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Abstract

!is paper examines the tradeo"s alleged to hold between modeling at-
tributes that are faced by biological modelers. !ree distinct kinds of trade-
o"s are de#ned and analyzed: strict tradeo"s, increase tradeo"s, and Levins
tradeo"s. Employing these de#nitions and analyses, the putative tradeo" be-
tween precision and generality is reexamined and found to bemore restrictive
than previously reported. Parameter precision exhibits a strict tradeo" with
p-generality and an increase tradeo" with a-generality.

1 Introduction

Much of the theoretical literature in evolutionary biology and ecology examines the
di"erent attributes of mathematical models. For any given phenomenon of interest,
one #nds a myriad of models di"ering in scope, generality, precision, accuracy, and
the number of included causal factors. !eorists o$en motivate this proliferation of
models by pointing to the tradeo"s they face; one cannot maximize precision and
generality, they argue, so some models are more precise and some more general.

Richard Levins argued that such tradeo"s require theorists to adopt di"erent
strategies of model building depending on their theoretical goals. (1966) His own
discussion argued that a three-way tradeo" exists between generality, realism, and
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precision, such that a theorist cannot simultaneously maximize all these desider-
ata. Recent philosophical literature has raised doubts regarding Levins’ three-way
tradeo" (Weisberg, 2006) and even questioned the existence of tradeo"s in general
(Orzack& Sober, 1993). However, the bulk of the new literature on this topic argues
that at least some tradeo"s are real, be they psychological, pragmatic (Odenbaugh,
2003), or the result of the logic of representation (Weisberg, 2004).

In this paper, we reexamine the concept of tradeo"s discussed by Levins, by bi-
ologists working in Levins’ tradition, and by philosophers of science. We argue that
there is not one, but at least three relevant types of tradeo". A$er giving de#nitions
for these, we investigate their interrelationships and consider the circumstances un-
der which one type of tradeo" implies another. Finally, the paper reviews the trade-
o" between generality and precision, which has been the most thoroughly explored
in the literature to date. With our new taxonomy of tradeo"s, we show that the rela-
tionship between these modeling attributes is more restrictive than was previously
thought.

2 Tradeo"s

Tradeo"s are relationships of attenuation that hold between two or more modeling
attributes, or what Levins called desiderata of model building. Attenuation occurs
when an increase in the magnitude of one attribute makes the achievement of an-
other more di%cult. In this paper, we will con#ne ourselves to discussions of two-
way attenuation. Attenuation comes in at least four varieties, only three of which
are actually tradeo"s and hence of greatest concern to us in this article.

!e #rst kind of attenuation is simple attenuation. Two attributes exhibit sim-
ple attenuation if and only if increasing the magnitude of one modeling attribute
makes it more di%cult, but not impossible to increase the magnitude of another at-
tribute. Simple attenuation imposes important pragmatic constraints on modelers,
as the resources required to deal with the attenuation may be considerable. How-
ever, there are also forms of attenuation that cannot be overcome through further
data collection or other resources. Speci#cally, we identify three types of symmet-
rical attenuation that we call modeling tradeo"s: strict tradeo!s, increase tradeo!s,
and Levins tradeo!s. We begin by de#ning each of these.
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Twodesiderata exhibit a strict tradeo" (s-tradeo") when an increase in themag-
nitude of one desideratum necessarily results in a decrease in the magnitude of the
second, and vice versa.

In order to formalize this concept, we will de#ne the tradeo"s in terms of the
set of possible values the modeling attributes can take when the tradeo" applies. To
do this, we begin by de#ning a set Λ, which contains ordered tuples corresponding
to the possible magnitudes that the modeling attributes can take simultaneously.
Because we will only be considering pairwise relationships between modeling at-
tributes, we will designate Λ to be the set of possible simultaneous values for two
modeling attributes P andQ. !usΛ = {hpi, qii}, where each ordered pair hpi, qii
is a pair of allowable simultaneous magnitudes for P and Q.

Whenno tradeo" obtains betweenP andQ, thenΛwill correspond to the carte-
sian product of the possible magnitudes of P and Q. But when a tradeo" obtains,
only speci#c pairs will be included inΛ. In the case of a strict tradeo", ordered pairs
are only allowable if they satisfy the constraint that for any two pairs, if the magni-
tude for an attribute in the #rst pair is smaller than its magnitude in the second
pair, then the magnitude of the other attribute in the #rst pair must be larger than
its magnitude in the second pair. Adopting the notation that π and ρ are arbitrary
elements of Λ, and (π)1 the #rst element in ordered pair π, and that the symbols <

and > denote an ordering over these elements in the standard way, we can give the
following de#nition for a strict tradeo".

De#nition 1. LetΛ = {hpi, qii}, where each hpi, qii corresponds to a pair of possible
simultaneous magnitudes for P and Q. Let π and ρ be two distinct elements of Λ. A
strict tradeo! obtains between P and Q i! ∀π∀ρ[(π)1 < (ρ)1 ↔ (π)2 > (ρ)2]

!is de#nition can be applied to a wide range of modeling attributes, because the
attributes in question need not share any scale or even continuity properties. !e
de#nition only requires that they are able to be ordered into pairs of simultaneously
achievable magnitudes. While the de#nition generalizes beyond easily graphable
cases, it is useful to represent the tradeo" graphically as we have in #gure 1.

