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Abstract

Among Dunn’s many important contributions to relevance logic
was his work on the system RM (R-mingle). Although RM is an
interesting system in its own right, it is widely considered to be too
strong. In this chapter, I revisit a closely related system, RM0 (some-
times known as ‘constructive mingle’), which includes the mingle ax-
iom while not degenerating in the way that RM itself does. My main
interest will be in examining this logic from two related semantical
perspectives. First, I give a purely operational bisemilattice semantics
for it by adapting previous work of Humberstone. Second, I examine
a more conventional algebraic semantics for it and discuss how this
relates to the operational semantics. A novel operational semantics
for J (intuitionistic logic) as well as its conventional Heyting algebraic
semantics emerge as special cases of the corresponding semantics for
RM0. The results of this chapter suggest that RM0 is a more inter-
esting logic than has been appreciated and that Humberstone’s oper-
ational semantic framework similarly deserves more attention than it
has received.

Keywords: Bisemilattices, Intuitionistic logic, Mingle, Opera-
tional semantics, Relevance logic.

1 Introduction

Among Mike Dunn’s many important contributions to relevance logic was
his work on the system RM (R-mingle) [9, 13, 10].1 RM, which results
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1Indeed, with Storrs McCall, Dunn is one of the system’s ‘parents’. Some of the history

is recounted in [12, §7.3].

1

mailto:yweiss@gradcenter.cuny.edu


by adding ϕ → (ϕ → ϕ) to R, is one of the best behaved systems in the
broader family of (quasi-)relevance logics and, not unrelatedly, also rather
a disappointment.2 On the one hand, it is semantically natural, possessing
both elegant binary relational and algebraic semantics, is decidable, and
prima facie looks like an eminently reasonable axiomatic extension of R. On
the other hand, it is just way too strong, producing such unsavory theorems
as (ϕ→ ψ)∨ (ψ → ϕ) (sometimes called the ‘chain theorem’) and ultimately
tilting into the abyss of irrelevance.

The cognoscenti have long appreciated that the original sin of RM has
less to do with the innocuous seeming mingle axiom than to do with the
negation postulates of R:

But the breakdowns that afflicted RM rested on R-style nega-
tion, which [. . . ] is not as transparent as the other truth-functional
connectives. Accordingly, further pursuit of the original Dunn-
McCall insights, dropping the R-style negation [. . . ] appears an
interesting present alternative. (Meyer, in Anderson and Belnap,
Jr. [1, §29.3, p. 394].)

This seems to me—and has seemed to others—to be an eminently reasonable
suggestion.3 The result of adding the mingle axiom to the pure implicational
fragment of R yields a system, RM0→, which does not in fact coincide with
the pure implicational fragment of RM but which is, on any reasonable
understanding, relevant.4 Anderson and Belnap, Jr. [1, §8.15, pp. 98–99] call
this “constructive mingle”, as it is a subsystem of the implicational fragment
of J (intuitionistic logic). I will extend this name to all of RM0, which I take
to be RM0→ extended with conjunction, disjunction, and the constant ⊥—
all governed by their usual axioms—and potentially some further connectives,
though not the negation of R (Section 2).

2That RM is a disappointment is, as far as I am aware, the consensus view, though it is
not universal. In any case, Dunn [12, p. 143] suggests (pace Meyer [1, §29.3, pp. 393–394])
that RM is superior to R “when all things are considered”.

3For example, see Méndez [23] for a discussion of how various sorts of alternative
negations might be added to the standard axiomatic (not actual) positive fragment of
RM (the article also provides ternary relational—though not algebraic or operational—
semantics for some of these variations on RM).

An alternative idea is pursued by Avron [2, 3], who considers and advocates for an
implication-negation system—the standard axiomatic (not actual) fragment of RM in
that language—in which intensional versions of conjunction and disjunction can be defined.
This project certainly has its interest, though it is quite different from the project which
I shall pursue here.

4 In particular, RM0→ (as well as its extension with the usual axioms for disjunction
and conjunction) satisfies the variable sharing property (i.e., ϕ → ψ is never a theorem
when ϕ and ψ do not share propositional variables) [23, p. 286].
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This chapter is primarily devoted to a study of RM0 from two semantical
perspectives. In Section 3, I give a purely operational bisemilattice semantics
(cf. the semilattice semantics of Urquhart [36]) for RM0 by adapting previous
work of Humberstone [18]. An operational semantics for J then emerges as
the special case in which the bisemilattices—which here play the role of
frames—are lattices. In Section 4, I examine a more conventional algebraic
semantics for RM0 and relate it to the previously developed operational
semantics; here, the familiar Heyting algebraic semantics for J emerges as
the special case.

Let me emphasize that my main interest in this chapter is not so much
novelty (though there will be some novelty) as it is in reframing existing ideas
and situating them in a more abstract, broadly lattice-theoretic context. I
will point out a number of connections and conceptual links which do not
appear to have been adequately appreciated and also highlight certain ways in
which Humberstone’s ideas, properly situated, have anticipated subsequent
developments (e.g., in inquisitive semantics). Some concluding remarks on
such morals and outstanding problems are offered in Section 5.

2 Axiomatics

In this section, I present an axiom (Hilbert) system for RM0 as well as cer-
tain extensions thereof. In what follows, the basic propositional language
contains a countable set of propositional variables Π, the propositional con-
stant ⊥, and the binary connectives {→,∧,∨}. Formulae, etc., are defined
as usual. I will use p, q, . . . for arbitrary propositional variables and ϕ, ψ, . . .
for arbitrary formulae. I denote the set of all formulae in this language by Φ.

The axioms for RM0 are just those of positive R (see, e.g., Dunn and
Restall [14, §1.3]), together with the mingle axiom M and ⊥.5

DEFINITION 1. The system RM0 is the smallest set of formulae con-
taining all instances of the following axiom schemata and closed under the
following rules:

ϕ→ ϕ (I)

(ϕ→ ψ)→ ((χ→ ϕ)→ (χ→ ψ)) (B)

(ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ)) (C)

5It bears emphasis that this is not the fragment of RM in this language. The easiest
way to see this is to note that RM0, so formulated, is a subsystem of J, whereas RM,
which contains the chain theorem [1, §29.3.1, p. 397], clearly is not.
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(ϕ→ (ϕ→ ψ))→ (ϕ→ ψ) (W)

ϕ→ (ϕ→ ϕ) (M)

(ϕ ∧ ψ)→ ϕ (∧E1)

(ϕ ∧ ψ)→ ψ (∧E2)

((ϕ→ ψ) ∧ (ϕ→ χ))→ (ϕ→ (ψ ∧ χ)) (∧I)

ϕ→ (ϕ ∨ ψ) (∨I1)

ψ → (ϕ ∨ ψ) (∨I2)

((ϕ→ χ) ∧ (ψ → χ))→ ((ϕ ∨ ψ)→ χ) (∨E)

(ϕ ∧ (ψ ∨ χ))→ ((ϕ ∧ ψ) ∨ χ) (DIS)

⊥ → ϕ (⊥)

ϕ, ψ

ϕ ∧ ψ
(ADJ)

ϕ, ϕ→ ψ

ψ
(MP)

Theoremhood (`RM0) is defined as usual.6 This axiomatization of RM0
contains some redundancy (e.g., I easily follows from M and W by MP), but
it has the benefit of making clear the relationship between RM0 and R.
Also, note that > is definable as ⊥ → ⊥ and, so defined, it is clear that
`RM0 ϕ→ >.

For certain purposes, I will be interested in extensions of RM0 with the
propositional constant t as well as the binary connective ◦ (for intensional
conjunction or fusion). If I need to refer to the set of formulae formulated in

6One could of course also define a suitable consequence relation, holding between sets
of formulae and formulae, though I will not pursue this here.
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a language containing either or both of these additional connectives, I will
refer to it by Φ′. Where these are included in the language, the corresponding
axioms for them are as follows, where ϕ↔ ψ abbreviates (ϕ→ ψ)∧(ψ → ϕ):

ϕ↔ (t→ ϕ) (t)

(ϕ→ (ψ → χ))↔ ((ϕ ◦ ψ)→ χ) (◦)

In Subsection 3.4, I will have occasion to make special use of RM0 extended
by t. For emphasis, I will sometimes designate this system by RM0t.

