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Abstract

Theorizing in ecology and evolution often proceeds via the construc-
tion of multiple idealized models. To determine whether a theoretical
result actually depends on core features of the models and is not an
artifact of simplifying assumptions, theorists have developed the tech-
nique of robustness analysis, the examination of multiple models look-
ing for common predictions. A striking example of robustness analysis
in ecology is the discovery of the Volterra Principle, which describes
the effect of general biocides in predator-prey systems. This paper de-
tails the discovery of the Volterra Principle by robustness analysis. It
considers the classical ecology literature on robustness and introduces
two individual-based models of predation, which are used to further
analyze the Volterra Principle. The paper also introduces a distinc-
tion between parameter robustness, structural robustness, and repre-
sentational robustness, and demonstrates that the Volterra Principle
exhibits all three kinds of robustness.

1 Introduction

Complex biological phenomena rarely admit of single, fully unified theoreti-
cal treatments. Instead, biologists often find themselves studying these phe-
nomena using multiple, highly idealized mathematical models. These models
may highlight different causal features, may be formulated at different levels
of abstraction, or even may employ different mathematical frameworks in
their representations of biological systems.

This use of multiple models presents special confirmation-theoretic chal-
lenges. Since all of the models employed in these contexts are highly ide-
alized, it is useless to look for which of the models is a true description or
is isomorphic to the target system. The theorist knows ahead of time that
these relations cannot hold. Further, she is in possession of multiple models



which make incompatible assumptions. Thus the relationship between the
theorists’ models and target systems is complex and may not be describable
in simple confirmation-theoretic terms.

Because the different models are highly idealized, theorists also confront
the problem of determining “whether a result depends on the essentials of
the model or on the details of the simplifying assumptions.” Are the results
generated by a set of models reliable, or are they artifacts of the analysis?
(Levins, 1966) To address these problems, theorists have developed the tech-
nique of robustness analysis. This technique involves studying a number of
similar, but distinct models of the same phenomenon trying to find common
predictions among them. In his famous discussion of robustness analysis,
Richard Levins describes what happens when the same prediction is made
using multiple models.

[I]f these models, despite their different assumptions, lead to
similar results, we have what we can call a robust theorem that
is relatively free of the details of the model. Hence, our truth is
at the intersection of independent lies. (1966, 20)

There is a small, but growing philosophical literature about robustness
analysis. Starting from the pioneering work of Levins (1966) and William
Wimsatt (1981), recent discussions have clarified the aims and methods
of robustness analysis, discussed whether robustness analysis has a role in
confirmation, and exactly what this confirmation-theoretic role consists of.
(Orzack & Sober, 1993; Odenbaugh, 2003; Weisberg, forthcoming; Forber,
in preperation)

Despite having a schematic for robustness analysis and despite the im-
portant discussions of RA’s possible confirmation-theoretic role already in
the literature, the philosophical literature has few if any detailed discussions
of the actual robustness analyses carried out by scientists. Thus the primary
purpose of this paper is to explain in detail the discovery of an important
biological principle called the Volterra Principle by robustness analysis. We
will discuss how the Volterra Principle was discovered, why ecologists believe
it to be true, and conduct some further robustness analysis by introducing
two novel individual-based models of predation. In addition, we will intro-
duce a distinction between parameter robustness, structural robustness, and
representational robustness and show that the Volterra Principle exhibits all
three kinds of robustness.



2 The Lotka-Volterra Model of Predation

Predation is a much studied ecological phenomenon.! It is of great interest
to ecologists because it often represents a force that keeps populations below
their environment’s carrying capacities. It is also a factor which can account
for oscillation and other periodic dynamics of populations in which there is
no external stimulation such as in unchanging environments. (Ricklefs &
Miller, 2000) Theoretical ecologists are interested in studying how predation
leads to these phenomena. They construct models to study those factors that
control the maximum population size as well as the phase, amplitude and
frequency of oscillations in populations. Naturally, some of these factors
must be determined empirically, but there is also much that can be learned
by analyzing clusters of models.

We have chosen to focus our discussion on predation because it provides
an especially striking example of a robust theorem called the Volterra Prin-
ciple. This principle was discovered by Vito Volterra, one of the founders
of mathematical biology, and has been subsequently discussed by many key
figures in contemporary mathematical ecology including Robert MacArthur
(1966), John Maynard-Smith (1974), Joan Roughgarden (1979, 1997), and
Robert May (2001). These theorists do not always use Levins’ term ‘ro-
bust theorem,’ but their discussions of predation, biological control, and the
Volterra Principle make it clear that they believe the principle is robust.
Before investigating this principle, we begin by discussing the model from
which the principle was first discovered.