Although the de#nition is stated in terms of (π)1 having smallermagnitude than
(ρ)1, the de#nition is fully symmetric. It entails that when the magnitude of either
attribute goes down, the magnitude of the other must go up. !is further symme-
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Figure 1: !is diagram represents the possible magnitudes allowed for attributes P
andQ as a dashed line. Each pair of points satis#es the de#nition of a strict tradeo",
such that for π and ρ if (π)1 < (ρ)1, then (π)2 > (ρ)2 and vice versa. !e negative
slope of this line is a signature of strict tradeo"s.

try is important because if it were allowable to decrease one magnitude without a
corresponding increase in the other, any reversal of this alteration would result in
an increase in the magnitude of that attribute without an associated decrease in the
other. !is is of course precisely what is prohibited according to our informal def-
inition of the s-tradeo". !e de#nition also stipulates that Λ contains at least two
distinct elements to avoid cases where the biconditional is trivially satis#ed. !ese
cases are excluded because tradeo"s are only of scienti#c interest when they occur
because of the interaction of modeling attributes.

!e second kind of tradeo" is an increase tradeo", or i-tradeo". Two modeling
attributes exhibit an i-tradeo" when the magnitude of the attributes cannot both
be increased simultaneously. !at is, an increase in the magnitude of one cannot
be accompanied by an increase in the other. In order to formalise this procedural
de#nition we will once again invoke a set of ordered pairs Λ, de#ned as above.
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Figure 2: !is diagram represents the possible magnitudes allowed for attributes P
and Q as a dashed line. Each pair of points satis#es the de#nition of an increase
tradeo", such that for π and ρ if ((π)1 < (ρ)1 → (π)2 ≥ (ρ)2) and ((π)2 <
(ρ)2 → (π)1 ≥ (ρ)1). !e graphical signature of increase tradeo"s is non-positive
slope.

De#nition 2. LetΛ = {hpi, qii}, where each hpi, qii corresponds to a pair of possible
simultaneous magnitudes for P and Q. Let π and ρ be two distinct elements of Λ.
An increase tradeo! obtains between P and Q i! ∀π∀ρ[((π)1 < (ρ)1 → (π)2 ≥
(ρ)2)&((π)2 < (ρ)2 → (π)1 ≥ (ρ)1)]

!e di"erence between the i-tradeo" and the s-tradeo" is that in the i-tradeo"
case there can be subsets ofΛwhere themagnitude of one of themodeling attributes
increases as we move between elements, but the second magnitude stays the same.
!is represents a signi#cant constraint on a modeler, but one less stringent than the
s-tradeo". !is de#nition also stipulates that one cannot decrease both attributes
in the presence of an i-tradeo". Figure 2 illustrates a situation that exhibits an i-
tradeo" but not an s-tradeo".
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Figure 3: Illustration of a Levins tradeo" between two attributes. π lies on the hori-
zon of the tradeo", illustrated by the dashed line. In this particular case, there is a
region of positive value about the simultaneous in-principle maxima that the model
attributes cannot reach, designated by the shaded area. Apart from this limitation,
the attributes of the model can take an combination of magnitudes.

Finally, two attributes exhibit a Levins tradeo" (L-tradeo") when themagnitude
of both of these attributes cannot be simultaneously maximized. If we look in Λ for
the maximum value of P (pmax) and the maximum value of Q (qmax), then when an
L-tradeo" obtains, there is no ordered pair hpmax, qmaxi in Λ.

De#nition 3. LetΛ = {hpi, qii}, where each hpi, qii corresponds to a pair of possible
simultaneous magnitudes for P and Q. Let π be an element of Λ. Further, let pmax be
the maximum value for P in Λ and qmax be the maximum value for Q in Λ. A Levins
tradeo! obtains between P and Q i! ¬∃π[((π)1 = pmax)&((π)2 = qmax)]

We call this a ‘Levins tradeo" ’ because it is closest to the concept of a tradeo"
discussed in Levins’s philosophical work (Weisberg, 2006). Levins tradeo"s are only
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of signi#cance when bothmodel attributes in question have amaximummagnitude
in Λ, otherwise a Levins tradeo" vacuously obtains.

Whenever an L-tradeo" obtains between two attributes, there exists a set of pos-
sible combined values that the attributes cannot exceed, which we call the horizon.
We use the term ‘horizon’ to di"erentiate this in-practice limit from the in-principle
maxima the attributes could simultaneously attain if the L-tradeo" did not hold.
Considered graphically, the horizon de#nes the upper limit above which the mag-
nitudes of the two attributes cannot simultaneously extend. (See Figure 3)

!e inability to simultaneously maximize two modeling desiderata means that
if a modeler wishes to maximize the magnitude of one desideratum, she must ac-
cept that the magnitude of the other will be suboptimal. !e upshot of this is that
when facedwith an L-tradeo", themodelermustmake strategic decisions regarding
which attribute to maximize. A model that is constructed under such constraints
will therefore be determined at least in part by the goals of the modeler in question.

Similarly, and perhaps more acutely, the existence of s-tradeo"s and i-tradeo"s
will strongly in&uence decisions regarding what kind of model will be best for the
job at hand, possibly eliminating the utility of somemodels outright. For example, if
an s-tradeo"makesmaximization of either attribute too costly in terms of the other,
it may be that for the model to be of any use, neither attribute can be maximized.
In section 5, we argue that an s-tradeo" obtains between one kind of generality and
precision. Because precision and generality are o$en both important in scienti#c
practice, it is likely that a theorist cannotmaximize either of these attributes andwill
have to choose between having intermediate magnitudes for the two desiderata.