It is clear that J, intuitionistic logic, is axiomatized by extending RM0
with the weakening axiom schema:

ϕ→ (ψ → ϕ) (K)

Of course, this system has a number of redundancies, but that is alright.
One could also add to J, formulated in the appropriate language, t and ◦,
but the result would be that t and ◦ are equivalent (in the obvious sense) to
> and ∧, respectively, so there is little point (though see Lemma 9).

Finally, note that constructive negation (¬) is definable in both RM0
and J in the usual way: ¬ϕ abbreviates ϕ → ⊥.7 Incidentally, it may
be complained that RM0 is not really a relevance logic as, for example,
(ϕ ∧ ¬ϕ) → ψ will come out a theorem. Without wishing to digress for too
long on what makes a logic relevant, let me nevertheless state that I do not
view this as a serious objection to the relevant credentials of RM0. In any
case, the reader should note that the positive fragment of RM0 does satisfy
the variable sharing property (see Footnote 4), standard relevance logics like
R are themselves not infrequently presented with constants including ⊥, and
RM0 does not have as theorems ‘bad guys’ like the chain theorem or K.8

3 Operational Semantics

In this section, I present a purely operational bisemilattice semantics for
RM0 as well as J. All of the essential features of this semantics were already
isolated by Humberstone [18], however, his focus was on different systems
and my own presentation will reframe the material by placing it in a broadly
lattice-theoretic context, the benefits of which will become clear shortly.

7For a recent study of various logics with intuitionistic-type negations from a broadly
relevant perspective (i.e., using ternary relational semantics), consult Robles and Méndez
[33].

8Omission of this last is how Bimbó [5, p. 723] characterizes relevance logics.
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In Subsection 3.1, I review some essential concepts from lattice theory
and the theory of bisemilattices. In Subsection 3.2, I present the formal
semantics and discuss its relationship to some other frameworks, including
inquisitive semantics. I sketch the proofs of soundness and completeness in
Subsection 3.3. Finally, in Subsection 3.4, I illustrate an application of this
semantics and results concerning it by giving an embedding of J in RM0t.

3.1 Lattice-Theoretic Preliminaries

I begin by briefly reviewing some familiar and less familiar algebraic struc-
tures and definitions. The lattice-theoretic material is standard (consult, for
example, Davey and Priestley [7] and Grätzer [16]). The material on bisemi-
lattices should also be fairly standard, though I will only be concerned with
elementary results concerning them (for additional background and some
more advanced results, the reader might consult Balbes [4], Romanowska
[34], and Ledda [22], for example).

DEFINITION 2 (Semilattice). A semilattice is a structure 〈S, •〉 where S
is a set and • : S × S → S satisfies the following equations:

AS) (x • y) • z = x • (y • z);

CO) x • y = y • x;

ID) x • x = x.

A semilattice 〈S, •〉 can be used to define a partial order in two ways. In
a meet-semilattice, the semilattice will generally be written as 〈S,∧〉 and the
partial order 〈S,≤∧〉 is defined by putting x ≤∧ y if and only if x ∧ y = x.
Dually, in a join-semilattice, the semilattice will generally be written as 〈S,∨〉
and the partial order 〈S,≤∨〉 is defined by putting x ≤∨ y if and only if
x ∨ y = y.

There are notions of distributivity for both kinds of semilattice. So as not
to overburden a limited terminology, however, I will follow Humberstone [18,
p. 67] in describing these semilattice-distribution properties as decomposition
properties. A join-semilattice 〈S,∨〉 is said to be join-decomposable if z ≤∨
x ∨ y implies ∃x′, y′ such that x′ ≤∨ x, y′ ≤∨ y, and z = x′ ∨ y′. Dually, a
meet-semilattice 〈S,∧〉 is said to be meet-decomposable if x∧ y ≤∧ z implies
∃x′, y′ such that x ≤∧ x′, y ≤∧ y′, and z = x′ ∧ y′. How decomposability
relates to distribution will be discussed below.

There are also notions of bounds for both semilattices. A join-semilattice
〈S, 0,∨〉 has a least element (bottom) 0 if for any x, x ∨ 0 = x. A meet-
semilattice 〈S, 1,∧〉 has a greatest element (top) 1 if for any x, x ∧ 1 = x.
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DEFINITION 3 (Bisemilattice). A bisemilattice is a structure 〈S,∨,∧〉
where 〈S,∨〉 and 〈S,∧〉 are semilattices.

A bisemilattice will be called join-decomposable (meet-decomposable)
just when the underlying join-semilattice (meet-semilattice) is. It will simply
be called decomposable if it is both join-decomposable and meet-decomposable.
A bounded bisemilattice is a bisemilattice 〈S, 0, 1,∨,∧〉 with both least and
greatest elements. Let it be emphasized that ‘least’ and ‘greatest’ are relative
to the orders ≤∨ and ≤∧, respectively; what is greatest (least) in one order
need not be greatest (least) in the other. A bounded bisemilattice in which
x ∨ 1 = 1 holds will be called top respecting and a bounded bisemilattice in
which x ∧ 0 = 0 holds will be called bottom respecting.

A bisemilattice 〈S,∨,∧〉 is meet-distributive if its operations satisfy the
equation x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and join-distributive if they satisfy
the equation x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z). If a bisemilattice is both
meet-distributive and join-distributive, it will be called distributive.

If 〈S,∨,∧〉 is a bisemilattice, a set ∅ 6= T ⊆ S is called a filter if x, y ∈ T
if and only if x ∧ y ∈ T . Thinking in terms of the induced partial order, a
filter is a nonempty set which is upwards-closed under ≤∧ and closed under
meet. I will call a filter T join-closed if whenever x, y ∈ T , x ∨ y ∈ T . The
following result will frequently be used (mostly implicitly) in the sequel:

LEMMA 1. If 〈S,∨,∧〉 is either a meet-distributive or join-distributive
bisemilattice and T is a filter in it, T is join-closed.

Proof. Suppose that 〈S,∨,∧〉 is meet-distributive. Then (x ∧ y) ∧ (x ∨ y) =
((x ∧ y) ∧ x) ∨ ((x ∧ y) ∧ y) = (x ∧ y) ∨ (x ∧ y) = x ∧ y, so x ∧ y ≤∧ x ∨ y.
Clearly, then, if x, y ∈ T , x∨y is as well by upwards-closure and the fact that
x ∧ y ∈ T . Alternatively, suppose that 〈S,∨,∧〉 is join-distributive. Then
(x ∧ y) = (x ∧ y) ∨ (x ∧ y) = ((x ∧ y) ∨ x) ∧ ((x ∧ y) ∨ y) = ((x ∨ x) ∧ (x ∨
y)) ∧ ((x ∨ y) ∧ (y ∨ y)) = (x ∧ y) ∧ (x ∨ y), that is, x ∧ y ≤∧ x ∨ y, which
suffices by parallel reasoning.

If B is a bisemilattice, I write F(B) for the set of all filters in B and I
write ↑x for the principal filter generated by x, i.e., {y : x ≤∧ y}. Ideals,
meet-closed ideals, and principal ideals are defined dually, though I will have
little use for them in this chapter.

DEFINITION 4 (Lattice). A lattice is a bisemilattice 〈S,∨,∧〉 in which ∨
and ∧ satisfy the absorption equations:

A1) x ∨ (x ∧ y) = x;

A2) x ∧ (x ∨ y) = x.
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In any lattice 〈S,∨,∧〉, the partial orders 〈S,≤∧〉 and 〈S,≤∨〉 coincide.
Consequently, where 〈S,∨,∧〉 is a lattice, the unambiguous induced partial
order will generally be written as 〈S,≤〉. Over bisemilattices, all of join-
decomposability, meet-decomposability, join-distributivity, and meet-distributivity
are independent.9 On the other hand—and this illustrates how strong the
absorption laws really are—all of these properties are equivalent over lattices
(consult, e.g., Grätzer [16, p. 167]). Any filter T in a lattice, regardless of
whether it is distributive, is join-closed (indeed, satisfies the stronger prop-
erty that if x ∈ T , x∨ y ∈ T for any y). Finally, any bounded lattice is both
top and bottom respecting.

