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Abstract. We consider a structural reflection principle that seeks to go beyond the tra-
ditional reflection principles of Mahlo, Levy, Bernays, et al. The latter are all firmly
intra-constructible that is they produce justifications for only small large cardinals
consistent with Gödel’s constructible universe L. Our Global Reflection Principles
by contrast ensure that the universe of set theory has unboundedly many measurable
Woodin cardinals. This is a hypothesis which (with variants) is used by current set
theorists to establish many absoluteness (and consistency) results concerning the uni-
verse V . It is argued that the Principles are justified by appealing to a Cantorian
Absolute perspective, together with a mereological view of its classes as parts: thus
we may distinguish the mathematico-set theoretic part of the realm, the sets, from the
classes. As there are no ’super-parts’ a hierarchy over and above the universe V does
not threaten.
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Das Absolute kann nur anerkannt, aber nie erkannt, auch
nicht annähernd erkannt werden.

Cantor, Über unendliche lineare Punktmannigfaltigkeiten.
Math. Ann., 1883

To say that the universe of all sets is an unfinished totality
does not mean objective undeterminateness, but merely a
subjective inability to finish it.

Gödel, in (Wang: “A Logical Journey: From Gödel to
Philosophy”)

⇤University of Bristol
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1 Reflection Principles in Set Theory: introduction

Historically reflection principles in set theory have been associated with attempts to
say that no one notion, idea, or statement can capture our whole view of the universe
V =

S
↵2On V↵; the motivating idea seemingly that the universe (V,2) is in some sense

ineffable: all attempts to pin it down will fall short. In particular this will be so, once
we have formalised our notions, for any formal linguistic expression.

Such reflection principles have usually been formulated in some language (first or
higher order) as sentences ' (when interpreted in the appropriate way over V ) that
hold in hV,2, . . .i, hold in some hV� ,2, . . .i - sentential reflection. Here we are ini-
tially allowing set objects to be substituted for variables of a purely first order formula
to construct a sentence. For formulae of higher orders than one it then becomes a ques-
tion as to how to reflect second order parameters, and indeed is a genuine problem at
third and higher orders. In Section 3 we summarise the history of such principles. As
is well known, such principles had been used to a validate the large cardinals known at
that time, or at least the plausibility thereof. From a modern perspective such princi-
ples are disappointing as they never reveal any arguments for strong axioms that sug-
gest anything beyond those consistent with Gödel’s constructible universe L.

However, since Scott’s Theorem (itself surprisingly late) that the existence of a mea-
surable cardinal implies that V is not L, and the wide use of axioms implying the ex-
istence of much stronger cardinals than measurable, reflection principles have tended
to be ignored, (at least by set theorists) as being part of the historical development of
the subject and not much more.

This is not entirely true however. Perhaps the most well known attempt was that
of Reinhardt (1974a) to give justifications of some ideas (that later were adopted to
imply very strong axioms when once re-expressed in an appropriate “set form”) using
a notion of ‘projecting V into idealised realms’.

In Section 4 We suggest a Global Reflection Principle to overcome the limitations
that these principles are all intra-constructible. The concept of a Woodin cardinal
has become central to the development of set theory in the last few decades. This
is not just for the development of determinacy results, but more germane here, for
Woodin’s remarkable results on the absoluteness of various truths resisting any attempt
by Cohen style forcing arguments to falsify them. Many of such theorems use as
background assumptions the existence of a proper class of such Woodin cardinals, or
even measurable Woodin cardinals. The Global Reflection Principle delivers just such
hypotheses.

Thus: we must rise to the challenge to justify a set-theoretic reflection principle that
will ensure the existence of large cardinals (or strong axioms of infinity) that are suf-
ficient to deliver the hypotheses needed for modern set theoretical principles.
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1.1 Argument

As we shall see that purely syntactic, or linguistic means only deliver intraconstructible
principles, we need to go beyond them. We shall need to express the ineffability of
V not purely in considerations about (V,2) alone, but in the general idea of a set
structure which we view in any case, as extending Martin’s concept of “set structure”
(Martin, 2012). We thus outline our viewpoint for this section in terms of which we
wish to argue for new principles. In summary:

(I) (cf. Martin, 2012) We have no need to ‘perceive’ in a Gödelian sense,
or otherwise ‘locate’ any mathematical objects in order to understand the
concepts involved, and to communicate that understanding.
Thus: instantiation of our concepts is not necessary, but what is needed
is uniqueness of the concept up to isomorphism.

(II) We then seek to extend arguments of Martin’s along the above lines
which he advocated for the ‘concept of !-sequence’ and the ‘concept of
set of x’s’ to a ‘concept of set with absolute infinities’.