3 Relationships Between the Tradeo"s

We have now given formal de#nitions for the three kinds of tradeo"s. !e inter-
relationships between the tradeo"s are relatively complex, but there are some clear
entailments among them. In this section, we will argue that the existence of an s-
tradeo" entails that an i-tradeo" and an L-tradeo" occur, and that when a weak
condition is met, the existence of an i-tradeo" entails that an L-tradeo" occurs.
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3.1 Strict Tradeo"s

!e existence of an s-tradeo" between two attributes entails an i-tradeo" between
those attributes. !is follows fairly trivially from the formal de#nitions of i- and
s-tradeo"s. Since ≤ is equivalent to (< or =), A < B entails that A ≤ B. As the
de#nition for an increase tradeo" is identical to the de#nition for a strict tradeo"
with≤ instead of< in the consequent of each conditional, any instance that satis#es
the criteria for a strict tradeo" will also satisfy the criteria for an increase tradeo".

!e case can be made intuitively as follows: !e existence of a strict tradeo"
means that as we increase the magnitude of A, we must decrease the magnitude
of B. If we must decrease the magnitude of one attribute whenever we increase
the magnitude of the other, we cannot increase the magnitude of both attributes.
!erefore an increase tradeo" will also hold.

When an s-tradeo" holds between two attributes, then an L-tradeo" will also
hold between those attributes. !e justi#cation of this entailment is more complex,
so we give a formal proof below:

!eorem1. "e existence of an s-tradeo! between two attributes entails an L-tradeo!
between those attributes

Proof. Let Λ = {hpi, qii}, where each hpi, qii corresponds to a pair of possible
simultaneous magnitudes for P and Q. Let pmax be the maximum value for P in Λ
and qmax be the maximum value for Q in Λ.

Assume that P and Q exhibit an s-tradeo". !is means that ∀π∀ρ[(π)1 <

(ρ)1 ↔ (π)2 > (ρ)2] Assume that an L-tradeo" does not obtain. !is means that
hpmax, qmaxi is an element of Λ. Let X designate this element. !erefore (X)1 =
pmax and (X)2 = qmax.

For a strict tradeo" to hold, theremust be at least two distinct elements inΛ. Let
Y designate an arbitrary element of Λ that is distinct from X . We can instantiate
the universal quanti#ers in the de#nition of an s-tradeo" using the elements X and
Y , #rst instantiating X for π and Y for ρ, then Y for π and X for ρ, to give us the
formulae: [(X)1 < (Y )1 ↔ (X)2 > (Y )2] and [(Y )1 < (X)1 ↔ (Y )2 > (X)2]

Subtheorem 1. (X)1 = (Y )1
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Proof. [(Y )1 < (X)1 ↔ (Y )2 > (X)2] can be satis#ed if either both (Y )1 < (X)1

and (Y )2 > (X)2 are true, or if they are both false. It is clear that they cannot be
both true, as we know that (X)2 = qmax, and therefore it is impossible for (Y )2 >

(X)2 to be true.
For both to be false, it must be the case that (Y )1 < (X)1 is false, so either

(Y )1 > (X)1 or (Y )1 = (X)1 must be true.
Since (X)1 = pmax it must be that (X)1 = (Y )1

Subtheorem 2. (X)2 = (Y )2

Proof. [(X)1 < (Y )1 ↔ (X)2 > (Y )2] can be satis#ed if either both (X)1 < (Y )1

and (X)2 > (Y )2 are true, or if they are both false. It is clear that they cannot be
both true, as we know that (X)1 = pmax, and therefore it is impossible for (X)1 <

(Y )1 to be true.
For both to be false, it must be the case that (X)2 > (Y )2 is false, so either

(X)2 < (Y )2 or (X)2 = (Y )2 must be true.
Since (X)2 = qmax, it must be that (X)2 = (Y )2

X and Y are distinct elements of Λ, and therefore cannot have exactly the same
values for both members in the ordered pair. But we have proved that for an s-
tradeo" to occur in the absence of an L-tradeo", it must be that both (X)1 = (Y )1

and (X)2 = (Y )2, which results in a contradiction. !us, if an s-tradeo" holds
between two attributes, this entails that an L-tradeo" also holds between those at-
tributes.

3.2 Increase Tradeo"s

We have seen that whenever an s-tradeo" holds between two attributes, this en-
tails that an i-tradeo" and an L-tradeo" also hold between those attributes. Since
i-tradeo"s are strictly weaker than s-tradeo"s, the existence of an i-tradeo" does
not entail an s-tradeo". However, it can be shown that i-tradeo"s entail L-tradeo"s
as long as a weak condition is met. If we know that an i-tradeo" holds between two
attributes, and there is at least one member in Λ where neither attribute is maximal,
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this entails that no member in Λ will have both attributes at maximum. !erefore,
an L-tradeo" will also hold between those attributes.

!eorem 2. "e existence of an i-tradeo! and any element with submaximal values
for both attributes entails an L-tradeo!

Proof. Let Λ = {hpi, qii}, where each hpi, qii corresponds to a pair of possible
simultaneous magnitudes for P and Q. Let pmax be the maximum value for P in
Λ and qmaxbe the maximum value for Q in Λ. Assume that P and Q exhibit an
i-tradeo". Applying our de#nition, we know that ∀π∀ρ[((π)1 < (ρ)1 → (π)2 ≥
(ρ)2)&((π)2 < (ρ)2 → (π)2 ≥ (ρ)2)].

Assume that one element in Λ has sub-maximal values for both P and Q. Let
Y designate this element. In that case, (Y )1 < pmax and (Y )2 < qmax.

