram is being non-committal about the
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existence of the pump or asserting that it does not exist. In order to determine this

sort of thing, or anything else forwhich there are not standard reading conventions,

model descriptions are oen accompanied by a commentary. is commentary

clarifies how the description ought to be read.

ere isn’t a one-to-one correspondence between models and model descrip-

tions. A singlemodel can be described inmanydifferentways, such aswith blueprints,

pictures, equations, or computer programs. In general, a single description can also

pick outmore than one type ofmodel. While amodel description of perfect fidelity

describes a single model type perfectly, any amount of vagueness in description al-

lows a single description to pick out multiple models. In general, the vaguer, less

precise, or less specific amodel description becomes, the greater number ofmodels

it represents.

Although it is natural to think of model descriptions as being set down before

concrete models are constructed or found, this is not strictly necessary. In some

cases, the model is constructed before or without a description. In others, the de-

scription comes first. And perhaps most commonly, the two are produced in tan-

dem. When Watson and Crick built their model of DNA, they constructed the

model first. In fact, the key to solving the structure of DNA involved seeing phys-

ical characteristics of the model and using these to think about the ways that the

backbone and nucleic acids of DNA could arrange themselves. Only aer the phys-

ical model was constructed was a mathematical description of the model written

down, in that case to check the validity of the structure fromX-ray crystallography

data.
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In other cases, the description of the model preceded its building. In the Bay

model, for example, the Army Corps of Engineers constructed the Bay model by

first making detailed technical drawings. emodel was then constructed accord-

ing to the specifications of these drawings. When the Reber plan and other salt

water barriers were studied, modifications were made to the model. In these cases,

theCorpsworked from technical drawings about the temporarymodifications they

wouldmake in order to evaluate the soundness of these salt water barriers. So there

is no general order for the construction of models and their descriptions; differing

circumstances dictate creating one or the other first. And in some cases, model

descriptions are not generated at all.

3 Resemblance and the Role of the Construal

We now turn to the relationship between models and their targets. When talk-

ing about concrete models, the representational relationship between models and

targets must be one of similarity or resemblance, not truth or approximate truth.

Even if relations like truth and approximate truth hold between models and tar-

gets in some way or other, they are far removed from the way theorists assess their

models. By themselves, models do not assert anything of scientific interest about

their targets. It is only the theorist, reasoning about the resemblances between the

model and the world who can make true and false assertions. Of course, philoso-

phers have long known that resemblance and similarity relationships are riddled

with puzzles and it will be necessary to make some further refinements in order to

13



Figure 3: Model gate (indicated by arrow) used to simulate the dams proposed by
Reber.

accept that this relationship could be a scientifically important one.

Before attempting to fill in some of the details, let’s return to why the Army

Corps built the Bay model and some of the uses to which they put it. One motiva-

tion for building the model was to find out what would happen if Reber’s plan to

fill in large portions of the Bay were carried out. For example, Reber claimed that

his proposed landfills would create large reservoirs of fresh water. Aer ensuring

the hydrodynamics of the model faithfully resembled the dynamics of the Bay, the

Corps created gates which could be lowered in to the model to simulate the con-

struction of Reber’s dams, which we can see in Figure 3. Aer lowering the gates,

the Corps observed the instability of fresh water reservoirs in the model. From

this, they reasoned that the same proposed reservoirs would not be stable in the

Bay itself.

e Army Corps reasoned along the following lines: e model Bay is very
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much like the real Bay in certain respects, especially those having to do with hy-

drodynamics. Since our model has these properties, it is reasonable to study the

Bay model as a substitute or stand-in for the actual Bay. is kind of reasoning

requires that the Bay model was a simulacrum of the real Bay; it resembled it or,

to use Giere’s expression, was similar to the Bay in certain theoretically important

respects and degrees (Giere, 1988). is similarity relationship is really a resem-

blance relationship.

Concrete modeling requires both structural and dynamical resemblance rela-

tions. Structural resemblance means that the model and target either share or pos-

sess similar properties and relations. e physical differences between the Maori’s

andMoriari’s islands are structurally similar to the differences between Eurasia and

the Americas. e Bay model’s topology resembles the San Francisco Bay’s topol-

ogy. Bond angles and connectivities inWatson and Crick’s DNAmodel are similar

to the bond angles and atomic connections in real DNA, and so forth. Dynamical

resemblance is resemblance between behaviors of the model and behaviors of the

target. More formally, it is a resemblance between the succession of model states

and target states. Laboratory fruit-fly genetics, for example, has dynamical resem-

blance to the genetics of natural populations. e tides and currents of the Bay

model resemble the tides and currents of the San Francisco Bay.

Resemblance relationships have a checkered history in philosophy. While it

is tempting to use them to explain many semantic phenomena, attempts at for-

malizing them have been widely thought to be unsuccessful and this has made
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the philosophical community wary of relying on them.1 Nelson Goodman voiced

some of the most influential critiques of resemblance relations. He believed that

appeals to resemblance and similarity had a deleterious effect on philosophical and

scientific discussions because they ended up merely labeling something unknown,

rather than giving a characterization of the phenomenon in question (Goodman,

1972).

Goodman raised several important arguments against resemblance relations,

which must be confronted if a philosophical account of the concrete model/world

relationship is built upon them. Perhaps the most important of Goodman’s ob-

jections is what Quine dubbed “e Problem of Imperfect Community” (Quine,

1969). For any three objects, there will be some respect in which two of the objects

resemble each othermore than the third. To take a trivial example, imagine a green

square and red square and a red circle. Which of these things is not like the other?

ere is no obvious answer to this question because either pair could be said to

resemble each other more than the other pair.

is problem scales up beyond the trivial to real scientific examples. Con-

sider the molecules ethyl alcohol, dimethyl ether, and diethyl ether. Ethyl alcohol

has the structure: CH3CH2–OH, dimethyl ether: CH3–O–CH3, and diethyl ether:

CH3CH2–O–CH2CH3. Which pair ofmolecules ismore similar to each other than

they are to the third? Dimethyl ether and ethyl ether are both ethers, hence they

can engage in similar chemical reactions and dissolve similar substances. On the
1On the other hand, recent work on metaphor (e.g. Camp, 2003) relies on these relations, and

gives a sophisticated new account of them.
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other hand, ethyl alcohol and ethyl ether both have ethyl groups (chains contain-

ing two carbon atoms). Ethyl alcohol and dimethyl ether are structural isomers,

meaning that they have the same atoms, just arranged in different orders; they also

have the samemolecular mass. However, ethyl alcohol is completely soluble in wa-

ter, whereas both ethers are only partially soluble in water. Ethyl alcohol boils at

78.4◦C, while the two ethers boil at a much lower temperature (34.6◦C and -23◦C

respectively). So in neither the trivial case nor in a scientifically realistic case can

we say that there is a context-free similarity metric that can be applied. is is the

problem of imperfect community.

Of course, chemists make similarity judgments all the time and the problem

of imperfect community seems to have gone unnoticed in chemical practice. In

this particular case, most chemists would judge the ethers to be the more simi-

lar pair of molecules. is is because in organic chemistry, the salient features of

molecules are almost always functional groups and conformation, not the atoms

they are made up of or the exact length of the carbon chains. Of course, there are

contexts where these other features matter more than functional groups, and in

those cases chemists adjust their similarity judgments accordingly.

Goodman recognized that this was a potential response, but he didn’t believe

that this was a very philosophically satisfying one. “One might argue that what

counts is not degree of similarity but rather similarity in a certain respect. In what

respect, then, must inscriptions be alike to be replicas of one another?” (1972, 438)

He continues, later in the article,

More to the point would be counting not all shared properties but
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rather only important properties—or better, consideringnot the count

but the overall importance of the shared properties. en a and b are

more alike then c and d if the cumulative importance of the proper-

ties shared by a and b is greater than that of the properties shared by

c and d. But importance is a highly volatile matter, varying with ev-

ery shi of context and interest, and quite incapable of supporting the

fixed distinctions that philosophers so oen seek to rest upon it. (444)

In everyday appeals to similarity, Goodman may well be correct. Shiing con-

texts will shi similarity metrics, and appeals to similarity as a brute relation may

fail. However, Goodman’s response seems inappropriate in dealing with themolec-

ular similarity I described above. Scientific discourse neither requires absolute

measures and weightings of similarity nor does it even require that all domains

use the same criteria for similarity. Rather, similarity judgments are dependent on

myriad factors including background theories, practices in a community, and the

intentions of individual scientists. Goodman is correct in thinking that no fully

general, purely logical analysis of similarity can be given. But this would not be a

very useful account of similarity for scientific practice even if it could be generated.