Volterra (1926a, 1926b) and Alfred Lotka (1956) independently proposed
the first model of predator-prey interactions that we will discuss. This is
probably the simplest possible model of predator-prey interactions, but even
this simple model already displays rich dynamics as well as the property
of greatest interest to us in this project. Volterra was explicit about the
grounds for constructing such a simple model. He wrote:

As in any other analogous problem, it is convenient, in order
to apply calculus, to start by taking in to account hypotheses
which, although deviating from reality, give an approximate im-
age of it. Although, at least in the beginning, the representation
is very rough ...it is possible to verify, quantitatively or, pos-

LFor a comprehensive review of the classical literature, see T. Royama, 1971. For more
contemporary discussions including the history of predator-prey modeling, see Berryman,
1992; Hanski, Henttonen, Korpimaki, Oksanen, & Turchin, 2001; Briggs & Hoopes, 2004;
Jurrell, 2005.



sibly, qualitatively, whether the results found match the actual
statistics, and it is therefore possible to check the correctness
of the initial hypothesis, at the same time paving the way for
further results. Hence, it is useful, to ease the application of cal-
culus, to schematize the phenomenon by isolating those actions
that we intend to examine, supposing that they take place alone,
and by neglecting other actions. (Volterra, 1926b, translation G.
Sillari)

To understand these remarks and the ways that the Lotka-Volterra model
is a very simple way to representing predation, it is useful to think along
the lines of a modeler approaching the problem for the first time. We ask:
“What are the essential quantities and interactions that our model needs to
keep track of in order to represent predation?”

If we are going to treat predation as a population-level phenomenon as
Lotka and Volterra did, the primary quantities to keep track of are the size
of the predator and prey populations. Alternatively, we can keep track of
the population density, a quantity more easily measured empirically. We
will refer generically to these measures as species abundance.

The next step in thinking about the structure of the model is to describe
the intrinsic population dynamics of each species, or how the abundance of
each species changes over time. Because the two species interact, their pop-
ulation dynamics are coupled together. This is the essence of the predator-
prey interaction: the predators decrease the population of prey by eating
them, while the prey increase the population of predators by providing food.
Thus, in principle, we have six things to keep track of: the predator growth
and death rates, the prey growth and death rates, the effect of predation on
the population of prey, and the effect of prey capture on the population of
predators. If we set up our model in terms of rates of increase and decrease,
we can collapse intrinsic growth and death rates in to a single growth rate
for the prey and, a bit less realistically, a single death rate for the predators.
This will give us four quantities to keep track of.

Let V stand for the size of the prey population and P for the size of the
predator population. If we express these basic relationships with coupled
differential equations then we get the following basic equations:

dv
e [prey growth rate] — [capture rate of prey per predator|P (1)



dP
s [predator births per capture] P — [predator death rate] (2)

(after Roughgarden, 1979)

These equations provide a template for a large but tightly linked family
of models. Starting from the simple possibilities, the prey growth rate could
be linear, exponential, geometric, or logistic. The most typical death rate
of the predators in predation models is constant, implying an exponential
decay in the absence of prey. More complicated rate expressions are also
possible, including functional dependence on environmental parameters and
logistic decay when multiple sources of food are present. For the sake of
simplicity, we will only consider examples where the predator death rate
is constant, but we can modify the form of the intrinsic prey population
growth rate.

Of greater biological interest, at least when considering predator-prey
interactions, are the second term in equation (1) and the first term in equa-
tion (2), called the functional response and numerical response respectively.
(Holling, 1959) As we can see from the equation template, the functional
response is a rate, specifically the rate of prey capture per predator. The
simplest possible assumption is that the functional response is linear, or
that the number of prey capture increases linearly with increasing numbers
of prey. This simple assumption may be actually true over some ranges
(Korpiméki & Norrdahl, 1991) or when one is considering filter-feeding or-
ganisms, but more often than not is simply an approximation. Increasing
numbers of prey can create additional ecological interactions, not to mention
changing the foraging behaviors of the predators. More realistic assumptions
about the functional response have the rate of capture per predator decreas-
ing with increasing number of predators. Even under this assumption, there
are several different possibilities. For example, when prey are very abun-
dant, predators will eventually become satiated. Another possibility is even
more realistic: With very low numbers of prey, predators will lack the ex-
perience to be efficient hunters. With increasing numbers of prey, predators
will become more efficient at hunting. Ultimately, there will be a number
of prey beyond which the predators simply become satiated. (Tinbergen,
1960; Papaj & Lewis, 1993)

Finally, the numerical response term correlates predator births to the
number of prey captured. Because of this, the numerical response is itself
a function of the functional response. Specifically, the numerical response



depends on how many prey are in the population, how good the predators
are at capturing them, and how much energy from the prey captures can
be allocated to the production of new offspring. Naturally, this is a very
complex question and will depend on other environmental variables, other
stresses on the predator population, the energetic cost of offspring, etc.
Ecologists almost always collapse most of this complexity in to a single
parameter and represent the numerical response as a constant multiplied by
the functional response.