Remark. What separates lattices from bisemilattices are the absorption
postulates (A1) and (A2). A weakening of the absorption postulates, that
x∨(x∧y) = x∧(x∨y), is sometimes known as Birkhoff’s equation, and bisemi-
lattices which satisfy this are known as Birkhoff systems (see, e.g., Harding
and Romanowska [17, p. 46]). It is obvious that any join-distributive or
meet-distributive bisemilattice is a Birkhoff system.10

Before rounding out this subsection by giving some examples of various
of the foregoing algebraic structures, I will note two more facts concerning
bisemilattices and lattices which will turn out to play an important role in
semantically distinguishing (and relating) RM0 and J:

LEMMA 2. If 〈S, 0, 1,∨,∧〉 is a bounded join-distributive bisemilattice, it
is a lattice if and only if it is bottom respecting.11

Proof. For the easy direction, if 〈S, 0, 1,∨,∧〉 is a lattice, then by (A2): 0 ∧
x = 0 ∧ (0 ∨ x) = 0. Conversely, suppose that 〈S, 0, 1,∨,∧〉 is bottom
respecting. It must be shown that the absorption equations from Definition 4
are satisfied. Ad (A2): x = x∨0 = x∨(y∧0) = ((x∨y)∧(x∨0)) = x∧(x∨y).
Ad (A1): x ∨ (x ∧ y) = ((x ∨ x) ∧ (x ∨ y)) = x ∧ (x ∨ y) = x, by (A2).

LEMMA 3. If 〈S, 0, 1,∨,∧〉 is a bounded join-distributive bisemilattice,
〈↑ 0, 0, 1,∨,∧〉 is a bounded distributive lattice (where these operations are
restricted to ↑ 0).

Proof. In view of Lemma 2, it suffices to show that 〈↑ 0, 0, 1,∨,∧〉 is bottom
respecting (which is obvious, since if x ∈ ↑ 0, 0 ≤∧ x, i.e., x∧0 = 0) and closed

9I am not sure if this exact fact is stated anywhere in the literature, but various parts
of this independence result can be found (e.g., in Romanowska [34, p. 37]) and the rest
can be shown without too much difficulty.

10I am grateful to H. P. Sankappanavar for suggesting that Birkhoff systems may be
relevant to the subject of this chapter.

11Cf. P lonka [28, p. 195, Theorem 2].
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under the relevant operations (and so, a sub-bisemilattice of 〈S, 0, 1,∨,∧〉).
The only case that requires thought involves ∨: if x, y ∈ ↑ 0, by the assump-
tion that 〈S, 0, 1,∨,∧〉 is join-distributive, x ∨ y ∈ ↑ 0 by Lemma 1.

I now briefly give some examples. The first two, reducts of the strong and
weak Kleene algebras [20, §64, p. 334], are among the best-known lattices and
bisemilattices in logic. The third, which I believe is original to this chapter,
combines them; this last structure turns out to be a (non-degenerate) frame
for RM0.

Example 1 (Strong Kleene). Consider the structure 〈{0, .5, 1}, 0, 1,∨,∧〉
where the operations ∧ and ∨ are defined by the following strong Kleene
tables:

∧ 0 .5 1
0 0 0 0
.5 0 .5 .5
1 0 .5 1

∨ 0 .5 1
0 0 .5 1
.5 .5 .5 1
1 1 1 1

It is of course well-known that these tables determine a bounded distributive
lattice.

Example 2 (Weak Kleene). Consider the structure 〈{0, .5, 1}, 0, 1,∨,∧〉 where
the operations ∧ and ∨ are defined by the following weak Kleene tables:

∧ 0 .5 1
0 0 .5 0
.5 .5 .5 .5
1 0 .5 1

∨ 0 .5 1
0 0 .5 1
.5 .5 .5 .5
1 1 .5 1

This is easily shown to be a bounded join-distributive meet-decomposable
bisemilattice, but it is not a lattice: 0 ∧ (0 ∨ .5) = .5, contradicting (A2). It
is also neither top respecting (.5∨1 = .5) nor bottom respecting (.5∧0 = .5).

Example 3 (Moderate Kleene). Consider the structure 〈{0, .5, 1}, 0, 1,∨,∧〉
where the operations ∧ and ∨ are defined by the weak and strong Kleene
tables, respectively:

∧ 0 .5 1
0 0 .5 0
.5 .5 .5 .5
1 0 .5 1

∨ 0 .5 1
0 0 .5 1
.5 .5 .5 1
1 1 1 1

This is another example of a bounded join-distributive meet-decomposable
bisemilattice that’s not a lattice and is not bottom respecting. However, this
one is top respecting.
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3.2 Bisemilattice Models

In this subsection, I present bisemilattice frames and models for RM0 and
J and prove some basic results about the semantics which will be required in
later parts of the chapter. I also discuss connections between this semantics
and the semantics of Humberstone [18] as well as Punčochář [30].

As I have already indicated, the semantics to be presented here is directly
inspired by, and largely follows, Humberstone [18]. Nevertheless, there are
important differences. Humberstone’s focus is on positive R and the frames
he proposes for it are structures of the form 〈S, 1, 0, ·,+〉 where 〈S, 1, ·〉 is
an Abelian (commutative) monoid, 〈S, 0,+〉 is a join-decomposable join-
semilattice, · distributes over +, 0 · x = 0, and · and + satisfy “pseudo-
idempotence”, i.e., x · (x+ 1) = x · x = x2 [18, pp. 66–67].

The condition of pseudo-idempotence is particularly aesthetically and
otherwise unfortunate (which Humberstone [18, p. 67] actually concedes),
but Humberstone also considers, if only briefly, what occurs if you adopt the
real thing: you get bisemilattice frames which suffice to characterize RM0
[18, pp. 75–76].12 I will use the following bisemilattices to furnish a semantics
for RM0:

DEFINITION 5 (Mingle Frame). A mingle frame is a bounded, top re-
specting, join-distributive, meet-decomposable bisemilattice F = 〈S, 0, 1,∨,∧〉.

It must be emphasized that the bisemilattice frames described by Defini-
tion 5 are still not exactly the same as those which Humberstone considered
for RM0. The central distinction is that, in my proposal, everything is, as
it were, flipped (thus, I have meet-decomposability where Humberstone has
join-decomposability, etc.). The motivation for this is narrowly technical and
has to do with the naturalness of certain constructions yet to come.

Concrete instances of mingle frames are given in Examples 1 and 3,
though the first is degenerate in the sense that it is a lattice.13 It turns
out that the class of lattice mingle frames characterizes intuitionistic logic.

DEFINITION 6 (Intuitionistic Frame). An intuitionistic frame is a struc-
ture F = 〈S, 0, 1,∨,∧〉 where F is a mingle frame which is a lattice (equiv-
alently, in view of Lemma 2, which is bottom respecting). More succinctly,
an intuitionistic frame is just a bounded distributive lattice.

12Humberstone [18, pp. 75–76] does not actually use the word ‘bisemilattice’ or talk
about RM0 by that name, but this is effectively what he describes.

13It is worth remarking that, while combining weak Kleene conjunction with strong
Kleene disjunction yields a mingle frame, it would not do to combine weak Kleene disjunc-
tion with strong Kleene conjunction. The resulting structure would be bottom respecting,
but not top respecting.
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Definition 6 marks a considerable departure from the frames used to char-
acterize J in Humberstone’s own semantics. For Humberstone, frames for
(positive) J are just frames for positive R (as described above) which satisfy
the added condition that x+ 1 = 1 [18, p. 66]. Flipping, this amounts to the
condition which I have called bottom respect. But, over the relevant class
of bisemilattice structures, this turns out to be equivalent to being a lattice,
per Lemma 2.

It is here, in the formal apparatus for J, that the real conceptual clarity
afforded by the bisemilattice semantics shines. It allows us to mark the dif-
ference between relevant (RM0) and irrelevant (J) logics by those properties
which distinguish bisemilattices from lattices: the absorption laws. As my
principal interest in this chapter is not philosophical, I will not dwell long
on this, but allow me to point out that, of all the laws defining distributive
lattices, these are the only non-regular identities (i.e., identities in which the
variables on the sides of ‘=’ are mismatched)—a strong whiff of irrelevance,
indeed.14

DEFINITION 7 (Model). A mingle (intuitionistic) model is a structure
M = 〈F, V 〉 where F = 〈S, 0, 1,∨,∧〉 is a mingle (intuitionistic) frame and
V : Π→ F(F).

