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System control techniques have been developing for a long time. For advanced system requirements, sophisticated control
algorithms are necessary for the nonlinear systems with uncertainties and disturbances. Disturbance attenuation or
rejection control has been attracting an increasing attention from both control theory researchers and control engineering
practitioners. In this paper, a new disturbance rejection control is proposed. Controllable canonical form is taken as the
standard form of system dynamics, and a disturbance observer is taken to estimate the discrepancy between system
dynamics and its standard form. Then the discrepancy could be compensated by control laws. Conditions of the closed-loop
stability and ultimate bound of the tracking error have been obtained. Numerical results have also been presented to support the
proposed approach.

1. Introduction

Automatic control plays a critical role in most of the
engineering fields. Automatic control technology, which
is capable of realizing the desired objectives without
interference of human beings, has been developing all
the time. For complex processes and advanced system
requirements, a sophisticated control approach, which is
able to optimize system performance and deal with inter-
actions, nonlinearities, operating constrains, time-delay,
and uncertainties, is of great necessity. For the sake of
improving system performance in the presence of various
uncertainties and disturbances, numerous advanced con-
trol algorithms and intelligent control methods, such as
adaptive control, robust control, sliding mode control,
model predictive control, neural network control, fuzzy
control, and evolutionary computing techniques, have
been proposed. Štefan Kozák has made an overview for
the development of control engineering methods and
structures in [1].

Actually, interactions, nonlinearities, time delays,
and uncertainties are ubiquitous in industrial processes.
Those are key factors degrading system performance.

Therefore, practically, the control problem is how to
deal with those undesired factors so as to keep system
performance still be satisfied [2]. If we define those
issues as disturbance, then disturbance is a critical fac-
tor to corrupt a nominal course of actions. From this
point of view, disturbance rejection is the key target in
control [2, 3].

If disturbance is available, feed-forward control is a natu-
ral and optimal choice to attenuate or reject disturbance.
However, disturbance is difficult to be available in advance.
Thus, estimating disturbance is an alternative and effective
way to solve this problem. Based on the estimation of distur-
bance, a control algorithm can be designed to suppress or
cancel disturbance. Consequently, the closed-loop system
performance could be guaranteed.

Motivated by such idea, researchers and practitioners
have proposed a wide variety of disturbance attenuation/
rejection control algorithms. Since the 1960s, numerous
disturbance estimation techniques, that is, the core of
disturbance attenuation/rejection control algorithms, have
been reported, such as disturbance observer (DOB) tech-
nique in disturbance observer-based control (DOBC) [4–6],
unknown input observer (UIO) technique in disturbance
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accommodation control (DAC) [7], extended-state observer
(ESO) technique in active disturbance rejection control
(ADRC) [8], perturbation observer (POB) technique [9],
and generalized proportional integral observer (GPIO) tech-
nique [10]. A review on the reported disturbance estimation
techniques can be found in [3, 11, 12].

Among the reported techniques, DOB has been
initiatively put forward by Ohishi et al. in the early
1980s to improve torque and speed control [13]. In
DOBC, disturbance distinctly refers to something external
[2], while, ESO, first proposed by Han in the 1990s
[14], is developed to be the key part of ADRC. In ADRC,
any discrepancy between the standard form (i.e., cascade
of integrators) and system dynamics will be viewed as
the generalized disturbances. Therefore, not only external
disturbances but also internal unmodeled dynamics and
unknown uncertainties are within the range of general-
ized disturbance.

Also, considering that physical processes may be subject
to different types of disturbance, composite hierarchical
antidisturbance control (CHADC) has been proposed to
avoid the conservativeness of disturbance estimation and
rejection in the presence of multiple disturbances [15, 16].

Now, disturbance attenuation/rejection control has
become a hot topic in recent years [2, 3]. Within such frame-
work, a nonlinear or linear controller is designed based on a
nominal or standard model in the absence of disturbances
and uncertainties, and its main work is to stabilize the system
and achieve desired tracking performance. Then a nonlinear
or linear disturbance observer is designed to estimate
external disturbances and/or internal uncertainties and
unmodeled system dynamics. Since disturbance attenua-
tion/rejection control approaches are effective in engineering,
it is not surprising that a large number of applications could
be found in various industrial sectors, such as mechatronics
systems, chemical and process systems, and aerospace
systems [3, 17–20].

