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Abstract

In this paper we consider a naive conception of what a quantum

theory of gravity might entail: a quantum-mechanically ßuctuating

gravitational Þeld at each spacetime point. We argue that this idea is

problematic both conceptually and technically.

1 Introduction

The world of classical, relativistic physics is a world in which the inter-

actions between material bodies are mediated by Þelds. The �black body

catastrophe� provided the Þrst indication that these Þelds (in particular the

electromagnetic Þeld) should be �quantized.�1 Modern Þeld theory contains

quantum Þeld-theoretic descriptions of three of the four known interactions

(forces)�all except gravity. It is characteristic of the theories of these three

forces that the values of the Þelds carrying the forces are subject to the

Heisenberg uncertainty relations, such that not all the Þeld strengths at any

given point can be speciÞed with arbitrary precision.

Gravity, however, has resisted quantization. There exist several current

research programs in this area, including superstring theory and canonical

quantum gravity.2 One often comes across the claim that the gravitational

Þeld must be quantized, and that quantization will give rise to a similar local

1See the Þrst chapter of Bohm�s textbook [1] for a concise history of the origins of

quantum theory.
2See [12] for a recent review.
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uncertainty in the gravitational Þeld. Here we will examine this claim, and

see how the very things that make general relativity such an unusual �Þeld�

theory not only make the quantization of the theory so technically difficult,

but make the very idea of a �ßuctuating gravitational Þeld� so problematic.

2 What is a Þeld?

Maxwell�s theory of electromagnetism describes the interaction of electri-

cally charged matter (consisting of �charges�) and the electromagnetic Þeld.3

Charges act as �sources� for the Þeld, and the Þeld in turn exerts a force

on the charges, causing them to accelerate. The Þeld is speciÞed against a

background of space and time, assigning values for the various components

Ei, Bj , etc., of the electric and magnetic Þelds to each point in space at a

given time.4 The acceleration of a charged object at a given point is then

given by the Lorentz law

#̈x =
#F

m
=
qE( #E + ú#x× #B)

m
(1)

where m is the mass of the object, qE is its electrical charge, and ú#x the

velocity of the object (in appropriate units). In short, the acceleration of

a given object in a given Þeld is directly proportional to the charge, and

inversely proportional to the mass.

Maxwell theory is the paradigmatic Þeld theory, yet there are three other

�interactions� known in nature, associated with different sorts of charge.5

3Here we understand �Þeld� to mean an assignment of properties (the �values� of the

Þeld) to each point in space or spacetime. �Spacetime� will be represented, for our pur-

poses, by a 4-dimensional differentiable manifold equipped with a Lorentz metric satisfying

Einstein�s equations. �Space� then refers to a spacelike hypersurface in some spacetime.
4For simplicity of presentation, we use the canonical picture for electromagnetism and

thus make an arbitrary split of spacetime into space and time.
5Quantum-mechanically, these Þelds are usually identiÞed with various symmetry

groups: U(1) for the electromagnetic interaction (Maxwell theory), SU(2)× U(1) for the

electroweak interaction (combined theory of the electromagnetic and weak interaction),

and SU(3) for the strong interaction.
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As noted in the introduction, the theories of the strong and weak nuclear

interactions are also Þeld theories, specifying the Þelds associated with their

respective charges, and the resulting forces on the charges.

The remaining interaction is gravity. As in the theories of other inter-

actions, objects carry a �charge�, the charge acts as a source for something

like a Þeld, and the theory quantiÞes how the properties of this Þeld affect

the behavior of the object (and vice-versa). What is uniquely characteristic

of gravity is that the gravitational �charge� qG of an object is identical to its