Consider, now, how this response plays out in the case of the San Francisco Bay

model. I would argue that the problem of imperfect community certainly arises,

but it doesn’tmatter verymuch. In someways, themodel ismore similar to a swim-

ming pool than it is to the Bay. It has deep and shallow parts, it is made of concrete

and reinforced with steel, it is filled with water which is circulated by pumps, and

so forth. Similarly, themodel is more similar in some respects to a pinball machine
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table than it is to the Bay. It sits a few feet off the floor, it is relatively flat, and it has

barriers and channels. While these Goodmanized resemblance relations, which

make the model more like a swimming pool or a pinball machine are real, they are

simply ignored in scientific discourse. is does not reflect a cavalier attitude on

the part of scientists. Rather, it simply shows that scientists working with physical

models do not concern themselves with wholesale similarity or resemblance. ey

choose which respects are the scientifically relevant ones. is brings us to a very

important part of my account of concrete models: the representational intentions

ofmodelers, which I call their construals. ese construals, along with background

theories and community conventions, determine which similarity relations are the

relevant ones.

Construals are composed of three parts: the intended scope of the model, the

assignment, and fidelity criteria. e intended scope of the model consists of the

target systems a theorist intends the model to resemble, as well as a specification

of the aspects of the target system that the model is intended to resemble. e as-

signment coordinates particular aspects of the model to particular aspects of the

target system. In many concrete models, such as the Bay model, the assignment is

trivial because the model is a scaled physical representation of a target. However,

in some cases, such as using a real spring to model a covalent bond, more specific

guidance needs to be given about which aspects of the concrete model are essen-

tial and meant to represent some aspect of the target. Finally, fidelity criteria set

the evaluative standards a theorist will use in assessing her model. ese criteria

determine both the level of fidelity required by the structure and dynamics of the
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model, as well as the level of fidelity required for the model’s output. Construals

oen accompanymodels explicitly as part of a commentary on themodel, but they

are importantly independent of models. Different theorists may construe the same

model differently.

Before turning to mathematical models, let us take stock of the account of con-

crete models developed so far, as this will guide the development of an account

of mathematical models. Concrete models are physical objects that stand in two

important relationships.ey stand in standard semantic relationships to their de-

scriptions. While notions like truth and satisfaction can be used to described the

relationship, its many-many nature make the term ‘associate’ more appropriate.

To target systems in the world, concrete models stand in construal-mediated sim-

ilarity relationships. Because of the problem of imperfect community, it is impos-

sible to assess this relationship without understanding the theorist’s construal, or

intentions about how the model is to be coordinated to the world and with what

standard of fidelity it is intended to be coordinated. is leaves us with the picture

of model world relations we find in Figure 4. Models are associated with model

descriptions and can be compared to real-world systems via construal-mediated

similarity relations.

To further develop this account, much more needs to be said about the nature

of target systems, including their degree of abstraction and how theorists handle

phenomena with lesser degrees of localization than the San Francisco Bay. Since

many of these issues arise for mathematical models, I now turn to an account of

mathematical models and develop it on the basis of what we have learned so far
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Behavioral Similarity

Figure 4: A concretemodel and its relations to amodel description and a real-world
target. e connection to the target system is optional, as somemodels are studied
for their intrinsic interest or without knowing whether or not they are similar to a
real world target.

about concrete models.

4 Mathematical Models

e Lotka-Volterra model is a paradigm mathematical model and I will use it to

illustrate many aspects of such models. Recall that the model is described by the

following two differential equations:

dV

dt
= rV − (aV )P (3)

dP

dt
= b(aV )P − mP (4)

In these equations, V is the size of the prey population and P is the size of the

predator population. e variable r stands for the intrinsic growth rate of the prey

population and m stands for the intrinsic death rate of the predators. e other

parameters describe the prey capture rate (a) and the rate at which predators can

convert prey into more predator births (b) (Roughgarden, 1979, 432).
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Figure 5: Graph of two dimensions of the Lotka-Volterra model’s state space. is
graph is oen called the phase portrait of the model.

Volterra recognized that solving the equations for their equilibriumwould give

him the average population density for each of the two species. ese average pop-

ulation densities are described by the following equations:

V̂ =
m

ab
(5)

P̂ =
r

a
(6)

From these equations, Volterra learned that, in hismodel predator-prey system,

the average abundance of predators primarily depends on prey births, and the av-

erage abundance of prey depends on predator deaths. is means that a general

biocide, something that effectively increases the predator death rate and decreases

the prey birth rate, would actually hurt the predators more than the prey.
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Recognizing that heavy fishing was a biocide, Volterra arrived at his answer

to the anomalous fishery statistics: Before the war, heavy fishing was shiing the

predator-prey balance towards the prey. e low-intensity fishing during the war

shied the balance to favor the predators, but this would abate as heavy fishing

resumed aer the war. (Roughgarden, 1979; M. Weisberg, 2006; M. Weisberg &

Reisman, forthcoming)

Volterra solved the puzzle in the Adriatic by doing mathematics. He wrote

down equations that described a mathematical object, a set of points in a three-

dimensional state space corresponding to the variables P , V , and t. Yet he solved a

puzzle about real-world population dynamics. His mathematical model told him

something about the Adriatic, just as the Bay model told the Army Corps about

the San Francisco Bay. It is relatively straightforward to understand how the con-

structed, concrete Bay model represents the San Francisco Bay. But it is a much

more complex issue, and one that is at the center of many philosophical discus-

sions of scientific models, how a mathematical model can represent a real world

system. How is it that the Lotka-Volterra model, or the one-locus model of popu-

lation genetics, or the harmonic osscilatormodel ofmolecular vibration, canmodel

real world systems? e answer to this question depends on what kind of thing a

mathematical model is.
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5 Two Accounts of Mathematical Models

eLotka-Volterramodel is obviously not concrete and physical like the Baymodel

or Watson and Crick’s model of DNA. Exactly what kind of thing a mathemati-

cal model is, however, has been the subject of considerable debate in the litera-

ture about models. In a recent review of this debate, Margaret Morrison andMary

Morgan (1999) divide accounts of mathematical models into two traditions. Pro-

ponents of concrete accounts of mathematical models take mathematical models

to be something like imaginary structures that would be concrete if they were real

(Hesse, 1966; Black, 1962; Campbell, 1957; Giere, 1988; Godfrey-Smith, 2006).

What Morrison and Morgan call the abstract tradition includes accounts of mod-

els as set theoretical structures (Suppes, 1960a, 1960b), as well as those that take

mathematical models to be trajectories through state space (van Fraassen, 1980). I

will call this themathematical tradition, to avoid confusion later on. Let’s consider

these accounts in turn.

5.1 Imaginary But Potentially Concrete

Accounts from the concrete tradition regard mathematical models as imaginary

systems that would be concrete if they were real. A biological model of population

dynamics, on this view, despite being described using mathematics, is actually an

imaginary population of organisms, much like a population of the real world. So

on this account, the Lotka-Volterra model of predation consists of an imaginary

population of predatory animals and prey animals. ese imaginary populations
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have the properties explicitly attributed to them in the act of modeling — such

as growth and death rates, numerical responses, and functional responses. All of

their other properties, however, are le vague. is is very similar to the way we

construct fictional worlds from a novel or other written text. e text contains only

some of the details and the rest must be filled in by us in order to make a coherent

story. J. R. R. Tolkien doesn’t tell us whether Frodo is le or right handed, but he

must be one or the other or ambidextrous. So in order to draw inferences from

fiction, readers may have to fill in details, even if these details do not really matter

to the story or the author (Lewis, 1978; Ryan, 1980; D. S.Weisberg, 2008). Similarly,

in order to draw inferences from themodel, the theorist mentally fills in additional

properties. But oen, and this is part of the point of mathematical modeling, the

theorist can simply leave these properties vague.

