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Abstract

Gödel’s first incompleteness result from 1931 states that there are true assertions
about the natural numbers which do not follow from the Peano axioms. Since 1931
many researchers have been looking for natural examples of such assertions and
breakthroughs have been obtained in the seventies by Jeff Paris [30] (in part jointly
with Leo Harrington [31] and Laurie Kirby [20]) and Harvey Friedman [33,34] who
produced first mathematically interesting independence results in Ramsey theory
(Paris) and well-order and well-quasi-order theory (Friedman).

In this article we investigate Friedman style principles of combinatorial well-
foundedness for the ordinals below ε0. These principles state that there is a uniform
bound on the length of decreasing sequences of ordinals which satisfy an elementary
recursive growth rate condition with respect to their Gödel numbers.

For these independence principles we classify (as a part of a general research
program) their phase transitions, i.e. we classify exactly the bounding conditions
which lead from provability to unprovability in the induced combinatorial well-
foundedness principles.

As Gödel numbering for ordinals we choose the one which is induced naturally
from Gödel’s coding of finite sequences from his classical 1931 paper on his incom-
pleteness results.

This choice makes the investigation highly non trivial but rewarding and we
succeed in our objectives by using an intricate and surprising interplay between
analytic combinatorics and the theory of descent recursive functions. For obtaining
the required bounds on count functions for ordinals we use a classical 1961 Tauberian
theorem by Parameswaran which apparently is far remote from Gödel’s theorem.
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1 Introduction

Phase transition is a type of behaviour wherein small changes of a parameter
of a system cause dramatic shifts in some globally observed behaviour of the
system, such shifts being usually marked by a sharp ‘threshold point’. (An
everyday life example of such thresholds are ice melting and water boiling
temperatures.) This kind of phenomena nowadays occurs throughout many
mathematical and computational disciplines: statistical physics [9], evolution-
ary graph theory [4], percolation theory [18], computational complexity [10],
artificial intelligence [26], etc.

This paper is part of a general research program on phase transition thresholds
for Gödel incompleteness results. The underlying idea is roughly speaking as
follows. Let us assume that A is a given assertion in the language of first order
Peano arithmetic (PA) which is parametrized with a non negative rational
number r and that A(r) is true for all values of r. Let us further assume
that A(r) is unprovable for large enough values of r and that this property is
monotone in the following sense; if r < s and A(r) does not follow from PA
then A(s) also does not follow from PA. Moreover assume that for small enough
values of r the assertion A(r) does follow from PA. In this situation there will
be a phase transition threshold ρ ∈ R given by the resulting Dedekind cut.
Determining ρ will in general provide valuable information about the general
question:

What makes a true assertion A unprovable from PA?

For Kruskal’s theorem the critical value for ρ is given by ln(2)
ln(α)

(where α has

numerical value 2.95576 . . .) is Otter’s tree constant (which is currently not
known to be rational or algebraic) [28,37]).

-

0 ρ

r

PA ` Ar PA 0 Ar

In a more general context we may assume that A depends on a function pa-
rameter f for a number-theoretic function f . We may assume that Af is always
true for any f and provable if f is very slow growing. Moreover we may assume
similarly as above that if Af is provable in PA and g is eventually dominated
by f that then Ag is provable in PA too. Moreover we assume that Af becomes
unprovable in PA if f grows reasonably fast. Determining the threshold for f
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will in general again provide valuable information about the general question:
What makes a true assertion A unprovable from PA?

One a more refined level our results will have various implications in first or-
der proof theory regarding (one) consistency of PA as indicated in example
statements after the proofs of Theorems 6 and 7.
We obtained in the meantime a series of results in this respect concerning
unprovability results for ordinals [24,37,38,40,41,43,45,46], well quasi orders
[12,37,40,45,46] and Ramseyan statements (in the style of Paris Harrington or
Kanamori McAloon) [6,8,21,27,39,42,45]. In particular it turned out that e.g.
the largeness condition in the Paris Harrington assertion [31] emerges natu-
rally from finite Ramsey theory [39,14]. It is further somewhat surprising that
the phase transition threshold related to the Kanamori McAloon theorem for
fixed dimension d ≥ 2 is different from the corresponding threshold related
to the Paris Harrington assertion for the same fixed dimension d since these
statements in their original form are equivalent over I∆0 + (exp) (according
to an unpublished preprint of Jeff Paris). (For a general and recent survey on
unprovability results and a rather comprehensive bibliography on this subject
we refer the reader to [5].)

-

6

PA 0 Af

PA ` Af

f grows not very slowly

f grows very slowly

In this paper we determine phase transition thresholds for Friedman style as-
sertions about the combinatorial well-foundedness of ε0. It is well known by
Gentzen [16] that PA does not prove the well-foundedness of ε0. Even sharper,
PA does not prove that there are no primitive recursive descending sequences
through ε0. Friedman refined this by showing that PA does not prove that
there is no elementary recursive descending chain of ordinals through ε0. In
[15] it is even sharper shown (by Friedman and Sheard) that there is a uni-
form bound on the lengths of decreasing sequences of ordinals below ε0 when
their corresponding term-complexities are bounded by an elementary func-
tion. (When term-complexity is measured by length the elementary bounding
function even can be chosen as a linear function [33,34].)

In this article we consider phase transition thresholds for such bounding func-
tions. If we go for sharp results, the consideration will depend on the choice
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of the term-complexity function and so we choose one of the most natural
complexity functions for the ordinals below ε0. We simply take Gödel’s coding
from his classical paper [17] on ”Über eine formal unentscheidbare Eigenschaft
der principia mathematica und verwandter Systeme” which is also the typical
coding used in texts on recursion theory. It turns out that this choice makes
the investigation challenging and there is (at least as we can judge) no a priori
guess possible regarding the resulting thresholds.