Nowassume thatP andQdonot exhibit an L-tradeo". !ismeans that hpmax, qmaxi
is also an element of Λ. Let X designate this element. In that case, (X)1 = pmax

and (X)2 = qmax. We can instantiate our de#nition of an i-tradeo" with [(Y )1 <

(X)1 → (Y )2 ≥ (X)2]&[(Y )2 < (X)2 → (Y )2 ≥ (X)2]
Because both attributes are submaximal in Y , (Y )1 < (X)1. According to our

de#nition, this means that (Y )2 ≥ (X)2, which is impossible since (X)2 = pmax

and (Y )2 is submaximal. !is is a contradiction.
!erefore the existence of an i-tradeo" between two attributes plus the existence

of at least one element in Λ that has submaximal values for both of these attributes
entails the existence of an L-tradeo" between those attributes.

3.3 Levins Tradeo"s

In some cases, the existence of an L-tradeo" and the restriction of Λ to certain sets
of values may entail other tradeo"s, but we do not believe that any other form of at-
tenuation is entailed by the existence of an L-tradeo" alone. However, the existence
of an L-tradeo" can shape and constrain scienti#c practice in signi#cant ways. In
particular, the existence of an L-tradeo"means that a single or small set of models
will not allow the theorist to maximize every desirable attribute. It was in this spirit
that Levins argued from the existence of tradeo"s to strategies of model building,
each of which sacri#ced one desideratum in order to maximize others.
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While we doubt that Levins tradeo"s arise for logical and representational rea-
sons in the absence of s- and i-tradeo"s, we believe that scientists confront them on
a regular basis. In such cases, the L-tradeo"s are domain-speci#c and depend on
empirical facts, not logic.

An example of an empirically generated L-tradeo" occurs quite generally in
medical diagnostic tests. Medical tests have the attributes of sensitivity and speci-
#city. Sensitivity refers to what proportion of people with the disease are identi#ed
as such by the test. !at is, a highly sensitive test will not “miss” people with the dis-
ease. Conversely, the speci#city of the test re&ects the proportion of people without
the disease that the test correctly identi#es with a negative result. A highly speci#c
test will not mistakenly categorize disease-free people as having the illness. Note
that there is nothing about the de#nitions of these attributes which means that they
cannot be simultaneously maximal in the same test. It is entirely possible that a test
might positively identify all and only those with the disease as having the disease.
However, in nearly all actual cases this cannot occur. Whatever feature is used by
the test in order to di"erentiate the groups will usually overlap at least slightly be-
tween those groups. In cases such as this, the sensitivity and speci#city of the test
cannot be simultaneously maximized. (See #gures 4 and 5)

!is is an example where two attributes cannot be simultaneously maximised
due to contingent facts about the target of interest, and we believe there are many
more. In this case, the tradeo" occurs because the feature used to di"erentiate the
groups exhibits some overlap between those groups, but it is likely that L-tradeo"s
occur for a number of di"erent reasons and in di"erent settings.

3.4 Summary of the tradeo"s and their interactions

From the above, we see that a strict tradeo" obtains between twomodeling attributes
when it is impossible to increase the magnitude of one without a decrease in the
magnitude of the other, and it is impossible to decrease one without an increase in
the other. If an s-tradeo" holds between two attributes, this entails that an i-tradeo"
and L-tradeo" also hold between those attributes. An i-tradeo" obtains between
two attributes when it is impossible to increase the magnitudes of both attributes,
and it is impossible to decrease both attributes. If an i-tradeo" holds between two
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Figure 4: A situation where a diagnostic test can be both maximally speci#c and
maximally sensitive. !is occurs in any case where there is no overlap between the
two populations to be distinguished relative to the test statistic.

Figure 5: A situation in which a diagnostic test cannot be maximally speci#c and
sensitive. !is occurs in any case where there is an overlap between the two popula-
tions to be distinguished. When designing and calibrating the test, a decision must
be made between whether a maximally sensitive or speci#c test is required, or if a
test that is sub-maximal but adequate in both respects is most appropriate.
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attributes, and at least one pair of these attributes has neither at maximum value,
then an L-tradeo" also holds between those attributes. An L-tradeo" holds between
two attributes when it is impossible to simultaneously maximize both attributes.

4 Precision and Generality

Having looked in detail at the three kinds of tradeo"s and some of the relationships
between them, we now turn to the example of precision and generality. Philoso-
phers of science have been especially interested in tradeo"s involving generality be-
cause of its signi#cance in accounts of scienti#c method. For example, generality
features prominently in many philosophical theories of scienti#c explanation (e.g.,
Strevens, 2004; Woodward, 2003), and in some accounts, generality is considered
to be the core of a scienti#c theory’s explanatory power (Kitcher, 1981, 1989; Fried-
man, 1974). !e value of generality has also been defended by scientists, notably
population biologists. !ese scientists point to the especially high value of gen-
eral models in allowing theorists to examine disparate but similar phenomena in
the same framework, exposing underlying patterns among these phenomena. (e.g.,
Roughgarden, 1979, 1997; May, 2001; Nowak & May, 2000)

We agree with the consensus of earlier literature and will argue that there are
attenuation relationships between precision and generality. However, here we will
show that some of these relationships are stronger than was previously identi#ed,
and that there are more cases of tradeo"s between precision and generality than
were recognized in earlier analyses.

Before we can investigate the relationships between precision and generality, we
will need to de#ne how we will use these terms, as well as an additional feature of
modeling we call #delity criteria.

4.1 Precision

When discussed in the context of mathematical modeling, precision is o$en char-
acterized as parameter precision, an attribute of the equations that describe mathe-
matical models. Unlike the statistical notion of precision, which is an attribute of
data, parameter precision is a measure of the #neness of speci#cation of parameter
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values.
De#ning precision for an entire mathematical model description requires an

assessment of the precision of each of the individual parameters in that description.
We can do this by #rst de#ning the uncertainty associated with some parameter
value as the deviation of that value from the best estimate of the true value.