A recent formulation of this position comes from the work of Godfrey-Smith

(2006). He explains that part of the motivation for this interpretation of model on-

tology is that theorists think of themselves as working with concrete yet imaginary

systems when they write down the equations describing their models. He writes:

I take at face value the fact that modelers oen take themselves to be

describing imaginary biological populations, imaginary neural net-

works, or imaginary economies. An imaginary population is some-

thing that, if it was real, would be a concrete flesh-and-blood popula-

tion, not a mathematical object.

Proponents of this perspective point to several advantages of such an account.
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e first advantage is that individuating models and specifying the relationship

between models and model descriptions are straightforward. Each imaginary sys-

tem is a model and such systems can be represented in many different ways using

words, equations, picture, or graphs. Model descriptions will always underdeter-

mine models conceived of in this way, but this poses no problem and may even be

an advantage because imprecise model descriptions can be used to generate fami-

lies of models with greater degrees of generality (M. Weisberg, 2004).

Another advantage of this kind of account is that the similarity relation between

a model and the world is intuitive, just as in the concrete model–world case. A

model is similar to a target phenomenon in the world just in case it resembles that

target. It is not easy to give a formal analysis of this similarity relationship, but

the basic idea behind it is the same as in the case of concrete models. On this view,

although imaginary,mathematicalmodels are physical systems that have structural

and behavioral similarity relations to real-world targets. More elaborate accounts

of the relation will point to the role of theorists’ interpretations of different parts of

the model’s structure via their construals.

Finally, this account has the advantage of taking seriously the way that theorists

refinemodel descriptions on the basis of themental picture they have ofmodel sys-

tems. Godfrey-Smith points to the writings of theorists who describe themselves

as first thinking about the model, as if they have some kind of mental picture of it,

and then proceeding to write down their model description (equations) on the ba-

sis of this mental picture. is is one of the most important insights of the concrete

account of mathematical models.
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An especially clear example of this can be found in John Maynard Smith’s evo-

lutionary genetics textbook. In the course of describing a model of the accuracy of

RNA replication, he reasons as follows:

Imagine a population of replicating RNA molecules. ere is some

unique sequence, S, that produces copies at a rate R: all other se-

quences produce copies at a lower rate, r.

In these first steps, he asks us to think about a collection of RNA molecules

undergoing the process of replication. Presumably, we can only imagine them be-

cause we have had some prior experience with RNA and we can also assume that

whatever is standardly true (whether or not we know about it) of RNA is also true

of this population. He then asks us to consider a restriction to our initial imagined

population: e replication rate is not consistent through the population. It is in-

stead sequence-dependent and one sequence has a greater rate of replication than

all of the others.

Maynard-Smith goes on to describe the model in much greater detail:

A sequence produces an exact copy of itself with probability Q. If x0

and x1 are the numbers of copies of S and non-S respectively, then

ignoring deaths,

dx0/dt = RQx0,

dx1/dt = rx1 + RQx0

In writing down these equations, I have assumed that when an error
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occurs in the replication of a non-S sequence, it gives rise to another

non-S sequence will give rise to an S sequence.

In this next step, Maynard Smith further constrains the model by giving more

information about the nature of the replication of the RNA molecules. In particu-

lar, he specifies the probability of exact replication and, as a result, also specifies the

probability of non-exact replication. To complete the model, he goes on to derive

an equation that describes the preservation of optimal molecules in the popula-

tion as a function of differing degrees of accuracy in replication, but that is not

our primary concern. Instead, I want to use Maynard Smith’s comments to further

illustrate the concrete approach to mathematical models.

Godfrey-Smith and other proponents of the concrete approach would argue

that this is an especially explicit illustration of a typical way theorists go aboutmod-

eling. First, Maynard-Smith imagined the model that he was taking about, in this

case a population of self-replicating RNAmolecules. He then went on to mentally

fill in specific properties of the model and, at the same time, wrote down equations

which recorded these specifications. As he thought more about the model and an-

alyzed it in detail, he was able to refine it andmake it more specific, recording these

refinements in the equations that describe the model. All of the modifications to

the model were modifications to an imaginary population of RNA molecules.

e concrete account of mathematical models thus has good deal of appeal.

Models can be individuated straightforwardly. It gives us an obvious place to begin

an analysis of the model–world relation by analogy to physical concrete models

and it helps make sense of a very common mode of discourse among modelers.
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Each of these advantages, however, raises its own philosophical puzzles. In the next

sections, I will discuss several of them, arguing that at least two of them present

nearly insurmountable difficulties for the concrete view. Before doing so, I want to

consider the standard alternative account.

5.2 Mathematical Objects

e standard alternative account to the kind defended by Godfrey-Smith is that

mathematical models are mathematical objects. is is the dominant position in

the literature on models, modeling, and the semantic view of theories. Several

versions of this view have been discussed in the literature. In one, mathematical

models are seen as exactly the same kind of thing as logician’s models. is view,

which is the original version of the semantic view, analyzed mathematical models

by writing down the set-theoretic predicates corresponding to the model (Suppes,

1960a). Inmore recent literature, models are usually treated as trajectories through

state space. is viewwas first articulated by Bethe (1961) and van Fraassen (1980),

and has subsequently been refined by Lloyd (1994). It has become more or less the

default version of the semantic view of theories, and is taken bymany philosophers

of science to be the correct account of models for modeling.

e state-space version of the mathematical objects view begins with the con-

cepts state and state space. A system’s state is a description of all of its properties.

For a mathematical model understood in the state-space tradition, the state speci-

fies all and only the properties that the model actually possess. In dynamical pro-

cesses, states are typically indexed temporally, such that a state description tells
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us the state of a system at a particular time t. System states can be represented

mathematically as a vector, which corresponds to values for a set of variables cor-

responding to the determinable properties of the system. A state space, then, is

a multidimensional space where each dimension corresponds to a particular state

and points in that space are specified with state vectors. So for any state of the sys-

tem, there is a point in the space which corresponds to that state. State transitions

can be represented by curves or trajectories through the space.

A common way to fill in the account is to say that mathematical models con-

sist of the complete set of trajectories through the state space corresponding to a

fully precise specification of a model description’s parameters. us, all allowable

states and evolutions of these states corresponding to a parameter set constitute the

model. e set of trajectories through state space which constitute a mathematical

model are all the trajectories associated with a fully determinant set of parameters

in the description of the model. Each trajectory corresponds to a different set of

initial conditions or of values of the independent variables in the model descrip-

tion. Sometimes, this is explained by saying that the model is the state space itself,

meaning the structure of the state space. A more accurate gloss is that the model

is a trajectory space. When the model’s state space has a temporal dimension, then

the path through state space will represent the temporal evolution of a system’s

state. Such a model is called a dynamical model, and this has been the paradigm

case through most of the literature.

Sometimes scientists use the term ‘model’ to refer to the set of paths through

state space associated with an uninstantiatedmodel description, an equation with
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no values set for its parameters. is also parallels discussions of set theoretical

predicates associated with model types. For reasons of simplicity, I will avoid this

usage and call the full set of trajectories associated with such an uninstantiated

equation a family or class of models. Individual models correspond to equations

with exact values set for the parameters, but without values set for the variables.

Nothing very important turns on this, however, and one could translate from my

way of talking to the other.

Since this account treats mathematical models as abstract, mathematical ob-

jects, the model–target system relationship is more complex than on the concrete

view. Despite this, the model–world relationship of the mathematical account has

been worked out in greater formal detail. In subsequent sections I will defend my

own version of this account, but for now, let’s consider the traditional way that the

this issue has been dealt with in the semantic view and beyond.

In van Fraassen’s treatment, a model successfully represents its target when at

least one of its trajectories is isomorphic to a mathematical representation of the

target. In other words, there must exist a mapping of the trajectory to a represen-

tation of the target that preserves the structure and relations of the target. is

needs some fleshing out because a set of trajectories through a state space is not

isomorphic to, say, a population of organisms undergoing natural selection.

For van Fraassen, the isomorphism is supposed to hold between the model (or

what I would call some subset of trajectories associated with the model) and what

van Fraassen calls the appearance of the system, the subset of the system’s state cor-

responding to observable properties. For example, if I am interested in modeling
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the periodic motion of a simple pendulum, then the appearance of the pendulum

system is the position and momentum of the pendulum during the period of time

of interest.

e appearance of the system is the set of actual values of the system through

time, not measured values. In moving from a set of measured data points to the

appearance, a scientist needs tomake an inductive inference of some kind. is in-

ductive inference fills in the as yet unobserved values and removes noise, yielding

a mathematical relationship between the observed data. In simple cases, this infer-

ence can be simple, linear curve fitting, butmore complex possibilities are available

as well. e important thing is that real properties of the target, represented math-

ematically, must be isomorphic to the model.

