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An effective approach is introduced to predict the magnitude of reservoir-triggered earthquake (RTE), based on support vector
machines (SVM) and fuzzy support vector machines (FSVM) methods. The main influence factors on RTE, including lithology,
rock mass integrity, fault features, tectonic stress state, and seismic activity background in reservoir area, are categorized into 11
parameters and quantified by using analytical hierarchy process (AHP). Dataset on 100 reservoirs in China, including the 48
well-documented cases of RTE, are collected and used to train and validate the prediction models established with SVM and
FSVM, respectively. Through numerical tests, it is found that both the SVM and FSVM models are effective in the prediction of
the magnitude of RTE with high accuracy, provided that sufficient samples are collected. While the results of FSVM which is
extended from SVM by introducing a fuzzy membership to reduce the influence of noises or outliers are found to be slightly less
accurate than those of SVM in the current analysis of RTE cases. The reason might be attributed to the high discreteness of the

sample data in the current study.

1. Introduction

Reservoir-triggered earthquake (RTE), or reservoir earth-
quake (RE) in brief [1-3], also called as reservoir-induced
earthquake (RIE), was caused by impounding water in reser-
voir created by the construction of dam across rivers. The
first case of RTE was pointed out by Carder, which happened
at Lake Mead in the USA [4]. Over the past decades, about
130 suspected cases of RTE have been reported in the world
including the USA, India, Greece, Egypt, and New Zealand
[3]. Among them, about 100 cases were universally acknowl-
edged as RTE, since they were very hard to be distinguished
from natural earthquakes. China is among the countries most
prone to earthquakes, where about 40 RTE cases have been
reported so far. They have brought significant threats to the
safety of large dams and consequently are great hazards to
the life and property of local residents [5], especially in the
west of Sichuan province and the northwest of Yunnan prov-
ince, where large dams have been built or are under construc-
tion in high density. It is necessary for dam engineers to
know a reasonable prediction for the magnitude of RTE in
order to assess the dam behavior subjected to this type of

seismic load. An effective prediction on the possibility of
RTE and its magnitude in case of occurrence is thus essential
in the design of large dams for the safety of life and property
in related areas.

Like natural earthquakes, the mechanism of RTE is
extremely complicated and remains almost completely
unknown to seismologists. Since the occurrence time of
RTE is very difficult to be predicted, previous studies on
RTE have mainly focused on the prediction of its location
and magnitude. Through extensive studies by seismologists,
it has been widely acknowledged that RTE was closely influ-
enced by combined factors including lithology, mechanical
parameters of deep rock mass, the stress state of rock mass,
and pore water distribution [6] However, due to the difficulty
in the measurement and quantification of those factors, great
challenges have been posed on the analysis of RTE [7, 8].

In spite of this, various analytical approaches have been
proposed on the study of RTE in the past decades, such as
mechanical model method [7], geological analogy method
[7], probabilistic and statistical method [8-10], artificial
neural network method (ANN) [11, 12], and artificial
intelligence technique [13]. Among them, the mechanical
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model method is limited by the fact that the nonlinearity of
rock, parameter variation, and pore water distribution as well
as boundary conditions cannot be taken into full consider-
ation. Therefore, the geological analogy method is proposed
based on analogy with RTE cases, in terms of hydrology,
engineering geology, and infiltration conditions. The possi-
bility of RTE, as well as its magnitude and location in case
of occurrence, is thus able to be analyzed. However, founda-
tional mechanical principles like the force equilibrium condi-
tion cannot be included in this method. The probabilistic and
statistical method [8], proposed based on Bayes’ theorem,
can also be used to evaluate the occurring probability of
RTE. It is based on statistical analysis of previous RTE cases,
and thus the accuracy of the result is strongly dependent
upon sample numbers and prior probability of RTE. The arti-
ficial neural network method has strong ability in nonlinear
mapping and thus shows great advantages in dealing with
complex nonlinear relations in complicated problems,
whereas the uncertainty of network structures and problems
related to overfitting and underfitting have limited its appli-
cation in the analysis of RTE.