One reason is that the Gödel coding depends on the prime numbers. Another
reason is that thresholds are intrinsically related to deep questions on asymp-
totic enumeration. Luckily all these problems can be overcome by analytic
combinatorics and Tauberian theory (in particular Parameswaran’s Tauberian
theorem) and we are able to obtain a full solution. The resulting approach is
rather flexible and versatile and can be used to deal with a large class of
natural codings of ordinals.

To attack the problem related to the Gödel coding we take advantage by study-
ing first the corresponding additive situation which is provided by term com-
plexities for ordinals which are induced from generalized Mahler partitions.
Dealing with such additive norms is usually much simpler (cf., e.g., Burris [7])
and classifying thresholds for the Mahler norms is a useful preparatory step
to deal finally with the intricate Gödel numberings.

2 Some analytic combinatorics for ε0

In this section we determine the asymptotic for count functions emerging from
Gödel’s coding for the ordinals below ε0, which in the sequel are denoted by
small Greek letters, and for count functions resembling generalized Mahler
partitions.

Let (pi)
∞
i=1 denote the enumeration of the primes starting with p1 = 2. We

put d0e := 1 and if α = ωα1 + · · · + ωαn with α1 ≥ . . . ≥ αn. then we put

dαe := p
dα1e
1 · . . . · pdαne

n . This is the classical Gödel numbering going back to
Gödel 1931 [17]. It also typically appears in textbooks on recursion theory.
We put

Gβ(m) := #{α < β : dαe ≤ m}. (1)

(Note that for α = ωω we get a multiplicative analogue of the Mahler par-
tition function [11].) Getting non trivial bounds on Gβ seems difficult but
luckily very powerful machinery from analytic combinatorics has already been
developed and a seminal paper by Parameswaran [29] can be used to obtain
weak asymptotics for Gβ. These results are strong enough for the intended
applications to phase transitions for Gödel incompleteness. We believe that
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even better bounds on the count functions are available by applying the sad-
dle point method together with Cauchy’s integral formula a la Dumas and
Flajolet [13] but we leave this for the experts in analytic combinatorics.

There are other complexity measures which can be assigned to members of ε0.
The desired property of such a measure c : ε0 → N is that for any k ∈ N and
any β < ε0 the number of elements in {α < β : c(α) ≤ k} is finite.

A canonical choice for c is given by the Mahler norm. We may put M(0) := 0
and if α = ωα1 + · · · + ωαn with α1 ≥ . . . ≥ αn we may define by recursion

Mα := 2Mα1 + . . . + 2Mαn .

In this case we put

Mβ(n) := #{α < β : Mα = n}. (2)

Again one may ask for the asymptotic of Mβ(n) as n → ∞. For a certain choice
of β there is much information on this problem available from the literature
about Mahler partitions. Indeed, Mωω(m) is the number of Mahler partitions
of m in sums of exponentials with base 2 (See, e.g., [11] for a seminal treatment
of the related asymptotic). For example, it is well known that

ln(Mωω(n)) ∼ 1

2 ln(2)
(ln(n))2

as n → ∞.

We investigate the Mahler norm since it can be used to approximate the
Gödel coding. The Mahler norm behaves additively whereas the Gödel coding
behaves approximately multiplicatively. It turns out that the Mahler norm
behaves more nicely with respect to the asymptotic of the induced count
functions and therefore we study it in detail. Later we shall infer results from
Mahler norms to Gödel codings.

Now we come to the key result which we use to study the asymptotic of
(the Mahler norm and) the Gödel coding. This result by Parameswaran is as
follows.

Theorem 1 (Parameswaran [29]) Suppose that all the following conditions
hold:

(1) L(u) and P (u) are functions on the non negative reals such that
∫ R
0 L(u)du

and
∫ R
0 P (u)du exist in the Lebesgue sense for every positive R.

(2) exp(s
∫ ∞
0

e−su

1−e−su L(u)du) = s
∫ ∞
0 P (u)e−sudu for all positive s,

(3) 〈N,N∗〉 form a pair of conjugate (for a definition see the next theorem)
slowly varying functions,
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(4) N is non decreasing,

(5)
∫ u
0

L(t)
t

dt ∼ N(u) as u → ∞, and
(6) P (u) is non decreasing.

Then lnP (u) ∼ 1
N∗(u)

as u → ∞.

The notion of conjugateness for slowly varying functions is due to de Bruijn.

Theorem 2 (de Bruijn [11]) If N is slowly varying, then there is a (asymp-
totically uniquely determined) slowly varying function N∗ (the so called de
Bruijn conjugate of N) such that N∗(x · N(x)) · N(x) → 1 as x → ∞ and
N(x · N∗(x)) · N∗(x) → 1 as x → ∞.

Some elementary facts concerning de Bruijn conjugates are listed in the ap-
pendix of [3]. We now state our main results. For a compact presentation we
use the following notations. We put

lnd+1(x) := ln(max{1, lnd(x)})

where ln1(x) = ln(max{1, x}). (By convention we therefore have that lnd can
be 0 but is modified such that it never goes below [or becomes undefined].)
Moreover we put

ωd+1(k) := ωωd(k)

where ω0(k) := k. Also we put as usual ωd := ωd(1). (The idea is that d counts
the hight of the exponential tower so that, for example, ω1(k) = ωk.)

In addition we put
expd+1(x) := exp(expd(x))

where exp1(x) = exp(x) =
∑∞

i=0
xi

i!
.