(III) We then formulate within this framework reflection principles that
establish large cardinals beyond those consistent with Gödel’s L.

2 Martin on set structures

2.1 The Reality of Concepts: Sets and Classes

Martin (2005) has questioned the level of realism that Gödel, although on occasion
expressing this with talk of ‘perception of mathematical objects’ etc. , needs in or-
der to make some of his arguments work, eg. , of the analyticity of mathematical
truths.

Martin identifies two kinds of sense to ‘concept of set’.

(i) That more nearly akin to pure platonism - the whatever it is that falls
under the extension of ‘concept of set (of x’s)’ - that is sets (of x’s), and
(ii) a more general sense of ‘concept of set’ under which falls concepts of
sets, or additionally that of ‘set-structures’.

It is this final ‘additional version’ that I shall want to mostly take here, and go beyond
Martin.

His primary point is perhaps plainly put: the example of Axiom of Extensionality:
it does not say what a set is, on this it is silent, it only prescribes what it means for
any two sets to be equal. The concept of set alone does not determine what it is
for an object to be a set (as he states in Martin, 2012). The notion is objective: we
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understand it, talk about it, as no doubt they do on some other planet with discretely
individuated intelligences. (It is not for nothing that we engrave on steel plates pictures
of Pythagoras’ theorem and place them on the moon, or send them out on Voyager
23.)

However first:

A concept of set expressed by axioms such as comprehension axioms
cannot put any constraint on which objects count as sets and which do not.
Such axioms put constraints on the isomorphism type of a set theoretic
structure . . . a concept of set could count as concept of set in my [indirect
(ii)] sense even if it determined completely what objects count as sets and
what counts as the membership relation. A concept of this sort would
have at most one instance: it would allow at most one structure to count
as a set-theoretic universe . . .

What is ultimately at play here is the point Martin wishes to make that instantiation of
a concept for mathematics (or set theory) is not needed: what we require is uniqueness
(up to isomorphism) in order to make sense and understand concepts. At the end of
the quotation he says that it might have only one structure instantiating it, but this need
not be the case. It might not have any instantiations. (Who seriously believes there
is a well ordering in our own physical manifold that there is well ordering order type
!23?) He reads Gödel as primarily not needing instantiation in many crucial places:
for example, he notes that neither it nor perception of objects plays any significant
role in Gödel’s justifications of strong axioms of infinity. In short instantiation is not
needed either in mathematics or in set theory. Hence: this is closer to an eliminative
structuralist viewpoint.

Basic concepts and their properties

He (Martin, 2012) discusses in the following terms two basic concepts: the concept of
an !-sequence and the concept of set. He identifies three properties a basic concept
may have:

1. First order completeness: the concept determines truth values for all first order
statements.

2. Full determinateness: the concept fully determines what any instantiation would
be like.

3. Categoricity.

An analysis of the notion of , as to whether the notion is first-order complete, cat-
egorical, or perhaps fully determinate. He claims that instantiation of the natural
numbers is not needed for number theory: what we require is categoricity, although
mathematicians probably think that is in fact fully determinate. He identifies In-
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formal Axioms schemes of PA with which one can, informally, prove the categoric-
ity of .

Turning to set theory, we have only glimmerings of what goes on when considering
subsets of V!+1: is the Continuum Hypothesis true? Is every definable subset of the
plane definably uniformisable? So we are hopelessly far from first order completeness.
(However, when considering subsets of V! we are in a better position. We now know
that adding the assumption of Projective Determinacy to analysis, or to the theory of
hereditarily countable sets give us as complete a picture of HC as PA does for V! =HF.
(See the discussion in Woodin, 2001.))

Martin identifies four components of the modern iterative concept of set.

(1) the concept of natural number
(2) concept of ‘set of x’s’
(3) concept of transfinite iteration
(4) concept of absolute infinity.

Corresponding to the informal axioms for Peano Arithmetic, we may then ask: which
informal axioms are implied by the concept of set?

(i) If a and b have the same members, then a = b. (Extensionality)
(ii) For any property P, there is a set whose members are those x’s that
have P (Informal Comprehension).

The Comprehension scheme is called informal since “property” is not specified in
generality. However any worries can be dispelled since it will be clear that the few
instances we shall use are clear cases of properties.

Martin seeks to further soothe any worries that we need to specify what objects sets
are in order to ‘fully understand’ the concept. He will ignore whatever structural con-
straints one may put on what sets actually are, other than the structural constraints of
(i) and (ii).

Theorem 1. (Essentially Zermelo) Informal Axioms (i) and (ii) are categorical: if
(V1,21), (V2,22) are two structures satisfying (1) and (2) with the same x’s, then
with each set of x’s b 21 V1 we associate a set of x’s ⇡(b) 22 V2.