mass (in Newtonian theory) or mass-energy (in general relativity). This has

far-reaching consequences. One, it means that gravity is universal, since all

objects have a mass (respectively, mass-energy). Two, it means that all ob-

jects behave the same in a gravitational Þeld (because the ratio of the charge

to the mass qG/m = m/m = 1). This equivalence of gravitational charge

and inertial mass is what we shall refer to as the �principle of equivalence�

or �equivalence principle.�6

If gravity were universal, yet objects reacted differently to gravitational

effects, then there would be no particular reason to associate the gravita-

tional Þeld with spacetime geometry. It is the fact that objects behave the

same in a gravitational Þeld that leads to describing gravity as a property

of spacetime itself.7 The reason for this is that �behave the same� means

�follow the same spacetime trajectory.� Einstein noticed that if these tra-

jectories were construed as characteristic features of a curved spacetime

geometry, then gravity could be represented geometrically. They can�the

6There are many different versions of the equivalence principle in the literature�the

version here is what Ciufolini and Wheeler [2] call the �weak equivalence principle.� The

review article by Norton [10] contains an excellent taxonomy of the various senses of

�equivalence principle.�
7We are actually considering an idealized limit in which we ignore the contribution of

the object itself to the gravitational Þeld. It is only in this limit that it makes sense to talk

about two different massive objects moving in the same Þeld, for the objects themselves

change the Þeld in proportion to their energy and momentum.
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special trajectories are �geodesics�.8

An alternative way to conceive of gravity would of course be to follow

the lead of other theories, and regard the gravitational Þeld as simply a

distribution of properties (the Þeld strengths) in ßat spacetime.9 What

ultimately makes this unattractive is that the distinctive properties of this

spacetime would be completely unobservable, because all matter and Þelds

gravitate. In particular, light rays would not lie on the �light cone� in a ßat

spacetime, once one incorporated the inßuence of gravity. It was ultimately

the unobservability of the inertial structure of Minkowski spacetime that

led Einstein to eliminate it from his theory of gravitation and embrace the

geometric approach.

Nonetheless, we shall see that this attribution of gravity to the curvature

of spacetime leads to great conceptual and technical difficulties, essentially

because it makes it difficult, if not impossible, to treat gravity within the

conceptual and mathematical framework of other Þeld theories. Thus it is

worth asking whether it is at all possible to construe gravitation as a uni-

versal interaction that nonetheless propagates in ßat, Minkowski spacetime.

The idea might be to still construe the Þeld geometrically (retaining part of

Einstein�s insight into the signiÞcance of the equivalence principle), but to

construe the geometrical aspect as �bumps� on a special, ßat background.

The short answer is, �No�, for three reasons. First, the �invisibility� of

the ßat spacetime means that there is no privileged way to decompose a given

curved spacetime into a ßat background and a curved perturbation about

that background. Though this nonuniqueness is not particularly problem-

atic for the classical theory, it is quite problematic for the quantum theory,

because different ways of decomposing the geometry (and thus retrieving a

ßat background geometry) yield different quantum theories.10 Second, not

8The ambiguities that arise in the geometry when the equivalence principle is not

respected are discussed in Weinstein [21].
9An interesting philosophical analysis of this line of thinking may be found in Reichen-

bach [11].
10However, the decomposition of a curved spacetime into a ßat part and a curved
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all topologies admit a ßat metric, and therefore spacetimes formulated on

such topologies do not admit a decomposition into ßat metric and curved

perturbation.11 Third, it is not clear a priori that, in seeking to make a

decomposition into background and perturbations about the background,

that the background should be ßat. For example, why not use a background

of constant curvature?

The upshot is that, for general spacetimes, the gravitational Þeld can

only be locally decomposed into a ßat Minkowski background and a curved

foreground, and even then there is no unique way to do it. Thus we are

stuck with a theory in which the gravitational Þeld seems irrevocably tied

to a fully geometric description, which in particular means that the Þeld,

such as it is, deÞnes its own background�it is both �stage� and �actor�.