Theorem 3 (1) If β = ωk then there exist explicitly calculable constants
C1, C2 such that

Mβ(x)∼C1 · xk−1, (3)

Gβ(x)∼C2 ·
( ln(x)

ln(ln(x))

)k
. (4)

(2) If β = ω2(k) then there exist explicitly calculable constants C3, C4 such
that

ln(Mβ(x))∼C3 · (ln(x))k+1, (5)

ln(Gβ(x))∼C4 · ln(ln(x)) ·
( ln ln(x)

ln(ln(ln(x))

)k
. (6)

(3) If β = ωd(k) and d ≥ 2 then with the same constants C3, C4 as in asser-
tion (2)
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lnd−1(Mβ(x))∼C3 ·
(

lnd−1(x)
)k+1

, (7)

lnd−1(Gβ(x))∼C4 · lnd(x) ·
( lnd(x)

ln(lnd(x))

)k
. (8)

PROOF. Let us start with a proof of assertion (1). The asymptotic (3) is
more or less well known. Indeed, we may consider {α < ωk} as a generalized
additive number system generated from the additive primes ωl for 0 ≤ l < k.
By Theorem 2.48 in Burris [7] we therefore obtain

Mωk(x) ∼ 1

(k − 1)!

1
∏

l<k 2l
xk−1

and equation (3) follows.

Equation (4) of assertion (1) follows from Karamata’s theorem (which can
be found, for example, in Korevaar’s textbook on Tauberian theory [23]) as
shown in [41].

Let us now prove equation (5) from assertion (2). By Remark 2.32 and Theo-
rem 2.48 in Burris [7] we obtain

m(x) := #{β < ωk : M(β) ≤ x} ∼ 1

k!

1
∏

l<k 2l
xk.

Let

n(u) =
∑

2l≤u

Mωk(l) = m(
ln(u)

ln(2)
).

Then

n(u) ∼ 1

k!(
∏

l<k 2l)(ln(2))k
(ln(u))k =: L(u).

Let

C :=
1

k!(
∏

l<k 2l)(ln(2))k
.

Let

N(u) :=
∫ u

a

L(t)

t
dt

where a > 0 is arbitrary but fixed. Then by de l’Hospital’s rule

N(u) ∼ C

k + 1
(ln(u))k+1.

Let
P (u) :=

∑

l≤u

M
ωωk (l).

By Theorem 1 of Parameswaran (or Corollary I∗ on page 238 of [29]) we obtain

ln(P (u)) ∼ C

k + 1
(ln(u))k+1.
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Moreover this yields ln(M
ωωk (u)) ∼ C

k+1
(ln(u)k+1) as indicated on the last

page of [29]. So we may put C3 := C
k+1

.

Now we prove equation (6) of assertion (2).

We have

G
ωωk (x)

= #{α < ωωk

: α = ωα1 + · · · + ωαn ≥ α1 ≥ . . . ≥ αn & Gα ≤ x}
≤#{〈α1, . . . , αn〉 : ωk > α1 ≥ . . . ≥ αn & 2Gα1 · . . . · 2Gαn ≤ x}

= #{〈α1, . . . , αn〉 : ωk > α1 ≥ . . . ≥ αn & G(α1) + . . . + G(αn) ≤ ln(x)

ln(2)
}.

Now equation (4) of assertion (1) yields

#{〈α1, . . . , αn〉 : k > α1 ≥ . . . ≥ αn & G(α1)+. . .+G(αn) ≤ x} ∼ C(
ln(x)

ln(ln(x))
)k.

Thus Corollary I∗ of Parameswaran (see [29] page 238) yields

ln(G
ωωk (x)) ≤ C

k + 1
ln2(x) · ( ln2(x)

ln3(x)
)d.

Let us now prove the reverse inequality. The elementary prime number theo-
rem yields pi ≤ 6i ln(i) for all i. Hence G

ωωk (x) ≥ #{〈α1, . . . , αn〉 : ωk ≥ α1 ≥
. . . ≥ αn & (6n ln(n)Gα1 ·. . .·(6n ln(n)Gαn) ≤ m}. Let Q(x) = #{〈α1, . . . , αn〉 :
ωk ≥ α1 ≥ . . . ≥ αn & G(α1) + . . . + G(αn) ≤ m}. We claim that

G
ωωk (x) ≥ Q(

ln(x)

ln ln(x)
) (9)

for all large x. Indeed, let g := G(α1) + . . . + G(αn). Then g ≤ ln(x)
ln ln(x)

yields

g · ln(g ·6 · ln(g)) ≤ ln(x) hence g · ln(n ·6 · ln(n)) ≤ ln(x). This proves equation
(9).

Therefore
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ln(G
ωωk (x))

≥ ln(Q(
ln(x)

ln ln(x)
))

∼C
(ln(ln( ln(x)

ln(ln(x))
)))k+1

ln(ln(ln( ln(x)
ln(ln(x))

)))k

∼C
(ln(ln(ln(x))))k+1

ln(ln(ln(ln(x))))k
.

Let us now prove equation (7) of assertion (3) by induction on d. Put

m(x) := #{α < ωd(k) : Mα ≤ x}.

Let

n(u) =
∑

2l≤u

Mωd(k)(l) = m(
ln(u)

ln(2)
) =: L(u).

The induction hypothesis yields

lnd−1(m(x)) ∼ C · (lnd−1(x))k+1 (10)

for C = C3. Let

N(u) :=
∫ u

a

L(t)

t
dt

for some arbitrary fixed a > 0. Let

P (u) :=
∑

l≤u

Mωd(k)(l).

We have N∗(u) ∼ 1
N(u)

by Example 2 in Section 3 of Appendix 5 of [3]. By

Theorem 1 (of Parameswaran) we therefore obtain

ln(P (u)) ∼ N(u).

We claim that
lnd(P (u)) ∼ C · (lnd(x))k+1. (11)

Proof: Pick
ε > 0.

Then (10) yields

m(u) ≤ expd−1((1 +
ε

2
)C(lnd−1(u))k)

for large enough u. Hence

L(u) ≤ expd−1((1 +
ε

2
)C(lnd−1(

ln(u)

ln(2)
))k+1).
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Thus

N(u) ≤
∫ u

a

expd−1((1 + ε
2
)C(lnd−1(

ln(u)
ln(2)

))k+1)

u
du.