In this paper, we also focus on the disturbance attenu-
ation/rejection control. The major contribution of this
paper is to develop a general framework of a new distur-
bance rejection control design approach. Unlike ADRC,
controllable canonical form is taken as the standard
system dynamics. Disturbance observer is utilized to esti-
mate the disturbance, which is defined as the discrepancy
between the controllable canonical form and practical
system dynamics. Based on the disturbance estimation
and compensation, the system is dynamically linearized.
Poles of the closed-loop system and the state observer
can be assigned by setting tunable parameters of the base-
line controller and the state observer. Clear physical expla-
nations of parameters are helpful for controller design and
its tuning. The input-to-state stability and ultimate bound
of tracking error are obtained for a class of uncertain
nonlinear systems.

The paper is organized as follows. A class of nonlinear
system with uncertainties is presented in Section 2. A new
disturbance rejection control, including its closed-loop
stability and the tracking error, is analyzed in Section 3. In
Section 4, numerical simulations are performed to support

the proposed algorithm, and then conclusions and outlooks
are drawn in Section 5.

2. Problem Statement

Consider an nth order nonlinear dynamical system

xi = xi+1,
xn = f x, t + d t + u t ,
y = x1,

1

where x = x1, x2,… , xn T ∈ Rn, f x, t ∈ R, d t ∈ R, u t ∈ R,
and y ∈ R. f x, t is an unknown differentiable nonlinear
function, which represents internal uncertainties and unmo-
delled dynamics. d t is the unknown differentiable exter-
nal disturbance, u t is the control input, and y is the
system output.

System control input u t is designed to drive system
output y to track desired output yr in the presence of
unknown dynamics and external disturbances.

If we let

Ax =

0 1 0 ⋯ 0 0

0 0 1 ⋯ 0 0

0 0 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ 0 1

0 0 0 ⋯ 0 0

∈ Rn×n,

B =

0

0

0

⋮

0

1

∈ Rn,

CT =

1

0

0

⋮

0

0

∈ Rn,

D = f x, t + d t ∈ R,

2

system (1) can be rewritten as
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x =Axx + B u +D ,
y = Cx

3

Solving (3), we have

y =C exp Axt x 0 +C
t

0
exp Ax t − τ B u +D τ dτ

4

Obviously, D, that is, internal uncertainties, unmodelled
dynamics, and unknown external disturbance, definitely
affects system output. System output y can be decoupled
from D, if control input u includes a part which is able to
cancel D.

Let u = utr + uD, where utr is designed to stabilize the
system and track the desired trajectory, and uD is designed
to cancel D. Then we have

y =C exp Axt x 0 +
t

0
exp Ax t − τ Butr τ dτ

+
t

0
exp Ax t − τ B uD +D τ dτ

5

Apparently, when uD +D = 0, system output will not be
corrupted by D.

Hence, in this paper, we focus on the control algorithm,
which is capable of cancelling uncertainties, unmodelled
dynamics, and unknown external disturbances. A new dis-
turbance rejection control approach is proposed for a class
of nonlinear systems with uncertainties.

3. Disturbance Rejection Control

3.1. Disturbance Rejection Control Design. Disturbance
rejection control law can be designed as

u = u0 − D̂,
u0 = −aT x̂ + aTyr ,

6

where u0 is the baseline controller, which is utilized to stabi-
lize the system and track the desired trajectory, and D̂ is
the disturbance observer, which is designed to estimate
the unknown nonlinear dynamics f x, t and external
disturbance d t , that is, D̂ = f̂ + d̂. u is the control signal.
a = an, an−1,… , a1 T ∈ Rn is the parameter vector, x̂ =
x̂1, x̂2,… , x̂n T ∈ Rn is the estimation of the system state,

and yr = yr , yr ,… , y n−1
r

T
∈ Rn is the vector composed

of the desired output signal and its derivatives.
Substituting (6) into (1), we have closed-loop system

x =Ax + BU ,
y =Cx,

7

where U = aTx + aTyr +D ∈ R, x = x − x̂ ∈ Rn, D ≜D − D̂
∈ R, and

A =Ax − BaT

=

0 1 0 ⋯ 0 0

0 0 1 ⋯ 0 0

0 0 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ 0 1

−an −an−1 −an−2 ⋯ −a2 −a1

∈ Rn×n

8

Apparently, system (7) is of controllable canonical form.
In other words, by disturbance rejection control law (6),
uncertain nonlinear system (1) is dynamically linearized
to a linear time-invariant (LTI) system, which has the
controllable canonical form.