The support vector machines (SVM) is a powerful
machine leaning method firstly proposed by Vapnik in
1995 [14]. It is derived from the statistical learning theory
and has strong generalization capability. The best compro-
mise between the complexity of model and learning ability
could be achieved with the employment of structure risk
minimization (SRM) principle, which is developed from
the traditional empirical risk minimization (ERM) method
[14-16]. SVM was applied initially to pattern classification
and later to data regression problems. By introducing a
kernel function, the original application of SVM in the
optimal classification of linear separable data is extended
to nonlinear problems. They could be solved by transferring
to a quadratic programming (QP) problem with constraint
condition [16]. With its excellent performance in dealing
with nonlinear and high-dimensional problems, SVM has
been widely applied in multiple fields, such as image
recognition, classification, time series prediction, inverse
analysis of geotechnical parameters, and hydrological fore-
casting [17-21]. However, conventional SVM is found very
sensitive to noises or outliers. As a result, Lin and Wang
[22] proposed fuzzy support vector machines (FSVM) by
applying a fuzzy membership to each input point to reduce
the effect of noises or outliers. In order to reduce the depen-
dence of membership function on the geometric shape of
sample data, Tang et al. [23] and Du et al. [24] introduced
a new membership function based on the distance between
a sample and its class hyperplane in FSVM. To further reduce
the membership of nonsupport vectors and increase that of
support vectors, Ding and Gu [25] proposed a new algorithm
where a dual membership based on hypersphere was
employed. For multiclass classification problems, Tsang
et al. [26] defined a degree of membership of a sample to dif-
ferent classes by introducing a fuzzy membership to each
training sample, while Abe [27] classified a sample into a
multilabel class whose membership function is the largest.

In this study, we attempt to extend the application of
SVM and FSVM to predict the magnitude of RTE, based on
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dataset collected on reservoirs and RTE cases in China.
Habibagahi [12] and Samui and Kim [13] have also used
artificial intelligence techniques to predict the magnitude
of induced earthquakes. In their models, only limited factors
on reservoir parameters such as comprehensive parameter
and maximum reservoir depth are taken into account. While
geological factors, which are of great significance in the
triggering of earthquakes, are not considered. Therefore, an
effort has been made to carry out this research covering mul-
tiple geological factors of reservoir area and reservoir param-
eters for providing a step forward of research on RTE.
Dataset on 100 large and medium-sized reservoirs, covering
the 48 RTE cases, are collected from reputed enterprises
and published literatures. Computational models are estab-
lished based on SVM and FSVM. The analytical hierarchy
process (AHP) [28] is employed to quantify geological fac-
tors based on geological analysis, providing the input data
of the computational models. Three numerical tests are car-
ried out to test the performance of the established models.
Results obtained from the SVM and FSVM models are ana-
lyzed and compared in detail. Discussions are made on the
applicability of SVM and FSVM, which offers an effective
approach in the field of RTE prediction.

2. Mathematical Models and
Numerical Procedure

2.1. The SVM and FSVM Models. The solution of FSVM clas-
sification can also be transferred into a quadratic program-
ming (QP) problem like conventional SVM. By solving the
dual problem of QP, we can easily obtain the solutions of
FSVM. The calculation algorithm was proposed by Vapnik
[15] and Deng and Tian [16], which can be summarized into
the following steps:

(1) Assume a training set T{(x;,y,), (X3, ¥5)» ---» (Xp»
y)} € (XxY), where x;eX=Rn,y;eY={-1,1},
i=1,2,...,1 Introduce a fuzzy membership s, (0 <
s;<1,i=1,2,...,1) [22], which can be regarded as
the attitude of corresponding training point i toward
one class. If s;=0, it indicates that training point i
does not absolutely belong to one class; on the con-
trary, s;=1 indicates that training point i is
completely within one class. The method of deter-
mining the value of s; for training point i will be
described later. For this binary classification (BC)
problem, it can be transformed into QP problems
with constraint condition including the fuzzy mem-
bership. The corresponding dual problem can be
expressed as

I

. 1 1 1
min (5 2. D vk (%) = “j) ’ (1)
i=1 j=1 =
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where C is the regularization parameter, « is the Lagrange
multiplier, K is a kernel function, and s; is the fuzzy mem-
bership. When s;=1, this dual problem is equivalent to
standard SVM.