Manyphilosophers have noted the stringency of requiring isomorphism. Lloyd,

for example, argues that many models are intended to be idealized and that iso-

morphism is overly stringent. She writes, “In practice, the relationship between

theoretical and empirical model is typically weaker than isomorphism, usually a

homomorphism, or sometimes an even weaker type of morphism.” (1994, 168n.2)

Other philosophers have gone further, requiring even weaker relations. Da Costa

and French, for example, have argued that the appropriate model-world relation is

one of partial isomorphism. is three-part relation allows aspects of the model’s

structure to either be isomorphic to, not isomorphic to, or indeterminate with re-

spect to a mathematical representation of data collected for a real-world system.

A model of a gas and a data model abstracted from a real gas, for example, might

exhibit such a partial isomorphism between the relations among model molecules
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on the one hand and data collected about real molecules on the other.

Another option, discussed by Lloyd but not fully developed in the literature,

would be to focus on metric relations between the model and a mathematical rep-

resentation of the target, rather than model-theoretic relations. In such a measure,

one would define a relevant metric for each important state variable in the state

space. Geometric measures could then be assessed such as, in the simplest case,

the distance between model states and the states of the real system. More complex

quantitative as well as qualitative relationships could also be assessed.

One can thus see that there are many different relations that have been pro-

posed for the model–world relation in the mathematical account of mathemati-

cal models. e literature has tended towards isomorphism accounts and model-

theoretic correlates. However, the consensus of the literature has been changing,

and much of the recent work on models discusses alternatives.

5.3 Problems for the Accounts

Both the concrete and mathematical accounts of mathematical models have many

things to be said in their favor. In this section, I discuss some of their disadvantages

and pose these disadvantages as challenges to be overcome in my own account.

5.3.1 Problems for the Concrete Account

emajor disadvantages of the concrete account concern the metaphysics of mod-

els and the nature of the model-world relation. e metaphysical worry is that

imaginary objects seem like strange kinds of things. If we make them less strange
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and say that they are merely psychological, then one must worry about whether

there can be cross-scientist agreement as to their properties. But if they are not

merely psychological and if they exist in some non-psychological way, what is this

kind of existence? is sort of worry should be familiar from philosophical discus-

sions of abstract objects as well as possibilia.

Godfrey-Smith has developed a simple and reasonable response to this prob-

lem. Although he does not attempt to give an account of the metaphysics of such

imaginary objects, he argues that they are nomore or less worrisome that the imag-

inary objects in ordinary fiction. Mathematical models are like Tolkien’s Middle

Earth or Herbert’s Arakis. Metaphysicians and philosophers of language will ul-

timately need to provide an account of the metaphysics of these worlds, and this

account may be fictionalist or deflationary. However, it is perfectly obvious that

we can reason about these worlds, talk about them, analyze counterfactuals about

them, and so forth. Exactly the same can be said of mathematical models under-

stood as imaginary, but concrete systems. e metaphysics remains unknown, but

we can still reason with them and about them.

While Godfrey-Smith’s response seems plausible, there are lingering worries.

e most important of these is what I will call the problem of variation. Insofar

as models are imaginary objects, akin to the Orcs of Middle Earth, there may be

considerable differences in the way these are conceived of by different scientists. In

the fiction case, this variation obviously happens (at least until a movie is made)

and poses no problem. If I think that Orcs have human-like feet and you think

their feet look a bit more like bear paws, this doesn’t pose a problem unless the
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shape of Orc’s feet becomes part of the story. Of course, if they did become part

of the story, Tolkien would almost certainly have given us the necessary detail to

understand how the story unfolded. Insofar as Tolkien and the story were silent

on the issue, it remains an interesting thing to think about, the sort of thing people

debate at fan conventions, but nothing critical turns on it.

While the problem of variation poses little problem for fiction, this is not the

case with mathematical models. In scientific applications, it would be a serious

problem if different scientists, especially ones with the same target system inmind,

actually were thinking about slightly different models. ere has to be at least a

high degree of consensus about the basics in order for modeling and model-based

representation to work.

A second problem with the concrete account is more fundamental: How can

working scientists make accurate determinations about the absolute or relative fit

of a model to a real-world target? While the notion of similarity at the heart of

concrete accounts is an intuitive one, intuitive judgments about structural and be-

havioral resemblance give us little quantitative information of the sort that can be

measured in the laboratory. is may not always be required, because some mod-

els are developed to investigate very general kinds of phenomena, and are not ex-

pected to have anymore than qualitative fit to particular targets. But inmany other

cases, scientists demand that their models have a precise and accurate fit to their

intended targets. Doing so assures them that the model can be used to make accu-

rate predictions about the future and that the mathematical structure of the model

corresponds to causal structures in the world that give rise to the phenomenon of
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interest.

e problems discussed so far concerning the concrete account can be han-

dled by the mathematical account. First consider the problem of variation. On the

concrete account, this is generated by the fact that different scientists might have

different imaginary populations in mind. But on the abstract account, mathemat-

ical models are mathematical objects and ought to be universal. How to spell this

out, of course, depends on the metaphysics of mathematical objects, but whatever

account of the ontology of these objects is correct, that account will insist that tra-

jectories in the Lotka-Volterra state space are consistent across scientists. ere is

thus no problem of variation on the mathematical account.

Determining model–world fit is also not a problem on the mathematical ac-

count. True, saying exactly what the fit ought to consist in has been controversial,

but when this relation is specified, then it becomes a mathematical fact whether

or not a target and a model have the right kind of relationship. Indeed, one of the

best arguments in favor of themathematical account is that the accountmirrors the

kinds of determinations actually made by scientists dealing with data and models.

However, there are also many challenges to the mathematical account of mathe-

matical models. Before developing a new version of the mathematical account, I

turn to some of the problems faced by the versions on offer.

5.3.2 Problems for the Mathematical Account

e first problem for the mathematical account has to do with model individua-

tion. Ifmodels are simplymathematical objects, thenwhen two distinctmodels use

36



the same mathematics, we will not be able to individuate them as separate objects.

is situation occurs frequently. Take, for example, the harmonic osscilatormodel.

e same exact mathematics can both be used to describe an idealized spring and a

chemical bond. Proponents of the mathematical account of mathematical models

would thus conclude that there is a single model being applied to these two cases.

A single differential equation (model description) describes the same set of tra-

jectories in a state space (the model) in both cases. However, common scientific

usage would have us think that these models are similar, but not exactly the same.

Although related, the models are about different phenomena and are interpreted

in different ways.

e second problem with the mathematical account is considerably more seri-

ous than the first and involves the way that causal information is encoded in mod-

els. Many traditional accounts of models in the semantic view only demanded that

models were empirically adequate, isomorphic (or something weaker) to a mathe-

matical representation of the empirical substructure of a real world system. Many

scientists, however, are realists and demand that unobservable state variables and

causal structures be accurately represented by theirmodels. It is one thing to have a

model with which one canmake accurate predictions, it is another to have a model

that makes accurate predictions for the right reasons. Such a model would repre-

sent real causal structure of the target phenomenon. Can this be done with purely

mathematical objects?

e answer would seem to be no. Mathematical objects can have structural and

relational properties, but not causal ones. ey naturally show correlation, but not
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causal dependence. It is not obvious how they can distinguish between a properly-

formulated forward-looking causal path and a backwards causal path, or even a

common cause. So if models are mathematical objects, how can they successfully

represent causal structure?