Thus, a model is obtained by assigning filters to propositional variables
in the underlying frame; note that, by Lemma 1, all such filters must be
join-closed. As would be expected from what has been said so far, in Hum-
berstone’s own semantics, one gets a model by assigning ideals to variables
(Humberstone [18, p. 68] proposes something a bit more convoluted, but this
is what it would come to in a bisemilattice framework).

Turning now to the truth conditions, which are essentially those of Hum-
berstone [18, pp. 63–65, 72] (cf. Urquhart [36, §§2, 4]) modulo ‘flipping’, with
respect to a mingle model M = 〈S, 0, 1,∨,∧, V 〉 where x ∈ S, the relation
|=M
x is defined as follows:15

(1) |=M
x p if and only if x ∈ V (p);

(2) |=M
x ⊥ if and only if x = 1;

(3) |=M
x t if and only if 0 ≤∧ x;

14For more on regular identities and their importance, consult Padmanabhan [27].
15Note that all of the truth conditions are in fact purely operational. In particular, ≤∧

is a defined relation. Therefore, the truth condition for t, for example, could instead have
been given as: |=M

x t if and only if 0 ∧ x = 0. This feature of the semantic framework
distinguishes it from Fine’s hybrid partial order-operational framework which postulates
a primitive relation ≤ [15].
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(4) |=M
x ϕ ∧ ψ if and only if |=M

x ϕ and |=M
x ψ;

(5) |=M
x ϕ ∨ ψ if and only if ∃y, z ∈ S such that x = y ∧ z, |=M

y ϕ, and
|=M
z ψ;

(6) |=M
x ϕ→ ψ if and only if for all y ∈ S, 6|=M

y ϕ or |=M
x∨y ψ;

(7) |=M
x ϕ ◦ ψ if and only if ∃y, z ∈ S such that y ∨ z ≤∧ x, |=M

y ϕ, and
|=M
z ψ.

With reference to a given model M = 〈S, 0, 1,∨,∧, V 〉 and formula ϕ, define
[ϕ]M = {x ∈ S :|=M

x ϕ}. [ϕ]M may intuitively be thought of as the proposition
expressed by ϕ in M.

The following two results (Lemma 4 and Corollary 1) are versions of
Humberstone’s Plus and Zero lemmata [18, pp. 68–69] though, in the present
framework, the second is a mere corollary of the first:

LEMMA 4 (Propositional Filters). For any formula ϕ and any mingle
model M = 〈F, V 〉, [ϕ]M ∈ F(F).

Proof. The result holds by Definition 7 for propositional variables. Since
↑ 1 = {1} is obviously a filter (indeed, the smallest one), [⊥]M ∈ F(F).
It is also obvious that ↑ 0 = [t]M is a filter. The other cases follow by
induction.

I have been rather brief with Lemma 4 because I will effectively cover
some of the primary inductive cases as part of a more general and related
result concerning the algebra of propositions below (Lemma 10).

COROLLARY 1. For any formula ϕ and any mingle model M = 〈F, V 〉,
1 ∈ [ϕ]M.

Proof. Immediate from Lemma 4, noting that 1 is an element of any filter.

DEFINITION 8 (Validity). Where M = 〈S, 0, 1,∨,∧, V 〉 is a mingle model,
ϕ is valid in M (|=M ϕ) if 0 ∈ [ϕ]M. Where F = 〈S, 0, 1,∨,∧〉 is a mingle
frame, ϕ is valid in F (|=F ϕ) if |=M ϕ for every model M over F. ϕ is valid
in RM0 (|=RM0 ϕ) if |=F ϕ for every mingle frame F and valid in J (|=J ϕ)
if |=F ϕ for every intuitionistic frame F.

Before concluding this subsection, I wish to touch upon the relation of
this semantics to inquisitive semantics or, in any case, the sort of ‘generaliza-
tion’ of inquisitive semantics developed for J by Punčochář [30]. Punčochář
[30] shows (among other things) that J is characterized by all distributive
information models, where a distributive information frame (algebra) is a
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join-decomposable join-semilattice with a least element and a model is ob-
tained by assigning to each propositional variable an ideal in the algebra.

The truth conditions proposed by Punčochář [30, p. 1648] for ⊥, ∧, and ∨
are identical to those of Humberstone [18], that is to say, to flipped versions of
the conditions presented above. The condition for → offered by Punčochář
[30, p. 1648] is superficially different. Taking the liberty to flip things as
appropriate, it amounts to the following:

(6′) |=M
x ϕ→ ψ if and only if for all x ≤∨ y, 6|=M

y ϕ or |=M
y ψ.

In fact, though, this condition is just equivalent to (6) over the lattice frames
given for J above. For suppose condition (6) obtains and x ≤ y (subscripts
may be ignored in a lattice frame as there is only one unambiguous partial
order) and |=M

y ϕ; then |=M
x∨y ψ, that is, |=M

y ψ, given that y = x ∨ y, as
required for (6′). Conversely, suppose condition (6′) obtains and |=M

y ϕ; then
as x ≤ x ∨ y and |=M

x∨y ϕ—since y ∈ [ϕ]M and [ϕ]M is upwards closed—it
follows that |=M

x∨y ψ, as required for condition (6).
It is clear, then, that there is significant overlap between the inquisitive

semantic approach to J developed by Punčochář [30], as well as related work
by other inquisitive semanticists, and the decades-earlier but unfortunately
not well-known work of Humberstone [18] and my own presentation of that
material here. Since the work of Punčochář [30] and other inquisitive seman-
ticists is, however, quite independent as far as I can tell,16 the recurrence of
these ideas should be taken to speak to their quality.

3.3 Soundness and Completeness

In this subsection, I prove that RM0 and J (Section 2) are sound and com-
plete with respect to their operational semantics from Subsection 3.2. The ar-
guments straightforwardly adapt results of Humberstone [18], but are worth
including in some detail to make this chapter self-contained.

THEOREM 1 (Soundness). If `RM0 ϕ, then |=RM0 ϕ.

Proof. I survey just a couple representative cases. Suppose that the mingle
axiom M fails, i.e., that 6|=RM0 ψ → (ψ → ψ); then there is a mingle model
M = 〈S, 0, 1,∨,∧, V 〉 and some x, y ∈ S such that x, y ∈ [ψ]M and x ∨ y 6∈
[ψ]M. But [ψ]M is a join-closed filter by Lemmata 1 and 4, so x ∨ y ∈ [ψ]M,

16In fact, in a recent article, Punčochář and Tedder [31, p. 357] do note the connection to
Humberstone’s condition for ∨ in any case. In another fairly recent article, Humberstone
[19] himself discusses various accounts of disjunction including his own from [18] as well
as inquisitive views.
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a contradiction. Suppose for contradiction that axiom ⊥ fails, i.e., that
6|=RM0 ⊥ → ψ; then there is a mingle model M = 〈S, 0, 1,∨,∧, V 〉 and an
x ∈ S such that x ∈ [⊥]M and x 6∈ [ψ]M. But then x = 1, so by Corollary 1,
x ∈ [ψ]M, a contradiction.

THEOREM 2 (Soundness). If `J ϕ, then |=J ϕ.

Proof. There is only one further case to consider. To show the validity of
axiom K, suppose for contradiction that 6|=J ψ → (θ → ψ). Then this fails
in some intuitionistic model M = 〈S, 0, 1,∨,∧, V 〉 which must be a lattice.
So there are x, y ∈ S such that x ∈ [ψ]M and y ∈ [θ]M and x ∨ y 6∈ [ψ]M.
But [ψ]M is a filter in a lattice, whence x ∈ [ψ]M implies x∨ y ∈ [ψ]M, which
gives the desired contradiction.

To prove completeness, I construct a canonical model for L (I will use
L to refer ambiguously to RM0 or J in what follows, and disambiguate
where it becomes relevant). A set of formulae Γ is a L theory if the following
conditions are satisfied:

1. ϕ ∈ Γ and ψ ∈ Γ imply ϕ ∧ ψ ∈ Γ;

2. ϕ ∈ Γ and `L ϕ→ ψ imply ψ ∈ Γ.

I write Th(Γ) for the smallest theory containing the set of formulae Γ, or
just Th(ϕ) if Γ = {ϕ}.17 By TH, I denote the set of all theories; TH \ {∅} is,
then, obviously the set of all nonempty theories. Define Γ · ∆ = {ψ : ∃ϕ ∈
∆(ϕ→ ψ ∈ Γ)} (cf. Fine [15, p. 353]).