Now that we have considered how the basic template could in principle
be filled in, let’s return to the Lotka-Volterra (L-V) model itself and to
Volterra’s justification of it. As we said earlier, the L-V model is probably
the simplest way to make a population level predator-prey model because
we are going to fill in (1) and (2) with the simplest functions.

In our representation of the L-V model, r stands for the growth rate
of the prey population and m stands for the death rate of the predators.
The functional response is linear, expressed as a constant a multiplied by
V. Similarly, the numerical response is a linear function of the numerical
response so the whole numerical response expression can be written as a
parameter b multiped by the functional response, or b(aV'). The L-V model
is thus described with the following differential equations:

av

P rV — (aV)P (3)
dP
i b(aV)P —mP (4)

These equations describe a model which predicts one result: the predator
and prey populations will oscillate indefinitely, out of phase with one an-
other. Although for every set of parameter values with species co-existence,
there exists one equilibrium where the populations do not oscillate, this equi-
librium is unstable and hence the model populations continue to oscillate if
it is perturbed even slightly off of these equilibrium values.

Figure 1 plots the result of this oscillation for a set of parameter values
and initial conditions. Qualitatively, it can be described as follows: As the
prey population increases, the predator population increases as well, lagging
behind. However, eventually, the predators begin to overtake the prey by
continual feeding, which eventually begins to drive the prey population down
in size. This results, in turn, in the predator population being driven down
in size, and then the cycle repeats again. This undampened osscilation is the
first important property of the L-V model that we will test for robustness
in this paper. Before doing so, let us consider several more properties.
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Figure 1: Lotka-Volterra Model’s Oscillation

A second important property of the L-V model is neutral stability. The
model exhibits neutrally stable oscillations, which means that perturbations
away from the current oscillation amplitude will result in a new oscillation
beginning from the point to which the oscillation was perturbed. There is no
restoring force to bring the population back to the initial amplitude of the
oscillations. This can be seen by plotting several trajectories, corresponding
to different initial conditions, in the phase space of the model (see figure
2). Each loop is closed, corresponding to a stable oscillation. Perturbation
results in the formation of a new loop, corresponding to a new, neutrally
stable oscillation.

The third and fourth interesting properties of the L-V model concerns
the average number of predators and of prey during one full predator-prey
cycle, which corresponds, in this case, to the equilibrium abundances of
the species. We can solve for the equilibrium by setting each differential
equation to zero. After some algebra, we find that the equilibrium values
are:

V:% (5)
P=- (6)
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Figure 2: Phase-plot of Lotka-Volterra Model

These equations tell us that the primary factor determining the average
abundance of the prey is the death rate of the predators, and the primary
factor determining the average abundance of the predator is the growth rate
of the prey. The prey’s growth rate does not appear to matter for the average
size of the prey population. Similarly, the predator’s death rate does not
matter for the average size of the predator population. This is a surprising
result which tells us that the fate of the predator population is more tightly
connected to the prey population then it is to its own intrinsic properties.
The same is true for the prey population.

Finally, there is a fifth property of the model that is of special concern
to us in this paper, what we call the Volterra property, which is the key
component of the Volterra Principle. The Volterra property states that a
general biocide, any substance which has a harmful effect on both predators
and prey, will increase the relative size of the prey population. We can
derive the Volterra property from the L-V model by first expressing the
ratio of the average size of the predator population to the average size of
the prey population (5) as p. Decreases in p will correspond to increases in
the relative size of the predator population.

From equations (6) and (5) we can see that



rb

PZE (7)

The next step is to consider how a general biocide affects the model pop-
ulations. We can represent the introduction of a biocide as corresponding
to changes in r and m. Specifically, biocides decreases the prey growth rate
(r) and increases the predator death rate (m). Inspecting p, the expression
for the ratio of average densities, we can see that p(biocide) < p(normal).
(May, 2001; Roughgarden, 1979, 439) Since smaller values for p mean a
larger relative size of the prey population, the population of prey will in-
crease relative to the number of predators when a biocide is applied. This is
the Volterra property: the general biocide increases the relative size of the
prey population.

The Volterra property is a key component of the Volterra Principle,
the ecological theorem being tested for robustness in this paper. The full
formulation of the principle can be stated as follows:

Ceteris paribus, if the abundance of predators is controlled mostly
by the growth of the prey and the abundance of the prey con-
trolled mostly by the death of predators, then a general biocide
will increase the abundance of the prey and decrease the abun-
dance of predators.