Proof: Let P be the property of being an x such that x 21 b. By the Informal Compre-
hension Scheme there is a c 22 V2 such that

8x[x 22 c $ P(x)]

Q.E.D.

This is the basis of Zermelo’s proof that any two models of ZFC (without urelemente)
of the same ordinal height are isomorphic. Similarly for any two
V1 = (V1,21), V2 = (V2,22) obtained by iterating the V↵ function throughout all
the absolute infinity of ordinals, we have an isomorphism

⇡ : (V1,21)⇠= (V2,22).
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Note for later that we see that ⇡ � OnV1 : OnV1 ⇠= OnV2 .

2.2 From set structures to set structures with classes

We shall want to extend the application of Martin’s analysis to a broader territory -
no doubt broader than he might like. The components of the modern iterative concept
of set (1)-(4) above lead, in our view inexorably, to classes associated to absolute in-
finities in the sense that Cantor recognised and spoke of. We continue our informal
development of the theory of sets, just as any mathematician would develop her theory
of some mathematical construct. The absolute infinity of On we regard as just that: it
is determinate what constitutes an ordinal (à la von Neumann: a transitive set well or-
dered by 2), and On is the class of such, and is an absolute infinity as Cantor realised,
and Burali-Forti showed (albeit half unknowingly it seems, see van Heijenoort, 1967).
The notion is not regarded as indefinitely extensible: if we posit beyond ZFC stronger
axioms of infinity, such as measurable cardinals, we enrich our view of V , but we do
not somehow ‘add more ordinals’.

V itself is, then, also one of many ‘absolutely infinite’ or ‘inconsistent multiplicities’
V,On,Card, . . ., the class of all singletons, . . . that Cantor recognised. Let us imagine
that C is the collection of all such. The nature of C is admittedly somewhat ineffable,
but we can agree with him that as absolute and final knowledge cannot be obtained by
V alone, neither can we find such for hV,2,C i. Just as Martin used the idea of ‘prop-
erty’ in Informal Comprehension, without specifying exactly what that constituted, as
he would only need to use this in a small number of uncontroversial cases, so we shall
think about C , and shall see that we only need to consider a small part of C . Later we
shall consider formalizations of this.

We may, if we wish, tell a mereological story about the whole mathematical universe:
we think of sets as the sole representatives of mathematical objects. The class of sets
thus forms the realm of, or the arena for, mathematical discourse. Thus strictly, the
class of sets is not a mathematical object. However absolute infinities are parts of the
whole realm of that discourse. (One may wish to add to this sets as well as parts of
the realm, but we shall just identify such parts with the sets themselves.) We take C
to be the collection of all absolute infinities (or non-set parts, or proper classes if you
will). C then, contains the possible parts of V .

The usual danger is that we may risk having to build super-classes, and more such
above those; in other words a hierarchy that looks too similar to the V↵ hierarchy.
However this is to extrapolate the use of mathematical methods of set formation -
principally power set and recursion along the ordinals. The power set axiom is a
mathematical operation and not a warrant for a power class operation, even if we
could form a definite domain of quantification. In our pre-formalised thinking, we
bite the Cantorian bullet and admit two types of objects to our notion of set-structure:
V together with its absolute infinities.

In Welch and Horstein, 2016 we discuss further the status of such classes. In particular
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the possible use of plural quantification as a means of establishing the ‘existence’ of
such classes. However we reject that view, principally for reasons to come: we need
actual entities of some kind in C not just something that is ultimately a linguistic
construct: “some sets such that . . .”

2.3 Isomorphism again

Theorem 2. If we have two structures of sets Vi = (Vi,2i) (i = 1,2) satisfying Mar-
tin’s (i) and (ii) above, let ⇡ : (V1,21)! (V2,22) as above be an isomorphism. Now
assume we have collections of classes Ci. Then ⇡ extends to an isomorphism:

⇡ : (V1,21,C1)⇠= (V2,22,C2).

Proof: Let (V1)↵ be the set of V1-sets of rank ↵ in the sense of V1 etc. It suffices
to show for every class X ✓ V1 (thus X 2 C1) there is a Y ✓ V2 with ⇡(X \ (V1)↵) =
Y \ (V2)� where ↵ 21 OnV1 and � 22 OnV2 with ⇡(↵) = �, and conversely - since
then we may define ⇡(X) =

S
↵ 21 OnV1 ⇡(X \ (V1)↵).

Q.E.D.

Here we are taking the ‘informal union’ of the sets of the form ⇡(X \(V1)↵). However
we are not declaring this union to be a ‘set’ or any such, so no formal axiom is needed.
This is unproblematic as it is simply taking a union (or fusion if you will) of the classes
⇡(X \ (V1)↵) and thus is a class of V2.