A final problem is accounting for the fact that theorists talk about their mod-

els in concrete terms. When discussing a model of predation, for example, a the-

orist will oen describe two populations of organisms that have properties like

birth rates and capture rates. ese sound like biological properties of concrete

objects, not mathematical properties of abstract objects. So a mathematical ac-

count of mathematical models is going to need to make sense of this concrete way

theorists have for talking about these abstract objects.

ese problems can all be handled straightforwardly by the concrete account.

ere is little problem of individuation with that account because harmonic oss-

cilator spring models are completely distinct from harmonic osscilator bondmod-

els. e former contains imaginary springs, the latter imaginary bonds. Since the

concrete account treats mathematical models as concrete objects, these objects can

have causal structure in a straightforward manner. Since they would be concrete if

real, they have all the properties of concrete objects including causal ones. Finally,

the concrete account easily handles theorists’ talk about models as concrete objects

because, on this account, they are imaginary objects that would be concrete if they

were real.

e concrete account easily handles some of the most important problems for

themathematical account, while themathematical account easily handles the prob-
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lems for the concrete account. is suggests that a hybrid account might be opti-

mum if one could be constructed. In the remainder of this paper, I present such

a hybrid account that is at base a mathematical account, but which finds room for

many of the important properties of the concrete account.

6 Mathematics and Folk Ontology

Like the defenders of the mathematical account, I believe that mathematical mod-

els are ultimately mathematical objects. But I differ from them in two important

respects. I emphasize that the mathematical structure must be fully interpreted in

order to be compared to a target phenomenon in theworld. As in the concrete case,

this happens via the theorist’s construal, which contains the assignment, intended

scope, intended target, and fidelity criteria. e other area in which I disagree

concerns what I will call the folk ontology of model. I believe that theorists’ mental

pictures of their model play a significant role in modeling, especially at the early

stages of theorizing. is brings my view closer, in some respects, to the concrete

account of mathematical models.

6.1 Models, Model Descriptions, and Construals

On my account, mathematical models are mathematical objects, but which kind

of mathematical object depends on the model. e dynamical models of much of

physics, chemistry, and population biology are usually sets of trajectories through

a state space. However, many of the computational models of cognitive science

39



are finite state machines, some models in social theory are directed acyclic graphs,

while some other models consist of probability distributions over possible system

states, or ensembles. While some of the philosophical literature about mathemat-

ical models has tried to argue that there is a single kind of mathematical structure

that always corresponds to a model, I see no reason to make this restriction. Many

kinds of abstract structures can be deployed in a representation and the determi-

nation of whether or not a structure is a model has to do with the representational

intentions of the modeler. Nevertheless, a very large number of the mathemati-

cal models of interest are dynamical, and all of these models can be described as

(minimally) consisting of states and transitions. I will oen use this idiom and fo-

cus onmodels that can be so described, but this should not be taken to be a hidden

restriction.

Regardless of which mathematical structures can serve as models, mathemat-

ical models raise a number of ontological questions not normally considered for

concrete models. In particular, the ontological status of mathematical objects —

everything from numbers to high-dimensional state spaces — is an outstanding

philosophical puzzle. Recent defenses of Platonism, empiricism, and various forms

of deflationism and fictionalism make it clear that the ultimate nature of mathe-

matical objects is still unresolved2. Consequently, there is little one can say with

certainty about the kind of things that mathematical objects are. Because of this, I

will bracket the ontological question about mathematical models for this paper.
2For a reviewof this literature, alongwith a somewhat skeptical conclusion about it, see Balaguer,

1998.
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One of the clearest advantages of the concrete account is the close connection

between it and the way theorists talk about and seem to conceive of their models.

While my account is a mathematical one, I think it is important to preserve this

insight, lestmathematicalmodels be thought of as bare structural entities. Oneway

to do this is to place special emphasis on theorists’ interpretive intentions, locating

intuitive ways of talking and thinking aboutmodels here. I call these intentions the

construal of the model.

Construals are composed of four parts: an assignment, the modeler’s intended

scope, and two kinds of fidelity criteria. e assignment and scope determine and

help us to evaluate the relationship between parts of the model and parts of real-

world phenomena. e fidelity criteria are the standards theorists use to evaluate

a model’s ability to represent real phenomena.

e first aspect of a model’s construal is its assignment, which is the specifica-

tion of the phenomenon to be studied and the explicit coordination of the model

with parts of the real-world phenomenon. is explicit coordination is impor-

tant for two reasons. First, although the parts of some models seem naturally to

coordinate with parts of real-world phenomena, this is oen not the case. For ex-

ample, harmonic oscillator models were first developed to make predictions about

the periodic motion of physical systems, but as mathematical models, they remain

abstract objects without obvious analogs to the properties of springs, molecules, or

even pendulums. Chemists use harmonic oscillators to model vibrations in bonds.

So they need to represent atomic positions as points in a coordinate system and

treat the periodic offset of these points, which corresponds to molecular vibration,
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as the behavior described by the dynamics of the harmonic oscillator model. e

assignment is a formal record of this type of coordination.

Models typically have structure not present in the real-world phenomena they

are being used to study. is brings us to the second role of the assignment: to

specify which parts of the model are to be ignored. Consider the Lotka-Volterra

model of predation. is model’s main dependent state variables are population

densities, but these states and the transitions between them are represented with

continuous mathematics. is means that the model can describe transitions be-

tween states where the state variable is an irrational number. Volterra certainly did

not intend the fact that his model could describe the dynamics of population den-

sities with negative and irrational numbers of predator and prey to correspond to

any real or possible population of fish with negative or irrational densities. us, in

his construal of the model, Volterra only assigned rational values for the state vari-

ables (and probably only certain ranges of those numbers) to population densities

in the Adriatic and other possible populations.

e second component of a model’s construal is the model’s intended scope,

which tells us the aspects of a target phenomenon intended to be represented by

the model. While the assignment coordinates parts of the model and parts of the

target, the intended scope is about the target alone. One can think of it as a precise

specification of the target.3

Intended scope is best illustrated by example, so let us turn once again toVolterra’s

predator-prey model. e model itself only describes the size of the predator and
3A similar position is taken by Suppe (1977).
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the prey population, the natural birth and death rates for these species, the prey

capture rate, and the number of prey captures required to produce the birth of a

predator. It contains no information about spatial relations, density dependence,

climate and microclimate, or interactions with other species. If the scope is such

that we intended to represent those features, Volterra’s model does a poor job be-

cause it would indicate that there is no density dependence, no relevant spatial

structure, etc. By choosing a very restrictive intended scope and hence a narrow

target, we indicate that Volterra’s model is not intended to represent these features.

e third and fourth aspects of amodel’s construal are its fidelity criteria. While

the assignment and scope describe how the real world phenomenon is intended

to be represented with the model, fidelity criteria describe how similar the model

must be to the world in order to be considered an adequate representation. ere

are two types of fidelity criteria: dynamical fidelity criteria and representational fi-

delity criteria.

Dynamical fidelity criteria tell us how close the output of the model — the pre-

dictions it makes about the values of dependent variables given some independent

variables — must be to the output of the real world phenomenon. ey are of-

ten specified as error tolerances. For example, a dynamical fidelity criterion for a

predator–prey model might state that the population density of the predators and

prey in the model must be ±10% of the actual values before we will accept the

model.

Dynamical fidelity criteria only deal with the output of the model, its predic-

tions about how a real world phenomenon will behave. Representational fidelity
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Figure 6: Simple version of the relationship between mathematical models, model
descriptions, and targets.

criteria are more complex and give us standards for evaluating whether the model

makes the right predictions for the right reasons. ese criteria usually specify how

closely the model’s internal structure must match the causal structure of the real

world phenomenon to be considered an adequate representation.

In Figure 6, I have represented the view described so far. Mathematical mod-

els are mathematical objects described by equations, graphs, or other descriptions.

Oen, but not always, these objects are states and transitions in a state space. e

model–world relationship ismediated through themodeler’s construalwhich spec-

ifies the meaning of the components of the model, the targets it is intended to be

applied to (if any), and the required degree of match between the model and tar-

get. is will be elaborated in greater detail in §7, but there is one more major

component to my account of mathematical models: folk ontology.

6.2 Folk Ontology

One of the important insights of the concrete account of mathematical models, es-

pecially as developed by Godfrey-Smith, is that scientists’ imagination of concrete

systems guides the model descriptions they write down. Godfrey-Smith believes
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that these imagined systems actually are models, whereas I do not. However, the

insight that theorists’ imagination of concrete phenomena guides them in writing

down and analyzing equations and even in formulating their models is an impor-

tant one. is needs to be captured in a complete account of mathematical models.

Recognizing that themetaphysics of concrete but imaginary systems is complex

and by nomeans settled, Godfrey-Smith suggests howwemight currently construe

these systems.

