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Chapter 1

Introduction

Earth was always strange and new to herself. . . . She loved the risk,
the randomness, the lottery probability of a winner. . . . This planet
that seems so obvious and inevitable is the jackpot. Earth is the blue
ball with the winning number on it.

Jeanette Winterson—‘Weight’ (2005)

The topics discussed in this dissertation are all related to the philosophy of proba-
bility: we discuss the foundations of probability theory—a special topic in the philos-
ophy of mathematics—and the epistemology of probabilistic information. Whereas
epistemology traditionally deals with beliefs of only a single agent, we will also ap-
ply probability theory to describe the beliefs of groups of interacting agents (social
epistemology).

Section 1.1 gives the rationale for this dissertation and makes its structure explicit.
In section 1.2, we will define the branches of philosophy to which this dissertation
belongs: formal philosophy and computational philosophy. In section 1.3, we give
an overview of the foundations of probability and randomness. This section also
describes the author’s position on the interpretation of probability, which is an epis-
temic one. Section 1.4 gives an overview of the mathematics and philosophy of the
concept of infinity.

1.1 Motivation and structure

Il est remarquable qu’une science qui a commencé par la con-
sidération des jeux, ce soit élevée aux plus importants objects des
connaissances humaines.

Pierre-Simon de Laplace (1814, p. 220)



2 Chapter 1. Introduction

Human knowledge is no solid rock of certainties. Scientific knowledge is often
limited to the knowledge of probabilities, for example in quantum mechanics. In
other fields, the relevant probabilities are not known exactly or it may not even be
clear what the relevant possible outcomes are.

Because of the great importance of probability theory as a mathematical tool in
all of the sciences, a first task for the philosophy of science is to critically investigate
its foundations. In recent years, analyses in terms of probabilities have become more
common in philosophy, too, in particular in (Bayesian) epistemology. This shows
that philosophy has to be open-minded about new methodologies, but self-critical as
well.

The first goal of this dissertation is related to the foundations of probability the-
ory: to develop a mathematical basis for probability theory that allows dealing with
infinite sample spaces in a way that is epistemologically satisfactory. We start from
the application of non-standard analysis and non-standard measure theory to prob-
lems with a countably infinite number of possible outcomes. In the next step, we
evaluate whether this solution also points towards:

• a solution for problems related to beliefs concerning finite sample spaces, in
particular the Lottery Paradox;

• a more general approach that is also suitable for higher cardinalities.

The second goal is related to the application of probability theory to problems
in formal epistemology. We will study an artificial group of interacting agents. The
agents are modeled to have an opinion about a limited number of aspects of the
world; their opinion is modeled as a theory about the world. We investigate the
probability that an agent arrives at an inconsistent theory by updating his or her
opinion based on the opinions of the other agents (in a specific way). We write a
computer program to simulate groups of agents and analyze the data with special
attention to the philosophical implication of the results.

Figure 1.1 makes the structure of this dissertation explicit. Although this work
can be read in a linear way, from Chapter 1 to Chapter 6, its contents is only partially
ordered. There are at least three distinct reading paths: one track focuses on the
foundations of probability theory, a second one highlights the Lottery paradox in
epistemology, and a third one focuses on social epistemology. Here is an overview of
the contents of the following chapters:

Chapter 2 focuses on situations with infinitely many possible outcomes and in-
vestigates whether there is a sum-rule for probabilities that holds for such cases. In
the mathematical treatment of probabilities, one has to make a distinction between
cases in which the number of possible outcomes is finite, countably infinite (like the
natural numbers), or non-countably infinite (like the real numbers). The countably
infinite case is of particular interest to the philosophy of probability: it is the sim-
plest case where problems with the sum-rule appear. Although countable additivity
is one of the basic properties of Kolmogorov’s classical approach to probability theory
(1933), de Finetti (1974) argued that only finite additivity is acceptable.

Although Chapter 2 is a technical study of a rather specific problem, it is related
to other problems in the philosophy of probability, as well as to the philosophy of
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Figure 1.1: Three reading tracks for this thesis. (The number of eyes on
each die indicates the chapter number.)

mathematics in general, where problems related to infinity have always played an
important role.

The general epistemological question “What do we know?” is closely related to
the concept of probability. Many authors regard it as a necessary condition that we
assign unit probability to a statement before its content can be part of our knowledge;
for these authors, knowledge requires certainty. Others claim that knowledge is
never absolute, but rather context-dependent; for them, knowledge requires “almost
certainty”. They have to explain what it means that we can know something with
“almost certainty”. The statement seems to indicate a very high probability, but
how can we establish precisely how high the probability should be? We come back
to this issue in Chapter 3. To give an adequate answer to this question, we have
no choice but to investigate the nature of probability itself.

Chapter 4 focuses on the analogies between the topics discussed in Chapter 2
and Chapter 3.

Chapter 5 serves as an example of a study in computational philosophy: it gives
a quantitative answer to the question of how likely it is that an agent arrives at an
inconsistent theory by starting out with a consistent theory and updating over other
agents who all hold a consistent theory. As such, this is also the only chapter in
which groups of agents are studied instead of a single agent.



4 Chapter 1. Introduction

In Chapter 6, we evaluate the contents of this dissertation and sketch a plan for
future work.

Multiple examples in this introduction come from the philosophy of physics, be-
cause the history of the theory of probability is closely linked to that of physics (in
particular, statistical physics; see e.g. Uffink, 2007) and because the author is most
familiar with this science.

1.2 From formal to computational philosophy

What do philosophers do? Twenty years ago, one might have heard
such answers to this question as “analyze concepts” or “evaluate
arguments”. The answer “write computer programs” would have in-
spired a blank stare and even a decade ago I wrote that computational
philosophy of science might sound like the most self-contradictory
enterprise in philosophy since business ethics.

Paul R. Thagard (1998, p. 48)

1.2.1 Formal philosophy

Formal philosophy uses techniques from mathematics (including logic) to ana-
lyze philosophical problems. Making mathematical analyses and modeling problems
requires a way of thinking that is economical and constructive. Mathematics is a
typically human activity, which certainly has its limitations and may require con-
siderable effort, but nevertheless constitutes something we are good at (at least as
a collective). In the sciences, the value of this way of thinking has already proven
to be successful. Also in contemporary analytical philosophy, there is much interest
in the formal approach. The use of formal methods in philosophy is far from a new
development: logic always played a major role in Western philosophy, right from its
beginning in ancient Greece. The new element in the current approach to formal phi-
losophy is the broader interest for mathematical methods in general and probability
theory in particular.

Famous examples of ancient Greek logics are those of Plato, Aristotle, and the
Stoics. The word ‘logic’ stems from the Greek word ‘logos’ which can be translated
as ‘word’, but also as ‘argument’, ‘logic’, or ‘reason’. Later philosophers such as
Descartes, Leibniz, and Spinoza thought that we can learn about the world through
reasoning and logic—a position called ‘rationalism’ (in contrast to the later empiri-
cism, which gives more weight to sensory experience).

At the start of the twentieth century, there was a renewed interest in logic in
philosophy: Frege and Russell worked on axiomatic formal logic, and Carnap and
his Wiener Kreis started the tradition of logical empiricism, further developed by
Reichenbach and his Berlin School. These were the seeds from which analytical
philosophy blossomed. The position of an analytical philosopher is that philosophical
problems can be (dis-)solved using logical methods, in particular first-order logic.
However, logical empiricism was rejected by most philosophers of science in the 1960s.
As a reaction, philosophers started to focus on the socio-historical dimension in the
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development of science. A famous and extreme example of the social approach to
the philosophy of science and technology is the work by Latour and Woolgar (1979),
who observed scientists in their labs, much like anthropologists observed tribes in
New Guinea.

In our time, the socio-historical approach is still important in the philosophy of
science, but there is also a renewed interest in formal methods. Whereas the formal-
ization of a problem originally meant ‘to translate the problem into the language of
first-order logic’, now the term is used in a broader sense: ‘to rephrase (an essential
part of) the problem in mathematical terms’. Although logic belongs to mathematics,
so do probability theory, game theory, and graph theory—all of which are being ap-
plied in the philosophy of science. Examples of topics in the philosophy of science and
epistemology to which mathematical methods have been applied include, but are not
limited to: scientific laws and theories, scientific discovery and explanation, causal-
ity, confirmation, reduction, common knowledge, conditional reasoning, coherence,
and judgment aggregation. Moreover, logic itself has also become a much broader
field: originally, logic was just first-order logic, but now it also includes model the-
ory (Tarski et al.), proof theory, set theory, recursion and complexity theory (Gödel,
Church, Turing, and Kleene), and intensional logic (Kripke).

Domotor (2001) distinguishes between three main directions in present-day philos-
ophy of science: the set-theoretical predicate approach initiated by Suppes (1957), the
topological state space view originally proposed by Beth (1961), and the structural-
ist program initiated by Stegmüller (1976). However, the number of mathematical
methods available to philosophers is not limited to these three: compared to the
situation of almost one century ago, formally oriented philosophers now have a wide
variety of tools to choose from, and their first task is to make this choice wisely. As
Horsten and Douven (2008, p. 158) put it: “Finding the right formal framework for
a problem is a highly nontrivial task. There is no general recipe for it.”

The latter observation alleviates at least one worry of those philosophers who fear
that formalism will push away philosophical considerations: the choice and design of
an appropriate formal method is itself not a formal affair, but a philosophical one. It
requires critical reflection and a choice in the criteria that the method should meet.
The same holds for evaluating the results of a formal analysis; it is not because the
methodology is mathematical in nature that the results achieved by it are unrefutable:
the method may not apply, or a more appropriate formalization may be found.

Like rephrasing a problem in the language of logic, using the language of any math-
ematical framework does have the benefit of being precise and explicit. Although the
choice of mathematical formalisms has become much broader, the choice of doing a
mathematical analysis may still seem like a form of narrow-mindedness. This is not
entirely true: doing mathematics is a creative activity. The activity is not as rigid as
the rigidity of the product it tries to achieve; quite the opposite, philosophers of sci-
ence have reported a flourishing pluralism. Pedeferri and Friend (2010), for instance,
argue in favor of methodological pluralism in mathematics.

We will come back to the use of probability theory as a tool in philosophy in
subsection 1.2.3.
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1.2.2 Computational philosophy

The increased computing power opens avenues for new research in formal phi-
losophy. Of course, the increased power and availability of computers influence all
researchers, including philosophers, whether they are formally oriented or not: the
information revolution brought about by the emergence of the internet influences how
scholars search for information and communicate with each other. Although this is
an interesting topic in its own right, this is not what we mean by ‘computational
philosophy’ here.

Computational philosophy can be understood in two ways: (1) as the philosophy
concerning computer science or (2) as a way of doing philosophy, a way in which
computation is an important tool. To give an example of the former, Thagard (1993)
discusses epistemological issues that arise in the context of computer research. Here,
however, we will be interested in the second meaning of computational philosophy as
a part of formal philosophy, in which computation plays the role of preferred formal
technique.1

Computers can be used to run simulations, which allow philosophers to study
phenomena of interest in isolation, disentangling them from other effects. Like the
strictness of mathematics, this number-crunching is regarded with suspicion: these
methods produce ‘results’, but do they provide insight into the underlying philo-
sophical questions? Do they explain anything? The answer is: not on their own, of
course. Simulations are merely research tools, which on their own do not solve any
questions—philosophical or otherwise. They still require a researcher to select and
interpret the data, to think about them, and forward conclusions. They can be a
primary or secondary source of information, next to observations and intuitions.

Programming courses do not appear in a typical philosophy curriculum. So, if
philosophers want to start performing simulations, they have to learn programming
first (or at least learn how to rephrase their problems in such a way that a programmer
can start working on them). According to Thagard (1998, p. 55), this is precisely
the reason why computational philosophy has not seen wider acceptance so far:

Almost twenty years ago, Aaron Sloman (1978) published an audacious
book, The Computer Revolution in Philosophy, which predicted that
within a few years any philosopher not familiar with the main devel-
opments of artificial intelligence could fairly be accused of professional
incompetence. Since then, computational ideas have had a substantial
impact on the philosophy of mind, but a much smaller impact on episte-
mology and philosophy of science. Why? One reason, I conjecture, is the
kind of training that most philosophers have, which includes little prepa-
ration for actually doing computational work. Philosophers of mind have
often been able to learn enough about artificial intelligence to discuss it,

1Of course, the two senses of ‘computational philosophy’ have a non-empty intersection: reflecting
on computers and artificial intelligence may also spark new ideas in the philosophy of mind, the
philosophy of science, and epistemology. For instance, Thagard (1988) presents a computational
model of problem solving and discovery in science based on research in artificial intelligence.
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but for epistemology and philosophy of science it is much more useful to
perform computations rather than just to talk about them.

It is not my intention to argue here for the introduction of programming courses
in the philosophy curriculum. I would rather suggest another way to forward com-
putational philosophy: starting interdisciplinary research projects, such as the one in
which I had the opportunity to participate (i.e. the Formal Epistemology Project).
This strategy requires flexibility from its partners: philosophers should learn about
the possibilities and limitations of computer-aided research, whereas the program-
mers should learn about the research interests of the philosophers. It is a matter of
learning each other’s language. This theme recurs in section 1.2.3.

1.2.3 Chances for philosophy

As mentioned at the beginning of this section, mathematics is a key ingredient of
many branches of science, and in recent years, the use of formal methods has become
more popular in philosophy, too. Here, we will focus on the prominent position of
probability theory in the methodology of the sciences and of formal philosophy.

Not surprisingly, philosophers have drawn attention to the analogy of probability
and their other tool of preference: logic. Carnap (1950), for instance, regarded
probability theory an extension of first-order logic, in particular as a logic of partial
entailment, and tried to base a theory of confirmation on probability.

One branch of contemporary philosophy that heavily relies on probability the-
ory, is Bayesianism (Hartmann, 2008, Hartmann and Sprenger, 2010): the Bayesian
school not only provides an interpretation of probability (see section 1.3.1), but also
advocates the application of Bayesian analysis to particular problems in philosophy.

Another example in which probability plays an important role is the study of
the opinions of groups of people, modeled as idealized agents. For physicists, this
is a new application of their methods for describing many-particle systems (Lorenz,
2005); economists hope to model the complex, dynamical pattern of social interac-
tions (Phan and Varenne, 2010); and philosophers apply it to study how humans
share knowledge and how they could improve the process to come closer to the truth
(Hegselmann and Krause, 2002).2 Precisely as in classical physics, combinatorics and
probability theory may be applied here to summarize the torrent of information.

Although mathematical models, including those based on probability, are powerful
tools, the foundations of those models are not free of problems, as will be discussed
in subsections 1.3 and 1.4. Should we regard the use of probability theory—with all
its problems and paradoxes—as the introduction of a Trojan Horse into the bastion
of philosophy?

As philosophers, we cannot ignore the fact that there are problems in the founda-
tions of the methods we use. On the other hand, it would not be wise to abstain from
a powerful mathematical technique just because there are problems associated with
it. Observe that there are problems with informal modes of reasoning, too, so there

2For an explanation of ‘closer to the truth’, see Kuipers (1987).
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is no problem free alternative available. Any methodological choice should strike a
balance between advantages and weaknesses.

In the application of probability theory lies a great opportunity for philosophy—
we should take that chance! New branches of mathematics have been developed be-
cause mathematicians responded to interesting problems in the sciences, in particular
physics. As a result, these domains can now profit from a tailor-made mathematical
set of instruments. Philosophy may also benefit from this effect if philosophers learn
to pose their questions in a formal language. Once philosophy has such a mathemat-
ical tool-set available, the effectiveness of this tool may appear unreasonable—just
as happened previously, in the natural sciences (Wigner, 1960).

This dissertation is a contribution to the contemporary philosophy of probability.
Epistemology requires a thorough study of the concept of probability, both in the
objective, or physical, and in the subjective, or epistemic, sense of the word.

We develop a framework for probability theory that is capable of describing a fair
lottery with a countably infinite number of tickets. With classical probability theory
alone (in the sense of Kolmogorov), it is impossible to assign equal probabilities to all
the tickets in such a lottery. We investigate a meaningful extension of the concept of
probability to include infinitesimal probabilities. A suitable framework that allows
the introduction of infinitesimal probability values is non-standard analysis. Once
we have a system that is able to deal with a fair infinite lottery in an adequate way—
both mathematically and philosophically—we can investigate whether lotteries on
sets of larger cardinalities can be dealt with in a similar fashion.

The topic of this dissertation is not limited to a study of the concept of objective
or physical probability in itself, but also in its relation to the formation of rational
beliefs. The Lottery Paradox illustrates that the relation between probabilistic in-
formation and beliefs based on such information may be problematic, even for the
simple case of a finite lottery.

1.2.4 Use with caution

The author has a very positive attitude towards the application in philosophy of
mathematical methods in general and probability theory in particular. But despite
this optimism, some warnings are at place here.

Philosophers who are interested in formal methods do not only need to learn how
to apply them (or how to properly instruct someone else to do it for them), but also
need to learn how to select a tool that is suitable for their case, how to model the
problem in an efficient fashion, how to compare simulated data to other sources of
information, and how to draw conclusions from it. Just as in the case of the natural
scientists, who started using advanced mathematical methods and simulated data
years ago, it is to be expected that philosophers will make beginners’ mistakes; a
new way of looking at things always requires some time to adapt.