3 Reflection

We now very briefly survey some of the history of reflection principles, before dis-
cussing some more recent work.

3.1 Historical Reflection

First order reflection is unproblematic: any one syntactic instant of it for a formula in
L2̇, the language of first order set theory alone, is provable in ZF :

(R0) : For any '(v0, . . . ,vn) 2 L2̇

ZF ` 8↵9� > ↵8~x 2V� ['(~x)$ '(~x)V� ].

Indeed by formalising a Sn-Satisfaction predicate we have (still in ZF , here “c.u.b.”
abbreviates “closed and unbounded”):
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For each n there is a term cn for a c.u.b. class of ordinals, so that
so that for any ' 2 FmlSn :

ZF ` 8� 2 cn8~x 2V� ['(~x)$ '(~x)V� ].

Informally we write for each n: 8� 2 cn : (V� ,2) �Sn (V,2). More formally we can
define first order satisfaction for Sn formulae as a two place predicate Satn(p'q,x) and
have that for � 2 cn+1 that

8p'q 2 Sn,8x 2V�(V� ,2) |= Satn(p'q,x)$ (V,2) |= Satn(p'q,x)).

We thus have reflection of (V,2,Satn) to (V� ,2,Satn) for such �. As is well known,
we can not do this for all n simultaneously.

Reaching back to ideas of P. Mahlo, using normal functions and their fixed points we
have:

(F) Any (definable) normal function F : On ! On has a regular fixed point.

Such fixed points are inaccessible cardinals (and indeed strong limits of limits of
such). A reflection principle is related to this. We let Inacc denote the class of strongly
inaccessible cardinals.

(R1) : For any '(v0, . . . ,vn) 2 L2̇

8↵9� > ↵(� 2 Inacc^8~x 2V� ['(~x)$ '(~x)V� ]).

Then it easy to see that (F)() (R1). One then may ask for (F) itself to reflect down
from normal functions definable over V to all normal functions
f :  �!  for  2 Inacc. Then, if (V,2) witnesses (F), in this extended sense
for all such functions f ,  is called a Mahlo cardinal. Being Mahlo is a second order
property; Bernays investigated such in more generality, and one may then end up with
indescribability properties that in general a P1

m sentence about second order param-
eters may reflect down to V. Here ' is a first order statement about the illustrated
upper case second order variables Fi and parameter P, and possible further parameters
~x 2V.

8F19F2 · · ·QFm('(~F ,~x,P))$ (8F19F2 · · ·QFm('(~F ,~x,P\V))
V .

One observation at this point is that first order satisfaction is second order, indeed P1
1-

definable, consequently if we have P1
1-reflection in the above sense, we may reflect

(V,2,Sat) down to arbitrarily large (V� ,2,Sat) (where Sat codes all of first order
satisfaction simultaneously). Reflection of first order satisfaction is not strong.
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The localisation of this idea to a cardinal � in place of V itself (just as a Mahlo cardinal
is the localised version of a concept considering class functions over V ) then yields
the notion of a P1

m-indescribable cardinal. We thus arrive at indescribable cardinals,
indeed not just second order, but of any n’th order: Pn�1

m -indescribable cardinals.

This can be extended to transfinite orders. There are difficulties with 3rd order param-
eters as Reinhardt observed. This again is tracing the lines of the following thought of
Gödel:

The Universe of sets cannot be uniquely characterized (i.e. distinguished
from all of its initial segments) by any internal structural property of the
membership relation in it, which is expressible in any logic of finite or
transfinite type, including infinitary logics of any cardinal number.

(Wang - 1996)

In a different direction Reinhardt studied Ackermann’s set theory, Ackermann, 1956
and his thesis Reinhardt, 1967 (published in Reinhardt, 1970) established its conser-
vativity over ZF.

From Ackermann, 1956 (p.337): “We must require from already defined sets that they
are determined and well-differentiated, thus the conditions of a collection [to be a set]
only turn on that it must be sufficiently sharply delimited what belongs to a collection
and what does not belong to it. However now the concept of set is thoroughly open.”
For Ackermann a well-defined and differentiated condition for an object to be a set
cannot include in its definition assertions of the form “such and such a set is in V ”
since the latter is not a sufficiently sharply determined concept. Thus the definition
of a set x cannot include clauses of the form ‘y 2V ’ although the latter is a bona fide
expression of the formal language.

Reinhardt interpreted this as realising in some form ideas about the projection of the
universe V into some virtual realm. The language for this theory includes a symbol V
to denote the ‘constructed’ sets, but objects such as {V},{{V}} etc. are permissible
(and such are classes for Ackermann). The Cantorian ordinals form W and V is VW,
but we imagine further set-like objects. We posit ZF for V and the axiom V = VW.
The following (S2) schema asserts that any first order sentence ✓ true in V of sets in
V , is true in the ‘projected universe’ and conversely.