Among several kernels, polynomial kernels and radial
basis function (RBF) kernels are often used for pattern classi-
fication. While in most cases RBF kernels are found to
perform better [27], it can be expressed as

K(x, x') =exp <—Hx+2x"|2>, (3)

where x is the input vector and o? is the parameter of the RBF
kernel function.

By solving the above QP, the optimal solution of this dual
problem could be expressed as a* = (af,a;, ...,
which the component «; corresponds to sample T'.

(xl*)T, in

(2) The construction of optimal hyperplane based on
optimal solution a* of above QP, the optimal hyper-
plane can be achieved as

w*x+b" =0, (4)

where w* = ¥ y.a is the weight of sample i, and b* can be
calculated by choosing some positive a7 less than C, based on
the following formula

I
b=y~ Zyioc;‘K(xi X)) (5)

i=1

(3) The determination of the decision function f(x) for
binary classification, the decision function f(x) can
be expressed as

x) =sgn (Zyl ochx+b> 6)

The determination of the fuzzy membership s; is crucial
to the performance of FSVM. At present, s; is mostly deter-
mined based on the membership function, whose value is
determined by the distance between the sample and its class
center [22]. But this method is irrational for dataset with
nonspherical-shape distribution. In the current study, we
shall employ a new membership function proposed by Du
et al. [24] and Ding and Gu [25], where the basic idea is to
introduce the class hyperplane to substitute the cluster
center. The class hyperplane is defined through the cluster
center, and perpendicular to the line across the positive and
negative cluster center, as shown in Figure 1. The fuzzy
membership is then stated as the distance between the
sample and the class hyperplane. In this way, the depen-
dence of membership function on the geometric shape of
sample data is greatly reduced, and thus the generalization
of FSVM is significantly enhanced.

Class
hyperplane

Support
vectors

Optimal
hyperplane

O Negative
class

® Positive
class

‘@ Noises or
outliers

F1GURE 1: Scheme of SVM and FSVM (for 2-dimensional case).

Based on this new method, for nonlinear classification
problems, the distance between the sample i and the class
hyperplane, denoted by d,,, d,_, respectively, for samples in
positive, negative class, as shown in Figure 1, can be obtained
by using the kernel technique, as follows:

1 n, 1 n_ 1 n, n,
di, = _ZK(x]’xl) —ZK(x],x) e K (x;, x;)
+ j=1 n_i3 A=
1 n, n,
+ K(x;, ,
n.n_ i=1 j=1 (x] xl)
1 n, n_ 1 n, n,
dio= | =D K(xpx) = ) K(xpx) + -5 D ) K(x; %)
n, o - noia A
1 n, n,
- K(x;, x;)|,

where n, denotes the number of samples in positive class,
n_ denotes the number of samples in negative class, and K
is the kernel function.

The maximum distance between positive samples and the
class hyperplane was denoted as D, = max (d,, ), and that for
negative samples is denoted as D_ = max (d,_).

Consequently, the membership degree of samples in each
class can be defined as:

d,
1- D ’_: (for x; within positive class),

s = * (8)

1- ﬁ (for x; within negative class),

where § is a very small positive number to avoid the case
s;=0 and to guarantee 0 <s; < 1.

It can be seen from (8) that s; gets smaller when sample x;
locates farther away from the class hyperplane and vice



versa. However, if a sample x; is far away from its class
hyperplane and not within its own class, it will most likely
become a noise or outlier point and can severely affect the
position of optimal hyperplane in standard SVM. While in
FSVM, with the introduction of the fuzzy membership s;,
which becomes very small for noises or outliers, the effect
of noises or outliers could then be eliminated on the position
of the optimal hyperplane.