Formal or computational philosophy is a good place to try to apply what we have
learned from the philosophy of science to philosophy itself: when we build models,
they have to be simple enough, to keep their application manageable, and yet they
have to be realistic enough to bear any significance towards the problem of interest.
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This idea is sometimes referred to as the ‘KISS principle’; the letters stand for ‘Keep
It Simple, Stupid!’.3

After the analysis has been carried out, still another pitfall awaits us: that of
confusing the model with reality. As in the sciences, we should be aware that the
fundamental concepts or the structure of the mathematical model that we use to an-
alyze a problem of interest do not necessarily correspond to the fundamental building
blocks or the structure of the world. The interpretation of data based on a model
always has to be done in such a way as to carefully distinguish the model from reality!

This warning may remind us of the words of Whitehead (1920, p. 163): “The aim
of science is to seek the simplest explanations of complex facts. We are apt to fall
into the error of thinking that the facts are simple because simplicity is the goal of
our quest. The guiding motto in the life of every natural philosopher should be, Seek
simplicity and distrust it.”

1.3 Foundations of probability and randomness

Comment oser parler des lois du hasard? Le hasard n’est-il pas
l’antithèse de toute loi?

Joseph L. F. Bertrand (1888)

This large section gives an overview of two concepts that are intimately related:
probability and randomness. Subsection 1.3.1 focuses on the various philosophical
interpretations of probability. We will put forth an epistemic approach to objective
probabilities in subsection 1.3.2 and propose a matching definition of a chance process
in subsection 1.3.3. In subsection 1.3.4, we review the intuitive and the mathematical
approaches to randomness. The generation of (pseudo-)random numbers is discussed
in subsection 1.3.5. We will visualize different grades of certainty and the relation
between probability and randomness in subsection 1.3.6. Subsection 1.3.7 closes this
section with some thoughts on the relation between probability and luck.

1.3.1 Interpretations of probability

This subsection provides a brief, non-exhaustive overview of different interpreta-
tions of the concept of probability. For a more extensive treatment, consult Hájek
(2007, 2008) for instance. The different interpretations are usually also related to a
specific view of other concepts—such as certainty, possibility, and randomness—and
may be derived from, or contribute to, a full philosophy of science.

The classical interpretation of probability is typical for the work of Laplace, but
also for that of Bernouilli, Huygens, Leibniz and Pascal. An important element
of the classical probability theory of Laplace (1814), is the ‘Principle of Insufficient
Reason’ or the ‘Principle of Indifference’4 (PI). This principle states that whenever no
information is available to choose one possibility over another (e.g. due to symmetry),
an equal probability should be assigned to those possibilities. However, because

3The acronym is attributed to an engineer, Kelly Johnson.
4This name for the principle was introduced by Keynes (1921).
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possible outcomes can be labeled differently by different agents, the application of
this simple idea is not without its problems, as has been illustrated with the paradoxes
of Bertrand (1888) and later reactions to them (Jaynes, 1973, 1957, Seidenfeld, 1979).
(We will come back to PI in subsections 1.3.3.2 and 1.4.2.2.)

A second interpretation of probability is frequentism: it assumes that probabilities
are relative frequencies. Proponents of this idea were Reichenbach, Venn, and—most
notably—von Mises. Just as with PI, the probabilities for finite references classes can
only be rational numbers. As a reaction to this, the possibility of infinite references
classes has been investigated, with the probability set equal to the limit of relative
frequencies. De Finetti (1974) pointed out that limits of relative frequencies are not
countably additive (cf. subsection 1.4.2.2).

Let us now distinguish between objective and subjective approaches. An objec-
tive or physical interpretation tries to identify probability as an intrinsic property
of the physical system; this is also called the propensity-interpretation and has been
advocated by Popper. This interpretation may seem appealing in relation to scien-
tific theories which involve probabilities, but does not match well with many other
situations in which the use of probability seems equally warranted. For instance, if
we are faced with a process that has already taken place, such as a coin toss, but the
result of it remains unknown to us until now, it seems natural to assign probabilities
to the possible outcomes, although the actual outcome is already fixed. In this case,
the probabilities assigned by us do not correspond directly to the propensity of the
system, but rather to our limited knowledge.

The subjective interpretation does justice to this idea: it regards probability as a
way to represent the information that a subject has about a system. In this view,
probabilities may be used to describe a system, irrespective of whether that sys-
tem is chance-like in nature or not. The subjective interpretation is also called the
Bayesian interpretation or personalism. Some important subjectivists were Arnauld,
de Finetti, Good, Jeffreys, Koopman, Lindley, Morgenstern, Ramsey, Savage, and von
Neumann. Subjectivism is the dominant interpretation in the philosophy of proba-
bility theory today. It interprets probabilities as ‘degrees of belief’ of an individual
‘agent’: the probability an agent assigns to a statement is supposed to represent his
or her confidence in the truth of that proposition. Subjective probabilities are often
discussed in relation to wagers and betting strategies. Usually, money is at stake in
these situations. Because sums of money are quantized, it is sometimes necessary
to regard what is at stake as something more abstract: a continuous quantity called
‘utility’.

However, the purely subjective approach of Savage and other Bayesians has the
drawback that a specific agent can never be considered to be wrong in the way he or
she chooses his or her probabilities based on the available information. This drawback
is alleviated by the intersubjective approach of Keynes, which introduces an appeal
to what the agent should be able to conclude from the available information, in other
words: norms of rationality which go beyond mere probabilistic coherence. This
is also called the credence-based approach, for instance in contributions by Carnap
and Lewis. Lewis (1986b) also proposed a way to relate subjective probabilities to
objective probabilities by means of the so-called Principal Principle: if the objective
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probabilities are known, our subjective probability estimations (degrees of belief)
should be set equal to them.

Whereas both versions of the subjective interpretation can be called ‘epistemic’,
whenever this term is used in this thesis, it will be reserved for the intersubjective
version.

1.3.2 An epistemic approach to objective probability

When considering the foundations of probability theory, it is important to distin-
guish between properties of a mathematical model of the world and properties of the
world itself. As an example, which I attribute to Vieri Benci, consider the question
of determinism, which is considered an important issue in the philosophy of science.
We may establish whether or not a certain model is deterministic, but this is not
sufficient to infer whether or not the world is deterministic, too.

For the same phenomenon, there may very well exist a deterministic model next
to an indeterministic (stochastic) one. As an example, consider a chaotic system:
such a system can be described by deterministic equations, but it is highly sensitive
to boundary conditions. Because the values of the starting conditions can never
be measured with sufficient precision to warrant long-term predictions, a stochastic
model of the same system may be more useful.

A choice between a deterministic and an indeterministic model is available not
only in case of chaotic systems. Werndl (2009) demonstrates “that every stochastic
process is observationally equivalent to a deterministic system, and that many deter-
ministic systems are observationally equivalent to stochastic processes”; models that
are ‘observationally equivalent’ warrant the same predictions. Within this light, it is
clear that the status of the model does not reveal the nature of reality. It does say
something about us, however, that we often prefer the deterministic model—or at
least I do.

The probabilities that occur in physical theories are called ‘objective’ probabilities.
Yet we have just seen that this need not imply that the world is chance-like in
nature, which makes it less appealing to interpret probabilities as an intrinsic physical
property (propensity). Moreover, it is part of the very nature of science that our
current theories may be refuted at some future point in time. This motivates an
epistemic view of science in general—a view in which the current content of science
is considered to be the best sense we could make of all the experiments conducted so
far, but nothing final or absolute. Similar reasons are motives for the adoption of an
epistemic approach to probability, too.

Despite my conviction that probability is best interpreted as an epistemic matter,
a large part of this thesis is devoted to what is called ‘objective probability’. This may
seem contradictory, and hence deserves further explanation. My interest in so-called
objective probabilities is motivated by the role they play in our models of the world.
After all, we do often reason under the assumption that the (objective) probabilities
are such and such. Since this assumption concerns a model, it does not contradict
my general, epistemic attitude towards probability. This is my (crude) summary of
the view: “We use probabilities to try and handle uncertain outcomes. However, no
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matter how sophisticated the models that we employ are, the bottom line is that
we can never predict anything with certainty. We can be relatively certain, but
no matter how high our confidence level, we may always end up being completely
wrong.”

Let us look at this topic from a slightly different angle. There are two distinct
ways in which one may gain information about the probabilities of a certain process.

(1) From evidence to probability The first way is the most natural one: one
may get some information on the process (which devices are used, how they
are used), together with a body of ‘evidence’, by which we mean past results
of the process. Based on this information, one may model the outcomes of the
process by a probability distribution, but one can never be certain whether
future trials will match with the current model.5

(2) From probability to belief The second way to receive information about
probabilities is to simply assume a certain probability measure. This may
happen in textbook examples, which usually do not offer a body of evidence to
examine. Also when one buys a game with one or more dice, one does not sit
down first to throw the dice a large number of times to verify whether they are
fair. One just assumes that all faces have an equal probability of 1

6
to come up

on top. This is reasonable: if the die is, in fact, heavily loaded, one will notice
soon enough, and if it is just slightly off, it will probably not matter for the
game. As long as the (small) bias is unknown, it seems irrelevant. Very often,
we do not even try to identify the possible flaw of a coin, die, or other chance
device, which allows us to assume fair odds. These are only games, of course,
but assumption of a probability measure also happens when we learn science:
when one learns a physical theory, such as quantum mechanics, one may accept
certain probability measures without verifying the experiments oneself.

The two ways to come to accepting a probability measure pose different philosoph-
ical questions. Case (1) is deeply connected to the core of epistemological questions,
such as the problem of induction. Many philosophers of science have worked on
this problem, including but not limited to: Hume (1739–1740) (hence the name
Hume’s problem), Popper (1959), Hempel (1981), Kelly (1996), Williamson (2002),
and Taleb (2007). It is in this context that different interpretations of probability
have been proposed (see also subsection 1.3.1). As indicated before, the epistemic
or intersubjective account of probabilities sounds the most convincing to me. Be-
cause “science relies on intersubjectively available evidence” (p. 215), also Williamson
(2002, Ch. 10) deals with what he calls ‘evidential probability’ in terms of “a form of
objective Bayesianism” (p. 212) and credences which should be distinguished from
outright belief. Williamson remarks that evidence itself, or at least the propositions
we associate with a certain body of evidence, may be uncertain. He proposes a the-
ory of higher-order probabilities and combines it with an account of margins of error.

5To model also the uncertainty in the probability assignment, one may introduce interval-valued
probabilities (cf. Dempster-Schafer theory Dempster, 1967), higher-order probabilities (Williamson,
2002), ranking functions (Spohn, 2009), or some other, more advanced system.
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Interesting as the issue may be, it will not be treated in any depth in the current
thesis.

Case (2) is somewhat removed from issues related to learning from evidence. It
may be considered to be the realm ‘objective probability’, but this is misleading.
From reflecting on the first case, we conclude that we can never know whether any
process with such perfect odds as a fair lottery objectively exists. However, it is not
necessary that a perfectly fair lottery exists—and can be identified as such, on top
of that—in order that we be interested in this case. All that is needed to motivate
further study of this category is the observation that we often assume that a chance
process is characterized by such and such probabilities. While being aware that
this assumption may never be perfectly applicable, we may still be interested to
investigate the properties of our model of a chance process, rather than any real-
world process: this approach is called . . . mathematics. It is precisely in this context
that questions arise related to (countably) infinite lotteries—a case of which we can
never have any direct evidence—as we will discuss in Chapters 2 and 4. This example
poses an interesting topic in the philosophy of mathematics.

Case (2) can also be related to epistemology. Suppose that somebody tells you the
probability measure he would use to describe a chance process, rather than giving you
access to the evidence on which he bases this model. What should you believe in that
case? The question of rational beliefs based on knowledge of a precise probability
distribution is taken up in Chapter 3.

Because Bayesianism is an important school that holds an epistemic view of prob-
ability, we should establish whether the current view belongs to it or not. I am not
convinced by the Bayesian discourse in general, neither as a methodology nor as a
philosophy, for reasons similar to those forwarded by Cousins (1995) and Gelman
and Shalizi (2010). An essential ingredient to many branches of Bayesianism is the
view that conditional probabilities are more fundamental quantities than uncondi-
tional probabilities. This comes close to the epistemic approach that I endorse, but
the approaches are not completely identical. I do agree that probabilities always
come with assumptions: in order to specify a probability value, one has to assume
a certain set of possible outcomes, a certain set of variables, a certain form of the
probability function, and so on. However, this is not what is expressed by conditional
probabilities: even in conditional probabilities, many of these model-assumptions are
tacit. So, whether considering conditional or unconditional probability values, one
should always be aware that the model as a whole may be inaccurate, inadequate,
or completely inappropriate in the given application.

A view that is much closer related to my own, is that of van Fraassen (1989). On
the one hand, van Fraassen denies the existence of objective probabilities; on the
other hand, he writes (p. 199): “when physics says that a radium atom has a 50
per cent probability of decaying within 1600 years, it says something about what the
world is like, and nothing about opinion”. How do these two positions rhyme? It
can be understood like this: the world does put constraints on the probability values
that we can put in our models—if we replace the value of 50% in the example by
0.5% or by 5%, it will be easily refuted—but how this works precisely is beyond our
grasp; in any case, it does not require a direct correspondence between the numbers
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in our model and a feature of the world. Van Fraassen (1989, p. 199) also offers a
way to marry the use of objective chances to an epistemic, anti-realist interpretation
of probability: accepting a theory means that the involved probabilities are taken to
be the best available estimation (an expert function). In this view, the wisest thing
to do is to align one’s own probability estimations and beliefs accordingly (cf. Lewis’
Principal Principle). Yet nothing in this view requires the objective probability to
have any metaphysical status.

1.3.3 Definition of a chance process

First, we should indicate what we mean by a ‘chance process’. Various definitions
can be found in the literature, but no formulation is completely neutral with respect
to the interpretation of probability. Hence, we should select a definition that is
compatible with the view of this thesis, which is the position that probabilities reflect
the knowledge an agent has of a system, rather than an intrinsic property of the
system itself. Moreover, we will phrase the definition in terms of a rational agent,
rather than some actual person. This leaves open the possibility that an actual agent
may be mistaken in his or her judgment about whether or not a given process is a
chance process.

We will use the following definition for a chance process6: if all the knowledge
that is available about a certain process at a given time suffices for a rational agent
to specify at least two possible outcomes for the next occurrence of the process, but
does not suffice for the agent to predict the specific outcome that will be realized
with certainty, the process is a chance process.

The weak spot in this definition is that it does not specify what it means to
be rational. We cannot hope to give an ultimate answer to this issue here, for it
requires a complete philosophical discussion of its own. It seems as though we should
carefully phrase the rationality-constraint in such a way as to allow it to be verified.
If not, the problem that a definition of chance in terms of an intrinsic property of the
system requires a god’s-eye view, unattainable by any human being, will reappear
in the context of rationality. We would indeed reintroduce the problem if we were
to grant the rational agent an unlimited amount of time in which to formulate his
or her conclusion on whether or not a process is chance-like. In contrast, one could
demand that the agent should be able to formulate his or her conclusion in a finite
time, or—more stringently—that the agent should be able to do so before the next
occurrence of the process (or at least before he or she gets the knowledge of this
outcome). A time constraint is a necessary but not a sufficient condition on the
verifiability of rationality. Should we also specify which external means the rational
agent is allowed (or expected) to use? An agent who has access to the internet, has
access to a gigantic pool of information, provided that he or she masters the use of a
search engine. But it seems strange to hard-code ‘googling skills’ into any definition
of rationality.

Probably we should follow Williamson’s advice to “resist demands for an opera-
tional definition. . . . Sometimes the best policy is to go ahead and theorize with a

6This is similar to the definition which Stone (2008b, p. 7) gives for a lottery.
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vague but powerful notion. One’s original intuitive understanding becomes refined
as a result, although rarely to the point of a definition in precise pretheoretic terms”
(Williamson, 2002, p. 211). So, for now, we just advise readers to insert their pre-
ferred account of rationality into the above definition. Do not worry if you are not
fully satisfied at this point: just as you may update your opinion on whether or not
a given process is chance-like, you may update your opinion on rationality at any
time.

In the following two subsections, we will show why we also take an epistemic view
on possible outcomes and review three different cases of odds: fair ones, weighted
ones, and unknown odds.

1.3.3.1 Possible outcomes: from possible worlds to multiverse

Before we can assign any probabilities, we have to address a more fundamental
question: what are possible outcomes?

The definition of a chance process that we have adopted speaks of ‘at least two
possible outcomes’. These outcomes have to be specified as such in advance, for there
are usually multiple ways to do this. For instance, the toss of a coin will always result
in ‘some side up’, but this is only a single possible outcome; hence, with respect to
this view, the process is not a chance process. In general, different descriptions of the
same process may be regarded as different chance processes. There may also be cases
in which the possible outcomes are unknown: Goodin (1978) speaks in this context
of ‘profound uncertainty’ (see also subsection 1.3.6).

In the rest of this section, we focus on cases where we can identify multiple possible
outcomes. Just as we have taken an epistemic attitude regarding the concept of
probability, we will do so regarding possible outcomes. To explain why, let us start
from the more naive position that identifies possible outcomes with different worlds.

In classical physics, probability theory is used to do calculations of situations in
which we do not possess knowledge of all information, even though it is in principle
available, or is used (in statistical physics) to compress complex information regarding
large numbers of particles. The situation seems to be different in quantum mechanics,
where probabilities are considered to say something fundamental about Nature itself:
namely that She is indeterministic at the micro-scale.

To illustrate this, let’s consider two scenarios:

Scenario 1 - Head or tails. Before the throw of a coin, there are two possible
outcomes: the coin may land with head or tails facing upwards (according to a
certain plane of reference, such as a table). As soon as the piece has landed, it
may show “heads”. What does it mean to say at this moment that it could have
been “tails” as well? Has it not been proven, meanwhile, that this outcome
was not possible: did it not just seem to be so?