Canonically, a parameter value might be written as the central value for the pa-
rameter plus or minus the uncertainty associated with it. !e central value is o$en
interpreted as a best guess or best estimate, so we can write the canonical value of
an imprecisely de#ned parameter value as pbest ± δp, where δp is the uncertainty.

Precision can then be de#ned in terms of uncertainty as follows:

De#nition 4. If a parameter p has value pbest ± δp, then that parameter’s precision
is 1/2δp.

Precision is de#ned as the reciprocal of two times the uncertainty to preserve the
intuitive idea that precision increases as uncertainty decreases.

It becomes amore complex issue to de#ne precision when dealing withmultiple
parameters. Probably the best general way to aggregate parameter precision is with
the use of an n-dimension distance formula. Because these details are not necessary
for the discussion in this article, we will rely on the following comparative test of
precision applicable to the cases discussed in this paper:

A model description D1 is more precise than a model description D2

if D1 picks out a proper subset of the models picked out by D2, when
all other factors are held #xed.

!is test relies on the fact that when we compare two equations with di"erent de-
grees of precision, the more precise one will describe a subset of the models de-
scribed by the less precise one. !is method only works when comparing equations
that have the same number of parameters and obey the nesting relations discussed
below. Mostmeasures of parameter precisionwill be unable to judge which descrip-
tion is more precise if these conditions do not hold.

To illustrate these ideas, we can consider the family of models of exponential
population growth. An uninstantiated model description, or equation, that picks
out this family can be written as follows
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dN

dt
= rN (1)

In this equation the variable N stands for population size, and r stands for the
growth rate of the population, which is assumed to be constant in the models des-
ignated by this description.

!is equation can be instantiated with di"erently speci#ed values for r, pick-
ing out di"erent sets of models. For example, r might be instantiated to give the
descriptions:

dN

dt
= (1.5 ± 0.1)N (2)

dN

dt
= (1.50 ± 0.01)N (3)

Changes in precision will e"ect the set of models picked out by a description.
More precise descriptions will pick out subsets of the sets of models picked out by
less precise descriptions. !is is easiest to show in cases such as (2) and (3) above,
where the parameter values in the di"erent descriptions overlap. Description (2)
picks out all of the models that have a value for r between 1.4 and 1.6, while de-
scription (3) only picks out the models with a value for r between 1.49 and 1.51.
Note that all of the models picked out by description (3) are also picked out by de-
scription (2), but not vice versa. !is means that the set of models picked out by
description (3) forms a proper subset of the models picked out by description (2).

4.2 Fidelity and Model-world relations

!e nextmodeling attribute we will discuss is generality. At #rst pass, this may seem
straightforward: generality is a measure of how many phenomena a model or set of
models successfully relate to. However, the manner in which models relate to their
targets is of course not a simple or uncontroversial issue. !is means that before we
proceed, we need to to be clear regarding howwe view themodel-world relationship
in this context.

In the semantic view of theories literature, the model-world relationship is de-
scribed as one of isomorphism between the model and at least some aspects of a
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real-world target system. Internal critics of this picture have pointed to the strin-
gency of this requirement and suggested other, weaker, model-theoretic relation-
ships that may be more appropriate. (Lloyd, 1994; da Costa & French, 2003) Other
critics have suggested that even these weaker correspondences do not characterize
the kinds of relationships that theorists demand of theirmodels. Some philosophers
have advocated replacing a formalized model-world relationship with a more intu-
itive notion of similarity, either behavioral (Cartwright, 1983) or structural (Giere,
1988; Godfrey-Smith, 2006). If models are conceived of in terms of sets of trajec-
tories in a state space, or trajectory spaces, then metric relationships such as the
closeness of a data set to a trajectory in the trajectory space may also be a possible
way to understand the model-world relationship. Pluralism about these matters is,
of course, also possible. (Downes, 1992)

While our own view on these matters is probably closest to the pluralism advo-
cated by Downes, we believe that what follows is compatible with all of these ideas,
except perhaps the most stringent reading of the demand for isomorphism. Rather
than taking sides in this debate, we will use the term ‘applies to’ when describing the
relationship between model and target phenomenon. We do this because we want
to emphasize something a bit di"erent thanmost of the discussions in the literature.

What we want to highlight are the standards a modeler brings to bear when
determining whether the model applies to a target. In other words, not only is it
important to assess the #delity of a particular model, which might be assessed with
model-theoretic, metric, or structural similarity measures, it is also important to
understand the standards of #delity applied by the modeler. We call these standards
#delity criteria.

Any particular model may be of use to di"erent investigators in di"erent ways
and for di"erent reasons, according to which aspects of the target and model con-
cern them. For example, two theorists may have di"erent demands for how pre-
dictively accurate a model is: one might require near-exact results, while another
might be satis#ed if the model only approximately predicts the behavior of the tar-
get. Alternatively, another theorist might be solely concerned with modeling the
causal dependencies within the target, and have very limited requirements regard-
ing #delity in terms of predictive accuracy.