Put

Ñ(u) := expd−1((1 + ε)C(lnd−1(ln(u)))k+1.

Then de l’Hospital’s rule yields

N(u) = o(Ñ(u))

as u → ∞. In particular we obtain that N(u) ≤ Ñ(u) for large enough u.
Therefore

ln(P (u)) ∼ N(u) ≤ Ñ(u)

for large enough u. Hence

P (u) ≤ expd((1 + ε)C(lnd(u))k+1).

By a similar argument we obtain

P (u) ≥ expd((1 − ε)C(lnd(u))k+1).

Thus we have shown claim (11). Further

lnd(Mωd+1(k)(u)) ∼ C(lnd(u))k+1(u))

follows as indicated on the last page of Parameswaran’s paper [29].

Equation (8) of assertion (3) is proved by induction on d. Equation (6) of
assertion (2) covers the case d = 1. Assume d ≥ 2 and

lnd−1(#{α < ωd(k) : dαe ≤ x}) ∼ C
((lnd(x))k+1

(lnd+1(x))k

)

for C = C4. Then

lnd−1(#{α < ωd : ln(2dαe) ≤ x}) ∼ C
((lnd(x))k+1

(lnd+1(x))k

)

.

We may assume (alternatively we may use an ε argument as in the proof of
5) that we can find a subset S ⊂ ωd(k) such that

#{α ∈ S : α < ωd(k) & ln(2dαe) ≤ x} ∼ expd−1(C · ((lnd(x))k+1

(lnd+1(x))k
)).

Let

L(u) = expd−1

(

C ·
((lnd(u))k+1

(lnd+1(u))k

)

)

.
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and

N(u) =
∫ u

a

L(u)

u
du.

Then

N(u) ∼ L(u) · d

du
(expd−1

(

C ·
((lnd(u))k+1

(lnd+1(u))k

)

)

and 1
N∗(u)

∼ N(u) (by Example 2 in Section 3 of Appendix 5 of [3]). Thus

ln(#{〈α1, . . . , αn〉 : α1 ≥ . . . ≥ αn & α1, . . . , αn ∈ S &

2dα1e · . . . · 2dαne ≤ x})
∼N(ln(x))

and thus

ln(Gωd+1(k)(x))

= ln(#{〈α1, . . . , αn〉 : α1 ≥ . . . ≥ αn & α1, . . . , αn ∈ S &

p
dα1e
1 · . . . · pdαne

n ≤ ln(x)})
≥ ln(#{〈α1, . . . , αn〉 : α1 ≥ . . . ≥ αn & α1, . . . , αn ∈ S &

2dα1e · . . . · 2dαne ≤ x})

∼ expd−1

(

C
((lnd+1(x))k+1

(lnd+2(x))k

)

)

.

The lower bound is obtained similarly. Indeed, we have

Gωd+1(k)(x)

≥#{〈α1, . . . , αn〉 : ωd(k) > α1 ≥ . . . ≥ αn & p
dα1e
1 · . . . · pdαne

n ≤ x}
≥#{〈α1, . . . , αn〉 : ωd(k) > α1 ≥ . . . ≥ αn & (6n ln(n))dα1e+...+dαne ≤ x}

≥#{〈α1, . . . , αn〉 : ωd(k) > α1 ≥ . . . ≥ αn & dα1e + . . . + dαne ≤
ln(x)

ln(ln(x))
}

≥#{〈α1, . . . , αm〉 : ωd(k) > α1 ≥ . . . ≥ αn & ln(2dα1e+...+dαne) ≤ ln(x)

ln(ln(x))
}

∼ expd

(

C ·
((lnd+1(x))k+1

(lnd+2(x))k

)

)

since d ≥ 2.
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3 Resulting phase transitions for Gödel incompleteness

As before small Greek letters range over ordinals below ε0. We assume basic
familiarity with these ordinals. (On an intuitive level these ordinals can also
be understood as a certain class of unary functions which contains λx.0 and
which with two functions f, g also contains the function λx.xf(x) + g(x). The
ordering of ordinals is then induced on these functions as the ordering provided
by eventual domination. More details about this connection can be found, for
example, in [40].)

For a limit λ < ε0 let λ[x] be the x-th element of the canonical fundamental
sequence for λ. This means that if λ = ωα1 + · · · + ωαn where α1 ≥ . . . ≥ αn

and αn = γ + 1 then λ[x] := ωα1 + · · ·+ ωγ · x and that if λ = ωα1 + · · ·+ ωαn

where α1 ≥ . . . ≥ αn and αn is a limit then λ[x] := ωα1 + · · · + ωαn[x]. For ε0

the fundamental sequence is defined via ε0[x] := ωx. We then can define define
the Schwichtenberg-Wainer hierarchy of functions Fα for α ≤ ε0 as follows by
recursion on ordinals.

F0(x) := x + 1,

Fα+1(x) := F (x)
α (x) where the upper index denotes number of iterations,

Fλ(x) := Fλ[x](x) where λ is a limit.

It is well known that each function Fα is provably recursive in PA if α <
ε0. Moreover it is well known that every PA-provably recursive function is
eventually dominated by Fε0 and it is well known that each function Fd is
primitive recursive whereas Fω grows like the Ackermann function.

Let c be a complexity measure for the ordinals below ε0. Following Harvey
Friedman let CWF(β, f, c) be the statement

(∀K)(∃L)(∀α0, . . . , αL < β) ((∀i ≤ L)[c(αi) ≤ K + f(i)] → (∃i < L)[αi ≤ αi+1]) .