3 The uncertainty of quantization

Quantum theory applies to all sorts of systems. In a quantum theory, the

determinate properties of classical mechanics are replaced by indeterminate

properties, represented by self-adjoint operators on a Hilbert space. For

example, objects such as low-energy particles have indeterminate position

#x = (xi, xj, xk) and momentum #p = (pi, pj , pk). These quantities (the com-

ponents of the vectors) are represented by self-adjoint operators �xi and �pj

satisfying commutation relations

[�xi, �pj] = i~δij . (2)

As conventionally understood, the commutation relations imply that the

position and momentum of the particle cannot be speciÞed with arbitrary

accuracy at a given time.

perturbation is useful in many classical (i.e., non-quantum) applications. See chapter 11

of Thorne [18] for a popular exposition.
11For example, S4 does not admit a ßat metric. See the classic paper by Geroch and

Horowitz [5] for further discussion of this and related topological issues.
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Quantum Þelds, such as the quantum electromagnetic Þeld, are similarly

represented. The relevant observable properties of the electromagnetic Þeld

are the various components of the electric and magnetic Þeld at each point in

space (at some time�we are working in the canonical framework), and these

are formally represented by the six operators bEi(#x) and bBi(#x0) (i = 1, 2, 3).12
For a scalar Þeld, we have simply bφ(x) and its conjugate bπ(x). These

operators all satisfy canonical commutation relations.13 For example,

[bφ(#x), bπ(#x)] = i~δ3(#x− #x0) . (3)

One might well think that the gravitational Þeld should also be quantized,

and that analogous commutation relations should hold for the operators

representing its properties. This line of thinking is implicit in the writings

of many physicists. But in fact it is not at all obvious what it even means

for the gravitational �Þeld� to be subject to uncertainty relations. The two

obstacles are:

1. The uncertainty relations apply to physical, observable quantities, such

as the position and the momentum of a particle, or the values of the

magnetic and electric Þelds at each point. Such observable quantities

correspond to the canonical degrees of freedom of the theory. But

no one has succeeded in isolating such quantities for the gravitational

Þeld.14

2. We use classical matter and Þelds to physically identify points of space-

time. If all Þelds except for the gravitational Þeld are treated quantum-

mechanically, we can still use the gravitational Þeld. But what does it

12Technically, these objects correspond to operator-valued distributions, which must

be �smeared� with test functions in order to yield well-deÞned operators. Chapter 3 of

Fulling [4] contains a lucid discussion.
13The canonical commutation relations for the electromagnetic Þeld are rather messy,

due to the presence of the constraints #∇ · #B = 0 and #∇ · #E = 0 (in the vacuum case). The

commutation relations are [ bEi(#x), bBj(#x0)] = i~ ³δij − ∂j∂i
∇2

´
δ3(#x− #x0) .

14Technically, the point here is that we lack an explicit characterization of the reduced

phase space of general relativity.
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even mean to talk about the values of the gravitational Þeld at a point

(or commutation relations between points) if the Þeld itself is subject

to quantum �ßuctuations�?15

Regarding the Þrst obstacle, even though it is relatively well-known that

gravity has not been reduced to a true canonical system, the relevance of this

to the lack of local observables seems to be quite underappreciated. Perhaps

the reason for this is that, insofar as one understands the gravitational Þeld

to be represented by the Riemann tensor Rαβγδ (itself composed of Þrst- and

second-derivatives of the metric gαβ), and insofar as this tensor has a value

at every point, it is thought that the gravitational Þeld is well-deÞned at

every point. In the second half of the next section we will discuss the utility

of this characterization of the Þeld.

The second point is more straightforward. The signiÞcance of the �dif-

feomorphism invariance� of general relativity is that one needs some sort of

classical structure like the metric or other physically meaningful tensorial

objects (such as the Maxwell tensor Fαβ corresponding to the electromag-

netic Þeld) in order to give physical meaning to �spacetime points.� Thus if

we quantize the metric and other Þelds, it is difficult to see how to talk mean-

ingfully about the relation between the quantum ßuctuations of a Þeld at,

and between, points.16 We shall explore this idea further in the subsequent

section.