In addition, the position of the optimal hyperplane
obtained with SVM is significantly influenced by the choice
of the kernel function, the regularization parameter, and
the relaxation coefficient, which need to be optimized first
before applying [17, 18, 29].

2.2. Numerical Procedure

2.2.1. Quantitative Analysis on Parameters and Grading for
the Magnitude of RTE. The geological influence factors on
RTE include the composition and structure of rocks at the
base of the reservoir, the distribution, attitude, mechanical
characteristics, growth level, and the present activity of the
fault, as well as the hydrological conditions [30]. Neverthe-
less, those factors are very difficult to quantify, which brings
great difficulty in the quantitative analysis of RTE. In the
current study, the analytical hierarchy process (AHP) [28],
which is an efficient way to deal with unquantifiable param-
eters, is employed to quantify these influence factors. Those
geological factors are represented by natural number after
employing AHP.

2.2.2. Data Normalization. To prevent the models from dom-
ination by input variables with large value for different
dimension, the original value of sample data is normalized
by the following equation.

Xij ~ Hy,
5y = 2, )
X,

where x;; is the original value of sample, x;;” is the scaled

value of sample, p; is the expectation of sample, and o,; is
the standard deviation of sample.

2.2.3. The Establishment of the SVM and FSVM Models. Since
there are multiple classes in the prediction models of RTE,
the SVM and FSVM models involve multiple classifications.
For multiple classifications, SVM and FSVM models could
be established by “one-against-all” and “one-against-one”
ways [16].

Based on previous mathematical models and numerical
procedure, the algorithm of SVM and FSVM is shown in
the flow chart of Figure 2, for which computing codes can
be programmed.

3. The Prediction Models of RTE Magnitude
Based on SVM and FSVM

3.1. Data Construction. Dataset on 100 large and medium-
sized reservoirs in China, covering the 48 well-documented
cases of RTE, are collected from reputed enterprises and pub-
lished literatures for the current study. Based on them, 11
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FIGURE 2: Flow chart of FSVM and SVM algorithm.

influence factors, including the geological factors and reser-
voir parameters, are taken into account in the analysis of
RTE, as discussed below.

3.1.1. Dam Height and the Capacity of Reservoir. Through
statistical analysis of RTE cases, it has been found by
Jiang et al. [30] that RTE has no obvious relation to
dam height and the capacity of reservoir. This means that
RTE may happen in any reservoir area regardless of its
capacity. For example, the Dengjiagiao reservoir, located
in Hubei province in central China, has triggered an
earthquake of Ms 2.2, while the capacity of reservoir is
only 400x10°m’ [6].

3.1.2. Lithology at the Reservoir or Epicenter. To study the
influence of lithology at the reservoir area or the epicenter,
we have performed statistical analysis on 48 RTE cases. It
is found that the lithology in the epicenter is widely dis-
tributed, while a sufficient number of samples are essential
to enhance the accuracy of SVM analysis. As a result,
rocks with close lithology features are classified together.
For example, limestone and dolomite are considered
together as carbonatite, schist and slate are classified into
one category, and pyroclastic rock and tuff are classified
as volcanic rock. In this way, more than 10 types of rock
are defined for lithology at the reservoir area or the
epicenter based on those RTE cases. The representative
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TasLE 1: Lithology classification.

TaBLE 3: Fault type.

Lithology at reservoir area and epicenter Representative value Fault type Normal fault Reverse fault Strike-slip fault
Carbonatite 1 Representative 1 5 3
Sandstone 2 value
Clay rock 3
Gneiss 4 TaBLE 4: Fault development degree.
Schist and slate > Fault development degree Representative value
Quartzite 6

Very developed 1
Marble 7
Granit N Developed 2

ranite

Slightly developed 3

Basalt 9
. Undeveloped 4

Oceanic rock 10

Very undeveloped 5
Others 11

TaBLE 5: Fault activity.
TaBLE 2: Rock mass integrity.