CWF(ε0, c, f) states the combinatorial well-foundedness of ε0. If the com-
plexity measure is elementary recursive then (under some mild extra condi-
tions) there will exist an elementary recursive function f such that PA 0

CWF(ε0, c, f). This has been proved by Friedman and Sheard in [15]. (Note
that CWF(ε0, c, f) is always true by König’s Lemma.) On the other hand it is
clear that PA ` CWF(ε0, c, f) for constant functions f and so there will be a
phase transition from provability to unprovability for CWF(ε0, c, f). But it is
by no means clear where the threshold is located. It is even not at all obvious
that an exponential function leads to unprovability in case that c is defined
by the Gödel coding.
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PA 0 Af

PA ` Af

f grows elem recursively fast

threshold region

f is constant

As already mentioned a typical complexity measure is the Mahler norm or the
Gödel coding.

Another example for a complexity measure is provided by the length norm
|·| which is recursively defined by |0| := 0 and |α| = n + |α1| + · · · + |αn| if
α = ωα1 + · · ·+ωαn and α1 ≥ . . . ≥ αn. Corresponding phase transitions have
been classified in [37]. (The asymptotic of the corresponding count functions
for the length norm has been classified rather sharply by Petrogradsky [32]
during his investigations on Lie algebras.)

We also use |i| to denote the binary lengths of the natural number i. It will
be clear from the context whether we use use |i| for the ordinal norm of i or
the length of i. (Typically it will be the latter.)

Theorem 4 Let

fα(i) := expF−1
α (i)(

√

lnF−1
α (i)(i)).

(Note that by convention all iterated logarithms are well-defined.) Then the
following phase transition dichotomy holds for CWF(ε0, f,M).

(1) If α < ε0 then

PA ` CWF(ε0, fα,M).

(2) If α = ε0 then

PA 0 CWF(ε0, fα,M).

PROOF. We first prove assertion (1). Assume that ε0 > α0 > . . . > αn is a
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given sequence such that M(αi) ≤ K + expF−1
α (i)(

√

lnF−1
α (i)(i)) for any i with

0 ≤ i ≤ n. Put N := Fα(K) · 2. We claim that n ≤ N . If this is proved we are
done because K 7→ Fα(K) is provably recursive in PA.

Assume for a contradiction that n > N. The inequality Mα0 ≤ K yields
α0 ≤ ωK′ for some K ′ < K. In fact K ′ is ln?(K) (where ln? is the inverse
of the superexponential function) but this is not important for the argument.
Now choose any i with N/2 ≤ i ≤ N and consider the condition

M(αi) ≤ K + expF−1
α (i)(

√

lnF−1
α (i)(i)).

The function n 7→ expn(
√

lnn(i)) is decreasing in n but i 7→ expn(
√

lnn(i)) is
increasing in i. Therefore

M(αi) ≤ K + expF−1
α (N/2)(

√

lnF−1
α (N/2)(N)).

hence
M(αi) ≤ K + expK(

√

lnK(N)) =: k.

Therefore αi ∈ {α < ωK′ : M(α) ≤ k} =: S. Since this is true for any i
with N/2 ≤ i ≤ N we obtain that the cardinality of S exceeds N/2. By
equation (7) of assertion (3) of Theorem 3 (which is provable in RCA0 in the
appropriate way) we know that there is a primitive recursive function p such
that the cardinality of {α < ωK : M(α) ≤ l} is bounded from above through
expK−1((lnK−1(l))

2) for all l ≥ p(K). We may assume that Fα grows faster
than p by assuming that α is sufficiently large.

We have
#S ≤ expK′−1((lnK′−1(k))2).

A contradiction follows if we can show

expK′−1((lnK′−1(k))2) <
N

2
.

and for this it is sufficient to have

(lnK′−1(k))2 < lnK′−1(N/2). (12)

By assuming that α is large enough we may assume that

Fα(l) ≥ expl(2 · l + 4) (13)

for all l. Now fix an m such that expK(2K + m) ≤ N/2 ≤ expK(2K + m + 1).

The assumption (13) yields m ≥ 4 hence

expK−K′+1(
√

2K + m + 1 + 1) < expK−K′+1(2K + m − 1).

14



This yields

expK−K′+1(
√

2K + m + 1 + 1) < exp(
1

2
expK−K′(2K + m))

and this gives the desired (12).

We now prove assertion (2). Here we will apply a renormalization procedure
to approximate (from above) the threshold from known thresholds.

Recall that |α| denotes the length norm of α. Let

D(K) := max{L : (∃α0, . . . , αL)[ε0 > α0 > α1 > . . . > αL & (∀i)[|αi| ≤ K+i]}.

Then K 7→ D(K) is not provably recursive in PA according to Friedman’s the-
ory of descent recursive functions [34]. By Friedman’s theory we may therefore
pick an elementary function p such that D(p(l)) > Fε0(l) for all l.

Given K choose a (unprovable) long sequence βi such that ε0 > β0 > . . . > βM

where M = Fε0(K) and |βi| ≤ K + i for 0 ≤ i ≤ M . Then ωK > β0.

For any α < ωK we have that Mα ≤ 2K(|α|) and therefore Mβi ≤ 2K(K + i)
for 0 ≤ i ≤ M . By applying renormalization K times we may assume that
ωK > β0 > . . . > βM and Mβi ≤ K + i for 0 ≤ i ≤ M .

The procedure follows the pattern of the following lines of proof, in which
we show how to compress linear bound on growth rates by a sublinear bound.
Each compression will allow for one application of a ln function. This technique
is exemplified in [46]. Alternatively an inspection of [33,34] also yields that a
linear bound leads to an unprovable assertion.