Here, the state observer for system (3) is designed as

x̂ =Axx̂ + Bu0 + L y − ŷ ,
ŷ =Cx̂,

9

where x̂ = x̂1, x̂2,… , x̂n T ∈ Rn, L = l1, l2,… , ln T ∈ Rn,
u0 ∈ R, and ŷ ∈ R.

Subtracting (9) from (3), we have

x = Ax − LC x + BD, 10

where x = x − x̂ ∈ Rn and let AG =Ax − LC.
For disturbance observer, it can be designed as [5]

D̂ = ξ + p x̂ ,
ξ = −ln+1ξ − ln+1 p x̂ + u ,

11

where ξ ∈ R, ln+1 ∈ R, and p x̂ ∈ R.
The derivative of D is designed as D ≜D − D̂. In general,

there is no prior information about the derivative of the
disturbance D. It is reasonable to suppose that D = 0, which
implies that the disturbance varies slowly relative to the
observer dynamics. Hence,

D ≜ −D̂ = − ξ + p x̂ = ln+1ξ + ln+1 p x̂ + u − p x̂ 12

If we choose p x̂ = ln+1x̂n, then (12) can be rewritten as

D = ln+1D̂ + ln+1 u − x̂n 13

Since x̂n = u0 + lnCx, we have

D = ln+1D̂ + ln+1 u − u0 − lnCx = −ln+1lnCx 14
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For the estimation error systems (10) and (14), we have

z =Azz, 15
where

z =
x

D
∈ Rn+1 16

and

Az =
AG B

−ln+1lnC 0
∈ R n+1 × n+1 17

The solution of system (15) is z t = eAztz 0 .
Since Az is a finite constant matrix, if we choose proper
L⋮ln+1 such that all eigenvalues of Az are negative, we
have z t ≤ z 0 = δz, that is,

x

D
≤ δz 18

Control block diagram is shown in Figure 1.
Next, the definition of input-to-state stability is given,

and then the stability analysis has been presented.

Definition [21]. The system is said to be input-to-state stable
if there exist a class KL function β and a class K function
γ such that for any initial state x t0 and any bounded
input u t , the solution x t exists for all t ≥ t0 and satisfies
x t ≤ β x t0 , t − t0 + γ sup

t0≤τ≤t
u τ .

Accordingly, we have Theorem 1.

Theorem 1. Closed-loop system (7) is input-to-state stable, if
we choose a proper parameter vector a and L⋮ln+1 , such that
system matrix A is Hurwitz and estimation error is bounded.

Proof. For closed-loop system (7), its solution can be
written as

x = exp At x 0 +
t

0
exp A t − τ BU τ dτ 19

Coefficients of characteristic polynomial are deter-
mined by a, that is, λI −A = λn + a1λ

n−1 +⋯ + an−1λ + an.

(Here, I is the unit matrix.) If a is chosen properly, system
matrix A will be Hurwitz. Let eigenvalues of system matrix
A be −λi, i = 1, 2,… , n. There exists κ > 0, such that ∀i,
Re −λi < −κ, then exp At ≤M exp −κt . Therefore,
we have

x ≤M exp −κt x 0 +
t

0
M exp −κ t − τ B U τ dτ

≤M exp −κt x 0 + M B
κ

sup
0≤τ≤t

U τ

20

It shows that zero-input response decays to zero
exponentially and zero-state response is proportional to the
bound of the input.

Considering that

x

D
≤ δz 21

(when L⋮ln+1 is properly chosen) and yr is also bounded,
we have U = aTx + aTyr +D which is a bounded input signal.
According to the definition of input-to-state stable, we can
conclude that closed-loop system (7) is input-to-state
stable. q.e.d.