…to use a phrase suggested by Deena Skolnick [Weisberg], the treat-

ment of model systems as comprising imagined concrete things is the

“folk ontology” of at least many scientific modelers. It is the ontology

embodied in many scientists’ unreflective habits of talking about the

objects of their study — talk about what a certain kind of population

will do, about whether a certain kind of market will clear. (Godfrey-

Smith, 2006)

I suggest that we take this suggestion literally and think about theorists’ folk on-

tology as an additional component in our account of models along with the model

itself and its construal. So what exactly is the folk ontology of a model and how

does it operate?

Let us look at how the Lotka-Volterra model is presented in Maynard-Smith’s

important monograph on ecological theory. Several sections aer he introduces

Volterra’s model of predator-prey relations, he asks us to suppose that “some num-

ber [V�] of the prey can find some cover or refugewhichmakes them inaccessible to
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the predator.” (Maynard Smith, 1974, 25)is gives us a model which is described

by the following differential equations:

dV

dt
= rV − aP (V − V�) (7)

dP

dt
= baP (V − V�) − mP (8)

He goes on to explain how this newmodelmakes two interesting predictions. First,

if the total number of prey in cover is a constant fraction of the total, this does

not alter the nature of the oscillation and unstable equilibrium. However, “if the

number of prey in cover is constant … the effects of cover are stabilizing, since it

changes a conservative into a convergent oscillation.” In other words, a constant

number of prey hiding from predators stabilizes the oscillation of the model.

e details of this model and its comparison to the original Lotka-Volterra

model are interesting, but what I want to focus on is the use Maynard-Smith made

of concrete imagery. He began by telling us to imagine a Lotka-Volterra predator-

prey system. He then gave us some information about how to modify our imagi-

nation— some fraction of the prey population was allowed to find cover, avoiding

the predators. No doubt any theorist or other reader would find herself imagin-

ing some population of prey heading for cover. Huge variation exists, of course.

I first imagined a brushtail possum running up a tree for cover. Others may have

though about a lizard hiding under a rock from a Kookaburra. Still others may

have thought of clownfish, which hide in anemones. On the concrete view, these

mental pictures (or possibly some abstraction of them) is actually the model. But
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on the view I am advocating, these mental pictures are aids to thinking about the

model, but are not part of the model itself.

I follow Deena Skolnick Weisberg in calling these mental pictures the folk on-

tology of models. Just as folk psychology helps people make predictions about the

behavior of others, and folk thermodynamics helps people figure out what will be

too hot to touch, folk ontology aids theorists in developing mathematical models

and the equations that describe them. And just as folk psychologywill undoubtedly

vary from person to person, but be in near enough agreement to make predictions,

so folk ontology can vary among theorists.

Godfrey-Smith andWeisberg are thus correct thatmany theorists describe imag-

ined concrete systemswhen they are talking aboutmodels, but I advocate interpret-

ing this talk as a commitment to folk ontology, not to models being the way that

theorists imagined. Given this view, it is natural to ask whether folk ontology is an

essential part of the practice of modeling or is it something that can be completely

dispensed with. I believe that the former is correct; folk ontology is essential to

modeling in at least three contexts.

e first context in which theorists’ folk ontology comes in the development

phase of a mathematical model. Take the initial formulation of Volterra’s predator-

prey model as an example. We don’t have the kind of access to Volterra’s mental

representations that we would like, but it is probably fair to say that he began by

imagining a population of predators and a population of prey and attributed to

them certain properties. As he wanted to perform a mathematical analysis of this

population, he set this idea to paper, writing down equations specifying the model
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that he had imagined. We do not have a record of this, so we do not know how

satisfied Volterra was with the initial model. Perhaps it did not match the model

he had imagined and so he refined themodel. Or perhaps he had correctly specified

the model he was imagining and was able to proceed to analyze it. In either case,

the mental picture he had — his own folk ontology of the model — guided him

in formulating the initial model description and making sure that these equations

picked out what he had in mind. So one role of a theorist’s folk ontology is to guide

the development and refinement of a mathematical model.

e second important context in which folk ontology is important is in think-

ing about very complex mathematical models. Consider some of the complex

mathematical models employed in chemistry. Even highly idealized models of the

reactions of simple molecules consist of potential energy surfaces in state spaces

of high dimensionality. Of course, no chemist can hold this picture in her mind

and hence cannot directly reason about the model. All she can do is manipulate it

on the computer. However, she does have access to a mental picture which, more

or less, corresponds to the assumptions and idealizations of the model. is need

for such mental pictures is all the more dramatic in statistical thermodynamics.

Statistical mechanical models of gases are actually ensemble models. ey are “a

hypothetical collection of an infinite number of noninteracting systems, each of

which is in the same microstate (thermodynamic state) as the system of interest”

(Levine, 2002, 749). Such an ensemble is not something that can be thought about

directly; highly approximatemental pictures are the only ways to think about these

systems.
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Finally, the folk ontology of mathematical models plays an important role in

coordinating models encoded in different representational systems. ese models

might be very different mathematically, but they nevertheless share many features

or assumptions in common. For example, predator-prey models are most com-

monly developed in an aggregate way, where themain quantities tracked are popu-

lations of organisms. However, the contemporary ecological literature has increas-

ingly turned to individual-based approaches, where each organism is represented

explicitly as an individual (Grimm & Railsback, 2005; M. Weisberg & Reisman,

forthcoming).

Very similar models can be developed in the individual-based and aggregate

frameworks in the sense that these models have the same kinds of feedback loops.

Yet such models are mathematically distinct because, for example, the state spaces

of individual-based models will oen have hundreds more dimensions than the

state spaces of aggregate models, dimensionality scaling with the number of or-

ganisms. On the mathematical account of mathematical models, then, these will

be distinct kinds of models. Yet on the concrete account, they can potentially be

the very same model, described using different mathematical language. Ecological

models are intrinsically individualistic on the concrete view since even imaginary

populations are composed of individuals.

Neither of these pure perspectives is satisfactory. Aggregate and individual-

based models of the same phenomenon clearly have significant differences in their

structural properties. Yet to say that they have no more than a superficial relation-

ship seems too strong. Here is a place that the folk ontology of ourmodels can help.
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Folk ontology lets us tie the very complex behavior of the individual-based model

back to the simple aggregate model and can function in a similar way whenever

theorists need to compare topically similar, but structurally different models.

For all of these reasons, theorists’ folk ontologies about their models seem to

be a crucial part of scientific practice. Without these mental pictures, it would be

difficult to develop mathematical models in the first place, to hold mathematically

complex models in mind, and to coordinate similar models embedded in different

representational systems. A full account of models must include the role of these

mental pictures, but they are not, I believe, most appropriately thought of as the

models themselves.

7 eModel–World Relationship

In an earlier section, I discussed the role of the construal in determining the de-

gree of similarity between a mathematical model and the world. However, the dis-

cussion did not take a firm stand on the nature of this similarity relationship. For

concretemodels, similarity involves structural and behavioral resemblance, but for

mathematical models, “similarity” is just a place-holder for a different set of math-

ematical or logical relationships. is section discusses these precise relations of

similarity, and ultimately argues that no single relation can fill this role in all cases.

e nature of the model–world relationship is probably the most active area

of investigation in the literature about scientific models. Philosophers working

on this topic have proposed many accounts but reached little consensus, even for
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simple cases like the relationship between the harmonic osscilator model and a

pendulum or spring. e situation is evenmore complicated when we consider the

phenomena thatmuch ofmodeling is aimed at understanding: highly complex sys-

tems of the sort studied by ecologists and chemists. In these cases, even extremely

accurate models are far from complete representations of these phenomena and

contain many idealizations.

Some of themore recent developments in the semantic view of theories address

approximation, abstraction, and idealization explicitly. Proponents of partial truth

accounts of model-based representation argue that good models are typically only

partially isomorphic to targets. In other words, some substructures of the target

are isomorphic to the model or some substructure of a model, typically via models

of data. Partial truth analyses address some of these vexed problems, but do not

account for how target phenomena are manipulated so that they can be compared

to models. My account of the model–world relation pays special attention to the

mismatch of complexity betweenmodel and phenomenon. is part of the account

deals with what I will call the preparation of the phenomenon for representation

with a model.