Let us assume without loss of generality that p is now a primitive recursive
function such that

#{α < ωK : Mα ≥ l} ≥ expK−1(
1

4
(lnK−1(l)

2)

for all l ≥ p(K). (This can by achieved by equation (7) of assertion (3) of
Theorem 3 which is provable in RCA0 in the appropriate way.) We may further
assume that D(p(l)) > Fε0(l) for all l by the general theory of descent recursive
functions. We are going to define a sequence

ωK+4 > α0 > . . . > αFε0 (K)

such that

Mαi ≤ p(K) + expF−1
ε0

(i)(
√

lnF−1
ε0

(i)(i)).
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This is sufficient to prove the assertion. For i ≤ p(K) we may put

αi = ωK+3 + p(K) − i.

Now assume that i > p(K). Put

k(i) = expF−1
ε0

(2|i|−1)(
√

lnF−1
ε0

(2|i|−1)(2
|i|)). (14)

Then |i| = |j| implies k(i) = k(j).

Let Mi := {β < ωK+2 : M(β) ≤ k(i)} and enumMi
be the enumeration

function for Mi. Thus enumMi
(l) is the l-th member of Mi with respect to <.

Now put

αi := ωK+2 · β|i| + enumMi
(2|i| − i)

for p(K) < i < M .

Assume first that αi is well defined. Then αi > αi+1 for all i < M .

It is easy to verify that M(ωK · γ) ≤ 2K ·Mγ for any γ. We may assume that

F−1
ε0

(i) ≥ 2,

that

exp2(
√

ln2(i) − 1) ≥ |i|2,

and that

expK+1(
1

16
(lnK+1(2

|i|−1))2) ≥ 2|i|−1

for i > p(K). Therefore using the inequality a2 + b2 ≥ 2ab we obtain:

Mαi ≤ 2K+2 · (K + |i|) + k(i)

≤ 2K+2 · K + 22
K+2 + |i|2 + k(i)

≤ 2K+2 · K + 22
K+2 + expF−1

ε0
(i)(

√

lnF−1
ε0

(i)(i)).

We still have to show that enumMi
(2|i| − i) is well defined. For this it suffices

to show that the cardinality of Mi is not smaller than 2|i|−1.

We know that D(p(K)) ≥ Fε0(K) and thus we obtain F−1
ε0

(i) ≤ K for all

i ≤ Fε0(K). Hence k(i) ≥ expK(
√

lnK(2|i|−1)). Therefore
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#Mi ≥ expK+1(
1

4
(lnK+1(expK(

√

lnK(2|i|−1))2)

= expK+1(
1

4
(ln(

√

lnK(2|i|−1)))2)

= expK+1(
1

16
(lnK+1(2

|i|−1))2)

≥ 2|i|−1

since i ≥ p(K).

Let IΣd be the fragment of PA where the induction scheme is restricted to
formulas with at most d quantifiers. Then it is well known that Fα is provably
recursive in IΣd iff α < ωd.

Theorem 5 Let d ≥ 1. Let

fα(i) := expd−1(
F
−1
α (i)

√

lnd−1(i)).

Then the following phase transition dichotomy holds for CWF(ωd+1, f,M).

(1) If α < ωd then
IΣd ` CWF(ωd+1, fα,M).

(2) If α = ωd then
IΣd 0 CWF(ωd+1, fα,M).

PROOF. We first prove assertion (1). Assume that ωd+1 > α0 > . . . > αn is

a given sequence such that M(αi) ≤ K +expd−1(
F
−1
α (i)

√

lnd−1(i)) for 0 ≤ i ≤ n.

Put N := Fα(K) · 2. We may assume that K ≥ 3. We claim that n ≤ N . If
this is proved we are done because K 7→ Fα(K) is provably recursive in IΣd.

Assume for a contradiction that n > N. The inequality Mα0 ≤ K yields
α0 ≤ ωd(K

′) for some K ′ < K − 1.

Now consider any i with N/2 ≤ i ≤ N . Consider

M(αi) ≤ K + expd−1(
F
−1
α (i)

√

lnd−1(i)).

The function n 7→ expd−1(
n

√

lnd−1(i)) is decreasing in n but the function i 7→
expd−1(

n

√

lnd−1(i)) is increasing in i. Therefore

M(αi) ≤ K + expd−1(
K

√

lnd−1(N))) =: k

hence
αi ∈ {α < ωd(K

′) : M(α) ≤ k} =: S.
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Since this is true for any i with N/2 ≤ i ≤ N we obtain that the cardinality
of S exceeds N/2. By equation (8) of assertion (3) of Theorem 3 (which is
provable in RCA0 in the appropriate way) we know that there is a primitive
recursive function p such that the cardinality of {α < ωd(K

′) : M(α) ≤ l} is
bounded from above through expd−1((lnd−1(l))

K′+1) for all l ≥ p(k). We may
assume that Fα grows faster than p by assuming α sufficiently large. We may
further assume that N ≥ expd−1(K

K2
).

Then we obtain expd−1((lnd−1(k))K′+1) as upper bound for the cardinality of
S. A contradiction follows if we can show

expd−1((lnd−1(k))K′+1) < N/2. (15)

Since k < expd−1

(

K + K

√

lnd−1(N)
)

for this it is sufficient to have

expd−1

(

(K + K

√

lnd−1(N))K′+1
)

< N/2.

Now fix an r such that

expd−1(r) ≤ N < expd−1(r + 1). (16)

Then the claim (15) follows from ( K

√

(r + 1) + K)K′+1 < r which is a conse-

quence of N ≥ expd−1(K
K2

), K ≥ 3 and (16).

We now prove assertion (2). Again we will apply a renormalization procedure
to approximate (from above) the threshold from known thresholds.

Again recall that |α| denotes the length norm of α. Let

D(K) := max{L : (∃α0, . . . , αL)
[

ωd+1 > α0 > . . . > αn & (∀i)[|αi| ≤ K + i]
]

}.

Then K 7→ D(K) is not provably recursive in IΣd according to Friedman’s
theory of descent recursive functions. We thus assume that D(p(l)) > Fωd

(l)
for some elementary recursive function p.