Scenario 2 - Spin up or spin down. Replace the coin in the previous scenario
with an electron that happens to be in a superposition of spin up and spin down
(according to a certain axis). We can measure the spin along this reference axis
and may find spin up or spin down—again, two possible outcomes. Suppose
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the experiment is performed and results in spin up. After the experiment, what
does it mean to say that it also could have been spin down? Where did this
possibility go?

In both scenarios we are faced with the same question: “Where have the non-
actualized possibilities gone at the moment that one outcome becomes realized?”
However, there seems to be a distinction as well: in scenario 1, the process is said to
be deterministic, but we lack information about the exact circumstances of the throw
to be able to predict the outcome, whereas the process in scenario 2 is considered to
be indeterministic and thus intrinsically unpredictable.

What we actually demonstrated in scenario 2 is the collapse of the wave function:
according to the orthodox interpretation of quantum mechanics—the Copenhagen
interpretation—the wave function of a system that initially exists in a superposition
reduces irreversibly to a specific component during measurement. There are alter-
native interpretations of the theory in which no collapse occurs, such as the very
elegant multiverse-interpretation of Everett (1957). According to the latter interpre-
tation, every time that a particle or a system which is in a superposition is probed
for the relevant quantity, multiple worlds branch off, one for every possible outcome.
In scenario 2, this would imply that when we measure spin up, a parallel world has
branched off in which another version of us has found spin down and may wonder
whether it could have been just as well spin up. (Although we cannot phone or
otherwise communicate with our parallel counterpart, there is a sort of interaction
possible with close branches of the multiverse: via interference, another quantum
phenomenon with counterintuitive consequences.)

When I was still a student of physics, I was attracted to the many-worlds interpre-
tation of quantum mechanics: it gives an elegant explanation of a typical quantum
phenomenon. However, as illustrated by scenario 1, not all situations that confront
us with different possibilities can be reduced to a process that appears as a collapse
of the wave function; in such a case, no additional universes branch off in the multi-
verse. Yet, here too, there is an interpretation available that strongly resembles the
multiverse-story: with the help of modal logic, scenario 1 can be analyzed in terms
of possible worlds. David Lewis concluded that many problems with counterfactuals
have a simple solution: we just have to assume that the possible worlds really exist
(Lewis, 1986a).

Although the details are different, both Lewis (1986a) and Everett (1957) take
the step of setting possible worlds equal to actual worlds. If this is justified in both
scenarios, this leads us to the conclusion that there must be an enormous number of
worlds! It is advisable to proceed with caution: both interpretations are devised by
humans and thus an important question is whether we should believe that all these
worlds exist or rather that the multiverse-concept is a natural reaction of humans
when confronted with descriptions in terms of probabilities. For both scenarios, there
are alternative interpretations available for the involved probabilities. For situations
as in scenario 1 (coins, wheel of fortune, roulette, . . . ), Abrams developed a mecha-
nistic interpretation of probabilities that does not rely on the use of counterfactuals.

Taking an epistemic approach to possible outcomes—i.e. relating possible out-
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comes to our knowledge of the world rather than to some intrinsic property of the
world(s)—solves many problems associated with counterfactuals, collapsing wave
functions, and exploding numbers of worlds.

1.3.3.2 Odds: fair, weighted, or unknown

A chance process is called fair if its possible outcomes have equal probability. On
the other hand, a chance process is weighted if there is at least one possible outcome
that is more probable than some other possible outcome. Note that this does not
exhaust all the possibilities: one may envisage a chance process about which nothing
is known, except the set of possible outcomes. In such a case, the probabilities are
unknown.

We will now look into the details of fair odds or equiprobability. Chapter 2 con-
cerns the discussion of a fair infinite lottery. It may be objected that this is a
non-problem, since infinite lotteries do not exist. However, it should also be noted
that the idea of a fair finite lottery is a highly idealized concept! There is no way in
which perfectly equal odds can be attained within a finite system. Coin tosses are a
popular example in philosophical discussions of probability. Yet, the toss of a coin is
a deterministic process, which can be described by classical mechanics. Moreover, for
a real-world throw it is never true that heads and tails have equal probability; this is
only obtained in the zero-friction limit, where the coin keeps bouncing back on the
table for an infinite number of times. (See Diaconis et al. (2007) who conclude that
coin tossing physics is not random.) Thus, the assumption of equiprobability is no
less idealized than an infinite lottery. We may even conjecture that only an infinite
process can produce perfectly fair odds.

Using the second Borel–Cantelli lemma (Milbrodt, 2010, II.4.D, p. 177–181), it
can be proven that within a given, infinitely long string of characters (such as letters
and punctuation), in which each character is chosen at random, any finite sequence
of characters occurs almost surely (and actually, infinitely many times). A famous
variant of this result is called the ‘infinite monkey theorem’, attributed to Émile
Borel (Milbrodt, 2010, p. 179): one monkey hitting keys on a typewriter keyboard
at random for an infinite amount of time will almost surely type the complete works
of William Shakespeare (infinitely many times). As a child, I was fascinated by
the suggestion that if space is infinite and contains an infinite amount of matter,
any possible configuration of matter should exist somewhere—including planets that
look just like ours except maybe for some small details.7 I could not believe that
infinity entails this, and I think that I now understand why: for the argument to
hold, it would also require randomness, which was not included in the story, and the
qualification ‘almost surely’ also plays an important role. This boils down to the
difficulty of interpreting unit probability, which does not entail logical necessity.

There is a curious relation between equal and unknown probabilities. In cases

7What the source of this story was, I do not recall, but a contemporary variant of this idea can
be found in Vilenkin (2006), who considers the possibility of eternal cosmic inflation and concludes
(p. 112): “A striking consequence of the new picture of the world is that there could be an infinity
of regions with histories absolutely identical to ours”.
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with some freedom in the formulation of the problem, one can try to describe the
system in such a way that all possibilities have an equal (but unknown) weight. With
the help of combinatorics, the possibilities can be counted (call this number N) and
subsequently the weight of a single possibility can be set equal to its inverse ( 1

N
).

This procedure may provoke the following question: how can we establish that the
possibilities have the same probability if we do not yet know this probability? As we
saw in subsection 1.3.1, in the classical probability theory of Laplace (1814), this is
achieved by the ‘Principle of Indifference’ (PI), which states that whenever there is no
information available for choosing one possibility over another, an equal probability
should be assigned to those possibilities.8 However, because possible outcomes can
be labeled differently by different agents, the application of this simple idea is not
without its problems, as has been illustrated with the paradoxes of Bertrand (1888)
and later reactions to them (Jaynes, 1973, Seidenfeld, 1979). (We will come back to
this in subsection 1.4.2.2.) The main question seems to be: how can we model igno-
rance in a mathematically correct way, without adding information in the process?
Stone (2008b, p. 25) states that in applying PI, we are “flouting Aristotle’s mem-
orable advice, and imposing greater precision than the circumstances allow.” We
should rather accept that there are cases with unknown probability, which simply
cannot be modeled with fair or weighted odds.

We will come back to the cases of weighted and fair odds in subsection 1.3.6 and
Figure 1.2, after reviewing the concept of randomness.

1.3.4 Measuring randomness

1.3.4.1 Looking for patterns

Let us first consider a realistic example. In Belgium, the national lottery is per-
formed by selecting six balls out of forty-two balls (numbered from 1 to 42). (Actu-
ally, there is also a seventh ball drawn, but this plays no role in assigning the first
prize winner.) People who participate in the lottery have to indicate six numbers
in advance of the lottery. If all six numbers correspond to a ball that actually gets
drawn, they win the first prize (or have to share it with others who selected the same
numbers). The lottery machine is supposed to have the effect that, at each draw,
every ball contained in it has the same probability of being drawn. Combinatorics
tells us that the number of ways to select 6 balls from a set of 42 (disregarding the
order) is C6

42 = 42!
(42−6)!×6! = 5 245 786. Hence, the probability of any particular out-

come is 1
5 245 786

or about 0.000 000 19. Even without calculating this value, it is
clear that any particular outcome has an equal probability. Yet, if we were to learn
that this week’s lottery outcome happens to be the numbers 1, 2, 3, 4, 5, and 6, we
would feel like something strange has happened.9 It may lead us to doubt that the

8In the context of scenario 1 of the previous subsection, it can be argued that if a coin is a thin
cylinder with a homogenous distribution of mass, there is no reason to assume that the coin will
land on one side more often than on the other: heads or tails both get probability 1

2
.

9According to the list of past results on the website of the national lottery, found at http://

www.lotto.be/NL/Spelen_en_Winnen/Trekkingsspelen/Lotto/Statistics, this outcome has never
been realized yet.

http://www.lotto.be/NL/Spelen_en_Winnen/Trekkingsspelen/Lotto/Statistics
http://www.lotto.be/NL/Spelen_en_Winnen/Trekkingsspelen/Lotto/Statistics
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lottery machine works properly or that the result of the process is communicated in
all honesty.

Considering a similar example, Laplace (1814, p. 14) writes: “C’est ici le lieu
de définir le mot extraordinaire. Nous rangeons par la pensée, tous les évènements
possibles, en diverses classes; et nous regardons comme extraordinaires, ceux des
classes qui en comprennent un très petit nombre.” Some sequences appear to have
clear patterns, others have more intricate patterns or do not seem to have any. We
regard the first class to be a small one and thus to have a lower probability. If a
result of this class shows up, we feel that it is something out of the ordinary.

Humans are good at recognizing patterns. Our potential for pattern recognition
may be used as a quick and dirty way of determining whether a bit string is random or
not: the bits can be transformed into a black and white image in which a periodical
pattern appears if the numbers are produced by a pseudo-random generator (see
subsection 1.3.5.1) rather than a true random process (Allen, 2010). On the other
hand, when the data does consist of random noise, humans may still be under the
misapprehension that there is a pattern in the data stream (Hake and Hyman, 1953).
The human tendency to look for patterns even when this is not warranted has been
dubbed ‘patternicity’ by Shermer (2008). Of course, the sequence ‘1, 2, 3, 4, 5,
and 6’ of our lottery example does show a clear pattern. However, the balls are
all similar and the numbers that are attributed to them function only as labels to
distinguish them, not to order them. Instead of numbers, we might just as well have
used some other list of symbols which does not suggest an ordering. This way, we
may understand that this particular sequence is indeed no more special than any
other outcome.

At first sight, arguing that ‘it’s just a label’ does not seem to work for the similar
example of a long sequence of tosses with a fair coin, which all result in heads (as
considered, for instance by Gács, 1978): no matter how you refer to heads or tails,
this result means that the—supposedly fair—coin lands with the same face up each
time. However, the coin tosses are supposed to be independent. If this is so, you
should have the freedom to decide which face you call ‘heads’ in between each toss,
and this should not matter. In that case too, the ‘always heads’ result may not seem
so special anymore. However, our brain does signal the pattern, no matter how it is
produced—with relabeling or not. So, the presence or absence of a pattern is still an
interesting feature.

Intuitively, we call ‘random’ those processes whose results seem to show no pat-
terns. The absence of a pattern in a list of past results implies that we have no basis
for predicting a specific outcome for future occurrences of the same process. Since
we lack certainty, we may characterize the process in terms of probabilities. Some-
times a partial prediction is possible: if in the past a specific outcome has occurred
more often than any other, we have a good reason to bet on this outcome for the
next manifestation of the process, all the more so, if the body of evidence based on
former results of the evidence is large and the preference for the specific outcome is
well-pronounced. In such a case, we cannot make a prediction with certainty, but
the randomness is not maximal. Thus, we see that maximal randomness coincides
with equiprobability.
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The criterion of ‘absence of patterns in the results’ has been turned into a math-
ematical definition of randomness: this is the topic of the next subsection.

1.3.4.2 Mathematical approach to randomness

Here we give a very brief chronology of the developments in the mathematical
study of randomness, based on the information in Bienvenu et al. (2009). All the
approaches mentioned here focus on the randomness of individual infinite sequences
of zeros and ones (bits). The infinite binary sequences live on the Cantor space,
written as {0,1}N, 2N, or 2ω, and can be interpreted as representing real numbers or
sets of natural numbers.

The history of randomness in a mathematical context begins in 1919 with von
Mises’ study of the collective (‘Kollektiv’), by which he means a random sequence,
defined in terms of limiting frequency and selection rules (von Mises, 1919, 1928).

In the 1930s, the topic is taken up by Wald, Ville, and Church. Ville (1939)
replaces the selection rules by martingales, which “can be seen as describing the
capital of a player who is trying to guess the bits of an infinite binary sequence,
betting money (never more than his current capital) on their values, and is rewarded
in a fair way” (Bienvenu and Merkle, 2007, p. 119–120). Church is the first to give
a definition for the term ‘random sequence’.

In the 1940s and 1950s, the emphasis shifts to measure theory. In this context,
randomness is defined in terms of a computable measure; sets that have weight one
with respect to the chosen measure are called random. “Misbehaving frequencies
and unbounded martingales are merely examples of sets of measure zero” (Bienvenu
et al., 2009, p. 2).

In the 1960s, the relation of randomness to complexity is investigated. Researchers
such as Solomonov, Kolmogorov, and later Chaitin propose to define random objects
as objects of maximal complexity or minimal compressibility. Chaitin (1975, p. 4–5
of 1987-reprint) states his version of the definition as follows: “A series of numbers
is random if the smallest algorithm capable of specifying it to a computer has about
the same number of bits of information as the series itself.” In his book, Chaitin
rephrases this as follows: “something is random if it is algorithmically incompressible
or irreducible” (Chaitin, 2001, p. 111). Clearly, these definitions connect the topic
of randomness to computability and information theory. An important development
is that of Martin-Löf randomness, which implies that the notion of measure zero can
also be made algorithmic (Martin-Löf, 1966).

In the 1970s, further work was done by Schnorr, Levin, and others. These devel-
opments led to the current algorithmic randomness theory.

Bienvenu and Merkle (2007) distinguish between two approaches to randomness.
On the one hand, randomness may be studied in relation to the Law of Large Num-
bers, which deals with the convergence of frequencies. In this case, randomness is
defined in terms of selection rules and the used measure is typically the uniform
measure on a Cantor space. On the other hand, randomness may be defined in terms
of betting strategies (martingales) and an arbitrary computable probability measure.
This category encompasses different notions of randomness, including Martin-Löf
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randomness, computable or recursive randomness, Schnorr randomness, and weak or
Kurtz randomness.

Additional historical information on the development of randomness and prob-
ability theory can also be found in Vovk and Shafer (2003). For a more detailed
treatment of the mathematics of randomness, the reader is referred to textbooks
such as Niés (2008).

1.3.5 Producing (pseudo-)random numbers

Despite the absence of patterns in them, random numbers, processes and struc-
tures are very useful in data simulations: one may be interested in studying how a
system evolves over time by considering many random start configurations (Monte
Carlo method) or one may model the movement of particles at the micro-scale by
so-called random walks. Instead of doing many calculations that involve a random
start condition or random events in the system’s time evolution, one may also be in-
terested in studying a system whose configuration is completely random: this would
make it possible to do only one calculation that results in a very good estimate of the
average of many similar, non-random systems. This idea may be applied in compu-
tational materials research, when investigating the ‘typical’ properties of a material
consisting of a fixed proportion of atoms of different elements, but in an unspeci-
fied configuration. Representing a random configuration turns out to be very heavy
computationally, because a random structure is non-periodic.

Because ‘random’ is defined as an absence of patterns, one would expect that a
random system has no typical properties at all. One would also expect that it can
never be approximated by a periodical system. It turns out that both assumptions
are wrong: a random system can be characterized by specific numbers (statistical
parameters) and it can be approximated by a periodical system, precisely by selecting
a system that has a value close to that of the ideally random system for the relevant
parameters. Relative to a particular application, these non-random systems may
be more practical to use (easier to obtain), than their ideally random counterpart,
without much loss in the quality of the results. Periodical configurations that are
employed to resemble a random configuration in certain aspects are called pseudo-
or quasi-random systems (Szemerédi, 1975). As Nagle et al. (2006) put it: “Roughly
speaking, a quasi-random structure is one which, while deterministic, mimics the
behavior of random structures from certain important points of view.”

1.3.5.1 Pseudo-random numbers

As a child, I was fascinated by our first home computer, a Commodore 64, and in
particular its option to produce a random number. The command for this function
was RND and it made me wonder how a computer could choose a number freely. It
made me wonder whether the machine had a soul or at least a will of its own. Only
later, much later, I learned that a computer does not produce random numbers at
all, but performs a calculation that deterministically results in a number.

John von Neumann (1951) famously wrote:
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Anyone who considers arithmetical methods of producing random digits
is, of course, in a state of sin. For, as has been pointed out several times,
there is no such thing as a random number—there are only methods to
produce random numbers and a strict arithmetical procedure is not such
a method.

In other words, an algorithm can at best produce a pseudo-random number.

The basic idea behind the pseudo-random function of a computer is to find an
algorithm that starts from a number—called the seed—and then produces, by means
of deterministic calculation, a long sequence of other numbers before returning to
the seed state. The calculation can be based on an equation that describes a chaotic
system. Assigning a good seed state is just as important as finding a useful equation:
for some seeds, the cycle of numbers may be so short that the result will not look
random at all. The problem with BASIC’s RND-function was precisely that it started
from the same seed at every run of a program.