DEFINITION 9. The canonical model for L is the structure Mc = 〈TH \
{∅},L,Φ, ·,∩, V c〉 where V c(p) = {Γ ∈ TH \ {∅} : p ∈ Γ}.18

Remark. One reason for my preference for the flipped, filter semantics rather
than Humberstone’s ideal semantics is that the canonical model construction
is more natural. In Humberstone’s construction, ∩ counterintuitively plays
the role of join with Φ as semilattice bottom [18, pp. 70–71].

LEMMA 5. The structure Mc = 〈TH \ {∅},RM0,Φ, ·,∩, V c〉 is a mingle
model.

17In the interest of rigor, I really ought to write something like Th L(Γ) for the smallest
L theory containing Γ, but I will generally suppress what system L I am talking about
when talking about theories.

18Technically, depending on the language, Φ′ should be used instead of Φ. For the
purposes of this subsection, I just intend by Φ the set of all formulae of whatever the
language is. Incidentally, nothing in the basic completeness proof requires the use of the
constants or ◦.
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Proof. The argument is essentially that given by Humberstone [18, pp. 70–72]
(cf. Fine [15, §3]). For the flavor, I show that · is idempotent, sketch the main
ideas required for proving meet-decomposability and join-distributivity, and
verify that V c meets the condition required by Definition 7, i.e., that each
V c(p) is a filter.

To show that · is idempotent, suppose that ϕ ∈ x · x; then ∃ψ ∈ x
such that ψ → ϕ ∈ x. Since x is closed under ADJ, ψ ∧ (ψ → ϕ) ∈ x
whence ϕ ∈ x by the fact that `RM0 (ψ ∧ (ψ → ϕ)) → ϕ (note that
the proof of this makes indispensable use of W). Conversely, suppose that
ϕ ∈ x; then since `RM0 ϕ → (ϕ → ϕ) by M, ϕ → ϕ ∈ x, which suffices
to show ϕ ∈ x · x. Therefore, x = x · x, as required by idempotence. To
show that 〈TH \ {∅},Φ,∩〉 is meet-decomposable, on the supposition that
x∩ y ⊆ z, put x′ = Th(x∪ z) and y′ = Th(y ∪ z). This immediately delivers
everything that is needed except for the property that x′ ∩ y′ ⊆ z, which
follows making use of DIS. Ad join-distributivity, the difficult direction is
showing that (x · y) ∩ (x · z) ⊆ x · (y ∩ z). Suppose ϕ ∈ (x · y) ∩ (x · z);
then ∃ψ ∈ y such that ψ → ϕ ∈ x and ∃θ ∈ z such that θ → ϕ ∈ x. By
ADJ and ∨E, (ψ ∨ θ) → ϕ ∈ x, and by ∨I1 and ∨I2, ψ ∨ θ ∈ y ∩ z. Hence,
ϕ ∈ x · (y ∩ z), as required. Finally, to show that V c(p) is a filter, note that
it must be nonempty since Φ ∈ V c(p) and x, y ∈ V c(p) if and only if p ∈ x, y
if and only if p ∈ x ∩ y if and only if x ∩ y ∈ V c(p).

LEMMA 6. The structure Mc = 〈TH\{∅},J,Φ, ·,∩, V c〉 is an intuitionistic
model.

Proof. The proof is identical to that of Lemma 5, except it also has to be
shown that Mc is a lattice. By Lemma 2, it suffices to show that Mc is
bottom respecting. Obviously, J ∩ x ⊆ J, so, for the converse, suppose that
ϕ ∈ J; then, as there is some ψ ∈ x and `J ψ → ϕ (by K), ϕ ∈ x, which
suffices to show J ⊆ J ∩ x, as desired.

LEMMA 7 (Truth Lemma). If Mc = 〈TH\{∅},L,Φ, ·,∩, V c〉 is the canon-
ical model for L, then for any x ∈ TH \ {∅}, x ∈ [ϕ]M

c
if and only if ϕ ∈ x.

Proof. By induction on the complexity of ϕ. The result holds by definition
when ϕ is a propositional variable and is obvious when ϕ is t, ⊥, or of the
form ψ ∧ θ. I will just consider the cases in which ϕ is either of the form
ψ → θ or ψ ∨ θ, supposing the result holds for ψ and θ. (The arguments
for → and ∨ are essentially the same as those found in Fine [15, p. 355] and
Humberstone [18, p. 72], respectively.)

Suppose ψ → θ ∈ x and y ∈ [ψ]M
c
; by the induction hypothesis, ψ ∈ y,

therefore, θ ∈ x · y, i.e., x · y ∈ [θ]M
c
, which suffices to show x ∈ [ψ → θ]M

c
.
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Conversely, suppose that ψ → θ 6∈ x and put y = Th(ψ). Then θ 6∈ x · y; for
otherwise, there would be a formula χ such that `L ψ → χ and χ → θ ∈ x,
which would imply that ψ → θ ∈ x (by suffixing), a contradiction. Thus, by
the induction hypothesis, y ∈ [ψ]M

c
and x · y 6∈ [θ]M

c
, which suffices.

Suppose ψ ∨ θ ∈ x and put y = Th(ψ) and z = Th(θ). Then y ∩ z ⊆ x,
for if χ ∈ y ∩ z, then `L ψ → χ and `L θ → χ, whence `L (ψ ∨ θ) → χ
by ∨E, so χ ∈ x. By meet-decomposability, there are y ⊆ y′ ∈ TH \ {∅}
and z ⊆ z′ ∈ TH \ {∅} such that x = y′ ∩ z′. By the induction hypothesis,
ψ ∈ y ⊆ y′ ∈ [ψ]M

c
and θ ∈ z ⊆ z′ ∈ [θ]M

c
, which yields the result.

Conversely, suppose x ∈ [ψ ∨ θ]Mc
; then there are y, z such that x = y ∩ z,

y ∈ [ψ]M
c
, and z ∈ [θ]M

c
. By the induction hypothesis, ψ ∈ y and θ ∈ z,

whence it follows that ψ ∨ θ ∈ y ∩ z = x by ∨I1 and ∨I2.

THEOREM 3 (Completeness). If |=RM0 ϕ, then `RM0 ϕ.

Proof. Suppose 6`RM0 ϕ; then ϕ 6∈ RM0 and so, by Lemma 7, RM0 6∈ [ϕ]M
c
,

i.e., 6|=Mc
ϕ. Moreover, by Lemma 5, Mc is a mingle model, so 6|=RM0 ϕ, which

suffices.

THEOREM 4 (Completeness). If |=J ϕ, then `J ϕ.

Proof. The proof is essentially that for Theorem 3, except the role of Lemma 5
is played by Lemma 6.

3.4 An Embedding of J in RM0t

Using a well-known translation scheme (see, e.g., Meyer [24, pp. 198ff.] and
Dunn and Meyer [13, pp. 229–230]), I shall now give an embedding of J into
RM0t. The result (if I may say so) gives a nice illustration of an application
of the foregoing semantics and some of the results concerning it.

DEFINITION 10 (Translation). Define the function τ : Φ→ Φ′ as follows:

1. τ(p) = p;

2. τ(⊥) = ⊥;

3. τ(ϕ ∧ ψ) = τ(ϕ) ∧ τ(ψ);

4. τ(ϕ ∨ ψ) = τ(ϕ) ∨ τ(ψ);

5. τ(ϕ→ ψ) = (τ(ϕ) ∧ t)→ τ(ψ).

LEMMA 8. For any ϕ ∈ Φ: If `J ϕ, then `RM0t τ(ϕ).
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Proof. Suppose 6`RM0t τ(ϕ). By Theorem 3, there is a mingle model M =
〈S, 0, 1,∨,∧, V 〉 such that 6|=M

0 τ(ϕ). Define M′ = 〈↑ 0, 0, 1,∨,∧, V ′〉, where
V ′(p) = V (p)∩↑ 0 and the operations are likewise restricted. 〈↑ 0, 0, 1,∨,∧〉 is
an intuitionistic frame by Lemma 3 and, as intersections of filters are filters,
V ′(p) is a filter for every p. Thus, M′ is an intuitionistic model.