Note that the Volterra Principle connects the Volterra property (the robust
property) with two antecedent conditions (the core structure). These an-
tecedent conditions should be familiar as the third and fourth properties of
the L-V model discussed above. As we will see through the various stages of
robustness analysis conducted in this paper, the core structure and robust
property always come together.

The Volterra Principle has great ecological significance. One very prac-
tical consequence of it is that pesticides will often increase unwanted pests,
such as the effect DDT had on citrus groves in southern California in the
1950s. When it was used as a treatment against scale insects, orchardists
learned that DDT makes the pest problem worse. The cottony cushion
scale insect (Icerya purchasi) population increased upon the application of
DDT because along with the scale insects, the DDT killed the vedalia bee-
tle (Rodolia cardinalis), a predator species keeping the scale insect under
biological control (Catagirone & Doutt, 1989; Elton, 1958).

The principle also has a deeper theoretical significance. It provides a
vivid example of how ecologically coupled systems can behave in unexpected,



non-linear ways. Interventions in such systems are difficult and, without due
care, can have the opposite effect of what was intended.

These five properties — undampened oscillations, neutral stability, pri-
mary dependence of the predator population size on prey growth rate, pri-
mary dependence of the prey population size on the predator death rate,
and the Volterra property — are very interesting and would be of great eco-
logical relevance if they were generally true of real populations. One way to
ask whether these properties hold generally would be direct empirical inves-
tigation. We could go out in to the field or design a laboratory experiment
and see if these predictions are close to what really happens. But there
is another approach to answering the question, one that is often conducted
prior to or in conjunction with direct empirical investigation. This approach
is robustness analysis. If we investigate related but distinct models, do we
continue to see these five properties?

The first step in answering this question is to examine a representative
sample of the models described by equations (3) and (4). One does this
by evaluating the behavior of the model when the parameters are set to
different values with each parameter set corresponding to a complete set of
trajectories in the model’s state space, or a single a model. This analysis
ensures that there is no special dependence of an interesting result on some
particular set of initial conditions. We call this kind of analysis parameter
robustness analysis, because it shows us whether the model’s behavior is
dependent on any particular set of parameters. Although we will not de-
tail the analysis here, all five of the properties are stable under parameter
robustness analysis of the L-V model.

A more fundamental forms of robustness analysis is what we call struc-
tural robustness analysis. In this kind of robustness analysis, the theorist
considers changes to the basic structure of the model by analyzing struc-
turally distinct models. In the next section, we describe one kind of struc-
tural robustness analysis for predation by considering the density-dependent
version of the L-V model. Many other examples could also have been cho-
sen, but this one is both striking and has played an important role in the
development of predation theory.

3 Predator-prey Model with Density Dependence

While considerations of structural robustness could lead us to add any addi-
tional function to the predator-prey equations, a natural ecological addition
would be to add a carrying capacity to the growth rate of the prey. If the
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predators did not exist, this carrying capacity indicates the maximum size
to which the prey can grow, typically limited by resources in the environ-
ment. Adding a form of carrying capacity can be accomplished by making
the prey population growth density dependent. A logistic growth term of
the form dV/dt = r(1 — V/K) is substituted for the first term in the prey
equation. (Leslie, 1948; Roughgarden, 1979; Berryman, 1992), yielding the
following equations:

dVv |4
dP

In the model described by these equations, there are three equilibria,
which correspond to the three possible outcomes in the long run. The first
equilibrium is extinction of both species. The second equilibrium involves
predator extinction, but the prey continues to survive and grow to its car-
rying capacity. The third equilibrium is of most interest to us and says that
both species can coexist. Solving these equations for this third, coexistence
equilibrium, we get the following expressions:

V= % (10)
Pt o o

Several things are worth noting about this equilibrium point. First and
most importantly, it is a stable equilibrium; there are trajectories leading
from the points in the vicinity of this equilibrium to this equilibrium. Once
the populations settle on this point, they will not fluctuate in size unless
they are perturbed. Population sizes in the vicinity of the other equilibrium
values (full extinction or predator extinction) will likewise settle down to
their respective equilibrium values.

The stability of this equilibrium can be demonstrated both analytically
and graphically. Analytically, we can see that the equilibrium is stable by
computing the eigenvalues of the Jacobian matrix. For all parameter sets
that bring the population to the third equilibrium, the eigenvalues have
a real part and the real part is negative. This corresponds to a stable
equilibrium point. (Roughgarden, 1979; May, 2001)

A graphical analysis is shown in figures 3 and 4, which are graphs of
the phase space for the density-dependent model with different values of
K. In the figure 3, all of the trajectories can be seen leading in to the

11
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Figure 3: Density-dependent Lotka-Volterra Model with K=750
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equilibrium point. In figure 4, the trajectories spiral in to the point. The
difference between these graphs is controlled by the magnitude of K. For
smaller values of K, there is no oscillatory tendency in the approach to the
equilibrium point. When K is larger, such as in figure 4, the trajectories
have an oscillatory tendency as they approach the equilibrium point. The
oscillatory tendency increased in magnitude as K is increased. As K — oo,
the model becomes the simple L-V model and, as we would expect, the
oscillations become undampened.