The first algorithm for pseudo-random number generation is called the middle-
square method and was designed by von Neumann (Ulam et al., 1947, Metropolis,
1987). Another well-known example of an algorithm for pseudo-random numbers is
the Mersenne twister algorithm (Matsumoto and Nishimura, 1998). Whereas it may
suffice to use the internal clock to produce a random number for some applications,
in many applications, the pseudo-random generators have to be cryptographically
secure; this category includes examples such as stream and block ciphers, the Yarrow
algorithm, the Micali-Schnorr algorithm, and the Blum Blum Shub algorithm (see
e.g. Krhovják, 2006, for an overview). In this dissertation, we have used pseudo-
random numbers in the simulated populations of Chapter 5.

Pseudo-random numbers are easy to produce, but since all lists of pseudo-random
numbers are cyclic in nature, in effect, these numbers are proven to be non-random.
Can we do better than this?

1.3.5.2 True random numbers

As Hayes (2001) remarks, we cannot really produce random numbers. (If we were
to know how to achieve this, we would need to have a recipe. But if we have a
short description or an algorithm, the numbers produced by it are not random, by
definition.) What we actually do is more akin to mining of a natural resource.

Although it can never be proven that a certain process or sequence of numbers is
really random (cf. subsection 1.3.6), there are some sources that are considered to
be true random number generators. (Instead of writing ‘true’ random numbers, we
just drop the quotes.) They do not necessarily rely on complicated machinery, but
rather on the recording of natural sources of noise. The website random.org (Haahr,
1998–2010), for instance, provides true random numbers based on atmospheric noise.

Meanwhile, there are computers that are able to produce true random numbers.
This requires a special piece of hardware, a built-in apparatus that employs a certain
physical process, such as thermal noise or the photoelectric effect, for the sole purpose
of generating random numbers.
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There exist tabulated data of true random numbers. For instance, a book with
a million random digits was published by the RAND corporation (1955), based on
the results of their electronic true random number generator. What is strange about
this approach is that the numbers can now be referred to as being in this specific
book: this is a very concise description, and thus shows that the numbers are no
longer random. However, they may still be useful for many applications, just like
pseudo-random numbers.

If we need only a few random bits, how about tossing a coin? Does this produce
truly random numbers? The movement of a coin that is tossed is deterministic; it
can be described by classical mechanics—in principle at least, for in practice many
small effects, such as air resistance, are often neglected in such a calculation. As we
mentioned before, Diaconis et al. (2007) have shown that real-world coin flips do not
produce perfectly fair odds. A large part of the chance-like nature of flipping a coin
stems from the fact that we want to use it as a procedure to assign fair chances.
Hence, we do not look at which face is up before we throw it up in the air, we do
not try to control the toss, and at a soccer game we let the referee make the toss.
All these factors help to keep coin tosses as a sufficiently good approximation to a
source of random bits.

1.3.5.3 Making up random numbers

People are notoriously bad at choosing numbers at random. One example is ‘first
digit bias’: when data are forged, the numbers usually fail Benford’s law (Durtshi
et al., 2004), which states that in many applications (in particular, when the values
range over multiple orders of magnitude) the leading digit of natural data is most
often equal to 1. Benford’s law may seem a strange law, but it is easy to see that
it should hold provided that the logarithm of the numbers, rather than the numbers
themselves, are distributed in a uniform way. Note that pseudo-random numbers of
computers are usually uniformly distributed numbers between 0 and 1, and hence do
not (and should not) follow Benford’s law.

A second example of bias is that when making up numbers, people avoid equal
or subsequent digits because they appear non-random, whereas this does occur to a
certain extent in true random data, of course. As a third example, most people have
a preference for even numbers, which may result in a too high percentage of even
digits in made-up numbers. As a fourth example, results of a real experiment usually
show a statistical spread, which is often much lower in forged results.

Even when the forger is aware of an existing bias, he may still reveal his fraud by
producing data that are ‘too good to be true’: he will overcompensate for his natural
tendencies, resulting in a too high percentage of odd digits (especially 7’s and 3’s),
or a too high spread on the data, and so on (Buyse et al., 1999).

People may be tempted to falsify existing data (by selecting the favorable results
or by changing some of the numbers) or to ‘produce’ the data by making up the
numbers themselves. This may happen in different contexts, such as accountancy,
elections, or scientific studies. The aforementioned failures can be used in forensic
accounting (Nigrini, 1996, Durtshi et al., 2004), or to detect fraud in other data
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(see e.g. Buyse et al., 1999, for a study on fraud in clinical trials). You can test
your own (in-)ability to produce numbers that look random at this website: http:

//faculty.rhodes.edu/wetzel/random/intro.html.

1.3.6 Amount of certainty

Figure 1.2 offers a visual representation of the different positions on the certainty–
uncertainty axis. This illustration was inspired by remarks of various authors, in
particular by Stone (2008b).

Goodin (1978, p. 35) invites us to “distinguish two different levels of uncertainty.
With the modest form, the uncertainties essentially surround our probability esti-
mates. With the profound form, we are instead uncertain of the completeness of our
list of alternative possibilities.” Thus, profound uncertainty refers to situations
in which even the possible outcomes cannot be identified; this option is located on
the righthand side of the (un)certainty-axis in Figure 1.2.

Figure 1.2: Schematic representation of different situations involving more
or less uncertainty. The situation in which all possible outcomes have an equal
probability is an intermediate case in terms of (un)certainty, although it is
maximal in terms of randomness.

Chance processes with unequal probabilities, such as a weighted lottery, are po-

http://faculty.rhodes.edu/wetzel/random/intro.html
http://faculty.rhodes.edu/wetzel/random/intro.html
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sitioned more towards the left side of the (un)certainty-axis. The lower axis in the
figure suggests that weighted chance processes result in sequences of outcomes
that are less random than those of fair chance processes. In order to see this, Chaitin
(1970) considers a coin that is biased towards heads: in a long sequence of length n,
it produces heads in approximately 75% of the tosses and tails in 25% of the tosses.
The result can be represented by ones (for heads) and zeros (for tails). The computer
program to compute the corresponding binary sequence only needs to be about 80%
of n, the length of the sequence it computes Chaitin (1970, p. 7). This shows that
introducing bias in a chance process indeed lowers the randomness of and increases
the predictability of the produced results.

According to Edward Gibbon (1805, p. 122), the laws of probability are “so true
in general, so fallacious in particular.” This quote seems particularly well-suited to
describe a fair chance process: there is no good strategy for predicting a specific
outcome of such a process, but the average of a long sequence of outcomes can be
predicted very well. (Notice that for a process with unknown odds, the former also
holds, but not the latter.) Chance processes with fair odds take up a special position
in Figure 1.2: they are completely balanced between certainty and uncertainty, but
they are maximal in terms of randomness.

Of course, assigning an amount of certainty to a process may be subject to change
over time. From the epistemic interpretation of probability and the mathemati-
cal definition of randomness, the picture emerges of chance-like or random ‘until
proven otherwise’. According to the epistemic definition of a chance process (sub-
section 1.3.2), it can never be definitively established that something is a chance
process, since, as more outcomes become known, a pattern may emerge that allows
exact prediction of the subsequent results. In the abstract of his popular article,
Chaitin (1975) writes: “Although randomness can be precisely defined and can even
be measured, a given number cannot be proved to be random.” Hence, the properties
of being truly random, patternless, and chance-like are unprovable. In other words,
this definition of randomness matches well with the epistemic approach to probability
advocated in subsection 1.3.2.

Hayes (2001) paints the picture of randomness as a resource—something we cannot
produce, but that has to be mined—that some day may run out. He focuses on the
fact that a process that is currently regarded as random or chance-like may be found
to be partially or completely predictable later on. This would imply that all changes
of certainty-assessments can be represented as movements from right to left on the
axis of Figure 1.2. However, movements in the opposite direction may occur, too:
a sequence of outcomes or numbers with a clear pattern may be part of a longer
sequence which turns out to be random after all. Hence, also certainty only has a
temporary status.

1.3.7 Relation of probability to luck and justice

We use the phrases ‘fortunate’, ‘lucky’, and ‘good luck’ for cases in which a chance
process happens to have a positive consequence for us; if the consequence is considered
to be negative, we refer to it as ‘bad luck’ or use the term ‘accidental’. But how do
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these concepts relate to randomness?

According to Barry (1989, p. 219): “To say that something is accidental or fortu-
nate is normally to suggest that almost exactly the same causal sequence might have
produced a much better or much worse outcome.” He also writes: “[a] close shave is
lucky; the less close the shave the less we are inclined to talk of luck.” Stone (2008b,
p. 36) interprets the phrase ‘almost exactly the same’ in epistemic terms: “A small
change is a change that is difficult to notice, easy to miss, or at the limit unnotice-
able.” The notion of indistinguishability can be modeled with relative analysis: see
Chapter 3.

Apart from luck, probability is also related to justice. So far, we have used the
word ‘fair’ only in the context of equiprobability. However, the word definitively has
an ethical ring to it: ‘fair’ also means ‘just’. Indeed, fair chance processes are relevant
for justice, as has been argued by political philosopher Peter Stone: he investigates
the ‘problem of allocative justice’ (Stone, 2008a), which is a special case of what
Rawls (1999) calls “distributive justice”. Stone (2008b) claims that a fair lottery is
a just way—in fact, the only just way—to allocate goods when multiple individuals
have equally good claims to the goods (in cases in which the goods cannot be shared
or divided).

The example considered in Stone (2008b) is that of a hospital director, faced with
two equally needy and equally appropriate candidates for an organ transplant, but
only one organ is available. The director has to decide who will get the organ and he
has to do so soon. Tossing a coin to decide the matter is supposed to provide equal
probabilities and is easy and quick. Stone argues that it is also a just way to allocate
the organ. Arguments to use fair chance processes in such cases have been provided
earlier by Katz (1973) and Kilner (1981).

In both examples, the underlying problem is the same: ranking of the possible
recipients based on relevant criteria results in a partial order at best, not a total
order. Even after giving relative weights to the criteria—to summarize them into
one number (representing the strength of the claim of each possible recipient)—ex
aequo’s are possible. (See also Brüggeman et al. (2005) for the problem of ranking
substances based on their physico-chemical properties.)

In such a case, which Stone calls a case with ‘indeterminacy’, allocative justice
demands a fair chance process. Why? Because, in cases in which it is not possible
for the possible recipients to receive an equal amount of the good, they should at
least get an equal chance to receive it. But there are further restrictions: it must be
possible for all the people involved (appointer and candidates) to know which process
will be used to appoint the person who will receive the goods, and they should all
agree that it is a fair chance process: a demand of ‘public reason’.

In order to use something as a fair chance process, Stone (2008b) claims that all
the relevant information should be common knowledge among all the agents involved.
Here, he uses ‘common knowledge’ in the sense of Lewis (1969, Part II.1) and Aumann
(1976), which implies not only that the agents have all of the relevant information,
but also that they know this of each other, that they know of each other that they
know this, and so on. In practice, this means that the drawing should take place at
a public meeting or in the presence of a witness who is considered to be reliable by
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all parties (such as a referee or process-server).

1.4 Infinity and probability

Das Unendliche hat wie keine andere Frage von jeher so tief das
Gemüt der Menschen bewegt; das Unendliche hat wie kaum eine
andere Idee auf den Verstand so anregend und fruchtbar gewirkt; das
Unendliche ist aber auch wie kein anderer Begriff so der Aufklärung
bedürftig.

David Hilbert (1926, p. 163)

According to Aristotle, only potential infinities are an acceptable topic of study;
under his influence, the study of infinity as something actual and completed has long
been taboo in Western mathematics (Rucker, 1982, Chapter 1). Aristotle’s position
still resonated in the 19th century, when Gauss wrote in a letter to Schumacher on
July 12, 1831: “[S]o protestire ich zuvörderst gegen den Gebrauch einer unendlichen
Grösse als einer Vollendeten, welche in der Mathematik niemals erlaubt ist. Das
Unendliche ist nur eine Façon de parler, indem man eigentlich von Grenzen spricht,
denen gewisse Verhältnisse so nahe kommen als man will, während anderen ohne
Einschränkung zu wachsen gestattet ist” (Gauss and Schumacher, 1860, p. 269), and
in the same letter: “In der Bildersprache des Unendlichen . . . ist aber nichts Wider-
sprechendes, wenn der endliche Mensch sich nicht vermisst, etwas Unendliches als
etwas Gegebenes und von ihm mit seiner gewohnten Anschauung zu Umspannendes
betrachten zu wollen” (Gauss and Schumacher, 1860, p. 271). Yet, the topic of ac-
tual infinities proved to be a resilient one, and is important in almost all branches of
contemporary mathematics.

It seems obvious that there has to be some relation between finite concepts and
their infinite counterparts. Humans can only experience finite stimuli and their brains
and associated mental capacities are finite too, so our concept of infinity has to
be derived, or idealized somehow from finite concepts. Lavine (1995) argues that
‘infinity’ is our idealization of the (finitistic) concept of ‘indefinitely large’ (related to
availability); in particular, it is an idealization that removes the context-dependence
of the latter. In chapter 4, we will come back to this relation between the finite and
the infinite realm.

1.4.1 Measuring infinite sets

In mathematics and in the philosophy of mathematics, infinity is a central concept.
Friend (2007), for instance, takes the problem of infinity as the guiding example in the
philosophy of mathematics in her introduction to that field. The concept of infinitely
large and infinitely small quantities has always been riddled with paradoxes. A
famous example is Zeno’s paradox of (the impossibility of) motion: in order to move
from one place to another, it seems like infinitely many smaller movements have to
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be made in a finite time, something which we would now call a ‘supertask’.10 Not
surprisingly, problems related to infinity—in particular, infinite outcome spaces—also
appear in the foundations of probability theory.

Within the scope of this introduction, it is not possible to give a full overview
of all mathematical and philosophical problems related to infinity, nor would that
be necessary in order to prepare for the specific case of infinite outcome spaces in
probability theory. With that application in mind, we give an overview of how
to measure infinite sets, in particular sets of natural numbers. We start with a
brief historic overview; the emphasis is on Cantor’s cardinal numbers and Benci’s
numerosities, and a comparison of the two. We will see that the concept of numerosity
is a more natural choice than cardinality for applications in probability theory.11

Mancosu (2009) deals with a question—sometimes called ‘Galileo’s paradox’—
concerning infinity that has been posed time and time again: how to compare the
size of the whole set of natural numbers to that of an infinite yet proper subset, such
as the even numbers, the square numbers, or the primes? Of course, this question
will also take a central position in our discussion of a fair lottery on the natural
numbers (see subsection 1.4.2.3 and Chapter 2).

1.4.1.1 Historic dispute

According to Mancosu (2009, p. 614), the Islamic mathematician Thabit ibn Qurra
(ninth century A.D.) “defends an infinitistic position according to which there are
infinite numbers and that an infinite can be larger than another infinite.”12 In the
Greek tradition however, the existence of different sizes of infinity was found to be
paradoxical; as examples, Mancosu quotes Proclus (fifth century) and Philoponus
(sixth century). Mancosu refers to ‘De Luce’ written by Robert Grosseteste (at ap-
proximately 1220) as the first text in the Latin West which argues that the collection
of all natural numbers is greater than the collection of the even numbers (although
both are infinite). Later on, Emmanuel Maignan (1673) will argue in favor of the
same position,13 as will Bernhard Bolzano in his ‘Paradoxes of the Infinite’ (1851).14

Galileo (1638) and Leibniz (1875-1890), however, side with the ancient Greeks and
deny the existence of different sizes of infinite collections. Their positions are subtly
different: whereas Galileo only denies the applicability of ‘equal to’, ‘greater than’

10Supertasks—tasks consisting of infinitely many sub-tasks—are considered in the context of
philosophy and computation theory (Hamkins, 2002). The word ‘supertask’ was coined by Thomson
(1954–55), who provided the example now known as ‘Thomson’s lamp’.

11We will not deal with asymptotic density here, as it will be discussed in relation to probability,
in Chapter 2.

12For further references to this section, please consult the bibliography included in Mancosu
(2009).

13“His notion of equality for infinite collections is stronger than mere one-to-one correspondence”
according to Mancosu (2009, p. 623).

14Bolzano does know that an infinite set stands in a one-to-one correspondence with proper subsets
of itself, but denies that this suffices to justify the conclusion that the set and its proper subsets
have an equal size (which he calls the ‘multiplicity of their members’). However, Bolzano later on
regards this as a mistake, which he explains as an “unjustified inference from a finite set of numbers”
(in a letter written in 1848).
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or ‘less than’ to infinite quantities, Leibniz denies that a size can be attributed to an
infinite collection altogether.

1.4.1.2 Cantor’s cardinal numbers

It was Cantor who gave the first mathematically rigorous proof that there do
exist different kinds of infinity, by showing that the real numbers do not form a
countable set and are thus of a larger kind of infinity than the set of natural numbers
(Cantor, 1874, 1891). The observation that an infinite set can be put into one-to-one
correspondence with a proper subsets of itself was turned into a definition of infinity
by Dedekind, who wrote: “Ein System S heißt unendlich, wenn es einem echten Teile
seiner selbst ähnlich ist; im entgegengesetzten Falle heißt S ein endliches System.”
Dedekind (1888, § 5, item 64). Dedekind calls two (simply ordered) sets ‘ähnlich’
(similar) if there exists a one-to-one correspondence between them (that preserves
the order). Thus, the above definition says that a set is infinite only if their exists a
one-to-one correspondence between the set and one of its proper subsets.

Even if you cannot count to a sufficiently high number to count the objects in a
given (finite) collection of objects, you can establish whether this number is smaller,
equal to, or larger than the numbers in another given set, by trying to put the objects
of one set in a one-to-one correspondence with those of the other set. If you succeed
in making the one-to-one correspondence you still don’t know the number of objects,
but you have established that both are equal! This is what Gazalé (2000, p. 9)
calls ‘matching’, an activity that does not require names for numbers as does proper
counting.