It is to be shown by induction that, for all formulae ψ ∈ Φ and x ∈ ↑ 0,
|=M′
x ψ if and only if |=M

x τ(ψ). The basis cases are immediate, so suppose
the result holds for θ and χ. I examine just the cases concerning ∨ and →.

Suppose |=M
x τ(θ ∨ χ), i.e., |=M

x τ(θ) ∨ τ(χ). Then ∃y, z ∈ S such that
x = y ∧ z, |=M

y τ(θ), and |=M
z τ(χ). By the induction hypothesis and the

fact that y, z ∈ ↑ 0 since y ∧ z = x ∈ ↑ 0, |=M′
y θ and |=M′

z χ, i.e., |=M′
x θ ∨ χ.

Conversely, if |=M′
x θ ∨ χ, then ∃y, z ∈ ↑ 0 such that x = y ∧ z, |=M′

y θ, and

|=M′
z χ, which immediately yields the result by the induction hypothesis.

Suppose |=M
x τ(θ → χ), i.e., |=M

x (τ(θ) ∧ t) → τ(χ), and suppose |=M′
y θ.

By the induction hypothesis and the fact that 0 ≤∧ y, |=M
y τ(θ) ∧ t, whence

|=M
x∨y τ(χ). x, y ∈ ↑ 0 implies x ∨ y ∈ ↑ 0 (Lemma 1), so by the induction

hypothesis, |=M′
x∨y χ, which suffices to show |=M′

x θ → χ. Conversely, suppose
6|=M
x τ(θ → χ), i.e., 6|=M

x (τ(θ)∧t)→ τ(χ). Then ∃y ∈ S such that |=M
y τ(θ)∧t

and 6|=M
x∨y τ(χ). Then 0 ≤∧ y so, by the induction hypothesis, |=M′

y θ and

6|=M′
x∨y χ, that is, 6|=M′

x θ → χ.

Then 6|=M′
0 ϕ follows from 6|=M

0 τ(ϕ). Therefore, by Theorem 2, 6`J ϕ,
which was to be proved.

LEMMA 9. For any ϕ ∈ Φ: If `RM0t τ(ϕ), then `J ϕ.

Proof. Let J′ be J formulated in the language with t and the axiom t. Then
it is clear that RM0t is a subsystem of J′, so if `RM0t τ(ϕ) (ex hypothesi),
we have `J′ τ(ϕ). By induction, τ(ϕ) and ϕ are provably equivalent in J′,
thus `J′ ϕ. Lastly, it must be shown that J′ is a conservative extension of J,
i.e., that for any ψ ∈ Φ, `J′ ψ only if `J ψ. But this clearly holds since in
any proof in J′ of such a ψ, t can be replaced with any theorem of J (e.g.,
p→ p) thereby yielding a proof of ψ in J. Thus, `J ϕ, as desired.

THEOREM 5. For any ϕ ∈ Φ: `J ϕ if and only if `RM0t τ(ϕ).

Proof. Immediate from Lemmata 8 and 9.

4 Algebraic Semantics

In this section, I present an algebraic semantics for RM0. The kind of
algebraic structure used for modeling RM0 is the obvious extension of what
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Meyer [25, p. 39] and Meyer and Routley [26, p. 408] call a Dunn monoid,
in honor of the pioneering work of Dunn [8] (published as [11]).19 Whereas
Dunn monoids furnish an algebraic semantics for positive R, what I will call
Dunn semilattices furnish an algebraic semantics for RM0.20 The name is,
in a sense, unfortunate, since Dunn semilattices are also bisemilattices and,
indeed, lattices (under different operations). However, I hope the reader will
indulge my penchant for semilattice nomenclature, if only because the name
highlights that the pertinent (commutative) monoids are now required to be
fully idempotent.

DEFINITION 11 (Dunn Semilattice). A Dunn semilattice is a structure
D = 〈D,1,0, •,⇒,t,u〉 where 0,1 ∈ D and the binary operations •, ⇒, t,
and u satisfy the properties that:

1. 〈D,0,t,u〉 is a distributive lattice with least element 0;21

2. 〈D,1, •〉 is a meet-semilattice with greatest element 1;

3. a • 0 = 0;

4. a • (b t c) = (a • b) t (a • c);

5. a • b v c if and only if a v b⇒ c.

It is clear that a Heyting algebra (consult, e.g., Rasiowa and Sikorski [32]) is
the special case of a Dunn semilattice in which • and u are the same opera-
tion; for this reason, where D = 〈D,1,0, •,⇒,t,u〉 is a Heyting algebra, I
will often omit •. (Not every Dunn semilattice is a Heyting algebra; consult
Example 4 below.)

A few elementary results concerning Dunn semilattices, some of which I
will have occasion to appeal to in the sequel, are summarized without proof
in Fact 1:

Fact 1. In any Dunn semilattice D = 〈D,1,0, •,⇒,t,u〉, the following
obtain:

1. a v b implies a • c v b • c;

2. a u b v a • b v a t b;
19Of course, much of the mathematics behind Dunn monoids is older; see, e.g., Ward

and Dilworth [37].
20In the interest of completeness, I should note that Meyer and Routley [26, pp. 419–420]

discuss algebraic models for mingle-extended relevance logics en passant.
21Any Dunn semilattice will also have a greatest element (with respect to v), viz.,

0⇒ 0, which will not in general be identical to 1.
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3. a • (b u c) v (a • b) u (a • c);

4. (a u b) • (c u d) v (a • c) u (b • d).

There is an obvious way to generate a Dunn semilattice or Heyting algebra
from a given mingle frame (Definition 5) or intuitionistic frame (Definition 6):

DEFINITION 12 (Filter Algebra). Given a mingle frame F = 〈S, 0, 1,∨,∧〉,
the filter algebra over F, A(F) = 〈D,1,0, •,⇒,t,u〉, is defined as follows:

1. D = F(F);

2. 1 = ↑ 0;

3. 0 = ↑ 1;

4. I • J = {k ∈ S : ∃i ∈ I,∃j ∈ J(i ∨ j ≤∧ k)};

5. I ⇒ J =
⋃
{K ∈ F(F) : K • I ⊆ J};

6. I t J = {i ∧ j : i ∈ I, j ∈ J};

7. I u J = I ∩ J .

LEMMA 10. Any filter algebra A(F) = 〈D,1,0, •,⇒,t,u〉 over a mingle
frame F = 〈S, 0, 1,∨,∧〉 is a Dunn semilattice.

Proof. First, it must be verified that the operations, so defined, actually are
operations on F(F), i.e., that given filters, they yield filters. I examine just
the cases of • and ⇒.

It is clear that I•J is nonempty if I and J are. So suppose that x, y ∈ I•J ;
then ∃i, i′ ∈ I and ∃j, j′ ∈ J such that i ∨ j ≤∧ x and i′ ∨ j′ ≤∧ y. By join-
distributivity and the facts that (i∨j)∧(i′∨j) ≤∧ i∨j ≤∧ x and (i∨j′)∧(i′∨
j′) ≤∧ i

′∨j′ ≤∧ y, (i∧i′)∨(j∧j′) = ((i∨j)∧(i′∨j))∧((i∨j′)∧(i′∨j′)) ≤∧ x∧y,
where i ∧ i′ ∈ I and j ∧ j′ ∈ J . Thus, x ∧ y ∈ I • J , as desired. Conversely,
if x ∧ y ∈ I • J , ∃i ∈ I and ∃j ∈ J such that i ∨ j ≤∧ x ∧ y. The result then
follows immediately from the facts that x ∧ y ≤∧ x and x ∧ y ≤∧ y.

For any filters I and J , since I • ↑ 1 ⊆ J , clearly I ⇒ J 6= ∅. Suppose
that x, y ∈ I ⇒ J ; then ∃X, Y ∈ F(F) such that x ∈ X and y ∈ Y with
X • I ⊆ J and Y • I ⊆ J . Consider the filter X t Y ; we wish to show
(X t Y ) • I ⊆ J . Suppose z ∈ (X t Y ) • I. Then ∃i ∈ I, x′ ∈ X, and y′ ∈ Y
such that (x′ ∧ y′) ∨ i = (x′ ∨ i) ∧ (y′ ∨ i) ≤∧ z. But X • I ⊆ J implies that
x′ ∨ i ∈ J and Y • I ⊆ J implies that y′ ∨ i ∈ J , so (x′ ∨ i) ∧ (y′ ∨ i) ∈ J (as
J is meet-closed) and z ∈ J (as J is upwards closed). This suffices to show
x ∧ y ∈ I ⇒ J , since x ∧ y ∈ X t Y . Conversely, suppose x ∧ y ∈ I ⇒ J ;
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then ∃K ∈ F(F) such that x ∧ y ∈ K and K • I ⊆ J . By upwards closure,
x, y ∈ K, which suffices.