Fault activity Active Medium Inactive
Rock mass grade I I I v \% Representative value 1 5 3
Representative value 1 2 3 4 5

TaBLE 6: Fault permeability.

yalues. of lithology are shown in Table 1, and those of rock Fault permeability Well Medium Bad
integrity are shown in Table 2. -

Representative value 1 2 3

3.1.3. Type and Characteristics of Fault. The condition of
joint and fault has strong influence on the integrity of the
rock mass and thus the magnitude of RTE. It is known that
surface rock stratum with developed joints and broken rocks
has high permeability, for which microearthquake or ultra-
microearthquake might be triggered. In relatively deep
rock stratum, areas with active or tensional faults have
high permeability, and water permeating from reservoir
into the deep rock mass might change the pressure distri-
bution of pore water. In this case, the earthquakes trig-
gered are mostly weak and moderate ones. There are
normally a large number of faults existing in the reservoir
area. Thus, only some main faults are selected as the analyz-
ing subjects considering their scale and influence degree. The
representative values related to the type, the development
degree, the activity level, and the permeability of the fault
are shown in Tables 3-6, respectively.

3.1.4. Tectonic Stress State at the Reservoir Area. It is found
that RTE has no obvious relation to tectonic stress state
at the reservoir area [30]. This means that RTE could take
place not only at areas with active tectonic activity but
also at inactive areas. However, enormous elastic strain
energy can be stored within rock mass in areas with high
local stress. The state of rock mass may become close to
rupture or slip, which could lead to relatively strong earth-
quakes. The representative values of different regional
stress state are listed in Table 7.

3.1.5. The Background of Seismicity at Reservoir Area. Based
on statistical analysis of RTE, it is found that RTE tends to
occur at weak seismic regions, and very few RTE have been
reported in relatively strong seismic regions [30]. This is
owing to the fact that the strain energy could be easily

TaBLE 7: Tectonic stress state.

Tectonic stress state Representative value

Compression and twist 1
Transtension 2
Shear 3
Unobvious 4

TABLE 8: Seismic activity background.

Seismic activity background Representative value

No seismicity 1
Weak seismicity 2
Moderate seismicity 3

4

Strong seismicity

released via common earthquakes at relatively strong seismic
regions. However, RTE is still likely to happen in those areas,
under the condition of certain geological structures. The
representative value related to the background of seismicity
is shown in Table 8.

3.1.6. Grading for the Magnitude of RTE. It is necessary to
classify the magnitude of RTE in order to obtain sufficient
samples in each class. From the monitoring data on
RTE, it is found that the maximum magnitude of RTE is
6.1, denoted in surface wave magnitude (Ms). Combined
with the research by Wang et al. [10], the magnitude of
RTE is divided into 5 grades, which are strong seismicity
(Ms>6.0), moderate seismicity (4.5<Ms<6.0), weak



seismicity (3.0 <Ms<4.5), microseismicity (0.0 <Ms< 3.0),
and no seismicity (Ms=0.0). The 5 grades are denoted
by 5 growing natural numbers, from 1 to 5, respectively.

It should be noted that, since the number of RTE cases is
very limited as 48 ones in China at present, the number of
grades should thus be controlled to obtain sufficient number
of samples in each class, so that the accuracy of the developed
models could be guaranteed.

Some samples (out of the database on 100 reservoirs)
on the quantified data of the geological factors and
reservoir parameters are shown in Table 9, including
earthquake grade classified.

3.2. Numerical Experiments and Results. Since the magnitude
of RTE is classified into 5 grades as mentioned above, the
SVM and FSVM models are involved in a 5-class classifica-
tion problem. Considering the limited number of samples,
the “one-against-one” method, which can reduce the effect
of strongly uneven samples on classifier, is selected to
construct the SVM and FSVM models. Consequently, 10
binary classifiers, that is, 1-2 BC, 1-3 BC, 1-4 BC, 1-5 BC,
2-3 BC, 2-4 BC, 2-5 BC, 3-4 BC, 3-5 BC, and 4-5 BC, need
to be constructed.