3.2. Tracking Error. For input-to-state stable system (7), let
tracking error be e = yr − y, we have

e = e1 = yr − x1,
e2 = yr − x1,
e3 = yr − x1,… ,
en = y n−1

r − x n−1
1

22

Accordingly,

e1 = e2,
e2 = e3,
,… ,

en−1 = en,
en = y n

r − x n
1

23

According to system (7), we have

State
observer

yr u0 u
Plant

d

y

D̂

Disturbance
observer

x̂
x̂

a

− −

Figure 1: New disturbance rejection control diagram.
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e1 = e2,
e2 = e3,
,… ,

en−1 = en,
en = y n

r + aT x̂ − aTyr −D

24

The last equation of system (24) can be written as

en = y n
r + aT x̂ − aTyr −D

= y n
r + anx̂1 + an−1x̂2 +⋯ + a1x̂n − anyr −⋯− a1y

n−1
r −D

25

Since e1 = yr − x1, e2 = yr − x1, e3 = yr − x1,… , and

en = y n−1
r − x n−1

1 , that is,

e1 = yr − x1,
e2 = yr − x2,
e3 = yr − x3,… ,
en = y n−1

r − xn,

26

we have x1 = yr − e1, x2 = yr − e2, x3 = yr − e3,… , and

xn = y n−1
r − en.

For x1 = x1 − x̂1, x2 = x2 − x̂2,… , and xn = xn − x̂n, then

x̂1 = x1 − x1,
x̂2 = x2 − x2,… ,
x̂n = xn − xn

27

Thus,

x̂1 = yr − e1 − x1,
x̂2 = yr − e2 − x2,… ,
x̂n = y n−1

r − en − xn

28

Substituting (28) into (25), we have

en = −ane1 − an−1e2 +⋯− a1en − anx1 − an−1x2

+⋯− a1xn −D + y n
r

29

If we define e = e1, e2,… , en T ∈ Rn, x = x1, x2,… , xn T

∈ Rn, then (29) can be rewritten as

en = −aTe − aTx + y n
r −D 30

According to (24) and (30), we have

e1 = e2,
e2 = e3,
,… ,

en−1 = en,
en = −aTe − aTx + y n

r −D

31

Equation (31), that is, the closed-loop tracking error
system, can be written in a compact form

e =Ae + ε t , 32

where ε t = 0, 0,… , 0, −aTx + y n
r −D

T
∈ Rn,

A =

0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
0 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ 0 1
−an −an−1 −an−2 ⋯ −a2 −a1

∈ Rn×n 33

Since

x

D
≤ δz 34

and y n
r are also bounded, without loss of generality, we can

assume that ε t ≤ δ, where δ is a constant.
Before giving out the bound of tracking error, the

following lemma can be presented.

Lemma [21]. Let D ⊂ Rn be a domain that contains the
origin and V 0,∞ ×D→ R be a continuously differen-
tiable function such that

α1 x ≤V t, x ≤ α2 x

∂V
∂t

+ ∂V
∂x

f t, x ≤ −W3 x , ∀ x ≥ μ > 0
35

∀t ≥ 0 and ∀x ∈D, where α1 and α2 are class K functions
and W3 x is a continuous positive definite function. Take
r > 0 such that Br ⊂D and suppose that

μ < α−12 α1 r 36

Then there exists a class KL function β for every
initial state x t0 , satisfying x t0 ≤ α−12 α1 r , and there
is T ≥ 0 (dependent on x t0 and μ) such that the solution of
x = f t, x satisfies

x t ≤ β x t0 , t − t0 , ∀t0 ≤ t ≤ t0 + T ,
x t ≤ α−11 α2 μ , ∀t ≥ t0 + T

37

Moreover, if D = Rn and α1 belongs to class K∞, then (37)
holds for any initial state x t0 , with no restriction on how
large μ is.

Then Theorem 2 can be obtained.

Theorem 2. For closed-loop tracking error system (32), if
λmax A < − δ/ e 2 , the tracking error e =O 1 , and the
ultimate bound is − δ/ λmax A λmax P / λmin P .

Proof. Note that, if parameters of controller (6) have been
selected properly, negative eigenvalues of matrix A in system
(32) is distinct. Considering that the systemmatrixA is of the
controllable canonical form, it can be transformed to a
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diagonal matrix by a Vandermonde matrix. The transforma-
tion matrix is

T =

1 1 1 ⋯ 1
−λ1 −λ2 −λ3 ⋯ −λn
−λ1

2 −λ2
2 −λ3

2 ⋯ −λn
2

⋮ ⋮ ⋮ ⋱ ⋮

−λ1
n−1 −λ2

n−1 −λ3
n−1 ⋯ −λn

n−1

,

38

where −λ1, −λ2,… , − λn are eigenvalues of matrix A, and
supposing that λn >⋯ > λ2 > λ1 > 0, we have the nonsingular
transformation e = Te, which transforms system (32) to be

e =Ae + T−1ε t , 39

where A = T−1AT = −diag λ1, λ2,… , λn .