!ese di"erences in #delity criteria are most apparent when we consider sys-
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tems that are sensitively dependent on their initial conditions. For example, one
reason we might model the tra%c in Los Angeles is to anticipate and prepare for
particularly bad episodes of tra%c congestion. !is may be achieved with a model
that simply picks out patterns in past data regarding LA’s tra%c— the fact that con-
gestion tends to be high between the hours of 7-10am, for example. In this case,
the model will be judged according to how well it predicts future tra%c jams, while
whether it identi#es any of the true causes of this congestion is of no consequence.
Alternatively, wemight model LA’s tra%c in order to help inform city planners how
to minimize tra%c problems when constructing a new road network. In this case,
model builders will want to capture as much of the causal structure underlying LA’s
tra%c patterns as possible. If we accept that tra%c in a large city is sensitive to ini-
tial conditions, unless the initial parameter values are extremely exact, a model that
includes a great deal of causal structure is unlikely to be a good predictor of future
tra%c patterns. However, this fact is not likely to matter to the model user in these
circumstances, because they are less concerned with accurately predicting Los An-
geles tra%c than with representing the processes a"ecting it.

As we can see from these examples, there are really two kinds of #delity criteria.
One kind of #delity concerns the outcome of the model, its predictions about the
quantities of measurable attributes. We call this the dynamical #delity of the model
and the theorists’ standards for dynamical #delity are the dynamical #delity criteria.
Alternatively or additionally, a theorist might be interested in how well a model
describes the causal structure of the target system. !e assessment of this attribute
is the representational #delity of the model and the criteria for assessing it are the
representational #delity criteria. (Weisberg, 2007)

!e #delity criteria in use in anymodeling situation will have a notable e"ect on
generality. All else being equal, more permissive #delity criteria will tend to mean
that a given model will apply to more phenomena. For this reason, in our analyses
of generality we will assume that the #delity criteria used to assess the relationship
betweenmodels and target (whatever these criteria happen to be) will be held #xed.
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4.3 Generality

Unlike precision, which is an attribute of the equations we use to describe models,
generality is an attribute of the model-target relationship. Given a set of #delity
criteria, generality is a measure of how many targets the models in question apply
to. !ere are two ways in which this concept must be disambiguated.

First we need to di"erentiate between generality regarding the number of target
systems an individual model applies to, and regarding the number of target systems
a set or family of models applies to. In the #rst instance, if modelm1 applies tomore
targets than model m2, then m1 is more general than m2. In the second, if the set
of models M1 as a whole applies to more targets than the set of models M2, then set
M1 is more general than set M2.

!ese two types of generality can co-vary; increasing the generality of the in-
dividual models in a given set will o$en also increase the generality of the set as
a whole. However, individual model generality and model set generality can also
come apart. For example, we will show that it is possible to increase model set gen-
erality while holding individual model generality #xed. !e fact that individual and
set generality can come apart means that they must be analyzed separately when we
consider whether they trade-o" against other modeling attributes.

Generality must also be disambiguated according to the type of target systems
considered. Itmust be clear whetherwe are concernedwith howmany actual targets
a model or set of models applies to, or how many possible targets the model or set
applies to.1 We call these di"erent types of generality a-generality and p-generality
respectively. P-generality is not something that only philosophers take seriously;
it is o$en what scientists have in mind when they discuss how general a model is,
especially in the context of its explanatory power. Sometimes exploration of the
non-actual helps explain the actual, and the point of some explanatory models is
not necessarily to resemble any real systems, but to canvass possibility space. For
example, biological models that generalize to show that the #tness costs for a species
to have three sexes are too high are thought to help explain why there are no such

1We will interpret ‘possible targets’ to mean logically possible targets. One might also use the term
to pick out nomologically or physically possible targets. We prefer the broader, logical interpretation
because the interests of modelers range from what is known to be actual to what is known to be phys-
ically impossible. Future analyses of tradeo"s might fruitfully explore more restricted modalities.
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species in the real world. (Fisher, 1930)
P- and a-generality will usually take di"erent values for any givenmodel or set of

models. !e number of actual targets applied to will be di"erent from the number
of possible targets applied to except in some extremely limited circumstances. Ad-
ditionally, two models might be identically p-general but di"er in their a-generality
and vice versa. Once again, this means that these di"erent types of generality will
have quite di"erent relations to other modeling attributes, and therefore will need
to be considered separately in an analysis of tradeo"s.

As we sometimes measure generality in terms of logical possibility, we will be
dealing with in#nite sets. !is means that we cannot always order the generality
of models or sets of models according to cardinality, but will sometimes have to
consider whether they apply to some set of target systems that is a proper subset
of another, thus being of lesser generality. !is is a less universal measure than we
might like, since it restricts us to cases where we are comparing sets that stand in
set-subset relations to each other, but to date this is most comprehensive way we
know of to analyze p-generality.

Since individual model andmodel set generality can take the p- and a- form, we
have four types of generality and hence four interactions to analyze. Each will be
considered in turn in the following section.

5 Tradeo"s Between Precision & Generality

We now have the tools in place to assess the relationship between precision and
generality in the modeling context. We begin our analysis by isolating precision
and generality, holding everything including the #delity criteria #xed. A$er this
analysis, we will consider what occurs when the #delity criteria are allowed to vary,
arguing that this can a"ect the generality of a model or set of models, which can in
turn modify the tradeo" between precision and generality.

5.1 Precision and P-generality

First we consider how an increase in precision a"ects p-generality. Recall that pre-
cision is a attribute of model descriptions, not of models themselves. Alterations in
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precision modify the number of models picked out by a description, but not how
these models apply to their targets. As all other features such as #delity criteria are
held #xed, this means that the number of logically possible targets any given indi-
vidual model will apply to is unchanged. Individual model p-generality is therefore
una"ected when precision is manipulated.

However, as noted previously, in applicable cases a more precise model descrip-
tion picks out a proper subset of themodels picked out by a less precise counterpart.
Since each individual model applies to a #xed number of logically possible targets,
the set of logically possible targets applied to by a subset of models is also a subset
compared to the targets applied to in the less precise case. !is means that model
set p-generality is decreased whenever precision is increased.