7.1 Preparation

Phenomena in the world undergo preparation before they can be compared to and

analyzed with models. Preparation involves three steps: scope specification, ab-

straction, and parameterization. e latter two steps can be conducted with high

fidelity, but more oen than not they involve the introduction of approximation.
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Breaking this process into three steps is not meant to imply that they always fol-

low one aer another temporally. Rather, I want to emphasize that they represent

three conceptually distinct stages that a phenomenon must pass through before it

is ready to be compared to a model. ese steps may all be carried out together

and some may only be performed implicitly.

7.1.1 FromWorld to Phenomenon

e first step in preparing a phenomenon to be compared to a model involves the

determination of which spatio-temporal regions of the world the scientist wants

to study. is process of setting up the spatio-temporal boundary is simply the

process of individuating phenomena from the buzzing, blooming confusion of the

world in toto. What gets included in the boundary is some main object, property,

or dynamical process, along with anything exogenous to this object, property, or

process that has a causal influence on it. I will call the primary object, property,

or process of interest the phenomenon of interest. Oen, theorists are interested in

classes or types of target phenomena. is partitioning of the universe into phe-

nomena may itself raise philosophical problems about object and event individua-

tion, but I will not discuss this topic here and will assume through this article that

theorists can carve off parts of the world as individual phenomena.

7.1.2 From Phenomenon of Interest to Target System

With very few exceptions, the initial restriction of phenomena and phenomenon

types leaves the theorist with a system which is still too complex to be described,
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let alone compared to a model. us aer individuating a phenomenon, a theorist

must make decisions about which parts of a phenomenon she will consider and

which ones she will not. is is the the process of abstraction, a process of further

narrowing the phenomenon such that only certain aspects of the phenomenon are

considered. e outcome of this process of abstraction is the generation of what

I call target systems. Target systems are spatio-temporally restricted phenomena

abstracted in such a way to make them manageable. Obviously, there are many

possible abstractions for any given phenomenon. is means that the process of

abstraction will generate a set of potential targets from any given phenomenon.

Some comparison between mathematical models and target systems is already

possible at this point. In particular, judgments about structural similarity or re-

semblance that Godfrey-Smith and Giere think are important are already possible

when theorists have an abstracted representation of a target phenomenon. is,

of course, requires that models be taken to be imaginary, concrete systems or that

the theorist’s folk ontology is compared to the target. However, if theorists want to

make more exacting comparisons of model and target system, they need to com-

plete the final step of target preparation, where an abstracted phenomenon is pre-

pared to be formally comparable to a mathematical model.

7.1.3 Mathematical Representation of Target

e final step of preparation involves taking a a target system and representing it

mathematically in such a way that it can be compared to a mathematical model,

a process I call parameterization. If a theorist wants to compare the target to a

53



state-space model, she has to also represent the target system in a state space. In

such a case, each property making up the state of the target system is assigned to

state-variables in a mathematical representation. Once we know the general form

of the state for the target system, then we can construct a state space for the target

system. is will then let us abstractly represent the properties of the target as

points in this state space. It will also let us represent the evolution of the target

system as transitions in the state space.

From a purely mathematical point of view, the state space of the target is also

a model. Because of this, Suppes (1960b) coined the term ‘model of data’ for the

target’s state space. As this name implies, the target’s state space can be populated

with empirically measured data. Depending on the intended comparison to the

model, statistical inferences can be made in order to “clean up” the data and make

inferences about missing values. With her model of data in hand, a theorist can

begin the process of comparing the model to its target.

7.2 Initial Comparison: Dynamical Sufficiency

Having completed what I call ‘preparation,’ the theorist can explicitly compare the

model to a target system. is happens in several conceptually distinct stages,

where different aspects of a the target state-space is compared to the model-state

space. ere are at least three stages: the assessment of dynamical sufficiency, dy-

namical adequacy, and finally representational adequacy.

e first kind of comparison of the model to the target is the assessment of

the dynamical sufficiency of the model. e purpose of this assessment is to de-
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termine if the model is of sufficient dimensionality and possesses the appropriate

dimensions to be able to make predictions about the state transitions in the target

system. If the target system contains seven properties as well as time and spatial

dimensions, the model must have the representational resources to be able to pre-

dict the changes in these quantities, assuming the correct boundary conditions and

transition rules are set (Godfrey-Smith & Lewontin, 1993).

e easiest way to ensure the dynamical sufficiency of the model is to have the

same dimensions as the mathematical representation of the target. is ensures

dynamical sufficiency. However, this is not strictly necessary because there are sets

of sufficient variables that, when tracked, are sufficient for describing the behavior

ofmuchmore complex biological and physical systems (Levins, 1966). Indeed, one

of the arts of good model building is finding these sets of variables, obviating the

need to model a target with something equally complex.

7.3 Dynamical Adequacy

e second kind of assessment between the model and target system examines

what I call dynamical adequacy. is is a measure of the fit between the sequence

of states of the model and the states of the target, which is oen referred to as the

accuracy of the model. Commonly, these states are temporally sequential states. In

such cases, dynamical adequacy is ameasure of the relationship between one of the

trajectories of a model through its state space and the trajectory of the mathemat-

ical representation of the target system through the same state space. e relevant

kind of relation and the degree to which this relation must hold are determined by
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the dynamical fidelity criteria, part of the theorist’s construal.

In situations where dynamical sufficiency is ensured by the model having the

same dimensionality as the mathematical representation of the target system, iso-

morphism is a possible relation between one of the trajectories of the model and

the representation of the target. However, in the many cases where the model is

of lower dimensionality than the target’s representation, it is unclear how isomor-

phism could ever be a possible relation between model and target. In such cases,

the best one could hope for is homomorphism. If one insisted on a stricter rela-

tion, then one would simultaneously need to require that dynamical sufficiency is

achieved by matching the dimensionality of the representation of the target.

In addition tomodel-theoreticmeasures of dynamical adequacy, there aremany

potential metric measures of dynamical adequacy. e simplest such measures tell

us the distance, in units relevant to the system, of the model trajectory from the

real trajectory in state space. Statistical measures of goodness of fit are the most

obvious such relationships. But more complex metric measures can be developed

as well, such as ones that bias the importance of the fit in some dimensions over

others. ese distance measures can be chosen over the entire state space, or, more

usually, to some important subspace.

Finally, there are also many kinds of qualitative measures of the goodness of

models. ese measures concern themselves with gross features of the model and

target such as the direction and rate of change, the correct sequence of impor-

tant events, and the preservation of spatial and causal relations. Some of these

measures take the form of informal observations, but considerable effort has been
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made to developmathematical tools for the study of these qualitative relationships.

Such tools include loop analysis (Puccia & Levins, 1985; Justus, 2005, 2006) and

model–target comparison of specific features of the phase space, such as points of

stability, equilibrium, limit cycle, bifurcation, and so forth.

ese qualitative measures of fit between model and target systems are espe-

cially important in modeling, but have received comparatively little philosophical

attention. eir importance lies in their promise in explaining how highly ideal-

izedmodels can be comparedwith real-world systems. ere is no sense in which a

harmonic osscilator, even one with dampening, is isomorphic to a real spring. Any

real spring has far more degrees of freedom and will exhibit anharmonicity and ro-

tation. However, there is clearly a scientifically important relationship between the

simple harmonic oscillator and a real spring: Over certain regions, the spring ex-

hibits periodic oscillations that can be described with standard periodic functions

like sine and cosine, which are the terms in the solution to the differential equa-

tions describing a harmonic osscilator. While most of the models literature has

been silent on this type of fit, a great deal of contemporary modeling requires it,

and philosophers of science would do well to investigate it further.4

Unlike inmany previous accounts ofmodel–world relations, I do not argue that

one of these relations is the model–world relationship. Scientific practice is simply

too diverse in this area and I believe that one can find examples of any of these
4ere are, of course important exceptions to this. One way of understanding Robert Batter-

man’s research program (e.g. 2002, 2001) is as an attempt to understand how grossly inaccurate
models nevertheless describe central features of target systems. Vadim Batitsky and Zoltan Domo-
tor (2007) have also discussed this issue in connection with assessing models of chaotic systems.
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measures being used as a criterion of dynamical adequacy. Individual scientists

and scientific communities determine which of these standards to adopt as well

as the degree of fit required for the model to be considered adequate. Depending

on the complexity of the system, the data available, the explanatory or predictive

goals of the projects, and a number of other factors, theorists can adopt more or

less restrictive dynamical fidelity criteria. While the choice of standards is not dic-

tated to scientists a priori, there are more or less rational fidelity criteria to choose

depending on the circumstance and scientific goals of the project.