Let P = T−1 T T−1 , we can define a Lyapunov function
candidate as

V e = 1
2 e

TPe = 1
2 Te TP Te = 1

2 e
TTTPTe

= 1
2 e

TTT T−1 T T−1 Te = 1
2 e

TTT TT −1 T−1 Te

= 1
2 e

Te,

40
then we have the derivative of V e along system (39),

V e = 1
2 eTe + eTe = 1

2 Ae + T−1ε t
Te + 1

2 e
T Ae + T−1ε t

= 1
2 eTAT + εT T−1 T T

e + 1
2 e

T Ae + T−1ε

= 1
2 eTATe + εT T−1 Te + eTAe + eTT−1ε

= 1
2 2eTAe + eTT−1ε T + eTT−1ε = eTAe + eTT−1ε,

V e = eTAe + eTT−1ε ≤ −λ1 e 2
2 + e 2 T−1

2 ε 2

≤ − λ1 −
δ

e 2
T−1

2 e 2
2

41

If V e < 0, we have e 2 > μ, μ = δ/λ1 T−1
2.
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Figure 2: Chaotic dynamics and attractor of a microcantilever in the AFM system.

Table 1: Control parameters of NDRC and ADRC (i).

Controller ωo l3/ωc λ1/b0 λ2/β1 a1/β2 a2/β3 k1 k2
NDRC (i) 120 36 −8 −9 17 72 — —

NDRC (ii) 100 36 −12 −21 33 252 — —

ADRC 75 15 1 225 16,875 421,875 30 225
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For e = Te, we have e = T−1e; then, e 2 = T−1e 2 ≤
T−1

2 e 2. Therefore,

μ < e 2 ≤ T−1
2 e 2, 42

that is, e 2 > μ0, μ0 = δ/λ1. Here, −λ1 is the maximum
eigenvalue of matrix A.

Define the maximum eigenvalue of matrix A is λmax A ,
and the minimum eigenvalue of matrix A is λmin A ; then,
λmax A = −λ1 and λ1 = −λmax A .

Therefore, if e 2 > μ0, μ0 = −δ/ λmax A , that is,
λmax A < −δ/ e 2, V e < 0.

Moreover, considering that V e = 1/2 eTPe and
1/2 λmin P e 2

2 ≤ 1/2 eTPe ≤ 1/2 λmax P e 2
2, let α1 r =

1/2 λmin P r2 and α2 r = 1/2 λmax P r2, we have α−11 r =
2r/ λmin P .
According to lemma, we have

e ≤ α−11 α2 μ0 = 2α2 μ0
λmin P

= λmax P μ20
λmin P

= −
δ

λmax A
λmax P
λmin P

,

43

that is, e =O 1 , and the upper bound of the tracking error
is − δ/ λmax A λmax P / λmin P . q.e.d.

3.3. Design Procedures. For the disturbance rejection control
law (6), state observer (9), and disturbance observer (11),
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Figure 3: System response of a microcantilever in AFM by NDRC.
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parameters a, L, ln+1 have to be determined. Design proce-
dures can be summarized as follows.

Step 1. Design the state observer according to (9). Let the
eigenvalue of the state observer be

λI −AG = λI − Ax − LC = λ + ωo
n, 44

where ωo is the bandwidth of the state observer. For the

second-order system, we have L = l1, l2 T = 2ωo, ω2
o
T , and

for the third-order system, we have L = l1, l2, l3 T =
3ωo, 3ω2

o, ω3
o
T .

Step 2. Design a disturbance observer according to (11).
Choose a proper gain ln+1.

Step 3.Choosing system eigenvalues to be −λ1, −λ2,… , − λn,
then we have A = −diag λ1, λ2,… , λn .

Step 4. According to Vandermonde matrix T, we have
A = TAT−1.