15This point is taken up at greater length in [24].
16We are speaking loosely here. There are only four canonical degrees of freedom per

spacetime point, whereas the metric has ten components. Thus if we are attempting to

quantize general relativity as we would quantize an ordinary Þeld theory, only four of the

ten components should be subject to �quantum ßuctuations.�
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4 Quantifying the effects of gravity�local Þeld

strength

4.1 Absolute acceleration

Traditionally, the physical signiÞcance of the values of a Þeld at a given point

is to determine the motion of a charge at that point. More speciÞcally, the

strength and direction of the Þeld at the point determines the acceleration of

the charge. So for instance in Maxwell theory, the acceleration of an electric

charge at a given point is directly proportional to the strength and direction

of the electric and magnetic Þelds at that point (see (1) above).

Note that the energy density of the Þeld is calculated from these Þeld

strengths. For Maxwell theory, the energy H in an inÞnitesimal spatial

volume dV is dH = (
¯̄̄
#E
¯̄̄2
+
¯̄̄
#B
¯̄̄2
) dV . This is signiÞcant in that the fact

that the function giving the total energy H =
R
Σ dH over a region of space Σ

is the Hamiltonian, and the Hamiltonian is the �generator� of time-evolution

in the canonical formalism. Thus the fact that the energy of the Þeld is

well-deÞned corresponds to the fact that the time-evolution is well-deÞned.

As we shall see, in general relativity the energy is not well-deÞned in general,

and the time-evolution is ambiguous.17

Implicit in the deÞnition of Þeld strength here is the use of inertial frames

as canonical reference frames. The acceleration of the charged particle is

deÞned with respect to inertial frames�acceleration is the deviation from

inertial motion. But as we saw above, the presence of gravity means that

there are no inertial frames. On the face of it, this presents a problem for

the deÞnition of Þeld strength in Maxwell theory in the presence of gravity.

But one can recover a useful analog of the previous deÞnition by utilizing

the nearest approximation to inertial motion in curved spacetime, which is

motion along a geodesic. The Þeld strengths in curved spacetime then just

17This ambiguity is behind the notion of �many-Þngered time� that one Þnds in texts

such as [9].
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give the acceleration with respect to a given geodesic, i.e., the deviation

from geodesic motion. (Technically, they assign a �four-acceleration� to a

charge at each point, the value of which determines the extent to which the

charge will deviate from geodesic motion.)

It now follows that, according to this deÞnition of Þeld strength, the

gravitational Þeld strength at a point is always zero, no matter what the

value of the Riemann tensor is at that point! If a freely falling observer

(i.e., one following a geodesic) releases a gravitational �test charge� (any

massive object, i.e., any object at all), then the test charge will not accelerate

relative to the observer.18 Rather, it will remain stationary with respect

to the observer. In short, if one conceives of Þeld strength as deviation

from geodesic motion, then the gravitational Þeld strength must be zero

everywhere. Similarly, the energy density must be zero everywhere, since

the magnitude of the velocity of a test particle never changes.

This claim, that the gravitational Þeld strength is zero at each point,

must be taken with a grain of salt. The argument is really that if one

carries over to gravity the traditional notion of Þeld strength, then one Þnds

that the gravitational Þeld strength is zero. Though it will turn out that

there is no fully adequate local characterization of the gravitational Þeld, we

can do a bit better, and it is instructive to see how.

4.2 Relative acceleration and the Riemann tensor

Of course, we can and do observe the effects of gravitation. But as we have

seen, what we observe is neither the acceleration of test objects relative to

inertial observers (for there are no inertial observers) nor with respect to

18To be precise, the test charge will not accelerate relative to the observer as long as

its center-of-mass and the observer�s center-of-mass coincide at the time of release. If the

observer holds the test object out to one side and lets it go, then the difference in the

gravitational Þeld at the point where the centers-of-mass of the two objects are located

will result in a relative acceleration if the Riemann tensor is non-zero at those points.

(This is known as a �tidal effect.�)
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their nearest gravitational analogues, geodesics in curved spacetime. Typi-

cally, what we observe are tidal effects, which involve the way in which bits

of matter (or observers) distributed in space accelerate toward or away from

each other. This relative acceleration is encoded in the Riemann curvature

tensor Rαβγδ.