To verify and validate the numerical models established
with SVM and FSVM, three numerical tests are carried out.
In each test, 90 reservoirs are randomly selected out of the
total dataset to provide the data for the training set in the
construction of the SVM and FSVM models. Data of the
remaining 10 reservoirs are then used as the prediction set
to test the accuracy of SVM and FSVM models.

The first training set is used to train the established SVM
and FSVM models first. Through analysis and comparison of
output results, it is found that the RBF works well as the ker-
nel function. The corresponding values of parameter ¢ in (3)
and regularization parameter C in (2), which could effectively
affect the performance of the SVM and FSVM models, are
determined through a threefold cross validation method [15].

After the optimization of the parameters, the optimal
parameters values of 0> and C for all BCs, obtained from
the first training set for the SVM and FSVM models, are
shown in Table 10. During the process of the threefold cross
validation, the accuracy of SVM and FSVM models for the
training set and the validation set is shown and compared
in Table 11. The accuracy is defined as the matching percent-
age of the predicted set of labels and the true set of labels in
each BC. Based on the optical parameters, the output of the
SVM model is completely identical with the sample data for
the training set. While for the validation set, the accuracy
remains above 85%, except for 3-4 BC with the accuracy of
61.97%. At the same time, the accuracy of FSVM with the
optical parameters remains above 85% for training set and
above 87.59% for the validation set except for 3-4 BC with
accuracy of 64.74%. Consequently, under this dataset, the
performance of SVM model is slightly superior to that of
FSVM model.

Based on the optimal parameters above, the SVM and
FSVM models should be trained again by the training set;
results show that no error happens out of the 10 BCs for
training set, while for the FSVM model, only 2 BCs do not
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exist error, the maximum error rate reaching 14.29% and
the average error rate amounting to 4.67%.

We then use the trained SVM and FSVM models to pre-
dict the magnitude of RTE of the 10 reservoirs in the predic-
tion set as described above. The results obtained from the
FSVM and SVM models are shown in Table 12.

It can be seen from Table 12 that, except for Ankang
reservoir and Liujiashan reservoir, the prediction results
of the 10 reservoirs are identical for SVM and FSVM
models in the current experiment. Among them, Chongbahu
reservoir, Fengjiashan reservoir, and Bikou reservoir have no
reported cases of RTE (denoted by 5 according to the quan-
tification of RTE magnitude as described before). Both of
the two models provide accurate results of RTE predictions
for those reservoirs. In addition, the two models also provide
accurate predictions on the grade of RTE for some of reser-
voirs with previous RTE cases, including Wujiangdu reser-
voir, Three Gorges reservoir, and Zipingpu reservoir, as
shown in Table 12. While for Ankang reservoir and Liujiaxia
reservoir, where no RTE has been monitored, the prediction
grade is grade 3 (3.0 <Ms<4.5) by FSVM model for the for-
mer and by SVM model for the latter, higher than the actual
data, which suggests weak seismicity; whereas the prediction
is grade 5 by SVM model for the former and by FSVM model
for the latter, identical with monitored data. For Danjiang-
kou reservoir, previous RTE with the magnitude of Ms 4.7
has happened. The prediction grade is grade 3, correspond-
ing to RTE with 3.0 <Ms<4.5. The prediction grade by the
two models is also 3 for Wuxijiang reservoir, where actual
RTE with the magnitude of Ms 2.8 was observed. To sum
up, 7 samples have been predicted accurately by SVM and
FSVM models among the 10 prediction samples in the cur-
rent experiment. The errors for the left 3 samples are within
small range.

In order to test the robustness of the models, another two
training processes are undertaken with data selected in the
same way as mentioned above, called group 2&3. The values
of 0% and C remain the same as those obtained from the opti-
mization processes with the first training set for the SVM and
FSVM models, respectively.