In Cantor’s theory of cardinality, that what Dedekind calls ‘similarity’ or that
what Gazalé refers to as ‘matching’ is related to the size of infinite sets: whenever
two sets can be put into one-to-one correspondence with each other, they have the
same size, expressed as a cardinal number. When a finite set is a proper subset of
another, the former has a smaller (and finite) cardinality (a natural number that
counts its elements). However, when an infinite set is a proper subset of another,
the cardinality of the former is less or equal to that of its superset. In particular,
all infinite subsets of the natural numbers have the same cardinality as the full set
of the natural numbers. Moreover, this is also equal to the cardinality of the set of
the rational numbers. This least infinite cardinal, that expresses the cardinality of
all countable sets, is written as ℵ0.

Power sets introduce infinitely many infinite cardinalities: by the diagonal argu-
ment of Cantor (1891), one can show that the cardinality of the power set of a set
X with cardinality x is equal to 2x, which is strictly larger than x. In particular,
the cardinality c of the continuum (i.e. the set of real numbers) is larger than the
cardinality of the set of the natural (or rational) numbers, ℵ0: c = 2ℵ0 > ℵ0. The
continuum-problem is the question as to whether there exists a cardinality in between
ℵ0 and c. Cantor assumed that the answer is ‘no’ (called the ‘continuum hypothesis’)
and hence denoted the cardinality of the continuum by c = ℵ1. Despite considerable
effort, he was not able to prove his hypothesis. Later, Gödel showed that the con-
tinuum hypothesis cannot be disproved within Zermelo-Frankel set theory with the
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Axiom of Choice (ZFC), whereas Cohen showed that it cannot be proved in ZFC
either.

One of the notorious paradoxes associated with the concept of cardinality is
‘Hilbert’s hotel’ (attributed to David Hilbert by Gamow, 1947, p. 17). In this hypo-
thetical hotel, there are a denumerably infinite number of rooms, numbered by the
natural numbers on the doors. It seems as if any finite or denumerably infinite num-
ber of additional guests can be accommodated at all times—even when the hotel is
fully booked—by cleverly instructing the guests who had already checked-in to move
to a room with a higher room number. (Although one may doubt whether many
guests would come to a hotel with such a bad service!) There exist many similar
paradoxes, such as Craig’s library, the Al-Ghazali’s problem, Shandy’s autobiogra-
phy, and counting from infinity (to zero) (see e.g. Oppy, 2006, p. 8–10).

In my opinion, these puzzles do not show anything paradoxical about cardinals
at all: they simply show that ‘countably infinite’ is a property that does not behave
like a number. What the puzzles suggest is that there may be further distinctions
to be made among countably infinite sets, a distinction that cardinals simply do not
make. Despite Gödel’s claim that Cantor’s way of assigning sizes to infinite sets
was inevitable (Mancosu, 2009), there is a way to make these distinctions: with
numerosities. They are the topic of the next subsection.

1.4.1.3 Numerosities

For finite sets, there are two properties that hold for their size (number of ele-
ments): (a) if a set is a subset of another set, the former has a smaller size if and
only if it is a proper subset (referred to as ‘Hume’s principle’), and (b) two sets have
an equal size if and only if one-to-one correspondence exists between them (referred
to as ‘Euclid’s principle’) (Mancosu, 2009).

To determine the size of infinite sets, we cannot use the usual counting function
for finite sets. We have to extend the notion of size in some way. It seems natural
to attempt to do this in such a way as to respect principles (a) and (b). However, it
turns out that the combination of the principles is inconsistent in the case of infinite
sets. Hence, one has to chose between them. Clearly, Cantor’s cardinality approach
is based on principle (b), which expresses the intuition that the size of a set should
not depend on the labeling of its elements. However, it violates another intuition,
namely that the whole is always larger than the part.

Only recently, Benci and Di Nasso (2003b) have developed a way of measuring
infinite sets such that principle (a) holds, but (b) is necessarily violated; they call
their measure of the size of finite and infinite sets ‘numerosity’.15 The numerosity-
approach is closely related to non-standard analysis (NSA). In alpha-theory (Benci
and Di Nasso, 2003a), NSA is developed from the idea of adding a new ideal number,
α, to the set of natural numbers. This α can be interpreted as the numerosity of the
set N (Benci and Di Nasso, 2003a, p. 357): we will take this concept as the starting
point for a uniform probability measure on N (Chapter 2). Mancosu (2009) places

15According to (Mancosu, 2009, p. 628-630), a similar idea was developed by Fred M. Katz in his
1981 dissertation “Sets and Sizes” written at MIT.



1.4. Infinity and probability 31

the concept of numerosity in a long tradition of “thinkers who argued in favor of the
assignment of different sizes to infinite collections of natural numbers”.

Although Descartes (1644) would not bother to reply to those who ask if the
infinite number is even or odd,16 a question which can indeed not be answered in
terms of cardinality, the question is relevant in the context of numerosities. As has
been pointed out by Benci and Di Nasso (2003b) and Mancosu (2009), the values of
the numerosity of the subset of even natural numbers and that of the odd natural
numbers depend on the choice of the value of α (which depends on the model, which
can be stated, for instance, in terms of a free ultrafilter). For a probability function
based on numerosities, considered in Chapter 2, it will turn out that this issue makes
a difference by an infinitesimal amount.

Whereas Benci and Di Nasso (2003b) only considered the numerosity of denumer-
able sets, the numerosity of non-denumerable sets is discussed in (Benci et al., 2006b,
Di Nasso and Forti, 2010).

1.4.1.4 Cardinality versus numerosity

At this point, we have available two ways of measuring infinite sets: with Cantor’s
cardinalities and Benci’s numerosities. These methods are related, but do not always
provide the same answer to the question ‘Are these two sets equal in size?’

Table 1.1 gives an overview of the properties of the two approaches to measure
infinite sets. For instance, if the numerosity of two sets is the same, this guarantees
that their cardinality is equal, too, but the converse does not hold: if two sets have
the same cardinality, they do not necessarily have the same numerosity. Because
numerosities are a particular count of hyperreal numbers, they inherit the rich algebra
of non-standard analysis. In particular, the reciprocal value (inverse) of an infinite
numerosity is an infinitesimal number: we will employ this property in our probability
function for an infinite lottery in Chapter 2.

Unlike cardinality, numerosity does not allow relabeling. Hence, there are no
counterintuitive conclusions to be drawn from Hilbert’s hotel or similar puzzles: if
you express the number of rooms with the appropriate numerosity, it is clear that
there is no way to accommodate any additional guests once the hotel is full.

1.4.2 Infinite sample spaces

Classical probability theory is based on the axioms of Kolmogorov (1933) and is
considered to be a special case of measure theory. First we will review the axioms
and rules of the orthodox axiomatization. Then we will comment on the restrictions
it poses in cases with infinite sample spaces.

16Descartes (1644, Pars prima:XXVI): “Non igitur respondere curabimus iis, qui quaerunt, an si
daretur linea infinita, ejus media pars esset etiam infinita; vel an numerus infinitus sit par anve
impar, & talia; quia de iis nulli videntur debere cogitare, nisi qui mentem suam infinitam esse
arbitrantur.”
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Table 1.1: Overview of two mathematical approaches to measure infinite sets.

Cantor’s cardinalities Benci’s numerosities

Satisfy Hume’s principle: Fail Hume’s principle:
One-to-one correspondence One-to-one correspondence
⇔ same cardinality ⇏ same numerosity

Fail Euclid’s principle: Satisfy Euclid’s principle:
Proper subset Proper subset

⇏ strictly smaller cardinality
than whole set

⇔ strictly smaller numerosity
than whole set

Example: Even numbers have
same cardinality as N

Example: Even numbers have
smaller numerosity than N

Correspond with counting
measure for finite sets

Correspond with counting
measure for finite sets

Poor algebra; in particular, do
not have an inverse:

Good algebra; in particular, do
have an inverse:

Normalization not possible Normalization possible

⇒ No basis for a probability
measure

⇒ Basis for probability measure
with infinitesimals

1.4.2.1 Kolmogorov’s axioms

Here, we present axioms that are equivalent to the original axiomatization of
Kolmogorov (1933). In particular, K4 is not Kolmogorov’s Continuity Axiom, but
rather (an equivalent formulation of) the property of Countable Additivity, which
follows from the Continuity Axiom and Finite Additivity.

(K0) Domain and range. The events are the elements of a σ-algebra A ⊆ P (Ω)
and the probability function takes the following form:

P ∶ A→ R

(K1) Positivity. ∀A ∈ A,
P (A) ≥ 0

(K2) Normalization.

P (Ω) = 1

(K3) Finite additivity. ∀A,B ∈ A,

A ∩B = ∅Ô⇒ P (A ∪B) = P (A) + P (B)
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(K4) Countable additivity. Let

A =
∞
⋃
j=0

Aj

with (∀j ∈ N)Aj ⊆ Aj+1; then

P (A) = sup
j∈N

P (Aj)

Furthermore, we may split the axiom (K0) into two further parts:

(K0A) Domain. The domain of P is a σ-algebra A ⊆ P (Ω).

(K0B) Range. The range of P is (a subset of) R.

From the combination of axioms (K0B) and (K1), we see that the range of P
is R+. This set provides a structure that allows for addition and multiplication of
probability values. When we also take into account the Normalization axiom (K2),
we obtain that:

P ∶ A→ [0,1]R
where [0,1]R is the unit interval in R.

We also mention two important definitions which are not axioms. The first one
is the product formula for independent events. The second one is the definition of
conditional probability, where P (A∣B) is read as ‘The probability of A under the
condition that B’.

(D1) Independent events. If A and B are events, we say that A and B are
independent if and only if

P (A ∩B) = P (A) × P (B)

(D2) Conditional probability. If A and B are events such that P (B) ≠ 0,

P (A∣B) ≡ P (A ∩B)
P (B)

1.4.2.2 Various approaches to probability give rise to problems related
to infinite sample spaces

In the classical interpretation of probability, as well as in the later frequentistic
interpretation, and even in Kolmogorov’s axiomatization, problems occur related to
infinite sample spaces.

In the classical approach to probability of Laplace (1814) and others, the problem
related to infinite sample spaces occurs in the context of the ‘Principle of Indifference’
(PI) (see subsections 1.3.1 and 1.3.3.2). Recall that PI states that whenever there is
no information available to choose one possibility over another, an equal probability
should be assigned to those possibilities. The principle can only be applied when there
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is a finite number of possible outcomes. As a consequence, all probabilities based on
it are rational numbers, no irrational numbers. However, PI can be adapted as to
be applicable to situations with countably infinitely many possible outcomes: this is
the principle of maximal entropy, known from information theory (Jaynes, 1957).

In the frequentistic approach to probability (cf. subsection 1.3.1), probabilities are
treated as relative frequencies. Instead of considering actually observed frequencies,
which necessarily consider a finite set of outcomes, the approach was generalized:
probabilities were regarded as limiting relative frequencies. However, limits of relative
frequencies are not countably additive, as de Finetti (1974) noticed, and thus do not
conform to Kolmogorov’s axiom (K4).

Of Kolmogorov’s axioms, (K4) is the only one that is specific for infinite sample
spaces. Strangely enough, this axiom is not neutral with respect to the kind of
situations it can describe: some problems cannot be described within Kolmogorov’s
system. Thus, the classical theory may be very well suited to study certain problems,
but may be too restrictive or too tolerant to be useful for others. We are free to apply
different mathematical structures depending on the problem we are interested in. As
de Finetti (1974) remarked, Kolmogorov’s theory may assign probability zero to
possible outcomes and this framework does not allow an adequate description of a
fair, countably infinite lottery, such as a lottery on the natural numbers: see also
subsection 1.4.2.3.

The solution forwarded by de Finetti (1974) himself was to adapt one of the ax-
ioms of Kolmogorov: instead of the sigma-additivity or countable additivity (CA) of
(K4), he advocated the weaker restriction of finite additivity (FA). However, Kadane
et al. (1986) showed that the introduction of FA implies some unexpected statistical
consequences.

Classical measure theory is built on classical analysis (calculus) of the real num-
bers. It is in axiom (K4) that the classical limit is explicitly incorporated in prob-
ability theory. A different type of analysis has been developed by Robinson (1966):
his non-standard analysis makes use of the standard real numbers, as well as new, in-
finitely large and infinitely small (or infinitesimal) numbers. When we have a measure
available that allows us to assign infinitesimal probabilities to an infinite number of
possibilities, then they may add up to a non-infinitesimal value. Thus, non-standard
measure theory may be a useful framework to solve the problem of the infinite lot-
tery. This idea does require a precise approach: we should check whether the original
problem has been solved and whether no other—possibly worse—problems have been
introduced. We will follow this approach in Chapter 2.

1.4.2.3 Countably infinite sample spaces

De Finetti (1974) remarked that a fair lottery on a countably infinite sample space,
such as the natural numbers, cannot be described within Kolmogorov’s axiomatiza-
tion of probability theory. Here, we introduce the problem. Although the problem
of the ‘infinite lottery of de Finetti’ is now known for more than forty-five years
and appears to be quite straightforward, it is still a topic of discussion (Kelly, 1996,
Williamson, 1999, Bartha and Johns, 2001, Bartha, 2004, Burock, 2006).
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The problem of the infinite lottery arises due to the fact that the classical ax-
iomatization of probability theory (including countable additivity) does not allow
assignment of a homogeneous probability distribution on the natural numbers, or
any other countably infinite outcome space. Suppose that one wants to model a
process in which a random number is drawn from the natural numbers. If one as-
signs the same non-zero weight to every possible outcome, these weights add up to
infinity and cannot be normalized, as is required by the normalization-axiom. The
only option that avoids the divergence of the sum is to assign zero to each outcome.
However, this implies that the total sum is zero as well, although we know that the
probability of the full set is unity: the probability of infinite sets cannot be found by
taking an infinite sum over the probability of finite sets. In other words, countable
additivity fails.

The only way to satisfy normalization and countable additivity simultaneously
is to assign unequal probabilities (in such a way that smaller numbers get a larger
probability), but this is not the problem we set out to model: a lottery in which
different tickets have different probabilities is not fair. So it seems that we have three
options: drop the requirement of normalization, drop the requirement of countable
additivity, or deny that an infinite lottery can be fair. The option of non-normalizing
probabilities has been investigated by Rényi (1955), whereas the solution of dropping
countable additivity was advocated by de Finetti (1974), who claims that the sum-
rule only holds for finite sums (finite additivity), not countably infinite ones. The
option to deny the existence of a fair infinite lottery has very strange consequences.
As remarked by Kelly (1996), this would imply that when one wants to test a universal
hypothesis by repeated experiments, one would—in the case in which the hypothesis
is false—encounter a counterexample sooner rather than later. In Chapter 2, we will
deal with the infinite lottery problem using infinitesimal probabilities.

De Finetti’s infinite lottery is not the only example of a problem related to a
countably infinite sample space. Leslie (1998) describes the Doomsday argument17

and relates it to a new problem: the shooting-room (Eckhardt, 1997). The shooting-
room is a thought experiment in which a group of people is summoned, after which
two dice are rolled and the people are killed if it is a double-six. Their chance of
surviving appears to be equal to 35

36
. Yet, a different analysis shows that 90% of the

people who are summoned will die, because at each call ten times more people are
summoned compared to the previous call (just until the first occurrence of a double-
six). Bartha and Hitchcock (1999) analyzed this new paradox using non-standard
analysis.

Elsewhere, Bartha (2004) also discusses the relabeling-paradox, attributed to Nor-
ton. Also this paradox gives us more insight about countably infinite sets and the
associated probabilities. The conclusion is that the relabeling of possible outcomes,
which is unproblematic in the finite case, is not permissible in case of countably
infinite sets. In Chapter 2, we shall see that relabeling is indeed impermissible for

17The Doomsday argument—in particular in the version due to Carter (1983)—claims that it is
very likely (95% certain) that the extinction of the human race is near, and that we are among the
last 95% of all individuals ever to be born. One of the key assumptions is that the individual you
happen to be in the human population can be regarded as a fair lottery.
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probability functions based on infinitesimals.

1.4.2.4 Infinite sample spaces and the additivity of probability values

De Finetti (1974, p. 116–128) formulates a number of ‘critical questions’ concerning
zero probabilities; question III (p. 117) reads: “can a union of events with zero
probabilities have a positive probability (in particular, can it be the certain event)?”
His own response is this: “Question (III), which evidently requires to be put in the
context of infinite partitions, might lead one to think and state that one can only
have possible events with zero probability if they belong to infinite partitions (!).
This is monstrous.” (Italics as in original, p. 117). Further on, de Finetti (1974,
p. 118) states: “we can pose question (III) once again by asking whether in an
infinite partition one can attribute zero probability to all the events. In this form,
the question becomes essentially equivalent to that concerning the different types of
additivity: finite, only for a finite sum; countable, for the denumerable case; perfect,
if the additivity always holds.”18 De Finetti (1974) elaborates: if one answers his
question III with ‘yes’, ‘no’, or ‘it depends’, this corresponds respectively to the
assumption that probability is finitely, perfectly, or countably additive. The answer
of de Finetti to his own question III is ‘yes’, which means that he opts for finite
additivity.

Intuitively, one could expect probabilities to exhibit perfect rather than countable
additivity. However, this is clearly not possible with real-valued probability functions.
Even the weaker requirement of countable additivity may be problematic, as we have
seen in the example of the infinite lottery. Yet, the property of perfect additivity
may be attainable by non-Archimedean probabilities.