As with any tensor, the Riemann tensor is deÞned at every spacetime

point, and thus it might seem that it offers a way of characterizing the local

properties of the gravitational Þeld. Given an observer at a point, we can

Þnd the relative acceleration aα of nearby matter (which will follow nearby

geodesics) by the geodesic deviation equation

aα = Rαβγδu
βvγuδ , (4)

where uα is the tangent vector to the observer�s worldline (representing his

velocity) and vα is a �geodesic selector�, the purpose of which is to select

a particular neighboring geodesic to compare with the geodesic traced out

by the observer (i.e., her worldline). The quantity aα then represents the

relative acceleration of the two geodesics.

The fact that the Riemann curvature tensor seems to encode the effects

of gravity in the neighborhood of any given point might suggest that it, like

the Maxwell tensor in electromagnetism, fully characterizes the gravitational

Þeld. If this were the case, then one might expect that knowing the Riemann

tensor at a given time would determine the Riemann tensor at future times,

just as knowing the Maxwell tensor at a given time (the #E and #B Þeld at a

given time) determines the Maxwell tensor in the future.19

Looked at in a certain light, this construal of the Riemann tensor has a

certain plausibility. After all, just as one can form the Maxwell tensor Fαβ

from the derivatives of a vector potential Aα via the equation Fαβ = ∇[αAβ],
one can form the Riemann tensor Rαβγδ from derivatives of the metric gαβ.

19Here we are supposing that the Cauchy problem is well-posed, i.e., that the spacetime

is spatially closed or that appropriate boundary conditions have been speciÞed.
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In the electromagnetic case, the quantities of physical signiÞcance are cap-

tured in the Maxwell tensor, and transformations Aα −→ A0α of the vec-

tor potential that leave the Maxwell tensor unchanged are thus regarded

as non-physical �gauge� transformations. One might be tempted to guess,

then, that since the Riemann tensor may be formed from derivatives of the

metric, that transformations of the metric which leave the Riemann tensor

invariant are physically meaningless �gauge� transformations. However, this

is not the case.

To understand this, let us consider a situation in which one is given a

manifold (thus a topology) and the Riemann tensor on the manifold. Sup-

pose we have the manifold S1×R, and we are told that the Riemann tensor
vanishes everywhere. This means that the metric is ßat, and therefore that

we are considering a cylinder. Does this information determine the metric

on the cylinder? No, it does not. If it did, it would tell us the circumfer-

ence of the cylinder, hence its radius. But since all cylinders have the same

(vanishing) curvature, the curvature underdetermines the metric.

To what extent does the curvature underdetermine the metric? In cases

of high symmetry, e.g., the hypersurfaces of constant curvature in typical

idealized cosmological models, it underdetermines it by quite a bit. In the

general case, where the Riemann tensor varies from point to point, one can

often determine the metric up to a conformal factor. But this is insufficient

to extract any unambiguous physical information from the Riemann tensor.

For example, suppose one is given the Riemann tensor at a point, and

one wants to know the way in which particles in the neighborhood of the

point will accelerate toward or away from a given observer at the point. An

observer is characterized by a worldline in spacetime, and an observer at

a given point is characterized by the tangent vector uα to the worldline at

that point. Therefore, one could construct a tensor

Zαγ = R
α
βγδu

βuδ (5)

Zαγ = R
α
βγδu

βuδ which represents the acceleration of nearby matter relative

11



to an observer moving along a worldline with tangent vector uα. However,

there is something wrong with this picture, and it has to do with how we

choose the tangent vector. A tangent vector is constrained to be of unit

length, but we cannot tell how long a vector is without the metric. There-

fore, to each of the conformally-related metrics gαβ associated with a given

Riemann tensor, there is associated a different set of candidate tangent vec-

tors uα. In the absence of a speciÞc metric, one cannot even form the tensor

Zαγ, because one has no way of normalizing candidate tangent vectors u
α.

In short, the fact that the Riemann tensor by itself contains no physical

information suggests that it is a mistake to regard it as fully characterizing

the gravitational Þeld, in any conventional sense.