Step 5. The last row of matrix A = TAT−1 is the oppo-
site number of the control parameter vector a =
an, an−1,… , a1 T .

4. Numerical Simulations

In this section, three nonlinear systems are selected to con-
firm the new disturbance rejection control (NDRC) proposed
in this paper. Cases in the absence and presence of external
sinusoidal disturbance are considered. In all simulations,
external disturbances d t are set to be sin 2πt .

In addition, NDRC and ADRC have been compared.
Integral of time-multiplied absolute value of error (ITAE)
values are listed to present the difference. Parameters of
ADRC are chosen according to the bandwidth parameteriza-
tion approach proposed by Gao [22].

Example 1. The dynamics of microcantilever in atomic force
microscope (AFM) system is [23]

x1 = x2,
x2 = −δx2 − x1 + F cos Ωt + FIL x1 t ,

45

where t is the time, x1 and x2 are dimensionless position
and velocity of the microcantilever tip, F and Ω are
amplitude and frequency of the forcing term, and δ is
the damping factor. FIL x1 t = σ6d1/ 30 α + x1 t 8 −
d1/ α + x1 t 2 denotes the attraction/repulsion interaction
force derived from Lennard-Jones interaction potential.

System parameters are chosen to be δ = 0 04, σ =
0 3, α = 0 8, F = 2 0, Ω = 1, d1 = 4/27, and initial states
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Figure 4: Comparisons between NDRC and ADRC.

Table 2: Comparisons of NDRC and ADRC for microcantilever in
the AFM system.

Controller
Simulation
time (s)

Control
on (s)

External
disturbance on (s)

ITAE

NDRC 10 0 5 0.0402

ADRC 10 0 5 0.0493

Table 3: Control parameters of NDRC and ADRC (ii).

Controller ωo l3/ωc λ1/b0 λ2/β1 a1/β2 a2/β3 k1 k2
NDRC 120 36 −10 −9 19 90 — —

ADRC 75 15 1 225 16,875 421,875 30 225
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x1 0 , x2 0 = 0 1, 0 2 T . Chaotic dynamics behaviors
and attractor of microcantilever in AFM are given in
Figure 2.

In this simulation, we try to make the output of the
chaotic dynamic system to track a fixed value. Simulation is
performed for 10 seconds. Disturbance is introduced from
the 5th second, and it lasts to the end of the simulation.
Controller parameters are shown in Table 1 (see NDRC
(i)). System responses are presented in Figure 3.

From Figure 3, we can see that NDRC is able to get satis-
fied performance even if there exists sinusoidal disturbance.

In order to make a comparison with active distur-
bance rejection control (ADRC), simulations have been
performed. Numerical results are shown in Figure 4.
Control parameters are also given in Table 1 (see NDRC
(ii) and ADRC).

From Figure 4, we can see clearly that, when control
signals are close, oscillation amplitudes of NDRC are smaller
than those of ADRC in the presence of sinusoidal distur-
bance. It signifies that NDRC is superior to ADRC in
suppressing sinusoidal disturbance. ITAE values shown in
Table 2 also confirm the fact.

Example 2. The inverted pendulum system dynamics is [24]

x1 = x2,

x2 =
g sin x1 −mlx22 cos x1 sin x1/ mc +m

l 4/3 −m cos2x1/ mc +m

+ cos x1/ mc +m
l 4/3 −m cos2x1/ mc +m

u,

y = x1,

46
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Figure 5: System response of inverted pendulum by NDRC.
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where x1, x2 are the angular position and velocity of the pole.
g = 9 8m/s2 is the acceleration due to gravity, mc = 1 kg is
the mass of the cart, m = 0 1 kg is the mass of the pole,
l = 0 5m is the half-length of the pole, and u is the applied

force. Our objective is to maintain the system output to track
the desired trajectory yr = π/30 sin t . The initial states
are chosen to be −π/60, 0 T . Controller parameters are
listed in Table 3.

Simulation results are shown in Figure 5.
Figure 5 shows that NDRC is also capable of

tracking sinusoidal signal in the presence of sinusoidal
disturbance.

Comparisons between NDRC and ADRC have also
been performed. Parameters of NDRC and ADRC are
taken in which the values are given in Table 3. Simulation
results are presented in Figure 6. ITAE values are listed in
Table 4.