1.4.3 Implications for cases with finite sample spaces

It should be noted that even finite lotteries are not without pitfalls. In this case,
the mathematical part of assigning probabilities is a trivial task, but the description
in terms of rational belief is not (yet) well established. In Chapter 4, it will be argued
that there is a close relationship between probabilistic problems with infinite sample
spaces, and cases involving large but finite sample spaces.

Chapter 3 deals with the Lottery Paradox, originally discussed by Kyburg (1961).
When one ticket will be drawn from a large but finite number of tickets, it may
initially seem reasonable to believe of any given ticket that it will not win. Because
this reasoning can be made for all tickets, it seems to lead to the conclusion that
it is also reasonable to believe that none of the tickets will win. However, this is
in clear contradiction with the fact that one ticket will win. Like the infinite lot-
tery puzzle, this Lottery Paradox is also still debated in the philosophical literature.
Douven and Williamson (2006), for instance, remarked that a formal analysis of the
Lottery Paradox goes hand in hand with a formal analysis of what is ‘reasonable
to believe’. Douven (2008) used the problem in relation to the even more general

18Oppy (2006, Ch. 6) calls the latter option ‘uncountable additivity’.
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question regarding our epistemic goal and notices that a solution to the paradox at
least provides a first step towards a theory of justification of knowledge.

A second related problem is the Preface Paradox, originally published by Makin-
son (1965). If one assigns a high probability to every statement in a book, it may
nevertheless seem reasonable to assume that their conjunction (i.e. the book as a
whole) has a very low probability. Indeed, it is not uncommon to find a statement
in the preface to a non-fiction book which indicates that the author finds it highly
unlikely that there are no errors in the book, because there are so many individ-
ual statements. The beliefs in the individual statement and the disbelief in their
conjunction are “logically incompatible beliefs”. Makinson argues that it is ratio-
nal to believe the individual statements as well as the negation of their conjunction,
even though they form an inconsistent set. The Preface Paradox seems to be closely
related to the Lottery Paradox: it deals with a lottery of sorts on the individual
statements (tickets) which all have a small but non-zero probability of being wrong
(‘winning’). Unlike the Lottery Paradox, the Preface Paradox does not deal with
clear objective probabilities, but only with (rational) beliefs. A common reaction to
this paradox is to dismiss the Conjunction Principle, or at least to adapt it (see for
instance Douven and Uffink, 2003).
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Chapter 2

Fair Infinite Lotteries

Any finite number divided by infinity is as near to nothing as makes
no odds, so the average population of all the planets in the Universe
can be said to be zero. From this it follows that the population of
the whole Universe is also zero, and that any people you meet from
time to time are merely the products of a deranged imagination.

Douglas Adams (1980, Ch. 19)

Only God can make random selections.
Marion J. Levy (1981, Ninth Law)

2.1 Introduction: from the finite to the transfinite

In this chapter, we deal with the foundations of probability theory inspired by
the case of a fair lottery on the natural numbers. Although such a lottery may not
objectively exist, we have strong intuitions about it. We may even give quantitative
answers to questions such as: “What is the probability that the winning number is
odd?” We may answer “Fifty percent”, by considering the probability of even and
odd numbers in finite lotteries.

When forming an image of infinite mathematical objects, we rely on our experience
with finite objects (Lavine, 1995). More often than not it is impossible to construct
or discover an infinite counterpart of a finite concept that fulfils all our intuitions
concerning the former. In such cases we have to choose which of those intuitions
is most dear to us and weaken or give up at least one other. An example from
classical mathematics would be the assignment of cardinalities to infinite sets by
Cantor: he took the existence of a one-to-one correspondence between sets as the
guiding principle for assigning equal sizes to them, but had to give up the intuition
that the whole is always larger than the parts. If the infinite was like the finite in
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every relevant respect, then it would not be so interesting. Giving up some of our
intuitions and tacit assumptions is just the price we have to pay if we want to study
a new object. So it is with infinite lotteries. We will have to give up some of our
intuitions governing finite lotteries. The question is: which ones, and to what extent.

In this chapter, we consider a fair lottery in which exactly one winner is randomly
selected from a countably (or denumerably) infinite set of tickets. We intend to
find a description of such a lottery that is mathematically sound and philosophically
adequate, by examining our intuitions governing finite lotteries. It may be objected
that since there are no infinite lotteries in reality, it is not clear how we can have any
intuitions about the concept. Real world lotteries are always finite, but —no matter
how the drawing is realized— the outcome can never be guaranteed to be random.
Therefore even the idea of a truly fair n-ticket lottery, where n is some finite natural
number, is a highly idealized concept, but one that is useful in analyzing a broad
range of practical situations. Allowing the lottery to have an infinite number of
possible outcomes is an additional idealization. The idea of a fair lottery on the
natural numbers occurs in probabilistic number theory (Tenenbaum, 1995) and may
be a useful approximation for large lottery-like phenomena. This problem also goes
by the name of ‘de Finetti’s lottery’ (Bartha, 2004) and ‘God’s lottery’ (McCall and
Armstrong, 1989). Although we will never be confronted with a lottery consisting of
an infinite set of tickets in reality, it is valid to ask what probability can rationally
be assigned to a ticket.

In the subjectivistic approach to probability, it has been argued (for instance by
Ramsey, 1931, de Finetti, 1974) that our subjective probability assignments can only
be rational if they agree with Kolmogorov’s laws of probability (Kolmogorov, 1933).
Within Kolmogorov’s axiomatization however, there simply is no description available
for a fair countably infinite lottery. To describe this case, we have to formulate new
axioms or at least change one of the assumptions or axioms of Kolmogorov’s system.
One solution, advocated by de Finetti (1974), is to relax the requirement of countable
additivity to finite additivity. In this chapter, we will develop a different approach.
We propose to replace the co-domain (or range) of the probability measure by a
non-standard set: this allows us to assign a non-zero, infinitesimal probability to
single tickets. In contrast to de Finetti’s solution, there will be a sense in which the
probability of a countably infinite union of events supervenes on the probabilities of
the individual events. This sense is captured by an additivity principle that is a close
analogue of the usual assumption of countable additivity.

The chapter is structured as follows. In section 2.2, we examine our intuitions con-
cerning finite and infinite lotteries. Inn section 2.3 we review asymptotic density and
a generalization thereof by means of which a finitely additive, real-valued probability
measure can be obtained on the full power set of the natural numbers. In sec-
tion 2.4, we introduce some central concepts of non-standard analysis. In section 2.5,
we construct a hyperrational-valued probability measure (based on the concept of
numerosity) and show that it is hypercountably additive rather than countably ad-
ditive. In section 2.6, we compare our hyperrational approach with the real-valued
solution based on (generalized) asymptotic density, and with a hyperfinite lottery.
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In the 2.7th and last section, we review the most salient features of the proposed
hyperrational description of a fair, countably infinite lottery.

Regarding notation, throughout this chapter we take N to be the set of strictly
positive integers, {1,2,3, . . .}. Even will denote the set of even natural numbers and
Odd that of the odd natural numbers. We use ⟨ ⟩-brackets to indicate an ω-sequence;
if only one element is given between the brackets, it will be the general element at a
position n ∈ N. We abbreviate ‘non-standard analysis’ as NSA, ‘finite additivity’ and
‘finitely additive’ with FA, and ‘countable additivity’ and ‘countably additive’ with
CA. The ‘H’ in HFA and HCA adds the prefix ‘hyper-’ to the former abbreviations.

2.2 Intuitions concerning lotteries

First we need to be precise about what we mean exactly with a finite lottery,
give a mathematical description of it, and make our intuitions about it explicit.
Subsequently we investigate to what extent these intuitions carry over to the infinite
case, and what has to be changed in the mathematical description to maximize the
intuitive appeal of it.

2.2.1 Finite lotteries

2.2.1.1 Probability measure

By a finite lottery we mean a process that assigns exactly one winner among a
discrete set of tickets in a fair way. By fair we mean that each ticket initially has
the same probability of winning. So this process can be modeled by a uniform,
discrete function (given below in eq. 2.1), which fulfills all of Kolmogorov’s axioms
for probability measures (Kolmogorov, 1933).

The sample space is the set of tickets. The tickets may be numbered, but they
need not be: they may be characterized by other symbols with no apparent order.
Because the tickets are finite in number, say n ∈ N, they can be labeled with an initial
segment of the natural numbers, and this set of numbers {1, . . . , n} may be used as
the sample space instead.

The event space is a σ-algebra1 which contains all combinations of tickets to
which we can assign a probability. Since we may do so for any possible combination
of tickets, the event space is the powerset P({1, . . . , n}) of the sample space. The
probability values for an n-ticket lottery form the set {0, 1

n
, 2
n
, . . . , n−1

n
,1}. The co-

domain of a probability measure on a finite lottery with an unspecified number of
tickets is therefore the set of all rational numbers in the [0,1] interval: [0,1]Q =
[0,1] ∩Q. The probability measure is given by the function:

1An algebra is a family of subsets of the sample space that contains the sample space itself and
is closed under complementation and finite unions; a σ-algebra is closed under denumerable unions
on top of that.
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Pn ∶ P({1, . . . , n}) → [0,1]Q
A ↦ #(A)

n

(2.1)

where # is the counting function, that maps a finite set to its number of elements
(finite cardinality). Thus, Pn is a counting measure normalized by the total number
of elements in the sample space. # is the prototype of a CA measure, a property
that we will employ in the proof of the additivity of the non-standard measure that
we will construct.

Thus, Pn is CA too, but only in a trivial sense: for each countable family of disjoint
subsets {A1,A2,A3, . . .} of the sample space, there will be a finite value k ∈ N such
that for all m ≥ k, Am is an empty set. Hence, in the countable sum ∑m∈N Pn(Am),
all terms with m ≥ k will be zero and CA reduces to FA in this case.2

2.2.1.2 Intuitions

Now we list our intuitions governing a finite lottery. Some of these may seem
highly related, and they are —at least in the finite case—, but they need not be in
the infinite case, so we name them separately:

FAIR The lottery is fair.

ALL Every ticket has a probability of winning.

SUM The probability of a combination of tickets can be found by summing the
individual probabilities.

LABEL The labelling of the tickets is neutral with respect to the outcome.

The assumption FAIR embodies the thought that one ticket does not have a higher
probability than any other one: a fair lottery is governed by equiprobability. This
can only be implemented by the formal requirement that the associated probability
function is uniform.

The assumption ALL can only be implemented by the requirement that the proba-
bility of any possible combination of tickets is defined. In other words, the probability
function must be defined over the whole power set of the event space.

The assumption LABEL is motivated by the intuition that labelling is no more
than a convention inspired by the need for referring to specific tickets. It is imple-
mented by requiring of the associated probability function that it is invariant under
permutations of the domain.

The assumption SUM is motivated by the intuition that the probability of a set
containing the winning number supervenes on the chances of winning that accrue to
the individual tickets. The usual assumption of countable additivity (CA, sometimes
also called σ-additivity) is one attempt of making the intuition that is encapsulated
by SUM precise. We will argue, however, that this is not the right way to do it in

2k cannot be fixed in general, but depends on the family. Although at most n sets can be non-
empty, k may need to be larger than n, since a family of sets can consist of many empty sets ‘in
between’ the non-empty ones.
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this case. In other words, we will argue that the implementation of SUM is not as
straightforward an affair as is commonly thought.

The constraints FAIR, ALL, and SUM jointly entail that every point event must
be assigned a non-zero probability. Thus in the context of infinite lotteries the so-
called principle of Regularity holds. This is not to say, however, that this principle
must hold in all probabilistic scenarios.3

These assumptions motivate the standard account of finite lotteries, and they are
jointly satisfied by the standard description given by Pn. Let us now briefly survey
how these assumptions fare in the context of infinite lotteries.

2.2.2 Infinite lotteries

The infinite counterpart of a finite lottery that we are interested in here is an
infinite, denumerable lottery, in particular a lottery that has N as its sample space.

For a start, suppose that we are very keen on the intuitions ALL and SUM, and
that SUM is formally cashed out as CA. There are (uncountably) many probabil-
ity distributions that satisfy these two constraints. However, it is easy to see that
all of them violate FAIR. But the assumption FAIR simply is non-negotiable. The
intuition of fairness is absolutely central to our concept of a lottery. Whereas real
world lotteries may never be completely fair, we are considering ideal lotteries. In-
deed, when one considers infinite lotteries at all, one is leaving the real world behind
anyway.

The assumption LABEL might seem reasonable at first blush, but as a consequence
of Cantor’s theory of infinite cardinalities, it will have to be abandoned. Every infinite
subset of N is in one-to-one onto correspondence with every other infinite subset of
N. So if we insist on invariance under permutation, then every infinite subset of N
will receive the same probability. This immediately leads to a contradiction with
the laws of probability.4 Thus, whereas for finite sample spaces the labelling of the
point events is immaterial, in the infinite case it is of the essence. Giving up LABEL
admittedly gives rise to a feeling of discomfit. But if we have a naked choice between
giving up some of the laws of probability on the one hand, and giving up LABEL on
the other hand, then we should surely take the second option.5

The assumption ALL seems negotiable to some extent. For one thing, it is a well-
known consequence of the Axiom of Choice that there is no probability measure on
the whole of P(R) (Truss, 1997, Chapter 11). If there are no probability measures
on P(R), then it should perhaps come as no surprise that there are no satisfactory
probability measures on P(N) in the context of infinite lotteries. In any event, we
will require of any solution to the infinite lottery problem that to the extent that
we have strong intuitions about probabilities of a subset A ∈ N, the solution takes

3Skyrms (1980) and Lewis defend Regularity in general, whereas Williamson (2007), Hájek (2010)
and Easwaran (2010) argue that it cannot hold in all cases (even when infinitesimal probability values
are allowed).

4By considering Even and Odd on the one one hand, and their union N on the other hand, we
see that all three sets have the same measure, so FA fails.

5For a discussion of the role of LABEL in assigning probabilities in the context of the realism
debate, see (Douven et al., 2010).
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the probability of A to be defined and in agreement with our intuitions —or else the
solution will have to contain a winning story about why our intuitions are mistaken.

Like ALL, the assumption SUM is not so easy to assess. It is well-known that
there is no uniform probability function on P(N) that is CA (de Finetti, 1974). So
if we want to preserve FAIR and ALL, and insist on SUM, then we must make it
precise in a way that is different from CA.

2.3 Asymptotic density: real-valued probability with
finite additivity

2.3.1 Limiting relative frequency

Although all infinite subsets of the natural numbers have the same cardinality,
there are ways to discriminate the ‘size’ of Even from that of N for instance. In
number theory, the asymptotic density ad (or natural density) of a subset A of N is
defined as follows (e.g. in Tenenbaum, 1995, p. 270):

ad(A) = lim
n→∞

#(A ∩ {1, . . . , n})
n

if the limit exists (2.2)

Asymptotic density captures the idea that a lottery over N is obtained from a
finite lottery (eq. 2.1) in the limit of the number of tickets, n, going to infinity. Thus,
for a set A that has a defined asymptotic density ad(A) = limn→∞ Pn(A). Because
Q is not closed under the limit-operation, the co-domain of ad is the [0,1]-interval
of the real numbers, rather than [0,1]Q as in the finite case.

Asymptotic density gives rise to a FAIR probability assignment. However, it
fails ALL: since asymptotic density is not defined for all subsets of N6, it cannot be
introduced as a measure with P(N) as its domain (Tenenbaum, 1995). The collection
of all subsets of N that do posses asymptotic density is not closed under intersection
and union, so it does not form an algebra.

2.3.2 A generalization

It is possible to extend asymptotic density to a measure that assigns a value to all
subsets of N (Schurz and Leitgeb, 2008). This requires a generalization of the limit-
concept, that assigns a value to all bounded —convergent and non-convergent—
sequences: the Hahn-Banach limit (HB-lim) is a real-valued generalization, that
equals the value of the classical limit for convergent sequences.7 For any A ∈ P(N)
the sequence ⟨#(A∩{1,...,n})

n
⟩ is bounded (by 1). Therefore, the Hahn-Banach limit of

this sequence is defined on all of P(N), giving rise to the probability measure Pad :

6ad is defined for all finite subsets of N, but not for all infinite subsets. An example of a set
for which ad is undefined is the set of numbers whose binary notation contains an even number of
digits. A second example comes for free: consider its complement, the set of numbers whose binary
representation contains an odd number of digits.

7We will give a definition of HB-lim in the non-standard framework in paragraph 2.4.5.
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Pad ∶ P({1, . . . , n}) → [0,1]R
A ↦ HB-lim #(A∩{1,...,n})

n

(2.3)

The great selling point of this construction is that probabilities are aligned with
limiting relative frequencies whenever these are defined. But again, the resulting
measure is only FA (Schurz and Leitgeb, 2008). So even though ALL can be obtained,
SUM does not hold.
Pad can be thought of as giving precise content to a suggestion by de Finetti: by

weakening the requirement for CA to FA, all other axioms of classical probability
theory can be saved. This solution to the problem of the fair infinite lottery was
advocated by de Finetti (1974). It allows us to assign probability values to infinite
subsets of N that correspond well to our intuitions (such as a probability 1/2 for Even
as well as for Odd). The solution does come with a major drawback, however. It
amounts to giving up on the intuition that the chance of a ticket from an infinite set
winning is an infinite sum over the chances of individual tickets from the set winning
(SUM). As a result, regularity fails, so we also have to give up on the intuition that
each ticket has a non-zero chance of winning.