We are now in the position to make two comparisons between the density
dependent model and the L-V model. The first property of the L-V model
was undampened oscillations. In regions of state space where the density
dependent model predicts coexistence, the model shows either no oscillations
at all or dampened oscillations, all leading to a stable equilibrium. Even an
arbitrarily small amount of density dependence will destroy the undampened
oscillation. Thus the first property of the L-V model is not structurally
robust and cannot be formulated as part of a robust theorem.

Since the first property is not robust, the second property — neutrally
stability in the oscillations — cannot be robust either. What about the third
and fourth properties of the L-V model? Reexamining equations (10) and
(11), we discover a very similar result to the L-V model. The prey equilib-
rium V is identical to the Lotka-Volterra equilibrium. So the average and in
this case equilibrium size of the prey population is primarily dependent on
the death rate of the prey. The predator equilibrium P is more complex and
depends both on the r and on m. However, the primary dependence is on r
and we can conclude that the fourth property is also structurally robust.

Finally, let’s consider the most interesting property of the L-V model,
the Volterra property. Once again, we express the co-existence equilibrium
values as the ratio p, yielding:

. 5 _ r(abK —m) (12)
Vv aKm

Since r is in the numerator and m in the denominator, we can see that
the Volterra property, and by extension, the Volterra Principle holds for
this model. If we increase the death rate of the predators and decrease the
growth rate of the prey, this corresponds to smaller values of p, meaning
the relative size of the prey population increases. In fact, in this model the
Volterra Principle has an even more direct interpretation. In the L-V model,
the equilibrium values corresponded to the average size of each population.
However in the density-dependent model, the terms in p are the actual equi-
librium sizes (or population densities) of the two populations. Decreasing p

13



will have a direct effect on the equilibrium size of the populations, not the
average size over time.

Testing the structural robustness of a theorem is a matter of iteratively
varying the basic assumptions of a model to see whether the generalization
continues to hold. We could make many other modifications to the density-
dependent predator-prey model to test the structural robustness of proper-
ties 3-5. For example, we might examine other equations for the functional
and numerical responses, examine the effects of population stochasticity, in-
clude the possibility of predator satiation, and add terms describing they
prey’s ability to hide from the predators. These possibilities were explored
and shown to be robust in the classical ecology literature about predation.
Instead of following those analyses here, we now turn to a different kind of
robustness, which varies the representational framework of the model.

When a generalization continues to hold across different representational
frameworks, we call this representational robustness. One way to vary the
representational framework is to move from a model that is population-based
to one that is individual-based. Instead of representing dynamic dependen-
cies between population-level variables, such as the size of the predator or
prey populations, individual-based models represent the dynamic depen-
dencies between individual-level variables, such as the states of individual
predators or individual prey. In the next sections, we consider two novel
individual-based models of predation with which we tested the Volterra
Principle for representational robustness.

4 Individual-based Predator-prey Models

The models considered so far have treated predation as a population-level
phenomenon. These models aggregate the properties of many organisms
and represent them using just a handful of population-level state-variables.
They contain no explicit representation of individuals or their properties,
only the statistical aggregates of those properties. In contrast, individual-
based models (IBMs) explicitly represent individuals and their properties.
An IBM includes a set of state variables for each individual within the model
population. It also include assumptions about how individuals in the pop-
ulation behave, develop, and interact over time. Since IBMs often contain
thousands of variables, their dynamic consequences are usually investigated
via computational simulation rather than mathematical analysis.
Population-level models are often more elegant and amenable to math-
ematical analysis than IBMs, but their very simplicity can be limiting.
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Ecological systems have rich structure that is not readily visible from a
population-level perspective. Organisms within a population generally dif-
fer in their properties and life histories. Interactions between organisms
are local, involving a few individuals at a particular place and time. IBMs
are effective at capturing this individual-level detail because they explicitly
represent the properties of each organism in a population, and because in-
dividuals can be set up to interact in small numbers on a spatial lattice.
When one wants to test whether individual variability or local interactions
affect the robustness of a generalization, one can build an IBM.