Given K choose a (unprovable) long sequence β′
i such that ωd(K) > β′

0 >
. . . > β′

M where M = D(K) and |β′
i| ≤ K + i for 0 ≤ i ≤ M .

For any α < ωd(K) we have that Mα ≤ 2d(Nα) and therefore Mβ′
i ≤ 2d(K+i)

for 0 ≤ i ≤ M . By applying renormalization K times we find a sequence βi

with ωd+1 > β0 > . . . > βM and Mβi ≤ K + i for 0 ≤ i ≤ M .

The procedure follows the pattern of this proof where we show how to com-
press linear growth by sub linear growth. Each compression will allow for one
application of a ln function.
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By equation (7) of assertion (3) of Theorem 3 we may (similarly as before)
assume that there is a primitive recursive function p and a constant C such
that

#{α < ωd(K + 2) : Mα ≥ l} ≥ expd−1

(

C(lnK−1(l))
K+3

)

for all l ≥ p(K).

We are going to define a sequence

ωd(K + 4) > α0 > . . . > αFωd
(K)

such that

Mαi ≤ p(K) + expd−1(
F
−1
ωd

(i)

√

lnd−1(i))

for i ≤ Fωd
(K). This is sufficient to prove the assertion. For i ≤ p(K) we may

put αi = ωd(K + 3) + p(K) − i. Now assume that i > p(K). Put

k(i) = expd−1(
F
−1
ωd

(2|i|−1)

√

lnd−1(2|i|)). (17)

Then |i| = |j| implies k(i) = k(j).

Let Mi := {β < ωd(K + 2) : M(β) ≤ k(i)} and enumMi
be the enumeration

function for Mi. Thus enumMi
(l) is the l-th member of Mi with respect to <.

Now put αi := ωd(K + 2) · β|i| + enumMi
(2|i| − i) for p(n) < i < M .

Assume first that αi is well defined. Then αi > αi+1 for all i < M .

We have that M(ωd(K) · γ) ≤ 2d(K) · Mγ for any γ. We may assume that

F−1
ωd

(i) ≥ 2,

that

exp2(
√

ln2(i) − 1) ≥ |i|2

and that

expd−1(
C

4
lnd−1(2

|i|−1)
K+3

K ) ≥ 2|i|−1

for i > p(K). Therefore using the inequality a2 + b2 ≥ 2ab we obtain:

Mαi ≤ 2d(K + 2) · (K + |i|) + k(i)

≤ 2d(K + 2) · K + (2d(K + 2))2 + |i|2 + k(i)

≤ 2d(K + 2) · K + (2d(K + 2))2 + expd−1(
F
−1
ωd

(i)

√

lnd−1(i)).

We still have to show that enumMi
(2|i| − i) is well defined. For this it suffices

to show that the cardinality of Mi is not smaller than 2|i|.

19



We know that D(p(K)) ≥ Fωd
(K) and thus we obtain F−1

ωd
(i) ≤ K for all

i ≤ Fωd
(K). Hence k(i) ≥ expd−1(

K

√

lnd−1(2|i|−1)) for i ≤ Fωd
(K).

Therefore

#Mi ≥ expd−1

(

C
(

lnd−1(expd−1(
K

√

lnd−1(2|i|−1)))
)K+3

)

= expd−1

(

C( K

√

lnd−1(2|i|))
K+3

)

= expd−1

(

C(lnd−1(2
|i|))

K+3
K

)

≥ 2|i|−1

since i ≥ p(K).

Now we turn to the phase transition thresholds for the Gödel coding. The
provable versions follow easily from the inequality dαe ≥ 2Mα. As reverse in-
equality we have for α < ωd that dαe ≤ expd((lnd−1(Mα) + expd(d))2D+2)
but we have been unable to deduce the unprovability results from this. Never-
theless the unprovability results can be proved analogously as for the Mahler
norms. The proofs will be more intricate but the essential pattern is as before.
So we will be more brief in the proofs.

Theorem 6 Let

fα(i) := exp
(

expF−1
α (i)(

√

lnF−1
α (i)(i))

)

.

Then the following phase transition dichotomy holds for CWF(ε0, f, d·e).

(1) If α < ε0 then
PA ` CWF(ε0, fα, d·e).

(2) If α = ε0 then
PA 0 CWF(ε0, fα, d·e).

PROOF. We first prove assertion (1). Basically the claim follows from asser-
tion (1) of Theorem 4 and the inequality 2Mα ≤ dαe. Indeed, assume that we
have a given sequence αi with dαei ≤ K + exp(expF−1

α (i)(
√

lnF−1
α (i)i)). Then

Mαi ≤ 1
ln(2)

(K + expF−1
α (i)(

√

lnF−1
α (i)i)) ≤ K2 + expF−1

α (i)+1(
√

lnF−1
α (i)+1i). The

length of such a sequence can be bounded (provably so in PA) according to
assertion (1) of Theorem 4.

Now let us proof assertion (2). By a lemma of Friedman we obtain that

D(K) := max{L : (∃α0, . . . , αL)
[

ε0 > α0 > . . . > αL & (∀i)[dαie ≤ K + 22i

]
]

}
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is not provably recursive in PA. This can also be inferred from the corre-
sponding result using the Mahler norm M and using the estimate dαe ≤
expd((lnd−1(Mα) + expd(d))2d+2) for α < ωd. (But as already mentioned we
have not been able to use this bound for a direct proof of assertion (2).) By
logarithmic compression one shows easily that the following function E is also
not provably recursive in PA. (The transition from 22i

to 2i follows along the
same pattern as the following proof where we obtain the sharp sub exponential
threshold from an exponential bound on the growth rate. Further details are
very similar to a corresponding procedure used in [46].) Let us define

E(K) := max{L : (∃α0, . . . , αL)
[

ε0 > α0 > . . . > αL & (∀i ≤ L)[dαie ≤ K+2i]
]

}.