We can consider this argument in detail:

1. Assume model description d picks out a set of models M1.

2. If model description d0 is more precise than d, d0 will pick out M2, a set of
models that is a proper subset of M1.

3. Since all attributes other than precision are held #xed, each individual model
applies to the same number of possible target systems as previously.

4. !is means that, since M2 is a proper subset of M1, the models in M2 apply
to a proper subset of the logically possible target systems applied to by M1.

5. !erefore, by de#nition, M2 is less p-general than M1.

6. !erefore, increasing the precision of a model description means that model
set p-generality is reduced.

!e preceding argument shows that any increase in precision will impose a cost
on p-generality. However, recall that two attributes only exhibit a strict tradeo"
when an increase in either attribute results in a decrease in the other. !erefore
in order to assess whether precision and p-generality exhibit a strict tradeo", we
must check to see if the attenuation is symmetrical. We can do this with the reverse
argument:
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1. Assumemodel description d picks out a set of modelsM1 andmodel descrip-
tion d0 picks out a set of models M2

2. If M2 is more p-general than M1, M2 must apply to a superset of the possible
targets M1 applies to.

3. Since all attributes other than precision are held #xed, each individual model
applies to the same number of possible target systems as previously.

4. !is means that, since the models in M2 apply to a superset of the logically
possible target systems in M1, it must also be the case that M2 is a superset
of M1.

5. !erefore d0 is less precise than d.

6. !erefore, increasing the p-generality of a set of models means that the pre-
cision of the model description is reduced.

If all other attributes are held #xed, the only way we can increase p-generality is
to decrease precision. Since we have shown that an increase in either precision or
generality imposes a cost on the other, the relation between precision andmodel set
p-generality is a strict tradeo".

5.2 Precision and A-generality

Next we turn to the relationship between precision and a-generality. !is is more
complex than the p-generality case, since the e"ect an alteration in precision has
on a-generality will at least in part be determined by the empirical features of the
particular system under consideration. We have seen that an increase in precision
entails a decrease in p-generality. However, the actual targets a model applies to will
nearly always be far fewer than the logically possible targets the model applies to, so
a reduction in p-generality does not necessarily imply a reduction in a-generality.
!is means that an increase in precision will only sometimes come at the expense of
a-generality, dependent on the systems modeled and the attributes of those targets
that are of interest to the modeler.
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!is is particularly clear when we consider the di"erence between how changes
in precision a"ect the a-generality of models used in disciplines whose typical tar-
gets are homogenous with respect to the properties of interest, and those whose
targets are heterogeneous. In both the homogeneous and heterogeneous cases, in-
creases in precisionmay ormay not lead to the exclusion of any actual targets. How-
ever, there will be a limit to how precise amodel description can be before any actual
targets are necessarily excluded. !e more homogeneous the target systems of in-
terest, the more precise the description can be before this limit is reached.

For example, the targets and attributes that ecological models are directed to-
wards are o$en very heterogeneous. !e intrinsic growth rate, the attribute corre-
sponding to r in our population growthmodel description, can be extremely varied
from population to population. Consider the di"erence between the growth rate
in a population of cane toads (Bufo marinus) in Australia and in the Americas. In
Australia, cane toads have multiplied so rapidly as to constitute an ecological disas-
ter, while in their native habitats they are in decline. Cases such as these mean that
a model description that contains a #nely speci#ed value for r will o$en pick out a
set of models that only applies to a small proportion of the relevant target popula-
tions. Precisely speci#ed values of r will correspond to models appropriate only for
studying the dynamics of either Australian cane toads or American cane toads, but
not cane toads in general.

On the other hand, the targets that models in particle physics are directed to-
wards will o$en be homogeneous. In physics, it is possible to have a precise model
description and still pick out a set of models that applies to most or all actual target
systems. For example, a model description that targets the mass and charge of elec-
trons can be extremely precise and still pick out a set of models that applies to all
electrons. !is is because physical quantities such as the mass and charge of funda-
mental particles are maximally homogeneous. In terms of these attributes, at least,
there are no di"erences between the electrons in any part of the world, or for that
matter the electrons on Alpha Centuri and those on earth.

Because the degree of homogeneity of the target systems alters the e"ect an
increase in precision has on the a-generality of sets of models, the exact relation-
ship between these attributes will vary on a case-by-case basis and requires speci#c
empirical information about the targets being modeled. !at said, there are some
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general features we can point to regarding the interaction between precision and
a-generality.

Consider the relationship between precision and individual model a-generality.
As in the the p-generality case, changes in precision have no e"ect on individual
model a-generality. Precision only determines whether a given model is picked out
by a given description, not how the models relate to targets. So as long as we hold
all other attributes #xed, any given model that is picked out will apply to the same
number of actual targets regardless of changes in precision. !erefore changes in
precision have no e"ect on individual model a-generality.

A second general relationship concerns precision and model set a-generality.
Regardless of the system modeled, it is impossible to increase both precision and
a-generality if all other attributes are #xed. We know that an increase in precision
means that the set of models picked out by a description applies to a subset of the
logically possible targets compared to previously. As discussed above, whether this
will reduce the number of actual targets applied to depends on the systems them-
selves; however, we know a priori that there is no way that the targets in the world
could be arranged such that reducing the size of our set of models while keeping
all else #xed could increase the number of actual targets to which our set of models
applies. !is means that we cannot increase both precision and a-generality.