After applying the second training set on the SVM model,
the results of training process show that no BC exists error
out of the total 10 BCs. The accuracy for the training set
reaches to 100%. The trained SVM model is then employed
to predict the magnitude of RTE of the 10 reservoirs in the
prediction set, for which the results are shown in Table 13.
It can be seen that 8 results have been predicted correctly,
with the accuracy rate reaching 80%. The error of the results
is kept in a small range of 1 grade.

While for the FSVM model, in the training process, only
2 BCs do not exist misjudgment among the 10 BCs. The max-
imum and average error rates are 14.29% and 4.74%, respec-
tively. The prediction results with FSVM in the prediction set
are also shown in Table 13, where it can be seen that only two
of the results (on Shenwo reservoir and Dongfeng reservoir)
are different from that of SVM by one grade, on which FSVM
has provided accurate prediction with the accuracy of 80% as
well, in spite of a little bit lower accuracy in the training set
than that with the SVM model.
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TaBLE 10: Optimal parameters for respective BCs. TaBLE 13: Prediction results of RTE with group 2.
BCs a2 e C a? s C Reservoir name seisgll?zftwe(ja de seis}r)liieggtgjade
1-2 BC 0.0039 2.0 0.0039 2.0 '8 SVM ESVM
1-3 BC 0.0039 2.0 0.0039 2.0 Xinanjiang 5 5 5
1-4 BC 0.0039 2.0 0.0039 2.0 Jinshuitan 5 5 5
1-5 BC 0.0039 2.0 0.0039 2.0 Gezhouba 5 5 5
2-3BC 4.0000 1024 0.3536 128 Fengshuba 5 5 5
2-4BC 1.0000 4.0 1.4142 16.0 Tuoling 3 3 3
2-5BC 0.5000 2.0 0.7071 2.0 Shenwo 2 2 3
3-4 BC 0.0156 2.0 0.0884 128.0 Dongfeng 4 3 4
3-5 BC 0.7071 16.0 0.5000 8.0 Ertan 3 3 3
4-5BC 0.5000 16.0 0.5000 4.0 Panjiakou 4 5 5
Lijiaxia 3 3 3

TasBLE 11: Optimal output for respective BCs in cross validation test.

SVM FSVM
Training Validation Training Validation
BCs set set set set
Accuracy Accuracy Accuracy Accuracy
(%) (%) (%) (%)
1-2 BC 100 100 85 100
1-3 BC 100 100 95.69 100
1-4 BC 100 100 93.64 100
1-5BC 100 100 97.70 100
2-3BC 100 88.89 96.39 88.89
2-4 BC 100 85.71 97.62 90.48
2-5BC 100 97.92 97.92 97.92
3-4 BC 100 61.97 100 64.74
3-5BC 100 93.79 98.25 87.59
4-5BC 100 94.74 98.25 94.74

TaBLE 12: Prediction results of RTE with group 1.

Predicted
seismicity grade
SVM FSVM

Observed

Reservoir name .
seismicity grade

$3]

Chongbahu
Ankang
Fengjiashan
Liujiashan
Bikou
Danjiangkou
Wuxijiang
Wujiangdu
Three Gorges

W W W R NN UL
W W W W W U1 W U U1 U
W W W LW W U1 U1 L1 W

Zipingpu

Based on the training set in group 3, no error is found for
the 10 BCs in the trained SVM model. While in the FSVM
model, no error is found in 2 BCs. The maximum and aver-
age error rates are 14.29% and 4.97%, respectively, for the left

TaBLE 14: Prediction results of RTE with group 3.

Predicted
Reservoir name . Ol')s?rved seismicity grade
seismicity grade SVM FSVM
Gongzui 5 5 5
Jiangkou 5 5 5
Huanglongtan 5 5 5
Shizitan 5 5 5
Qianjin 3 3 4
Huangshi 4 4 4
Kezier 2 2 2
Yunpeng 3 3 3
Xiaowan 3 3 3
Nanshui 4 2 2

8 BCs. The results of the trained SVM and FSVM models
applied in the prediction of the magnitude of 10 RTE in the
prediction set are shown in Table 14. It can be seen that the
accuracy is 90% for SVM and 80% for FSVM, with errors
limited within 1~2 grades for the two models.