Given K put M := E(K). Find ε0 > β0 > . . . > βM such that dβie ≤ K + 2i.
From this we define a long descending sequence of ordinals αi which satisfy
the growth condition. Note that β0 < ωK . Define αi := ωK+3 + p(K) − i for
small i as in Theorem 4 for some suitable prim. rec. function p. Let

h(i) := F−1
ε0

(2|i|−1).

Define for large enough i

Mi := {α < ωK+2 : dαe ≤ exph(i)+1

(
√

lnh(i)(2|i|)
)

}

and
αi := ωK+2 · β|i| + enumMi

(2|i| − i).

For estimating the Gödel number of αi we use the following technical facts
which are easily proved by induction on ordinals:

dωd · αe ≤ expd(d) · dαe2

dα + βe ≤ dαe · exp(ln(dβe) · max{2 · lnln(dβe + 2), 2 · lnln(dαe + 2)}).

Let
e = exph(i)+1 (

√

lnh(i)(i))

and
f = ln(max{lnln(e), expK+2(K + 2) · (dβ|i|e)2}).

Then

dαie≤ expK+2(K + 2) · (dβ|i|e)2 · exp(ln(e) · (2 · f + 2)

≤ expK·2(K) + exp(expf(i)(
√

lnf(i)(i))).

The αi are strictly decreasing. To prove their well-definedness compute with
equation (8) of assertion (3) of Theorem 3
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#Mi ≥#{α < ωK+2 : dαe ≤ exph(i)+1(
√

lnh(i)(2|i|))}

≥ expK+1

( lnK+2(expK+1(
√

lnK(2|i|))))2

lnK+3(expK+1(
√

lnK(2|i|)))

)

≥ expK+1((
1

4
lnK+1(2

|i|))2) ≥ 2|i|−1.

Using classical results from proof theory (see, for example, [15]) one may now
conclude that (provably in IΣ1) CWF(ε0, fε0 , d·e) implies the one consistency
of PA. Moreover for α < ε0 CWF(ε0, fα, d·e) does not imply the one consis-
tency of PA (over IΣ1).

Recall that IΣd is the fragment of PA where the induction scheme is restricted
to formulas with at most d quantifiers.

Theorem 7 Let d ≥ 1. Let

fα(i) := exp
(

expd−1(
F
−1
α (i)

√

lnd−1(i))
)

.

Then the following phase transition dichotomy holds for CWF(ωd+1, f, d·e).

(1) If α < ωd then
IΣd ` CWF(ωd+1, fα, d·e).

(2) If α = ωd then
IΣd 0 CWF(ωd+1, fα, d·e).

PROOF. Assertion (1) follows again easily by dαe ≥ 2Mα and assertion (1)
of Theorem 4.

Now we prove assertion (2). Let

D(K) := max{L : (∃α0, ..., αL)
[

ωd+1 > α0 > ... > αL & (∀i)[Mαi ≤ K+ln(fωd
(i))]

]

}.

Then K 7→ D(K) is not provably recursive in PA.

Given K put M := D(K). Without loss of generality we assume M ≥ Fωd
(K).

Find ωd+1 > β0 > . . . > βM such that dβie ≤ K + 2i. Then β0 < ωd(K). Let
h(i) := F−1

ωd
(2|i|−1). Define for large i

Mi := {α < ωd(K · 2) : dαe ≤ expd

(

h(i)

√

lnd−1(2|i|)
)

}

and
αi = ωd(K · 2) · β|i| + enumMi

(2|i| − i).
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Let e = expd(
h(i)

√

lnd−1(i)). Then

dαie≤ expd(d) · (dβ|i|e)2 · 22·ln(e)·max{lnln(e)),lnln(dβ|i|e+2)}

≤ exp2d(d) + expd(
F
−1
ωd

(i)

√

lnd−1(i)).

Then αi strictly decreasing. To check that αi is well-defined compute with
equation (8) of assertion (3) of Theorem 3

#Mi ≥#{α < ωd(K · 2) : dαe ≤ expd(
h(i)

√

lnd−1(2|i|))}

≥ expd−1

((lnd(expd(
K

√

lnd−1(2|i|))))
2K+1

(lnd+1(expd(
K

√

lnd−1(2|i|))))2K

)

≥ expd−1((lnd−1(i))
2K

K ) ≥ 2|i|.

Using classical results from proof theory one may now conclude that (provably
in IΣ1) CWF(ωd+1, fωd

, d·e) implies the one consistency of IΣd. Moreover for
α < ωd CWF(ωd+1, fα, d·e) does not imply the one consistency of IΣd (over
IΣ1).

In a sequel paper we will exploit our investigations to prove (in a joint project
with A.R. Woods) zero one laws for segments of ε0.

In addition we plan to investigate further the analytic properties of Mα and
Gα with J.P. Bell.

Conjecture: Fix α < ε0 such that α ≥ ωω. Choose any sentence Φ in the
first order language of linear orders. Then

lim
n→∞

#{β < α : β |= Φ & dβe ≤ n}
#{β < α : dβe ≤ n} ∈ {0, 1}

and

lim
n→∞

#{β < α : β |= Φ & Mβ ≤ n}
#{β < α : Mβ ≤ n} ∈ {0, 1}.

Intuitively this means that the probability that Φ holds on (the set of prede-
cessors of) a randomly chosen ordinal below α is either zero or one. For α = ε0

we further expect a limit law, i.e. that the corresponding limits will exist in
the interval [0, 1].

Question: What is the connection between ordinal count functions and Beck-
mann’s dynamic ordinals [2] from bounded arithmetic? According to Theorem
3 they seem to be closely related.
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