We can show this with our now-familiar argument form:

1. Assume model description d picks out a set of models M1.

2. If model description d0 is more precise than d, d0 will pick out M2, a set of
models that is a proper subset of M1.

3. Since all other attributes are held #xed, each individual model applies to the
same number of actual targets as previously, even if this is zero.

4. !erefore, as M2 is a proper subset of M1, M2 cannot apply to more targets
than M1.

5. !erefore by de#nition, M2 cannot be more a-general than M1.

6. !erefore, it is not possible to increase precision and also increase model set
a-generality.
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Again, in order to show that a tradeo"obtains betweenprecision and a-generality,
we need to check that the relationship holds in both directions. However, this time
a simple reversal of the previous argument does not give us a symmetrical outcome,
as the attenuation from a-generality to precision is stronger than from precision to
a-generality.

1. Assume model description d picks out a set of models M1 and description d0

picks out M2.

2. If M2 is more a-general than M1, M2 must apply to more actual targets than
M1.

3. Since all other attributes are held #xed, each individual model applies to the
same number of actual targets as previously, even if this is zero.

4. !is means that the only way that M2 can apply to more actual targets than
M1 is if M2 is a superset of M1

5. If M2 is a superset of M1, then d0 is less precise then d.

6. !erefore, increasing model set a-generality means that precision must be
decreased.

When we increase the precision of a model description, we cannot simultane-
ously increase a-generality, and if we increase a-generality, we must decrease preci-
sion. !is means that precision and a-generality do not exhibit a strict tradeo", as a
necessary cost is incurred in only one direction. However, because an increase in a-
generality incurs a cost in precision, thismakes it impossible to increase a-generality
and also increase precision. !is means that a simultaneous increase is impossible
in both directions, and so a-generality and precision exhibit an i-tradeo".

We have now assessed the tradeo" relations between precision and the four cat-
egories of generality. Precision and both types of individual model generality show
no tradeo"s. Precision and model set p-generality exhibit a strict tradeo", and pre-
cision and model set a-generality exhibit an increase tradeo".
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5.3 !e Role of Scope and Fidelity Criteria

Precision and model set a-generality always exhibit an i-tradeo", but we have al-
ready alluded to cases where the attenuation between them is stronger; there are
general features of targets that, when present, lead us to predict a more costly in-
teraction. In addition, changes in the scope and #delity criteria adopted by a mod-
eler can strengthen or weaken the tradeo" costs between precision and a-generality.
Recall that #delity criteria refer to how a modeler assesses the degree of similarity
betweenmodel and target. !e scope of a model refers to the properties of the target
systems the modeler wishes to capture with that model.

When the targets of interest are heterogeneous, the attenuation between preci-
sion and generality is likely to be very costly. However, these costs can be limited if
the modeler restricts her scope. For example, models with broad scope that attempt
to capture the foraging behavior of all the species in a particular region of a rain-
forest cannot be precise without heavy costs in a-generality. But, if one is selective
regarding which properties of these complex targets we wish to model, disparate
targets can be made to appear more homogeneous. !e scope might be restricted
to the energetic aspects of the foraging, for example. Since these factors rely on bio-
chemistry and the distribution of resources in the ecosystem, individual di"erences
among organisms will be considerably diminished.

Another possibility is to retain the original scope, but to lower the #delity crite-
ria. When these criteria are lowered, small di"erences between targets become less
relevant and, depending on the degree of heterogeneity among the targets, can be
made negligible. !is can result in each individualmodel becomingmore a-general,
and by extension, o$en the sets of these models will becomemore a-general. In this
way, the tradeo" between precision and model set a-generality can be made less
costly.

In conclusion, precision and model set a-generality always exhibit an i-tradeo",
but the disparity between the intended targets, combined with considerations of
scope and #delity can make the attenuation relationship between themmore or less
costly.
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6 Conclusions

!eorists may face manymethodological constraints, some of which will abate with
improvements in technology or greater available resources. However, there are at
least three kinds of constraints that will not dissipate with scienti#c progress: the
three types of tradeo"s discussed in this paper. Modeling desiderata can exhibit
strict or increase tradeo"s due to facts about logic and representation alone, while
Levins tradeo"s are o$en generated by contingent empirical facts in particular do-
mains.

As an example of these enduring constraints, we have shown that there is an
s-tradeo" betwen precision and p-generality, and an i-tradeo" between precision
and a-generality. Recalling the entailment relations between the tradeo"s, this also
means that precision and p-generality exhibit an increase tradeo" and a Levins
tradeo". In addition, by virtue of the fact that precision and a-generality exhibit
an i-tradeo", we know that whenever any model description that is not maximally
precise picks out a set of models that is not maximally a-general, no description and
set of models in this setting can be maximally precise and maximally a-general.

We believe these results are signi#cant for a number of reasons. !e tradeo"s
described in this paper, only a fraction of the actual tradeo"s, a"ect the explana-
tory and descriptive power of models and sets of models. Models with limited p-
generality may have less explanatory power (Strevens, 2004) and models with lim-
ited a-generality can only represent a restricted set of targets. !erefore, if either
explanatory power or descriptive breadth are of importance to the modeler, when-
ever they are faced with a heterogeneous set of targets, it is likely that the equations
used to describe the models will be imprecise, or alternatively the scope or #delity
criteria employed by the modeler must be signi#cantly limited.

More broadly, the foregoing gives us yet another reason to follow Levins in see-
ing the analysis of tradeo"s as crucial to understanding scienti#c methodology. An
appreciation of what kinds of tradeo"s can occur and the circumstances in which
they arise will aid philosophers in understanding the patterns of models used in the
di"erent branches of science.
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