5 Causal structure

In the previous section, we examined one of the difficulties in applying the

uncertainty principle to the gravitational Þeld, the difficulty that the values

of the gravitational Þeld at a point are not even well-deÞned in general

relativity. In this section and the next, we will address another difficulty,

having to do with the status of commutation relations in a theory in which

the spacetime geometry itself is quantized.

In a conventional classical Þeld theory in a ßat background spacetime,

the causal structure tells us the �domain of dependence� of the Þeld values

at a point. In other words, we know that the values of a Þeld at spacetime

point x are related to the values of the Þeld at points in its forward and

backward lightcones. In the corresponding quantum Þeld theory, this is

reßected in the fact that the (covariant) Þeld operators bφi(x) at spacelike
separated points x and y commute:

[bφi(x), bφj(y)] = 0 . (6)

The intuitive physical picture behind this is that measurements of the Þeld

at point x do not reveal anything about the Þeld at point y, because they
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are not in causal contact with each other.

Of course, when one incorporates the gravitational effects of a classical

Þeld, one formulates it in a curved spacetime, where the curvature respects

the stress-energy properties of the matter in accord with Einstein�s equa-

tion. If one wants to treat the Þelds quantum-mechanically, there are two

choices: one can attempt to leave the spacetime classical and use that struc-

ture in the quantization (�semi-classical� gravity), or one can attempt to

quantize gravity. The difficulty with the former is that one wants a deter-

minate spacetime structure despite the indeterminate (because quantum)

stress-energy of the Þeld. One can pursue this by using the �expectation

value� (the average value) of the Þelds in a given state to determine the

spacetime curvature�this is the approach taken by those working in the

Þeld of �quantum Þeld theory in curved spacetime.�20 In such a theory, one

can make sense of commutation relations like (6), because one can determine

whether or not two points are spacelike separated. But such a theory can

make no claim to being fundamental [3][7].

Suppose, then, that we opt for the second alternative and allow some of

the components of the gravitational Þeld to �ßuctuate�, so that, for example,

the curvature at each point is subject to quantum ßuctuations. In that case,

we would expect that the metric itself is subject to quantum ßuctuations

(since the curvature is built from derivatives of the metric). But if the

metric is indeÞnite, then it is by no means clear that it will be meaningful

to talk about whether x and y are spacelike separated, unless the metric

ßuctuations somehow leave the causal (i.e., conformal) structure alone.

Assuming that the metric ßuctuations do affect the causal structure,

one would expect that the commutation relations themselves should reßect

this by also undergoing quantum ßuctuations of some sort. However, it

is not at all clear what this means, or how it might be represented. And

in particular, it should be noted that such a commutator would have no

20See Fulling [4] or Wald [20] for a modern introduction.
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apparent counterpart in the classical theory. In allowing metric ßuctuations

to affect causal structure, one is clearly at some remove from ordinary Þeld-

theoretic quantization schemes.

6 What�s the point?

We began by taking a close look at how one might characterize the gravi-

tational Þeld at a given point, and we then went on to examine the conse-

quences of turning whatever local quantities we might Þnd into operators, in

a quantum theory of gravity. Both of these are problems peculiar to gravi-

tational physics, in that they arise as a result of the principle of equivalence,

the equivalence of gravitational and inertial mass that practically compels

us to regard classical gravity as a theory of spacetime geometry.

The Þnal point, however, has less to do with gravity per se than the

fact that any theoretical framework incorporating gravity must seemingly

be diffeomorphism-invariant. Up to this point we have adopted the polite

Þction that, for example, the Riemann tensor at a point x is a physically

meaningful quantity. In practice, however, we need to know how to locate

x in order to extract such information. Classically, this is not a problem, as

long as reference objects or observers are part of the model. Thus we can

make sense of the value of the Riemann tensor at x, if x means something

like �in the southeast corner of the lab at 5 o�clock� or �where Jim will be

standing in 10 minutes.� But it is entirely unclear how to carry this sort

of thing over to the case in which all matter (including the lab and Jim)

and all Þelds including gravity, are quantized. If we treat the lab quantum

mechanically, then the location of the southeast corner of the lab at 5 o�clock

will not designate a particular point at all.