(8x,y 2V )(✓V (x,y)$ ✓(x,y)) (S2)

This system was called “ZA". The extension of a formula ✓ in V is thus {x 2V | ✓(x)}
and is merely the restriction of that in the projected or virtual universe where it is of
course {x | ✓(x)}.

Reinhardt (1974b) also studied and formalised a view of Shoenfield (1967) that thought
of V as the actually existing sets, but that there is some ‘formal extension’ of the or-
dinals, and a class of ‘imaginable sets’ U . This came about by studying a thesis of
Shoenfield that had shades of Ackermann set theory (Reinhardt, 1974b p.6):
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If C is a collection of stages [ranks], and if we can imagine a situation in which all
stages in P have been completed, then there is to be a stage s after all the stages in
C.

After some further considerations Reinhardt formalises this as having “imaginable
sets” and at the same time real existing sets, with the latter elements of V . (Ackermann
would have called the imagined sets ‘classes’ and Shoenfield’s V is Ackermann’s class
of all sets.) V cannot be a real existing set, and the property P such that x 2V $ P(x)
cannot be said to exist either. However as a consequence one has the slogan:

If X ✓ Y and Y is imaginable, and suppose X is definable using only~x 2V as param-
eters then X 2V .
Reinhardt in Reinhardt, 1974a argued for a formally projectible realm V� for some
‘�>> On’ with a corresponding V�0 related to V� via an embedding j:

j : V� �!V�0 ; j(On) = On0,crit( j) = On .

We finish this subsection with just one more quote of Gödel that is often referred
to when discussing reflection in the set/class theoretic setting, and can be seen as
motivating reflection properties in general.

All the principles for setting up the axioms of set theory should be re-
ducible to Ackermann’s principle: The Absolute is unknowable. The
strength of this principle increases as we get stronger and stronger sys-
tems of set theory. The other principles are only heuristic principles.
Hence, the central principle is the reflection principle, which presum-
ably will be understood better as our experience increases. Meanwhile,
it helps to separate out more specific principles which either give some
additional information or are not yet seen clearly to be derivable from the
reflection principle as we understand it now." (Wang - 1996).

3.2 Strengthening Reflection Principles

Tait considered in Tait, 2005 some strengthened reflection principles that were of order
higher than two. As already alluded, Reinhardt had observed that third order with
third order parameters would be false. Tait considered how to use the higher order
languages with some syntactical restrictions. Koellner showed (Koellner, 2009) that
those that were consistent were all weaker than (!) (an !-Erdős cardinal). The latter
cardinal is of only modest size, and is also consistent with V being L.

We are thus left with the thesis that all syntactically based Reflection Principles to
date are all consistent with a view of the universe as being L the constructible one:
they are intra-constructible.

The moral that may be adduced is that if we need stronger reflection principles: those
that generalise Montague-Levy in terms of enlarging our set/class-theoretic language
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are not up to the task of providing any justification for the large cardinals needed for
modern set theory.

Why ask for stronger reflection principles?

Theorem 3 (Woodin). Suppose there is a proper class of Woodin cardinals. Then
T h(L( )) is immune to change by set forcing.

This supposition is now ubiquitous in modern set theory. The above is just singled
out as a dramatic instance of how large cardinals affect the universe V . One might
have cited the equally dramatic results of Martin-Steel that infinitely many Woodin
cardinals implies determinacy for projectively defined sets of reals. If there is a proper
class of Woodin cardinals, then again Cohen’s set forcing techniques cannot change
that fact. Projective determinacy implies a host of results about the projective sets:
their Lebesge measurability, their having the perfect subset property, implying that
every uncountable such set has size the full continuum; that projectively defined sub-
sets of the plane ⇥ can be uniformized by a function with a projective graph;
the non-existence of a Banach-Tarskian paradoxical decomposition of the sphere into
projective pieces. The list can be extended, but the point is made: large cardinals at
the level of Woodin cardinals prove such results to hold. These are not relative con-
sistency proofs of one theory relative to another given by the forcing method, they
are facts about the universe of mathematical discourse, V , which must hold if those
requisite large cardinals exist.

In order to obtain such large cardinals, we need therefore a means of thinking about, or
justifying, or obtaining extra-constructible reflection principles. We therefore define
a Global Reflection Principle (GRP).