7.4 Representational Adequacy

If one is a realist, thendynamical adequacy is not the only aspect of themodel–target

system similarity relationship of interest. Dynamical adequacy tells us if the model

can make the correct predictions about how the system behaves. However, mod-

elers are oen also interested in finding out whether the model reflects the causal

structure of the target system that is responsible for producing the behavior. In

other words, modelers may want to know if the model is dynamically adequate for

the right causal reasons. A model which is representationally adequate correctly

captures the causal structure responsible for the behavior of the target system. Typ-

ically, this causal structure is captured by the transition rules associated with the

model.

Determinations of representational adequacy are more complex than determi-

nations of dynamical adequacy because the interpretation of a model as reflecting

causal structure in the target is more heavily dependent on the construal, specifi-
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cally on the assignment. ere are formal ways to determine whether the structure

of the model and the structure of the representation of the target are isomorphic

or share common metric properties, but in order to compare the causal proper-

ties of the model to the target, we need to rely on the construal. Specifically, we

need to know how the mathematical structure of the model is being interpreted,

whether one of the directions of themodel represents time, if a certain set of points

corresponds to an equilibrium state, and so forth. All of these transcend the math-

ematical structure alone.

Because of its dependence on the construal, it is even harder to give a recipe

for determinations of representational adequacy than it is to give one for determi-

nations of dynamical adequacy. In most cases, however, the determination begins

by considering whether the model is intended to even have a causal interpreta-

tion. e Lotka-Volterra predator-prey model, for example, is typically intended

by ecologists to be interpreted causally, although possibly with low standards of

fidelity. e coupling between the two differential equations is intended to rep-

resent a causal coupling between two populations of organisms. Conversely, the

one-locus model of natural selection is not intended to be interpreted causally.

e difference equations this model are supposed to tell us what will happen to

the gene frequencies in subsequent generations. e model was derived from a

causal scenario—Mendel’s laws acting on an infinite population—but as typically

interpreted, the recursions are not supposed to reflect causal information.

It is worth emphasizing that this initial judgment cannot be made solely by

looking at the mathematics. ere is no mathematical reason that a differential
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equation can represent causal structure, but a difference equation cannot. Rather,

it is the use to which these equations are being put that determines whether they

are representing causal relations are not. Hence it is imperative to keep inmind the

construal, specifically the assignment, when determining whether one has a causal

model.

Once a theorist knows that she is working with a causal model, further deter-

minations of representational adequacy can take place. For example, consider the

typical case where the coupling between a set of differential equations describing

the model is supposed to represent a causal coupling in the world. In such a case,

the theorist endeavors to determine empirically whether or not the target possesses

such a casual relationship. Similarly, if the equations describing the model have an

additive structure, where various variables are linearly combined to determine the

value of another, she can determine whether this reflects a real causal relationship

in the target, possibly through interventionist experiments.

How is the causal structure of the real system supposed to be determined such

that it can be compared to the model? is is of course an excruciatingly difficult

question, one that has occupied philosophers of science and metaphysicians for a

very long time. ere is no hope settling this issue here, but a few observations are

worth making.

A growing consensus in the philosophy of science literature about causation is

that the kind of counterfactual relations involved in interventionist theory of cau-

sation are at least a core element of causal relations (Woodward, 2003). Scientists

explicitly intervene on and control variables so that they can study the effect that
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some variables have on others. Something similar is done with models themselves:

Parameters can be changed, ranges of boundary values can be tested, and new cou-

plings or functions can be introduced to models, all with the goal of investigating

how this affects the model’s behavior.

So one way thatmodelers investigate the causal properties of the real world sys-

tem and try to ensure these are represented by the model is to plan parallel exper-

iments between target system and model. As much as is feasible, they manipulate

properties of the target system and see the systematic effects of these manipula-

tions. ey can then conduct parallel manipulations on the parts of the model

intended to represent those parts of the target system. Converging results between

model and target system are evidence that the model is capturing the real causal

structure of the system.

us a full determination of representational adequacy of a model can rarely

be accomplished with a single model described by a fully instantiated model de-

scription. Rather, one needs to examine different initial conditions (within a single

model) and different parameter sets (from other models in the family) in order to

determine the systematic effects of these changes on the model’s behavior. Deter-

mining the representational fidelity of a model involves active investigation of the

properties of models drawn from a family.

Finally, I should note that as with dynamical fidelity, a modeler’s representa-

tional fidelity criteria set the standards for how good of a match there must be

between the model’s causal structure and the target system. Sometimes, modelers

may not care at all about capturing causal structure; perhaps only the output mat-

61



Phenomenon

Target 
System

Target 
System

Target 
System

Parameterized
Target

System

Parameterization

Model

(mathematical 

object)

“Similarity”Model 
Description

Specification

Folk Ontology

in
flu

en
ce

mediated by
construal

Abstraction

Figure 7: Mathematical models, their auxiliary properties, and their relationship
to real-world phenomena.

ters. Sometimes, they may be content to have the the primary causal factors of the

target captured in the model. And in other cases, theorists may be aer a very pre-

cise and accurate that can not only make extremely high fidelity predictions, but

that also captures, with high fidelity, the causal structure of the target system.

8 Models for Modeling

We come to a complete picture of mathematical models and their relationship to

real-world phenomena, represented pictorially in Figure 7. Mathematical models

are mathematical objects, described by model descriptions. A number of different

kinds ofmathematical objects can serve asmathematicalmodels, but oen they are

sets of points and trajectories in state spaces. e model is interpreted via the the-
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orist’s construal, which determines what each dimension of the state space means.

When amodel is intended to be comparedwith a real world phenomena, the nature

of this phenomenon is specified in the intended scope, another part of the theorist’s

construal. Such a phenomenon must then be prepared to be compared to mathe-

matical models. is happens in several stages. First, a spatio-temporal region of

the world is carved off according to the specification of the scope. Secondly, much

of this spatio-temporal region is abstracted away, leaving a target system, which is

those aspects of target object that will be considered by the theorist. Finally, the

theorist creates a mathematical representation of the target system, which can be

compared to the mathematical model. is comparison is assisted by the theorist’s

folk ontology and is evaluated according to standards set by the theorist’s fidelity

criteria.

With a complete account of scientificmodels sketched, I want to highlight some

of the features of this account that play the most important roles in the practice of

modeling. Exploring these connections further is a significant undertaking, but I

will outline three major themes.

First, the account of mathematical models I have laid out draws a strong par-

allel between mathematical models and concrete, physical models. Both concrete

and mathematical models stand in many-many relationships with their model de-

scriptions, require interpretation to be fully realized, and can potentially stand in

many different kinds of model–world relations with target systems. Most of the

modern literature about scientific models pays little attention to concrete models,

as their use has become considerably less important with the rise of computational
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methods. Nevertheless, I believe that the strong parallels between these accounts

will motivate further research into the representational capacities and fruitful uses

of concrete models. We should not confine philosophical study to mathematical

models alone.

More central to the concerns of extant accounts of modeling practice are the

many roles for theorists’ intentions that I have discussed in this article. eorists’

intentions play a role in determining what counts as a model, how the model is

individuated, which aspects of the world are to be parts of the target, which bits

of the model represent which bits of the world, and what standards of fidelity are

used to evaluate the model. All of these roles are worthy of their own study, and a

complete account of modeling practice requires understanding all of them. If we

are to understand the ways in which modeling can be conducted rationally, then

muchmore needs to be known about the kinds of decisions that can bemade about

these factors and what effect these decisions have on the representational power of

models.

Finally, I have strongly emphasized what I called the folk ontology of mathe-

matical models. ese are the beliefs and mental images that individual and com-

munities of scientists associate with the abstract mathematical objects that strictly

constitutemathematical models. I have argued that they play several indispensable

roles in modeling. If this is correct, then traditional attitudes about the unimpor-

tance of psychology and pragmatics (e.g., those inHempel, 1965) can have no place

in detailed accounts of models and modeling. Even if we choose, as I have, more

formal analyses of the structure of models and model-world relationships, much

64



of what is important about the practice of modeling will be missed if they are the

exclusive focus of our philosophical attention.
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