IBMs are also useful because they integrate our understanding of the
different levels in the biological hierarchy. Ecologists gather data about
organisms, populations, and communities. IBMs help reconcile these mul-
tiple levels of data, because assumptions about organisms and their inter-
actions enter into an IBM, and the population or community consequences
of these assumptions result from running IBM simulations. IBMs are thus
informed and constrained by ecological data at multiple levels. In contrast,
the points of contact between population-level models and data are all at
the population-level. Such models include assumptions about populations,
but they are either silent or ambiguous concerning assumptions about in-
dividuals. This can be a strength when we want to remain agnostic about
those assumptions, but it can also be a liability. In many cases, we may
want to vary those assumptions and understand their consequences.

In recent years, IBMs have become increasingly common within ecology
and among the sciences more generally. (Donalson & Nisbet, 1999; Grimm
& Railsback, 2005; DeAngelis & Mooij, 2005) They are not a substitute for
population-based models, but they can be used to relax assumptions made
by generating population-based models. As such, each of these frameworks
may be more or less appropriate depending on the purpose at hand. Indeed,
for the purpose of testing the robustness of a generalization, one ought to
examine as many representational frameworks as possible.

To test the representational robustness of the five properties of the L-
V model, we will translate its variables, parameters, and other assumptions
into individual-based terms.? In our discussion of the L-V model, we showed
how the model makes assumptions about the growth and death rates of
the predator and prey populations and about the interaction between these

2The models described using this section and the next were developed in NetLogo v.
3.0.2. (Wilensky, 1999) The source code for the models is available at [journal’s designated
repository]. Our models have some similarities to another NetLogo model called ‘Wolf
Sheep Predation’ (Wilensky, 1998). For more information on ‘Wolf Sheep Predation,” see
Wilensky & Reisman (2006).
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populations in the form of predation. Any individual-based version of this
model must reconceive these processes in terms of individuals; it must make
assumptions about the births and deaths of discrete predator and prey indi-
viduals, and the interactions between these discrete individuals in the form
of predation.

In our first IBM version of the L-V model, we assume that individuals
move about on a 30x30 lattice composed of 900 cells. Each individual has
three variables: a binary variable denoting whether the individual is predator
or prey, and two integer variables denoting a vertical and horizontal position
on the lattice. Time is discrete; a global clock advances one tick at a time.
For each tick of the global clock, all individuals execute a fixed set of rules
that determine how they move on the lattice, reproduce, die, and interact
with others. The rules for predators are as follows:

Movement rule: Move one step in a random direction.

Predation rule: Check if there are any prey on the current cell. If so,
select one at random, catch it, and pick a random number from 1 to
100. If this number is less than or equal to the parameter predator-
conversion then reproduce.

Death rule: Pick a random number from 1 to 100. If this number is less
than or equal to the parameter predator-death-probability then repro-
duce.

These rules, when executed by each predator on the lattice, correspond
roughly to assumptions made in the L-V model, but notice that these rules
are not determined by that model. To translate any population-based model
into individual-based terms, we must make explicit assumptions about in-
dividuals that were either implicit or undefined in the population-based
version. This means that there is typically no uniquely correct way to carry
out the translation from population-based to individual-based models.

The IBM assumes that predators move randomly on a two dimensional
lattice. The L-V model, on the other hand, makes no assumption about
movement at all. It is consistent with the assumptions that all individu-
als move, that some individuals move, or even, strictly speaking, that no
individuals move. It places no explicit constraints on what intrinsic or en-
vironmental factors determine movement or even whether the predator and
prey move in a probabilistic or deterministic fashion.

Moreover, the IBM assumes that predators catch prey by randomly se-
lecting one prey individual from all that are located on the same cell. Once
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again, this is one of the many possible assumptions we could have made
to develop an IBM analogue of the L-V model. We could have represented
predation without using a spatial lattice, where predators randomly choose
prey individuals from the whole prey population. We could also have used
a different predation rule on a lattice. For example, the predation rule
could have stated “if a predator is within 1 cell of a prey, then the prey is
consumed.” The L-V model does not strictly correspond to any of these par-
ticular assumptions. A modeler who wishes to construct an IBM, however,
must make an explicit decision about them.
The rules for the prey are as follows:

Movement rule: Move one step in a random direction.

Reproduction rule: Pick a random number from 1 to 100. If this number
is less than or equal to the parameter prey-reproduction-probability
then reproduce.

Death rule: Check if I have been caught by a predator. If so, then die.

Together, the predator and prey rule-sets comprise one possible IBM
interpretation of the L-V model. To understand the dynamic consequences
of this model, we set up a computational representation of a lattice, place
predator and prey individuals on the lattice, iteratively execute the predator
or prey rules for each individual, and observe how the system evolves over
time. In the initial state used in our simulations, there are V prey and P
predators positioned randomly on the lattice.