4 III Global Reflection Principles

Instead of ‘formally projecting V ’ à la Reinhardt let us turn it around and generalise to
obtain a strong reflection principle. Let us take a naive Cantorian (and non-Zermelian)
stance: we bite the bullet of the necessity of the seeming existence of two types of ob-
jects: the sets of mathematical discourse and the absolute infinities (or proper classes)
that Cantor, Burali-Forti, Russell and others early on saw the need for. We let C de-
note the informal collection of such absolute infinities, without worrying about a for-
mal definition delineating these objects. We shall see that we shall only be concerned
with principles that require C to contain a small number of such proper classes, where
a ‘small number’ only means set-many.

We then consider the constellation (V,2,C ) of the universe of sets V obtained in the
usual mathematical fashion of iterating the power set operation as above, and writing
membership 2 in the usual sense: x2 y and x,y2Y for a Y in C . As this indicates here,
we shall be considering the usual first order language for set theory L , but augmented
by second order variables X ,Y,Z, . . . ,Xn, . . . which appear atomically as statements of
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the “x 2 Y ”, “x /2 y”. Equality between classes X ,Y is given extensionally: X = Y $
8z(z 2 X $ z 2 Y ) etc. However there are no second order quantifiers. (In any case,
we have left the domain C of any such putative quantification vague.) But we shall
allow bounded quantifiers as 9x 2 Y (· · ·), 8x 2 Y (· · ·) into our D0 classified formulae
of our extended language L +.

Just as earlier reflection principles expressed the ineffability of V by asserting princi-
ples that reflect the whole realm to a small part of itself, we shall do the same, whilst
reflecting at the same time some satisfaction. One may note that the truth or otherwise
of '(x,X)(V,2,C ) for an X 2C and D0' is only dependent on a limited number of other
classes in C , depending on a few other class parameters derived from sub-formulae,
and rudimentary combinations of such. The pathway is thus open to consider reflec-
tion from the whole universe of (V,2,C ) with its classes to some smaller set-sized
domain. We shall want to reflect ordinary first order expression of L about objects x
which are members of the domain, but also some collection of, or possibly all, state-
ments from L + involving classes. Clearly ‘class many’ statements are not going to
be reflectable.

The domain, the “V ” of this small realm, should be set sized, and indeed we should
speak of a small number of “classes” for it, as possible interpretations for the variables
Xi . . .

So motivated by earlier reflection principles, we choose the small realm to be a ‘typical
normal domain’ V, and we seek some form of satisfaction preserving reflection of
(V,2,C ) together with some collection of its classes, to some (V,2,D) with D ✓
V+1, which we regard as a collection of classes D over V. We may obtain such
smaller structures by considering set-sized substructures of (V,2,C ), (V 0,2,C 0) �
(V,2,C ) with V 0 equal to some V and consider its isomorphic transitive image (V 0,2
,C 0) ⇠= (V,2,D) say. We shall want that D = V+1 but first we discuss the kind of
elementarity we are pursuing.

A class X ⇢ V, with X from D, is the reflection of something satisfied in the realm
(V,2,C ) by one of the parts, or classes, of the whole realm, some X̃ say. What should
X̃ be? If even truth of atomic statements of the form “y 2 X” are to be faithfully re-
flected then it should be a part of the whole (V ) that extends X , i.e. X̃ \V should
be the same as X . This then is no different from the reflection of second order pa-
rameters in the earlier principles. In order then to have simultaneous preservation of
D0 formulae of our language between (V,2,D) and (V,2,C ), we only need that C
contain extensions X̃ for every X 2 D. We are not yet requiring it (although we shall
do shortly), but to have full or ‘global’ downwards reflection, we ask that D =V+1.
The implicit posit here is that there is some choice of some  to fix a domain, and,
for every X in the given D, there is some choice of X̃ 2 C with X̃ \V = X . If these
choices can be made then we have a D0-reflection property between (V,2,C ) down
to (V,2,D). (Indeed making such choices is just another way of stating that we shall
take a substructure (V 0,2,C 0) � (V,2,C ) as above.) Some elementary observations
can be made: for example, as On 2 C we’d better have On\ =  in D, and thus
X̄ = On has to be our choice of extension for X = (On\) as ̃, if we are to have D0
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reflection.

Having sorted out this version of reflection for D0-Satisfaction we may naturally re-
quire that our choices of X̃ 2 C with X̃ \V = X , for X 2 D, can further sustain
reflection of satisfaction for the S1 formulae, the Sn formulae, or indeed the whole
language L +. These desiderata are fulfilled in the following definition.

Definition 4 (GRP). The Global Reflection Property holds if the universe (V,2,C)
admits of a set-sized L +-elementary substructure, (V 0,2,C 0) � (V,2,C ) with V 0 =
V for some  and which is isomorphic to a structure of exactly the same kind, namely
(V,2,V+1).

As discussed, by ‘elementary’ we mean first order elementary in the usual language of
set theory L2 but we allow the addition of second order predicate symbols P0,P1, . . . ,
Pn, . . ..