2.4 Infinitesimals

With FA, we can save FAIR, ALL and a finite version of SUM. But it seems odd
that the measure of singletons can be exactly 0 while the measure of their union is
1. Now the question is: can we do better? So far, we have only looked at real-valued
probability functions, and we have seen that in that framework the answer is ‘no’.
Now we will reconsider the question. It seems that we can do better indeed, by as-
signing an infinitesimal probability to the singletons, rather than 0. In the finite case,
the probability of a singleton is 1 divided by the number of elements in the sample
space. Since our sample space is N, with an infinite number of elements, we should
assign the inverse of an infinite number to the singletons. Cantor’s cardinalities are
not suitable for this, since they have no inverse. Non-standard analysis provides a
consistent way of working with unbounded or infinite numbers, which do have an
inverse: infinitesimals. So, non-standard analysis allows us to have a different co-
domain for the probability measure: ∗[0,1]∗Q, which is the unit interval within ∗Q,
a non-standard extension of Q.

We will give a short overview of some essential concepts in non-standard analysis
(NSA) (Robinson, 1966). We do not aim at completeness here, but restrict our
attention to those ingredients that we will need in the course of this chapter. The
information of this section is mainly based on (Cutland, 1983) and Benci et al.
(2006a).

2.4.1 The star-map and Transfer

All approaches to NSA need a tool that maps any standard object, A (which
can be a number, set, function, . . . ), to its unique non-standard counterpart or
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hyperextension, ∗A. This function, called the star-map, should preserve a large class
of properties, which is ensured by the Transfer principle. In axiomatic approaches to
NSA, the Transfer principle is stipulated as an axiom; in other approaches such as
the ultrafilter-construction that we will employ here, it is a theorem.

An important example is the star-map of an ω-sequence. This is a hypersequence,
i.e. a sequence that takes values on all of ∗N, which is a nonstandard extension of
N. We introduce the notation ⟪ ⟫ to distinguish a hypersequence from a standard
sequence; if only one element is given between the brackets, it will be the general
element at position N , with N ∈ ∗N. (We will encounter the star-map of a sequence
of sets in eq. (2.23).)

The star-map can be obtained using free ultrafilters; this requires the introduction
of equivalence classes determined by a free ultrafilter.

2.4.2 Equivalence classes based on a free ultrafilter

Consider the set of ω-sequences on a general set X (or the set XN of functions
N→X). The idea is to interpret a whole sequence as one entity, be it a non-standard
one. Even if X is a set of numbers, when XN fails to form a field, it does not provide
a useful number system. To this end, we need to make a choice of ‘which positions
in the sequence matter’. For instance, a difference in only finitely many positions
should not matter. Fixing a free ultrafilter on the label set, N, is a way to settle all
these choices at once.8 A nice introduction to ultrafilters can be found in (Komjáth
and Totik, 2008).

A free (or non-principal) ultrafilter, U , on N is a collection of subsets of N (U ⊂
P(N)), which fulfills four requirements:

1. ∅ ∉ U

2. (∀A,B ∈ U) A ∩B ∈ U

3. (∀A ⊂ N) A ∉ U ⇒ N/A ∈ U (ultra)

4. (∀A ⊂ N) A is finite⇒ N/A ∈ U (free)

Two sequences are equivalent (or equal ‘almost everywhere’) with respect to a free
ultrafilter just if the set of labels where their terms are exactly equal is an element
of the filter:

(∀⟨xn⟩, ⟨yn⟩ ∈XN) ⟨xn⟩ ≈U ⟨yn⟩⇔ {n ∣ xn = yn} ∈ U (2.4)

We may define the equivalence class of a sequence ⟨xn⟩ modulo the just defined
equivalence relation, [⟨xn⟩]U , as follows:

8In general, non-standard analysis may be developed from considering a free ultrafilter on any
infinite set, but in this chapter we will always use N as the index set.
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(∀⟨xn⟩ ∈XN) [⟨xn⟩]U = {⟨yn⟩ ∈XN) ∣ ⟨yn⟩ ≈U ⟨xn⟩} (2.5)

The set of equivalence classes of sequences does provide a good basis for a number
system and may be interpreted as ∗X, the hyperextension of X.

2.4.3 ∗N and ∗Q

To illustrate how the equivalence class of sequences can provide the star-map of a
set X, we consider the hyperextensions of X = N and X = Q.

∗N is defined as the set of equivalence classes (determined by the choice of a
free ultrafilter on N) of elements of NN, [⟨mn⟩]U . The elements of ∗N are called
hypernatural numbers. The equivalence class of a constant sequence [⟨mn⟩], with
mn =m ∈ N for all n ∈ N, can be written in short as ∗m and may be identified with the
standard natural number m: this embeds N in ∗N. Because of the construction, ∗N is
called a sequential extension of N: it consists of (equivalence classes of) ω-sequences
of standard natural numbers.

For probability values, the sequential extension of Q seems more appropriate than
∗N. The set of hyperrational numbers ∗Q can be obtained in several ways. Because
the set of integers, Z, can be introduced as the closure of N under substraction,
and the set of rational numbers, Q, can be introduced as the fraction field of Z, ∗N
can be extended similarly to ∗Z and ∗Q subsequently. Alternatively, by considering
sequences of integer or rational numbers, ∗Z and ∗Q can be constructed using ultra-
filters in a similar fashion as ∗N. (As was already mentioned, the star-map returns
the hyperextension of any standard object, so also ∗R and ∗C can be obtained.)

2.4.4 R as an approximation to ∗Q

To relate results of NSA to standard analysis, the standard part (or shadow)
function, st, is a useful concept: st maps any non-standard number to the closets
real value, which is uniquely determined. Clearly, ‘taking the standard part’ comes
down to rounding up to infinitesimals.

For fair lotteries on finite sample spaces, the probabilities are fractions (ratio-
nal numbers). For infinite sample spaces, probabilities can be associated with ω-
sequences of rational values. Observe that both the construction of R from Cauchy
sequences and the above construction of ∗Q start from ω-sequences of rational num-
bers. Only the rule by which the whole sequence is associated with a new —real or
hyperrational— number differs. Thus, for the range of a fair infinite lottery we seem
to have a choice between R and ∗Q (rather than between R and ∗R).

If we use the standard part function on ∗Q, we can obtain any value of R. Thus,
from the non-standard viewpoint, real-valued probabilities can be seen as an approx-
imation of hyperrational numbers. If the real values give satisfactory answers, they
are all we need. If not, we may need to look at a more precise description in terms
of hyperrationals.
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2.4.5 Limits

2.4.5.1 Alpha-limit

We may call ∗aα the ‘ideal value’ or the ‘alpha-limit’ of the sequence ⟨an⟩. It is
equal to the value of the hypersequence ⟪∗aN⟫ at position N = α and also to the
ultrafilter equivalence class of the sequence ⟨an⟩ (Benci and Di Nasso, 2003a, p. 367):

∗aα = [⟨an⟩]U (2.6)

2.4.5.2 Classical limit

The definition of the classical limit of a real-valued sequence, limn→∞ an, can be
reformulated in NSA as follows (Väth, 2007, p. 88): ⟨an⟩ converges with limit L ∈ R
if and only if

(∀N ∈ ∗N/N) ∗aN −L is infinitesimal (2.7)

In particular for N = α, if limn→∞ an = L, then st(∗aα) = L. By equation (2.6), we
find that:

lim
n→∞

an = st([⟨an⟩]U) if the limit exists (2.8)

2.4.5.3 Hahn-Banach limit

Hahn-Banach limits (HB-lim) are a real-valued generalization of the limit that is
defined for all bounded sequences and is equal to the value of the classical limit if the
sequence converges. In NSA, the Hahn-Banach limit of a real-valued sequence ⟨an⟩
is defined as follows (Väth, 2007, p. 133): ⟨an⟩ is bounded with HB-lim(an) = L ∈ R
if and only if

L = st(
H1

∑
N=H0

hN
∗aN) (2.9)

for some H0,H1 ∈ ∗N/N with H0 < H1 and for some internal sequence of hyperreals
hH0 , . . . , hH1 such that ∑H1

N=H0
hN = 1.

2.4.6 Internal and external objects

Not all non-standard objects are the image of some standard object by the star-
map; those that are, are called ‘internal’, the others ‘external’. This distinction
is important but not easy to understand immediately. As a first example, N is
external; in fact, every infinite countable set is external. It is also important to note
that whereas the star-map preserves most set-operations, it does not do so for the
powerset: the operation ∗P returns only the internal subsets of a given set, and so,
for any infinite standard set A: ∗(P(A)) ⊊ P(∗A). The probability function we will
construct will also turn out to be external.
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2.5 Hyperrational valued probability

Let us now construct a non-standard valued probability measure to describe a
lottery on N. If we want to find a function that is formally similar to the probability
measure of a finite lottery, then we must find a way to ‘count’ finite as well as infinite
subsets of N and divide by the size it assigns to the whole sample space to normalize
this function.

The construction proceeds in four steps. (1) Every subset of N can be represented
as an infinitely long bit string by considering its characteristic function. (2) Then
we consider the sequence of partial sums of these bits. (3) By introducing a free
ultrafilter on N, we can interpret the whole partial sum sequence as one nonstandard
(or hypernatural) number: its numerosity. (4) By a suitable normalization, we finally
obtain a hyperrational-valued probability measure on P(N).

After the construction we show that numerosities and probabilities based on them
are hypercountably additive (HCA). In fact, we shall see that it is perhaps more
appropriate to call them hyperfinitely additive (HFA).

2.5.1 The construction

2.5.1.1 Step 1: Characteristic bit string

First, consider the indicator function or characteristic function of a subset A of
N: it tests whether a natural number is in the set A or not, where a positive answer
corresponds to 1 and a negative to 0.

χA ∶ N → {0,1}

n ↦ { 0 if n ∈ N/A
1 if n ∈ A

(2.10)

Now we can construct the function that assigns a characteristic bit string (CBS)
to any subset of the natural numbers:

CBS ∶ P(N) → {0,1}N
A ↦ ⟨χA(1), χA(2), . . . , χA(n), . . .⟩

(2.11)

In shorthand notation, we can refer to a sequence by its n-th element only, so
CBS(A) = ⟨χA(n)⟩.

2.5.1.2 Step 2: Partial sums of characteristic bit strings

Now we consider the sequence of partial sums of characteristic bit strings of a
subset A of natural numbers, SumCBS(A).

SumCBS ∶ P(N) → NN

A ↦ ⟨Sn⟩
(2.12)

with
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Sn = ∑nm=1 χA(m)
= χA(1) + χA(2) + . . . + χA(n)

(2.13)

So Sn has a value in {0, . . . , n} for all n. Alternatively, Sn can be written in terms
of the counting function #:

Sn =
n

∑
m=1

χA(m) (2.14)

= ∑
m∈N

χA∩{1,...,n}(m) (2.15)

= #(A ∩ {1, . . . , n}) (2.16)

The sequence ⟨Sn⟩ seems to ‘point to a value at infinity’. If we interpret this
sentence in the framework of standard analysis, we should take the limit n→∞. For
infinite sets A this results in limn→∞ Sn = ∞, which cannot be normalized. (If we
consider the sequence ⟨Sn

n
⟩ instead and its limit n→∞, we find asymptotic density

again.) As we have seen however, in NSA we may alternatively interpret the whole
sequence as one non-standard number.

2.5.1.3 Step 3: Numerosity as the equivalence class of the partial sum
sequence

The equivalence class under a free ultrafilter of a sequence of partial sums of
characteristic bit strings is a hypernatural number that can be interpreted as the size
of the corresponding set, called its numerosity.

num ∶ P(N) → ∗N
A ↦ [⟨Sn⟩]U

(2.17)

with Sn as before.
Any finite set has a finite numerosity (value in N, equal to #(A)), whereas any

infinite set has an infinite numerosity (value in ∗N/N). As an example, consider A = N.
In that case, CBS(A) = ⟨1,1,1, . . . ,1, . . .⟩ and num(A) = [⟨1,2,3, . . . , n, . . .⟩]U , which
is larger than any finite number. Thus we have shown that num(N) is an element of
∗N/N. We may call this new number, num(N), alpha (α).

Using equation (2.14), we can transform the definition for numerosity given by
equation (2.17) in the following way:

num(A) = [⟨Sn⟩]U
= [⟨#(A ∩ {1, . . . , n})⟩]U
= [∗#(∗A ∩ [⟨{1, . . . , n}⟩]U

(2.18)

for all subsets A of N.9 Note that [⟨{1, . . . , n}⟩]U is a hyperfinite set, which means
that there is an infinite hypernatural number, N , such that this set is equal to

9The form on the second line makes it clear that our ultrafilter-based definition of the numerosity
function is equal to that of the axiomatic approach developed in (Benci and Di Nasso, 2003b). In
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{1, . . . ,N}. We can even be more precise, the hypernatural number N is equal to
[⟨1,2,3, . . . , n, . . .⟩]U , which we will call α (following the terminology of Benci and Di
Nasso). So we obtain:

num(A) = ∗#(∗A ∩ {1, . . . , α}) (2.19)

Remark how similar this form is to the numerator of the asymptotic density func-
tion in equation (2.2). Thus, equation (2.19) is very suggestive for a probability
function: all we need to do is normalize it.

2.5.1.4 Step 4: Non-standard probability

The construction is completed by normalization of the numerosity function. By
dividing it by the numerosity of the sample space, num(N) = α, we can introduce the
probability function of a lottery over N in a form that is similar to the probability
measure of a finite lottery (eq. 2.1):

Pnum ∶ P(N) → ∗[0,1]∗Q
A ↦ num(A)

α

(2.20)

Pnum takes values on the unit interval of ∗Q and may be interpreted as a hyperrational-
valued probability function. It assigns an infinitesimal probability to any finite set
and a larger probability to any infinite set.

Since algebraic operations on non-standard numbers are equivalent to the termwise
application of the corresponding operation on the underlying sequence, from our
construction we obtain:

Pnum(A) = num(A)
α

= [⟨#(A ∩ {1, . . . , n})
n

⟩]
U

(2.21)

which makes the analogy with asymptotic density complete.

Pnum is an external object, because its domain is P(N), which is an external
set. This means that the function cannot be obtained directly by taking a standard
function and applying the Transfer Principle to it.

2.5.2 Additivity of the probability function

In this paragraph, we will investigate to what extent our proposal for Pnum satisfies
SUM. We will show that the numerosity function is hypercountably additive (HCA)
rather than countably additive (CA). It then follows directly that the probability
measure based on it is HCA too.

the existence proof given in that paper, numerosity is related to the ultrafilter-construction of NSA
as follows: num(A) = [⟨#(A ∩ {1, . . . , n})⟩]U (Benci and Di Nasso, 2003b, p. 62), where U is a free
ultrafilter such that U = {A ⊆ N ∣ α ∈ ∗A} (Benci and Di Nasso, 2003b, p. 374).
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2.5.2.1 Addition on ∗N

First we need to define finite addition on ∗N. The sum of two hypernatural num-
bers is defined as the star-map of the standard sum operation (on standard numbers)
+: ∗+. For any two sequences ⟨an⟩, ⟨bn⟩ we have: [⟨an⟩]U ∗+[⟨bn⟩]U = [⟨an⟩+⟨bn⟩]U .
Since it will be clear from the context whether we are summing standard or non-
standard numbers, we may drop the ∗ from the sum-symbol. Likewise, all finite
sums are defined.

The countably infinite sum ∑n∈N is not defined for non-standard terms: since

∑n∈N = limm→∞∑mn=1 and limits are only defined for standard numbers. Another way
to see this is by taking into account that N is an external set, and summations over
such sets are not defined.

An infinite addition that is relevant (always defined) for non-standard numbers is
the hyperfinite sum: the equivalence class of a sequence of finite sums. We may also
consider the summation over all of ∗N —a hypercountable sum ∑N∈∗N— since the
latter is an internal set.

2.5.2.2 num is not CA

CA relates a property of the domain of a measure to a property of its range. First
of all, the domain has to be a σ-algebra, ensuring that the union of any countably
infinite family of sets in the domain is also in the domain. Secondly, countable sums
have to be defined on the range. CA then links the two by requiring that the measure
of the union of a countable family is equal to the countable sum of measures of the
each of the members of the family.

The domain of the numerosity function is P(N), which is indeed a σ-algebra.
The range of the function however is the set of hypernatural numbers, for which the
countably infinite sum is undefined. Therefore, the numerosity function cannot be
countably additive. The same argument applies to any function that maps P(N) to
a set of non-standard values.

2.5.2.3 num of a sequence of sets

So far, the numerosity function is only defined for individual subsets of N (eq. 2.17).
Now, we define the numerosity of a sequence of disjoint subsets as follows:

num(⟨An⟩) = ∗#(∗(⟨An⟩) ∩ {1, . . . , α}) (2.22)

The goal of this paragraph is to find an equivalent form of the above definition, that
gives us more insight in the additivity of this function.

First, consider a sequence of (possibly empty) subsets of N:

⟨A1,A2, . . . ,An, . . .⟩ = ⟨An⟩n∈N
The star-map of this sequence is a hypersequence of internal subsets of ∗N:

∗(⟨An⟩n∈N) = ⟪∗AN⟫N∈∗N (2.23)
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with ∗AN = AN for N ∈ N.

Define the intersection with and the hypercounting function of a hypersequence
of subsets of ∗N componentwise:

(∀S ∈ ∗(P(N))) ⟪∗AN⟫ ∩ S = ⟪∗AN ∩ S⟫ (2.24)

∗#(⟪∗AN⟫) = ⟪∗#(∗AN)⟫ (2.25)

By applying equations 2.23, 2.24 and 2.25, the definition given in equation (2.22)
is transformed to:

num(⟨An⟩) = ⟪∗#(∗AN ∩ {1, . . . , α})⟫ (2.26)

Thus, the numerosity of an ω-sequence of sets is a hypersequence of hypernatural
numbers; we may refer to its N-th element as (num(⟨An⟩))N .