Through the results obtained with the SVM and FSVM
models in the three tests, it can be seen that both the two
models are proved to be effective in the prediction of the
magnitude of RTE with high accuracy. Through comparison,
it is further found that SVM model is slightly superior to
FSVM in the current study on the prediction of the magni-
tude of RTE with dataset on RTE in China. This is in contra-
diction with the findings in [24]. In theory, FSVM model is
superior to SVM in minimizing the effect of noises or outliers
by introducing the fuzzy membership. However, it cannot be
concluded that the FSVM model is superior to SVM in gen-
eral. If the training samples are of high reliability and high
discreteness, the introduction of the fuzzy membership
might decrease the discreteness of the data and underesti-
mate the effect of samples far away from the optimal hyper-
plane and thus reduce the accuracy of classifier. This might
explain the reason of the findings in the current study in
terms of the comparison between the two models. Therefore,
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the choice between SVM and FSVM models in the applica-
tion of classifying problems should be made according to
the discreteness of data. For samples with high discreteness,
SVM is likely to be superior to FSVM and vice versa.

4. Conclusions

In this study, we have applied the SVM and FSVM
methods as an effective approach in the prediction of the
magnitude of RTE. Dataset on 100 reservoirs in China,
covering the 48 RTE cases, are collected and used as the
database. The main 11 influence factors of RTE, including
lithology, rock mass integrity, fault characteristic, tectonic
stress state, and seismic activity background, are summarized
and quantified with the analytical hierarchy process (AHP).
Multiple numerical tests are carried out to test the perfor-
mance of the established SVM and FSVM models in the pre-
diction of the magnitude of RTE. The main conclusions
obtained are summarized below.

Both the SVM and FSVM models are found to be
effective in the prediction of the magnitude of RTE with
high accuracy. Moreover, the results obtained by SVM
are of slight higher accuracy than those by FSVM for the
current analysis of RTE cases in concern. This might be
caused by the introduction of the fuzzy membership in
FSVM. 1t is effective in the minimization of the influence
of the noises or outliers in some problems and yet is not
favorable when dealing with samples with high discrete-
ness. Therefore, the discreteness of samples needs to be
considered when choosing between the SVM and FSVM
models in practical problems. Based on the current study,
the SVM model is found to be slightly superior to FSVM
in the field of RTE prediction.

It should be noted that the magnitude of RTE is analyzed
in terms of its maximum value in the present study. In
general, besides the main shock, there could be multiple fore-
shocks and aftershocks in the process of RTE, whose magni-
tude and epicenter are quite different with those of the main
shock. To predict the magnitude of foreshocks and
aftershocks, the SVM and FSVM could also be employed;
however, the data has to be established based on new data
collected on the features of faults and locations of foreshocks
and aftershocks. Furthermore, the SVM and FSVM models
for the prediction of the magnitude of RTE are constructed
based on the mass data of engineering geology and hydrol-
ogy geology conditions. Thus, in order to obtain predic-
tion results with high accuracy, it is essential to collect
reliable data of sufficient samples on the main factors
related to RTE, including the geological conditions at the
reservoir area and the features of water permeation from
reservoir to deep rock.

In addition, the current work is not on the prediction of
the time history of RTE, which plays an important role in
engineering practices. However, in theory, if we could collect
and monitor sufficient data on the evolution of hydrology
parameters and geological properties of rocks in a certain res-
ervoir area, obtain their trends via means of numerical anal-
ysis, and make the analogy with the time series of RTE cases,
the evolution and prediction of RTE in this area could be

studied intensively. Therefore, the current study also provide
a creative idea for the prediction of the time history of RTE,
while the main challenge lies in the access to reliable evo-
lution trends of the multiple hydrological and geological
factors involved.
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