4.1 Reflection Increased: a spectrum

We step back somewhat and consider properties in a spectrum of increasing strength
leading up to GRP.

Definition 5. [Partial Global Reflection] The Partial Global Reflection Property holds
if the universe (V,2,C ) admits of a set-sized L +-elementary substructure,
(V 0,2,C 0) � (V,2,C ) with V 0 = V for some  and (V 0,2,C 0) ⇠= (V,2,D) with
D ✓V+1.

We can immediately rewrite this in a way familiar to set theorists1.

Definition 6. Let (V 0,2,C 0),D,V satisfy the last definition. We define j to be the
inverse of the isomorphism (V 0,2,C 0)⇠= (V,2,D) and write:

j : (V,2,D)�!L + (V,2,C ).

Then, to be specific, note that j � V is simply the identity function: j(x) = x for any
x 2V.

1Readers of Welch and Horstein, 2016 will note that the primary definition of Global Reflection (Axiom
3) there is based on Def. 6 (with D = V+1). Conversations with Sam Roberts incline us to the view, that,
although making no difference mathematically, for presentational purposes it is perhaps nicer to define the
range of j first (as in Def. 5) and then j�1 as its transitivisation collapse map. We warmly thank him
for these discussions. He has defined (Roberts, preprint, 2016) wide ranging principles extending GRP by
defining certain particular substructures of V with its classes, and certain satisfaction predicates.
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To spell it out further: j must preserve as follows for ' in L +, x 2 V, X ✓ V,X 2
D:

'(x,X)(V,2,D) $ '( j(x), j(X))(V,2,C )

but j(x) = x so $ '(x, j(X))(V,2,C ).

Note that we shall have (V,2) �L (V,2), but of course the latter is not a strong
property.

The strength of these reflection principles is entirely signified by the richness of D.
We may impose closure conditions on D. The intra-constructible reflection principles
such as those from indescribability, could be obtained from principles such as these,
that is when D ( P()L.

If D ◆ P()L then this will deliver to us 0]: define U on P()\L by

X 2U $ X 2 L^ 2 j(X).

By the S1 reflection property of j, standard arguments show that this is a normal
L-ultrafilter and we may form j̃ : (L,2) !e Ult(L,U) ⇠= (L,2) with j̃() > . The
existence of such an embedding from L to L contradicts V = L and is often referred to
as the ‘least’ large cardinal property, or strong axiom of infinity. We thus should have
our first extra-constructible principle.

Similarly for other definable inner models, M say in place of L, then requiring D ◆
P()M will reveal that there is a j : M !e M, and so forth.

The natural limit of the above is when we require D =V+1. There is a step difference
here: (V,2,V+1) we consider as a normal domain with all of its parts, and we assert
the property that anything satisfied in it by a set x 2 V and a class X ⇢ V, is the
reflection of something satisfied in the realm (V,2,C ) by x and by one of the parts
of V , X̃ 2 C with X̃ \V = X . We thus have that (V,2,V+1) is a simulacrum of
(V,2,C ). The j above then maps as follows:

j : (V,2,V+1)�!e (V,2,C )

with j fully L +-elementary.

If we assume the axiom of choice, AC, then (V,2,C ) will be a model of Global Choice
(since if R ✓ V 2

 is a well ordering of V then j(R) is a wellorder of V ). (It would be
entirely within keeping of other reflection principles if we were to ask that there be
unboundedly many such  in On for which there is such a j, but we don’t pursue that
here.) Just as above for L, define a field of classes U on P() by

X 2U $  2 j(X)

As P() ✓ V+1 ✓ dom( j) by S1-elementarity (in j), this is an ultrafilter on P().
Standard arguments show that U is a normal measure on , and thus  is a measurable
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cardinal. This again shows that V 6= L (by an old theorem of Scott, 1961).

But then:

8↵< hV,2i |= “9> ↵( a measurable cardinal)” =)
hV,2i |= “8↵9�> ↵(� a measurable cardinal)” =)
hV,2i |= “There are unboundedly many measurable cardinals”.

Known methods improve this to:

Theorem 7 (GRP). (V,2) |= 8↵9�> ↵(� a measurable Woodin cardinal).

Consequently by results of Martin-Steel, Woodin GRP this implies:

a) Projective Determinacy (PD) and (AD)L(R).

b) (Woodin) Th(L( )) is fixed: no set forcing notion can change Th(L( )),
and in particular the truth value of any sentence about reals in the lan-
guage of analysis, thereby including PD.