I omit the arguments that 〈D,0,t,u〉 is a distributive lattice with bottom
0, that 〈D,1, •〉 is a meet-semilattice with top 1, and that I • ↑ 1 = ↑ 1;
these are fairly routine. It remains to verify the last two requirements from
Definition 11. To show that I•(JtK) = (I•J)t(I•K), suppose that x ∈ I•
(JtK); then for some i ∈ I, j ∈ J , and k ∈ K, i∨(j∧k) = (i∨j)∧(i∨k) ≤∧ x.
Clearly, i∨ j ∈ I • J and i∨ k ∈ I •K, so (i∨ j)∧ (i∨ k) ∈ (I • J)t (I •K),
from which the result follows by upwards closure. Conversely, suppose x ∈
(I • J) t (I •K). Then x = y ∧ z for some i, i′ ∈ I, j ∈ J , and k ∈ K such
that i ∨ j ≤∧ y and i′ ∨ k ≤∧ z, and therefore, (i ∨ j) ∧ (i′ ∨ k) ≤∧ y ∧ z.
Then j ∧ k ∈ J t K and i ∧ i′ ∈ I, so (i ∧ i′) ∨ (j ∧ k) ∈ I • (J t K); but
(i∧ i′)∨ (j ∧k) = ((i∨ j)∧ (i′∨ j))∧ ((i∨k)∧ (i′∨k)) ≤∧ (i∨ j)∧ (i′∨k) ≤∧
y∧z = x, so x ∈ I•(JtK). Finally, it has to be verified that I•J ⊆ K if and
only if I ⊆ J ⇒ K. From left to right, this is essentially immediate from the
definition of J ⇒ K. Conversely, it suffices to show that (J ⇒ K)•J ⊆ K.22

Suppose x ∈ (J ⇒ K) • J ; then there is some y in some filter Y such that
Y • J ⊆ K and some z ∈ J such that y ∨ z ≤∧ x. But then y ∨ z ∈ K, so
x ∈ K by upwards closure, as desired.

LEMMA 11. Any filter algebra A(F) = 〈D,1,0, •,⇒,t,u〉 over an intu-
itionistic frame F = 〈S, 0, 1,∨,∧〉 is a Heyting algebra.

Proof. The argument is the same as that for Lemma 10, except we have to
check that I • J = I u J for all filters I, J . From right to left, if x ∈ I u J =
I ∩ J , then x ∈ I, J , so x ∈ I • J as x ∨ x ≤ x. Conversely, if x ∈ I • J ,
then there are i ∈ I and j ∈ J such that i ∨ j ≤ x; but i ≤ i ∨ j ≤ x and
j ≤ i ∨ j ≤ x imply that x ∈ I ∩ J , as required. (Obviously this argument
depends on the fact that ≤ is unambiguous in an intuitionistic frame.)

Example 4 (RM3). Recall the moderate Kleene bisemilattice from Exam-
ple 3. I will presently show that the filter algebra over this frame is a reduct
of the characteristic algebra for the logic RM3.23 In particular, our alge-
bra is A = 〈{−1,0,1},0,−1, •,⇒,t,u〉 where −1 = {1}, 0 = {0, 1}, and
1 = {0, .5, 1}—these are all the filters in this bisemilattice—and the connec-
tives, defined by Definition 12, are displayed table-wise for convenience:24

22This follows from the general fact that I ⊆ J and J •K ⊆ L imply I •K ⊆ L. For if
x ∈ I •K, i ∨ k ≤∧ x for some i ∈ I and k ∈ K. But i ∈ I ⊆ J , so x ∈ L as J •K ⊆ L.

23Consult, for example, Anderson and Belnap, Jr. [1, §29.12, p. 470], Brady [6, p. 9], or
Priest [29, §7.4, pp. 124–125]. Note that I am omitting the negation table for RM3.

24I have named the values of the algebra specifically to call to mind the fact that RM3
is one member of the infinite class of so-called Sugihara matrices (named after Sugihara
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• {1} {0, 1} {0, .5, 1}
{1} {1} {1} {1}
{0, 1} {1} {0, 1} {0, .5, 1}
{0, .5, 1} {1} {0, .5, 1} {0, .5, 1}

u {1} {0, 1} {0, .5, 1}
{1} {1} {1} {1}
{0, 1} {1} {0, 1} {0, 1}
{0, .5, 1} {1} {0, 1} {0, .5, 1}

⇒ {1} {0, 1} {0, .5, 1}
{1} {0, .5, 1} {0, .5, 1} {0, .5, 1}
{0, 1} {1} {0, 1} {0, .5, 1}
{0, .5, 1} {1} {1} {0, .5, 1}

t {1} {0, 1} {0, .5, 1}
{1} {1} {0, 1} {0, .5, 1}
{0, 1} {0, 1} {0, 1} {0, .5, 1}
{0, .5, 1} {0, .5, 1} {0, .5, 1} {0, .5, 1}

Observe that RM3 is not a Heyting algebra as, for example, 0•1 6= 0u1. On
the other hand, the filter algebra over strong Kleene (which is of course an
intuitionistic frame, per Definition 6) does yield a Heyting algebra—indeed,
the smallest Heyting algebra which is not a Boolean algebra.

I have examined how to obtain an algebraic structure from an operational
frame; it is time to examine the converse. While there are several ways to
get a mingle frame from a Dunn semilattice (cf. Punčochář [30, §5]), I will
just consider the one which I find most natural. The reader will observe that
the construction mirrors, algebraically, the canonical model construction in
Definition 9 from Subsection 3.3.25

DEFINITION 13 (Filter Frame). Given a Dunn semilattice D = 〈D,1,0, •,⇒
,t,u〉, the filter frame over D, F(D) = 〈S, 0, 1,∨,∧〉, is defined as follows:

1. S = F(D);26

2. 0 = ↑1;

3. 1 = ↑0 = D;

[35]); these play an important role in the algebraic theory of RM [9]. Here I should also
note an interesting anticipation of my work by Meyer, who in [1, §29.3.2, p. 400] very
nearly presents Sugihara matrices as bisemilattices, discussing extensional and intensional
orders of the pertinent sets of integers. Of course, an important difference is that neither
v nor ≤• in a Dunn semilattice need be a chain.

25Here I should note that in the canonical model construction, where ◦ is included in the
language, Γ ·∆ could have been equivalently defined as {θ : ∃ϕ ∈ Γ,∃ψ ∈ ∆(`L (ϕ ◦ψ)→
θ)}, which makes the connection even sharper.

26Just to be clear, F(D) is taken to be the set of u-filters in D.
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4. I ∨ J = {k ∈ S : ∃i ∈ I,∃j ∈ J(i • j v k)};

5. I ∧ J = I ∩ J .

LEMMA 12. Any filter frame F(D) = 〈S, 0, 1,∨,∧〉 over a Dunn semilattice
D = 〈D,1,0, •,⇒,t,u〉 is a mingle frame.

Proof. The argument mirrors the proof of Lemma 5, so I will not belabor it
for too long. It should, however, briefly be verified that when I and J are
filters, I∨J is as well, since this is not entirely obvious. Suppose a, b ∈ I∨J ,
so as to show that aub ∈ I∨J . Then ∃i, i′ ∈ I and j, j′ ∈ J such that i•j v a
and i′ • j′ v b; clearly, (i• j)u (i′ • j′) v au b. I and J are filters, so iu i′ ∈ I
and juj′ ∈ J , whence aub ∈ I∨J since (iui′)•(juj′) v (i•j)u(i′•j′) v aub
by the assumptions, definition of ∨, and Fact 1. Conversely, if au b ∈ I ∨ J ,
that a, b ∈ I ∨ J is immediate from the facts that a u b v a and a u b v b.
Finally, it is obvious that I ∨ J is nonempty, since (ex hypothesi) I and J
are.

LEMMA 13. Any filter frame F(D) = 〈S, 0, 1,∨,∧〉 over a Heyting algebra
D = 〈D,1,0,⇒,t,u〉 is an intuitionistic frame.