After observing many simulations with differing parameter sets and ini-
tial conditions, we concluded that this IBM does not exhibit stable oscilla-
tions in the numbers of predators and prey, the first property of the L-V
model. There are sets of parameters which initially result in oscillations, but
these oscillations are unstable, increasing in amplitude over time until either
both species have gone extinct (figure 5), or else the predators have gone
extinct and only the prey remain (figure 6). Because this is a probabilistic
model, the same parameter set and initial conditions sometimes results in
two-species extinction and sometime results in the prey surviving. Figures
5 and 6 correspond to this situation: both used the same parameter set and
initial conditions.

Regardless of the parameters, one or both species inevitably goes extinct.
Although not conclusive, this result suggests that stable oscillations, or even
stable co-existence, is not a representationally robust feature of predator-
prey systems. Since the IBM does not exhibit stable oscillations, it clearly
will not exhibit property 2 of the L-V model, neutrally stable oscillations.
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This IBM does not exhibit properties 3 and 4 either. According to these
properties, the primary factor determining the equilibrium abundance of the
prey is the death rate of the predators and the primary factor determining
the equilibrium abundance of the predators is the growth rate of the prey.
The abundance of predators and prey in the IBM are not controlled in this
manner. The predators in the IBM always go extinct, regardless of the
parameters controlling prey. The prey in the IBM either go extinct or else
they increase in number until they fill the entire lattice, but which of these
end-states occurs depends as much on the initial state of the system as it
does on the parameters controlling predators.

Finally, since the IBM does not exhibit stable co-existence of species, it
does not permit a test of property 5, the Volterra property. Testing this
property requires examining the effect of a biocide on average abundances,
which are either P = 0 and V = oo or P = 0 and V = 0. To test the
representational robustness of this property and the Volterra Principle itself,
we must begin with a stable predator-prey system, and then check whether
it is consistent with properties 3, 4, and 5.

Since we would like to test for the robustness of the Volterra Principle,
we need to find an IBM that exhibits stable co-existence of the two species.
In the next section, we describe a modification that does stabalize the pop-
ulations. It acheives this stabalization by adding density-dependence.

5 Density Dependence IBM

One source of instability in the previous model is the lack of limits on popu-
lation growth. The population oscillations tend to become more pronounced
with each successive cycle until the population of one or both of the species
falls too low and the species goes extinct. This suggests that if we introduce
a carrying capacity to limit the upward amplitude of the oscillations in this
model, extinction will be less likely.

How can we impose a carrying capacity on the model? The most direct
way is to assume a fixed global limit on the number of predators and prey,
yet this is not in the spirit of individual-based modeling; it is a top-down
assumption about populations, rather than a bottom-up assumption about
individuals. A bottom-up alternative is to impose a limited resource into
the model, such as space. For example, we might assume that at most one
predator can occupy any cell in the lattice at given time.? Another type of

3A limitation to this assumption is that carrying capacity would be directly linked
to the size of the lattice, so there would be no independent way to vary lattice size and
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limited resource is food for the prey population. For example, if the prey
are herbivores, the limited availability of edible foliage in the environment
imposes a natural carrying capacity on the prey.

In our density-dependent IBM, we assume that the size of the prey pop-
ulation is limited by availability of food in the environment (for convenience,
we will call the food “foliage,” but it could represent any naturally available
resource). We assume that each cell of the lattice either contains a unit of fo-
liage or not. When eaten by a prey individual, the unit of foliage disappears,
and it then has a certain probability (set by the parameter (foliage-growth-
prob) of reappearing at any subsequent tick. These assumptions suggest a
revised rule-set for prey with a new foliage rule and a revised death rule:

Movement rule: Move one step in a random direction.

Foraging rule: Check if there is foliage on the current cell. If so, eat it,
and pick a random number from 1 to 100. If this number is less than
or equal to the parameter prey-converston-probability then reproduce.

Death rule: Check if I have been caught by a predator. If so, then die.

The rule-set for predators remains the same.

Does this modified IBM, with density-dependence, display any of the
five basic properties of the L-V model discussed earlier? After investigating
many different initial states and parameter sets, we concluded that there
is a wide range of parameter conditions for which this model does exhibit
stable oscillations in the numbers of predators and prey. The amplitude
of the population oscillations tends to vary stochastically over time, but
both species do persist indefinitely. Thus, the density-dependent IBM does
exhibit property 1 of the L-V model.

The model does not appear to exhibit property 2, neutrally stable oscil-
lations. Under all the conditions we examined which result in stable oscil-
lations, the average abundance of predators and prey did not depend upon
initial conditions or prior population sizes. After perturbing the populations
away from their equilibrium temporal average sizes, the populations would
always return to their former averages. This suggests that property 2 of the
L-V model is not representationally robust.