One may extend the above and reason that there is a proper class of Shelah cardinals.
Although it is easy to see that

Lemma 8. If Con(ZFC+9�(� a 1-extendible cardinal )) then Con(NBG+GRP)

originally GRP was thought of as obtained from a weakening of the notion of another
downward reflecting cardinal, a sub-compact cardinal:

Definition 9. µ is a subcompact cardinal iff
8A ✓ Hµ+9< µ9B ✓ H+ ,9 j 6= id, j � H = id, so that:

j : (H+ ,2,B)�!e (Hµ+ ,2,A).

This is a third order principle (over Hµ). By dropping the A,B component, we ar-
rive at the notion of µ = On being subcompact, or in other words, something like
(GRP).

5 Philosophical Reflections

In Welch and Horstein, 2016 we discuss the possible interpretations in the light of
current philosophical positions regarding classes. We regard mathematics as taking
place within (V,2) - using sets as representations of mathematical conceptual ob-
jects. (‘Large’ categories indeed need some special consideration as definable classes.
However we might point out that for any theorem that depends on, or builds on such
large categories we may invoke the Montague-Levy Reflection theorem and bring the



Global Reflection Principles 17

result down to one within ZF . (Even in one’s wildest moments, no set theorist se-
riously thought that Wiles’s theorem really required a proper class of Grothendieck
universes.)

It is the author’s view that fully second (or higher order) methods should be eschewed
as these require a domain of quantification: the class of all classes at the very least.
We do not wish to quantify over the collection C in any universal fashion (as we are
unconvinced of the coherence of such an act); although we do wish to say that certain
elements of C stand in certain relations to each other (and to a set-sized domain of
sets). We just want the ability to say that such and such is a sufficiently rich substruc-
ture of (V,2,C ). The richness is expressed in the form of elementarity in L +. Thus
we do not wish to collect the classes together to form a new level VOn+1, and then
regard them simply as some sets we forgot to add on to the top of V . We do not wish
to form {V}.

One might think of the members of the class C as pluralities. The plural reading
may allow us to talk of the such-and-such things without committing ourselves to the
existence of entities. We rejected that view as it ties the notion too closely to linguistic
concerns. We wish to have entities to go with V to be able to assert a substructure of
V together with (some of) those entities in C . Those entities must be in the range of
our j.

We can however use the language of mereology to talk about classes as the parts of
V . This is similar to David Lewis’s interpretation of sets (Lewis, 1991). For Lewis the
parts of sets are obtained from the singleton function and the process of mereological
fusion. Here classes have subclasses as their parts. A set-sized part of a class we
identify with the corresponding set. Indeed an instance of Comprehension can be
interpreted as declaring that part of set through a defining clause, is a set. Unlike
Lewis, we take the sets and so V as given, and use the part/whole relation to discuss
the absolute infinities and V ’s parts. An absolute infinity then becomes the fusion of
all of its parts.

There are thus either the set-sized parts which we identify with the sets themselves, or
the parts that are proper-class sized. (As noted GRP implies Global Choice and so for
any latter part there is a bijection with a proper class of ordinals.)

The reflection principle embodied in GRP is one involving quantification over sets,
our mathematical objects (although classes are allowed unquantified). It is possible to
have a strengthened GRP requiring the set-sized substructure of
(V 0,2,C 0) � (V,2,C ) to be S1

•-elementary in the full second order language L 2
2̇ .

This would indeed be taking quantification over classes and stepping out into higher
orders. In this case after taking an isomorphism to a set structure (V,2,V+1) we
shall have: There is  2 On, there is j 6= id, crit( j) =  with

j : (V,2,V+1)�!S1•
(V,2,C ).

This we may call mereological reflection: we fully reflect on the parts of V by allowing
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now quantification over parts. By sticking to “mathematical reflection” we have a
principle consistent relative to ZFC with a 1-extendible cardinal.

We can go further and using Global Choice to define S1
n-Skolem Functions, define full

second order satisfaction, Sat. We might in turn add that to our language, call it L 2
Sat

and get a yet stronger principle, GRP+ say, with

(V 0,2,C 0,Sat 0)� (V,2,C ,Sat)

now required to be an L 2
Sat -elementary substructure.

Just as a sample of what one could obtain then, we see that V can be filtrated as an
On-length system of embeddings of GRP type:

Proposition 10 (GRP+). There is a commuting system h↵, j↵�i↵�2On of embed-
dings j↵� : (V↵ ,2,V↵+1) �!S0

1
(V� ,2,V�+1) with, each j↵� , ↵ < �, witnessing

the simple GRP at the ‘universe’ V� with its parts V�+1 . Thus each j↵ � ↵ = id � ↵,
and j(↵) = � . Moreover for ↵ 2 On, there are maps

j↵ : (V↵ ,2,V↵+1)�!S0
1
(V,2,C )

also witnessing GRP in the universe.

It is not hard to derive the consistency of such a system from a subcompact cardinal
(Welch, 2016).
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