Proof. The result follows from Lemma 12 and the observation that 0 = ↑1 ⊆
I for any filter I because in a Heyting algebra, 1 is the top element in the v
order and therefore is contained in any filter.

Given a Dunn semilattice, an algebraic model is obtained by assigning
elements of the algebra to propositional variables:27

DEFINITION 14 (Model). A Dunn semilattice model is a structure Ma =
〈D, ν〉 where D = 〈D,1,0, •,⇒,t,u〉 is a Dunn semilattice and ν : Π→ D
is extended to the full language in the obvious way:

1. ν(⊥) = 0;

2. ν(t) = 1;

3. ν(ϕ ∧ ψ) = ν(ϕ) u ν(ψ);

4. ν(ϕ ∨ ψ) = ν(ϕ) t ν(ψ);

5. ν(ϕ ◦ ψ) = ν(ϕ) • ν(ψ);

6. ν(ϕ→ ψ) = ν(ϕ)⇒ ν(ψ).

27For the purposes of algebraic semantics, it is natural to assume RM0 is formulated
in the full language.
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A Heyting algebraic model is defined in essentially the same way, with Heyting
algebras playing the role of Dunn semilattices and the irrelevant connectives
and clauses being omitted.

DEFINITION 15 (Validity). Where Ma = 〈D, ν〉 is a Dunn semilattice
model, ϕ is valid in Ma (|=Ma

ϕ) if 1 v ν(ϕ). ϕ is Dunn semilattice valid
(|=a

RM0 ϕ) if |=Ma
ϕ for every Dunn semilattice model Ma = 〈D, ν〉. Heyting

validity (|=a
J ϕ) is defined analogously.

LEMMA 14. If |=a
RM0 ϕ (|=a

J ϕ), then |=RM0 ϕ (|=J ϕ).

Proof. For the case of RM0, suppose 6|=RM0 ϕ; then there is some mingle
model M = 〈F, V 〉 such that 6|=M

0 ϕ. Let A(F) = 〈D,1,0, •,⇒,t,u〉 be the
filter algebra over F; by Lemma 10, this is a Dunn semilattice. The Dunn
semilattice countermodel is defined to be Ma = 〈A(F), ν〉 where ν(p) = V (p).
By an induction that is essentially trivial in virtue of Lemmata 4 and 10,
ν(ψ) = [ψ]M for all ψ. But then, clearly, ↑ 0 = 1 6v ν(ϕ) = [ϕ]M, as 0 6∈ [ϕ]M

ex hypothesi. So, 6|=Ma
ϕ, which suffices. The case of J is essentially the

same, but Lemma 11 fulfills the role of Lemma 10.

LEMMA 15. If |=RM0 ϕ (|=J ϕ), then |=a
RM0 ϕ (|=a

J ϕ).

Proof. For the case of RM0, suppose 6|=a
RM0 ϕ. Then there is a Dunn

semilattice model Ma = 〈D, ν〉 where D = 〈D,1,0, •,⇒,t,u〉 is a Dunn
semilattice and 1 6v ν(ϕ). Let F(D) = 〈S, 0, 1,∨,∧〉 be the filter frame over
D; by Lemma 12, this is a mingle frame. The mingle countermodel is defined
to be M = 〈F(D), V 〉 where, for all p, V (p) = {I ∈ S : ν(p) ∈ I}. Clearly,
each V (p) is a filter in F(D) since I, J ∈ V (p) if and only if ν(p) ∈ I, J if and
only if ν(p) ∈ I ∩ J if and only if I ∩ J ∈ V (p) and every V (p) is nonempty
(containing, e.g., 1). Thus, M is a mingle model.

It must be shown that for all ψ and all filters I, |=M
I ψ if and only if

ν(ψ) ∈ I. The argument for this result is entirely analogous to that for
Lemma 7, so I will just briefly examine the case of →. Suppose |=M

J θ and
ν(θ → χ) = ν(θ) ⇒ ν(χ) ∈ I. By the induction hypothesis, ν(θ) ∈ J ,
so as (ν(θ) ⇒ ν(χ)) • ν(θ) v ν(χ), ν(χ) ∈ I ∨ J , which suffices by the
induction hypothesis. Conversely, suppose that ν(θ → χ) = ν(θ)⇒ ν(χ) 6∈ I
and consider I ∨ ↑ ν(θ). If it were the case that ν(χ) ∈ I ∨ ↑ ν(θ), then
i • k v ν(χ) for some i ∈ I and ν(θ) v k. By Fact 1, ν(θ) v k implies
i • ν(θ) v i • k v ν(χ), whence i v ν(θ)⇒ ν(χ) and ν(θ)⇒ ν(χ) ∈ I, which
is impossible. So ν(θ) ∈ ↑ ν(θ) and ν(χ) 6∈ I ∨ ↑ ν(θ) imply |=M

↑ ν(θ) θ and

6|=M
I∨↑ ν(θ) χ by the induction hypothesis, which yields the result.

Now, since 1 6v ν(ϕ), ν(ϕ) 6∈ 0 = ↑1, whence 6|=M
0 ϕ by the immediately

preceding induction. Therefore, 6|=RM0 ϕ, as desired. The case involving J
is essentially the same, but Lemma 13 plays the role of Lemma 12.
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THEOREM 6 (Algebraic Soundness and Completeness). `RM0 ϕ (`J ϕ)
if and only if |=a

RM0 ϕ (|=a
J ϕ).

Proof. Immediate from Theorems 1–4 and Lemmata 14 and 15.

Theorem 6 could of course have been proved much more directly, using a
routine Lindenbaum construction for the algebraic completeness component;
but the proof I have given sheds considerably more light on the relationship
between the algebraic and operational semantics presented in this chapter.

5 Concluding Remarks

In this chapter, I examined operational and algebraic semantics for RM0 and
J. Adapting work of Humberstone [18], I showed that RM0 is determined
by a certain class of bisemilattices, taken as frames, whereas J is determined
by the subclass of those frames which are lattices. I also examined algebraic
semantics for both RM0 and J and showed how to transform operational
models into equivalent algebraic models and vice-versa.

One clear takeaway from this chapter is that RM0 and J are very closely
related. This is not only apparent semantically, in the fact that intuitionistic
frames and Heyting algebras are natural special cases of mingle frames and
Dunn semilattices respectively, but in the fact that J can be straightforwardly
exactly translated into RM0t per Theorem 5. In [38], I presented extensions
of Urquhart’s semilattice relevance logic S which might be thought of as
(quasi-)relevant companions of J and KC (Jankov’s logic). Such logics,
in my view, could hold appeal to relevantists of a constructivist bent (or
constructivists of a relevantist bent). In view of the results of this chapter, I
think that RM0 is another system that could hold appeal to such logicians.

Another clear takeaway is that the operational semantics of Humberstone
[18] deserves more attention than it has received. As I showed, Humberstone’s
semantics importantly anticipated more recent developments in inquisitive
semantics (as illustrated in the work of, for example, Punčochář [30]). In
fact, though, this chapter only scratches the surface of what can be done by
extending or modifying the Humberstone framework. In unpublished work,
I have shown how the operational semantics of this chapter can be used
to characterize a variety of intuitionistic and relevant modal logics, with
embedding results forthcoming for intuitionistic modal systems and their
relevant companions; without doubt, the algebra of such logics will also prove
a rich vein for future study.

This chapter leaves open a number of interesting problems, both philo-
sophical and technical. I have not attempted to articulate a philosophical
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account of the operational semantics developed here for either RM0 or J (in
this respect, RM0 would appear to be on worse footing than the systems
surveyed in [38], which have clear philosophical motivation). This is emphat-
ically not because I do not think the semantics can be well-motivated, but
rather because this is, by design, a technical piece. I leave to future work,
my own or others’, the project of interpreting this semantics.28

On the technical side, much more work could still be done even just on
the model theory of RM0 and J. One example: while I have examined
operational and algebraic models for both of these systems and shown how
to move between them, both of these logics already have relational modelings
(ternary in the case of RM0 [23], binary in the case of J [21]) which I have
not discussed. It would be valuable to examine the relation of those semantics
to the semantics presented here.

Dedication

I dedicate this chapter to the memory of J. Michael Dunn, a great logician
and generous human being.
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