0 5 10 15 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Time (s)

y
r(t

)/
y

N
D

RC
(t

)/
y

A
D

RC
(t

)

yr(t)
yNDRC(t)
yADRC(t)

(a)

0 5 10 15 20
−100

−50

0

50

100

150

Time (s)

u
N

D
RC

(t
)/
u

A
D

RC
(t

)

0 0.1 0.2 0.3

−50

0

50

100

150

uNDRC(t)
uADRC(t)

(b)

0 5 10 15 20
−0.04

−0.02

0

0.02

0.04

0.06

Time (s)

e N
D

RC
(t

)/
e A

D
RC

(t
)

eNDRC(t)
eADRC(t)

(c)

Figure 6: Comparisons between NDRC and ADRC.

Table 4: Comparisons of NDRC and ADRC for the inverted
pendulum system.

Controller
Simulation
time (s)

Control
on (s)

External
disturbance on (s)

ITAE

NDRC 20 0 10 0.1933

ADRC 20 0 10 1.7943
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Figure 6 shows that with less control energy (see
Figure 6(b)), NDRC is able to track the sinusoidal signal with
no phase delay (see Figure 6(a)). Figure 6(c) also depicts the
fact vividly. Additionally, when sinusoidal disturbance is
introduced, NDRC can achieve much less tracking error,
which means that NDRC is more effective in estimating
and rejecting sinusoidal disturbance. ITAE values given in
Table 4 show that the value of NDRC is improved by
89.23%. It also verifies the disturbance estimation and
rejection ability of NDRC.

Example 3. The uncertain Genesio-Tesi chaotic system can
be written as [25]

x1 = x2,
x2 = x3,

x3 = −cx1 − bx2 − ax3 +mx21 + Δf x, t + d t + u t ,
y = x1,

47

where x = x1, x2, x3 T ∈ R3 is the system state vector,
constants a, b, c,m are positive, Δf x, t is a time-varying
function representing not precisely known and uncertain
dynamics of chaotic systems, d t is the external disturbance,
and u t is the control input.

In simulations, a = 1 2, b = 2 92, c = 6, m = 1, Δf x, t =
0 5 sin πx1 sin 2πx2 sin 3πx3 , d t = sin 2πt , and ini-
tial states are chosen to be x1 0 , x2 0 , x3 0 T = 0, 0, 1 T .
The chaotic attractor is shown in Figure 7.

In this case, we also drive system output to track a
fixed value. Parameters of chaos control are given in
Table 5.
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Figure 7: Chaotic attractor of Genesio-Tesi system.

Table 5: Control parameters of NDRC and ADRC (iii).

Controller ω o l 4/ωc λ 1/b0 λ 2/β1 λ 3/β2 a 1/β3 a 2/β4 a 3/k1 k 2 k 3

NDRC 120 36 −10 −9 −8 27 242 720 — —

ADRC 45 9 1 180 12,150 364,500 4,100,625 729 243 27
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System response can be found in Figure 8.
Figure 8 shows that, with the help of disturbance

observer, NDRC is able to track desired trajectory regardless
if sinusoidal disturbance exists or not. Comparisons between
NDRC and ADRC have been performed; Figure 9 and
Table 6 give out the difference.

From Figure 9, we can see that both NDRC and
ADRC are capable of estimating and compensating
disturbance to guarantee system performance. However,
in the presence of sinusoidal disturbance, NDRC is able
to provide much smaller oscillation amplitudes with sim-
ilar control energy. ITAE values shown in Table 6 also
confirm that NDRC is more effective in estimating and
cancelling uncertainties and disturbances.

5. Conclusion and Outlook

Driven by practical engineering needs, disturbance attenu-
ation/rejection control methods have been developed in
various industrial sectors. In this paper, a new disturbance
rejection control algorithm has also been put forward to
realize the control of nonlinear systems with uncertainties.
With the help of a disturbance observer and a baseline
controller, nonlinear systems can be dynamically linearized
and system dynamics is approximate to a LTI system with
controllable canonical form. Furthermore, based on the
results obtained, any effective control algorithms, which
are suitable for controllable canonical form, are also able
to be utilized in the disturbance rejection control scheme
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Figure 8: System response of the Genesio-Tesi system by NDRC.
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proposed in this paper. In addition, although numerical
simulation results are presented, the experimental results
are also on the way.
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