Does the model exhibit property 37 According to property 3, the aver-
age abundance of the prey depends on the death rate of the predators. In
this model, predator death is represented as a probability. When the prob-
ability of predator deaths is increased, the average number of predators also

carrying capacity.
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Figure 7: Density-dependent Individual-based Predation Model with Bio-
cide perturbation.

increases. This means that property 3 holds. The same reasoning applies
to property 4. Decreases in the predator birth probability correspond to
decreasing average sizes for the prey population, so property 4 holds as well.

To check whether the model exhibits property 5, the Volterra property,
we must somehow simulate the effect of a general biocide that would elevate
the death rate of both the predators and of the prey. Since there are no
parameters in the model that correspond directly to these rates, we must
manipulate them indirectly. Fortunately, the individual-based framework
makes it easy to simulate the dispersion of a general biocide into our model
system. We performed the following perturbation: First, initiate a typical
simulation of the predator-prey system and wait long enough for the tempo-
ral average size of each population to reach a steady state. Next, randomly
select some cells on the lattice to become “poisonous”: i.e., any predator or
prey that lands on the cell will die. Since movement is random, predators
and prey are equally likely to die as a result of landing on poisonous cells and
the result is an increase in the death rate of both populations. Finally, wait
for the temporal average size of each population to reach a new equilibrium.
After performing this perturbation under a variety of parameter settings, we
found that introduction of a general biocide tended to increase the average
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size of the prey population and to decrease the average size of the predator
population (figure 7). In other words, despite moving from a population to
an individual-based framework, and despite altering various assumptions of
the L-V model, the Volterra Principle still held up. This suggests that the
Volterra principle is representationally robust.

The analyses in this paper show that the Volterra Principle exhibits
three kinds of robustness. Naturally, the scope of the Volterra Principle’s
robustness is not a settled matter. Analysis could continue with different
and more realistic models. For example, we might investigate a model where
reproduction and death are tied only indirectly to food consumption via the
introduction of rudimentary elements of metabolism.* In fact, tests for
robustness are always an ongoing matter. It is unlikely that a theoretical
community will settle the issue of a theorem’s robustness once and for all.
Rather, ongoing investigation attempts to demonstrate the scope of a robust
theorem.

6 Conclusions

Volterra discovered the principle which bears his name in 1926. By con-
structing a series of models, all similar but differing in some respects, ecol-
ogists have shown that the Volterra Principle accurately describes a real
ecological phenomenon — the positive effect that a general biocide has on
a prey population.

While the Volterra Principle is considered to be well-confirmed by ecol-
ogists, its confirmation did not come through standard empirical testing
alone. Rather, robustness analysis, or more specifically three kinds of ro-
bustness analysis played an important role in generating this confidence. In
our discussion of four models of predation, we have outlined three kinds
of robustness analysis which correspond to three different levels at which
a result’s robustness can be determined in modeling. These are parameter
robustness, a result’s surviving changes to the parameter set of a dynamical
model; structural robustness, a result’s surviving changes to the mathe-
matical structure of the model; and finally, representational robustness, a
result’s surviving changes to the whole representational framework in which
the model has been framed.

4We developed such a model and tested it successfully for the Volterra Principle. As
with the other individual-based models, it can be found at [URL].
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Robustness analyses previously carried out by the ecological community
as well as the novel, representational robustness analysis carried out in this
paper, has several important results. Stable oscillations are not a robust
property of predator-prey models. Some oscillatory tendency does appear
in many of the models, but this tendency often leads to stable equilibria.
However, as ecologists have shown with aggregate models and as we have
shown with two types of individual-based models, the Volterra Principle is a
robust property. When two species in a predator-prey relationship coexist,
whether they oscillate or not, a general biocide will favor the prey over the
predators.

Like all of the most important robust theorems, the Volterra Principle
possesses all three kinds of robustness. We believe, however, that represen-
tational robustness is the most important. If robustness analysis is gives us
good reason to believe that a robust theorem is true of real world systems,
the theorem should not in any way depend on the mathematical or com-
putational framework used to describe the problem. The Volterra Principle
survives a transition between representational frameworks, and is even more
dramatically displayed in the individual-based framework. In fact, switching
frameworks can, as in this case, enhance robustness analysis because it lets
us probe a little deeper to figure out why we see the results that we do.

Levins wrote in 1966 that “our truth is at the intersection of independent
lies.” We do not see models, even the highly idealized ones involved in the
robustness analysis of the Volterra Principle as ‘lies,” yet we think Levins’
point is correct. When studying phenomena as complex and hard to measure
as predation, scientists often have little choice but to build approximate,
idealized models. Finding that some result is robust across these models,
however, is an important step in the process of a theorem’s confirmation.
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