This is true in ordinary quantum Þeld theory as well. In order to even

give any physical content to a Þeld operator deÞned at a spacetime point

x, we need a physical object that we can identify the point x. In practice,

this means that we need objects which are very massive, so that, barring
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macroscopic Schrödinger-cat states, they track a deÞnite spacetime trajec-

tory. However, this will not do for a quantum theory of gravity, for although

increasing the mass of an object localizes it, it also amounts to increasing its

gravitational �charge�. This means that the more accurate (with respect

to a classical background) one�s reference system might be expected to be,

the more it actually interacts with the quantum-gravitational background

one is trying to measure. Ultimately, of course, this is why gravitational

observables are diffemorphism-invariant�one cannot isolate a system gravi-

tationally, and all matter, including the reference objects, must be included

in the description. But this raises havoc for a quantum-Þeld-theoretic treat-

ment of gravity.21

7 Conclusion

We began by looking at the idea of a gravitational Þeld subject to quan-

tum ßuctuations at each point of spacetime, a naive yet popular conception

of what a quantum theory of gravity might entail. Upon examination, it

turned out that the only way in which to quantify the effects of gravity at a

point makes use of relational properties, which fail to capture all observable

gravitational phenomena. Furthermore, because any ßuctuations in the Þeld

would mean ßuctuations in the spacetime structure itself, one is left with no

way of individuating the points that lends itself to the structure of quantum

theory.

In the real world of quantum gravity research, one Þnds these prob-

lems cropping up, albeit in sometimes oblique ways. In canonical quantum

gravity, the most obvious counterpart of the Þrst problem is the extreme

difficulty of Þnding any observables [19].22 Should one Þnd them, one would

21See [24] for a more extensive discussion of the difficulties of diffeomorphism-invariant

quantum theory.
22Rovelli and Smolin [13] claim that the area and volume operators in loop quantum

gravity are observables, but this relies on a somewhat contentious procedure in which
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expect that they would not be local observables, but some sort of nonlocal

or perhaps global (i.e., over all of space) observables. It is worth noting in

this connection that one of the great ironies of quantum gravity is that it is

a theory which is generally supposed to be applicable only at an incredibly

small scale (the Planck length is 10−33cm), yet any candidate gravitational

observables would have to be highly nonlocal.

Another counterpart to the Þrst problem is the notorious �problem of

time� in quantum gravity. As we saw, the lack of any complete speciÞcation

of local Þeld strength for gravity implies that there is no adequate deÞnition

of local energy density. For the important case of spatially-closed space-

times, this raises great difficulty for a global characterization of energy. In

conventional physics, the function that characterizes the energy (the �Hamil-

tonian�) is the function that mathematically generates time translation, and

the ill-deÞnedness of energy in general relativity corresponds to our inabil-

ity to isolate a Hamiltonian for the theory. In this light, it is not surprising

that time-evolution is inherently ambiguous, and that consequently there

are great difficulties in even formally constructing a quantum theory.23

The counterpart of the second problem, identifying the causal structure,

is skirted in canonical quantum gravity by positing a split of spacetime into

space and time at the outset. This is not without consequences, however.

Among the most serious is the fact that the diffeomorphism group (the

invariance group of the full theory of general relativity) is represented in a

distorted way in the canonical theory, so that it is unclear that one is actually

quantizing general relativity at all. Furthermore, it is characteristic of the

classical theory that hypersurfaces which begin as spacelike can evolve into

null surfaces, thus killing the evolution. One should expect an analogue of

this problem in the canonical quantum theory, though how this would arise

depends on how the problem of time is resolved. All this suggests that a

matter, treated classically, is used to �gauge Þx� the theory.
23Excellent reviews of the problem of time are Isham [6] and Kuchaÿr [8]. See also

Weinstein [23] [22].
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theory that truly uniÞes quantum theory and gravity will be one in which

the idea of local ßuctuations in a Þeld plays no role, and so a theory which is

radically different from any quantum Þeld theory with which we are familiar

at present.24
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