2.5.2.4 num and Pnum are HCA

Now we arrive at the main result of this chapter: the numerosity function is
hypercountably additive. To prove this, we need to show that for any family of
disjoint subsets of N, {An ∣ n ∈ N}:

num(⋃
n∈N

An) = ∑
N∈∗N

(num(⟨An⟩))N (2.27)

As an essential step in the proof, we will use that the hyperextension of a count-
able union of a countable family of sets is equal to the hypercountable union of the
hyperextension of the family (by Transfer, cf. Rubio, 1994, p. 104):

∗( ⋃
n∈N

An) = ⋃
N∈∗N

∗AN (2.28)
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Proof.

num(⋃
n∈N

An) = ∗#(∗( ⋃
n∈N

An) ∩ {1, . . . , α})

[By definition of num in equation (2.19)]

= ∗#( ⋃
N∈∗N

∗AN ∩ {1, . . . , α})

[By equation (2.28)]

= ∗#( ⋃
N∈∗N

(∗AN ∩ {1, . . . , α}))

[Distributivity of intersection over union + Transfer]
= ∑

N∈∗N

∗#(∗AN ∩ {1, . . . , α})

[CA of counting function + Transfer]
= ∑

N∈∗N
(num(⟨An⟩))N

[By equation (2.26) + remark below it]

Because the numerosity function is HCA, so is the probability function obtained
from it (provided that we first define Pnum of a sequence of sets, as a normalized
version of eq. 2.22). In particular, for the entire sample space N, the infinitesimal
probabilities of the countably infinite family of singletons do add up to unity.

The idea behind the proof is visualized in Figure 2.1 for the specific case of the
countably infinite family of singletons of N. In this example, we consider the count-
ably infinite family of singletons of N, whose union is N. The numerosity function of
a single set requires the extension of sequences (SumCBS ) into hypercountably long
ones (∗SumCBS ) and their validation at position alpha. To determine the numeros-
ity of a countably infinite union by addition, the countable family of standard sets
has to be extended to a hypercountable family of non-standard sets. By looking at
the last horizontal line, we see that the numerosity of ⋃n∈NAn (here ⋃n∈N{n} = N)
is determined as ∗#(∗(⋃n∈NAn) ∩ {1, . . . , α}), here ∗#(∗N ∩ {1, . . . , α}) =◯α. In this
case, the values in the column with number M = α add up to ◯α too. For each case,
a similar table can be made, and the proof states that the same value is always ob-
tained from comparing the αth position of the last row with the hypercountable sum
of the αth column.

It is apparent from the example in Figure 2.1 that the lottery on N is HCA in
a very specific sense:10 for each family, there can always be found a hypernatural
number, K ∈ ∗N (α in the example, but possibly larger in other cases), such that the
hypercountable sum decomposes in a hyperfinite sum and a hypercountable tail with
zero-terms only. Thus we may call num and Pnum hyperfinitely additive (HFA).

10This is completely analogous to the argument, given in section 2.2.1, showing that a finite
lottery is only CA in a trivial sense.
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Figure 2.1: Illustration of the proof for the hypercountable additivity of the
numerosity function for the specific case of the countably infinite family of
singletons of N. (Further explanation can be found in the main text.)
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2.6 Discussion

In this section, first we evaluate some consequences of our use of free ultrafilters
to construct generalized probability functions for infinite lotteries. Subsequently we
investigate the relation of a lottery on N to a different type of infinite lottery: the
hyperfinite case. We also compare the non-standard description of a lottery on N to
the best available real-valued approach, that of generalized asymptotic density; we
see that SUM is lost in the latter as a result of an accumulation of rounding errors.

2.6.1 Non-constructiveness

Our approach may be criticized on mildly constructivist grounds. The existence
proof for free ultrafilters uses Zorn’s lemma and thus depends on the acceptance of
the Axiom of Choice. Thus a hyperrational-valued probability measure requires free
ultrafilters, which depend on the Axiom of Choice (AC).

To this objection we may reply that the more common solution based on FA,
asymptotic density (paragraph 2.3) requires an extension of the limit concept measure
that involves a free ultrafilter too. Therefore, this generally accepted solution is non-
constructive too, as has been pointed out by Lauwers. To those who are unwilling
to accept the Axiom of Choice, no measure is available that does any justice to the
intuitions underlying fair lotteries. To the rest of us who have no objection to the
Axiom of Choice, the HCA, hyperrational probability function is no less acceptable
than the FA real-valued one. But there is something to be said in favour of the
hyperrational probability function: it gives the SUM-intuition its due.

2.6.2 Non-uniqueness

Elga (2004) has remarked that there are often too many non-standard solutions:
if we can use any infinite hypernatural number to model a problem, why should
we prefer one rather than another? One answer is given by alpha-theory, which
develops NSA from the idea of adding a new ideal number, α, to N. This α can be
interpreted as the numerosity of the set N (Benci and Di Nasso, 2003a, p. 357). Since
numerosity theory introduces α as the size of the natural numbers, and constructs the
other hypernatural numbers around it, α has a clear interpretation that is hardwired
into the theory. It gives us a point of reference among the infinite number of infinite
hypernaturals.

We have started from the ultrafilter-construction of ∗N and then considered the
equivalence class of the sequence [⟨1,2,3, . . .⟩]U , which we interpret as α (consistent
with the axiomatic approach). So, in the present context the accusation of arbi-
trariness boils down to the choice of a free ultrafilter U . A different choice of free
ultrafilter produces a different value of α and hence a probability function with the
same standard part but infinitesimal differences.

To come back to the Even versus Odd example: the odd tickets always have a
head-start compared to the even ones, for the simple reason that 1 comes before
2. Within our framework, it should not come as a surprise that the weight of this
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very first ticket may result in an infinitesimal advantage for the whole set of odd
tickets. After all, our approach is based on the idea that even in an infinite lottery
each ticket has a non-zero probability. For all finite cases with an odd number of
tickets, Pn(Odd) = 1

2
+ 1

2n
> 1

2
and Pn(Even) = 1

2
− 1

2n
< 1

2
, whereas Pn(Odd) and

Pn(Even) are exactly 1
2

for all finite lotteries with n even. Because the probability
assignment in both cases is different for all finite lotteries, it leads to two different
infinite lotteries as well: one in which the odd numbers are in the ultrafilter, such
that Pnum(Odd) = 1

2
+ 1

2α
and Pnum(Even) = 1

2
− 1

2α
, and one in which the even

numbers are in it, such that Pnum(Odd) = 1
2

and Pnum(Even) = 1
2
.

It may look as if we can favor the second solution: a good probability measure
should at least respect the limiting frequencies, and they are exactly 1

2
for Even and

Odd . Take into account however, that limiting frequencies are real-valued, and that
our two non-standard solutions have exactly the same standard part, so they are
both in accordance with this 1

2
& 1

2
solution: limiting frequencies do not rule out one

of both.

By observing that Even = {n ∈ N ∣ n mod 2 = 0} and Odd = {n ∈ N ∣ n mod 2 =
1}, the above analysis generalizes: for each m ∈ N, m different scenario’s emerge
(corresponding to the issue whether {n ∈ N ∣ n mod m = k} is in the ultrafilter for
either 0,1, . . ., or m − 1).

It is possible to impose additional constraints on the ultrafilter, such that the set
corresponding to m mod 0 is in the ultrafilter for all m ∈ N, or equivalently: such
that α is a multiple of any finite number (Benci and Di Nasso, 2003b, Mancosu,
2009). However, we see at present no convincing reasons for endorsing any particular
constraints of this kind. We already remarked that the infinite lottery violates LA-
BEL. Here we encounter another difference with finite lotteries: the solution is not
unique. The problem stated as “Find a probability measure on all of N that satisfies
FAIR, ALL and SUM” is highly underdetermined: there are as many different ways
to draw a random number from N in a fair way as there are free ultrafilters, and the
probability function Pnum given in equation (2.20) should be seen as a whole family
of solutions, all of which are, as far as we can presently see, equally relevant.

2.6.3 Lotteries on N versus hyperfinite lotteries

In non-standard measure theory, the emphasis lies on internal measures: measures
that can be obtained as the star-map of a standard function. Since N is an external set
within ∗N, no internal measure is appropriate to describe the probabilities concerning
a lottery over N.11 The probability measure we propose in this chapter is indeed an
external function, but it is closely related to an internal one: the probability function
of a hyperfinite lottery.

Consider the finite set An = {1, . . . , n}. Then [⟨An⟩]U = {1, . . . , α} is a hyperfinite
set: an internal set and an initial sequence of ∗N. Let us consider this hyperfinite
set as the sample space of a lottery. The probability measure for this hyperfinite

11With Loeb measures it is possible to transform the non-standard co-domain to a standard one
(Cutland, 1983), but this still leaves us with a non-standard domain instead of P(N).
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lottery can be obtained by Transfer of the standard measure of a finite lottery, given
in equation (2.1). Thus we obtain the following internal probability measure:

∗Pα ∶ ∗P({1, . . . , α}) → ∗[0,1]∗Q
∗A ↦

∗#(∗A)
α

(2.29)

Because this probability measure is obtained as the star-map of a standard probability
measure on a finite sample space, which is FA, ∗Pα is HFA by Transfer.

As such, ∗Pα cannot be regarded as a satisfactory solution to the problem of de-
numerably infinite lotteries. The order type of the event space will be vastly different
from the order type of N. Thus, to use terminology introduced earlier, this proba-
bility function operates at best with a relabelling of the natural numbers. We have
seen in our discussion of LABEL that probability functions on infinite event spaces
simply cannot be taken to be invariant under relabelling. So the “internalization”
of the problem of infinite lotteries in the non-standard universe does not solve the
original problem. Instead, it is a solution to a different problem.

Note that although N is a subset of {1, . . . , α}, it is an external one (cf. para-
graph 2.4.6), so it is not part of the domain of ∗Pα. Therefore we cannot use condi-
tionalization on ∗Pα to define a probability measure on the sample space N.

If not by conditionalization, what is the relation between the hyperfinite lottery on
{1, . . . , α} and the hyperrational probability measure on N? Any subset A of N has
a hyperextension ∗A ∈ ∗P(∗N); the intersection of ∗A with {1, . . . , α} is an internal
subset of {1, . . . , α} and thus can be assigned a probability value by the internal
measure ∗Pα. This is precisely the inner working of Pnum : a three-step-process that
can be read off from equation (2.19).12

2.6.4 Non-standard probability and asymptotic density

All frequencies that are experimentally accessible concern finite sequences of trials
only, and they can be expressed as rational numbers. Limiting frequencies are an in-
finite idealization of observable frequencies resulting in real-valued probabilities. Our
approach is a different idealization that leads to hyperrational probabilities. We will
show that its standard part is exactly equal to the limiting frequency. Therefore it
is impossible to favour one solution over the other on mathematical or experimental
grounds. So we are addressing a question of epistemology: the approaches encapsu-
late a different vision on probability and it is up to us to decide which one is most
in concord with our intuitions.

2.6.4.1 Co-domain R versus ∗Q

For a finite lottery, the probability measure takes values on Q. However, this co-
domain is not closed: a limit of a rational sequence is not always defined in Q, but it
is in R. In general, the sample space may be infinite; to this end the range is extended
to R. In contemporary presentations, probability theory is usually introduced as a

12Our construction of Pnum can be seen as a specific instantiation of the general suggestion made
in (Benci et al., 2010, section 5).
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special case of measure theory (e.g. Dudley, 2004); in this context, the idea that a
probability measure is real-valued —which originally was part of an axiom (axiom
III in Kolmogorov, 1933, p. 2)— is so basic that it remains a tacit assumption.

Using NSA, the natural extension of the co-domain is ∗Q rather than R. In order
to assign sizes to all finite subsets of N, we already need all of N (and zero), and
to assign probabilities to all finite lotteries, we need all numbers in [0,1]Q. Thus,
in order to assign sizes to all subsets of N, finite as well as infinite, a larger set is
required, which can be obtained using NSA: we consider ∗N (and zero), or at least an
initial part of it, {0,1, . . . , α} with α ∈ ∗N/N. To assign probabilities to a countably
infinite lottery (or all hyperfinite ones), we need [0,1]∗Q as the range.

Although NSA can be introduced axiomatically, for instance using alpha-theory,
and thus need not be intrinsically more difficult than learning standard analysis, the
latter was developed first and is still much more common. There are at least two
reasons why mathematicians generally prefer the standard framework of classical
analysis over the framework of nonstandard analysis. Firstly, nonstandard analysis
was rigorously developed much later than standard analysis. So, even though it is
not intrinsically more difficult to learn nonstandard analysis, it has the disadvantage
of unfamiliarity. Secondly, because of the Transfer Principle, non-standard analy-
sis does not yield any new information about the standard real numbers. However,
the concept of a fair infinite lottery simply begs for the co-domain of the sought-for
probability functions to be modelled using standard numbers. Thus the Transfer
Principle cannot be used here to transport us back to the familiar shore of the stan-
dard real numbers. But we do stress that the standard but ultimately unsatisfactory
R-solution can be interpreted as the standard part of any suitable ∗Q-function.

2.6.4.2 Standard valued approximations and the failure of SUM

As we know from section 2.3, asymptotic density is only FA. Admittedly, CA is
not achieved by the ∗Q approach either, but the latter tells us why this is not so:
the extension of FA for finite lotteries to the countably infinite case does not lead to
CA, but rather to HFA (or HCA in a trivial sense). Or, put differently, this solutions
shows us that we we can extend our finite SUM intuition to HFA. We now investigate
how this relates to the FA of asymptotic density.

Let us approximate the hyperreal-valued probability measure (up to infinitesimals)
by a real-valued measure. To this end, NSA provides the standard part function, st
(paragraph 2.4.4). First, we will illustrate this by three examples concerning the
lottery on N:

• Single ticket: A = {n} for some n ∈ N. Then Pnum(A) = num({n})/α = 1/α.
Since α is an infinite hypernatural, its inverse is an infinitesimal with standard
part zero: st(Pnum(A)) = 0.

• All but one ticket. B = N/{n}. Then Pnum(B) = num(B)/α = (α − 1)/α =
1 − 1/α. So st(Pnum(B)) = 1.

• Consider an arbitrary m ∈ N. For all k ∈ {0,1, . . . ,m − 1}, let Ck be the set
{n ∣ n mod m = k}. Then st(Pnum(Ck)) = st(1/m) = 1/m for all k.
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In the examples, the standard part of the hyperrational-valued probability measure
Pnum equals the real-valued asymptotic density. This close connection should not
come as a surprise, since Pnum and Pad are, respectively, the ultrafilter equivalence
class (or alpha-limit) and the Hahn-Banach limit of one and the same ω-sequence.
In fact, what we have observed in the examples holds in general:13

st ○ Pnum = Pad (2.30)

Proof.
Fix an arbitrary A ∈ P(N). We need to show that st(Pnum(A)) = Pad(A).

We know that Pad(A) is the Hahn-Banach limit of ⟨an⟩ = ⟨#(A∩{1,...,n})
n

⟩ (eq. 2.3).

From equation (2.9), we know that in order to proof that st(Pnum(A)) is the Hahn-
Banach limit of this sequence, we need to find H0,H1 ∈ ∗N/N with H0 <H1) and an
internal sequence of hyperreals hH0 , . . . , hH1 such that ∑H1

N=H0
hN = 1 and:

st(Pnum(A)) = st(
H1

∑
N=H0

hN
∗aN)

First transform the left hand side using equations 2.6 and 2.21:

Pnum(A) = [⟨#(A ∩ {1, . . . , n})
n

⟩]
U
= ∗aα

Then we see that the above equality is equivalent to:

st(∗aα) = st(
H1

∑
N=H0

hN
∗aN)

which holds if we choose H0 < α, H1 ≥ α, hN = 0 for all N ≠ α and hα = 1.14

This relation elucidates why (generalized) asymptotic density has poorer additivity
properties than the non-standard measure: each time the standard part function is
applied, a rounding-off error (up to infinitesimals) is introduced. When adding a finite
number of rounded values this still only introduces an infinitesimal error, but when
adding an infinite number of approximated terms, the total error may be appreciable.
In particular, when summing over the family of all singletons, we see SUM fail most
dramatically: the total error is as high as α ⋅ 1/α = 1, which is 100% error in case of
probabilities.

13This is true for any Pnum in the family of solutions corresponding to the freedom of choice in
the free ultrafilter.

14For the special case where ⟨an⟩ converges, st(∗aα) = limn→∞ an (eqs. 2.6 and 2.8). Thus the
proof for that case boils down to: st(Pnum(A)) = limn→∞ an = Pad(A)
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2.7 Conclusion

In this chapter, we have argued that fair infinite lotteries can best be described
using tools and concepts of non-standard analysis. We have constructed a uniform
probability measure which is defined on the full power set algebra of N, and which
takes its values in the non-standard extension of the [0,1]Q-interval. The construction
is closely related to that of asymptotic density measures. The resulting probability
measure is uniform, it gives a non-zero probability to the event that a given ticket
wins, and it is not just finitely but also infinitely additive.

Lewis (1986a) argued that every possibility should be assigned a non-zero proba-
bility. This has been taken by him and others as a reason for advocating probability
functions that take their values in a non-standard [0,1]-interval. We do not advocate
the principle of Regularity in general. But we have seen that in the context of the
lottery on the natural numbers, it follows from desiderata that we are committed to
on independent grounds. So it was natural for us to try to work out a non-standard
approach in some detail.

Proposals to construct non-standard measures on infinite sample spaces have been
made in the literature (Cutland, 1983). But instead of taking the natural numbers
as their domain, these probability functions operate on a non-standard extension of
the natural numbers. This entails that they do not provide a genuine solution to the
problem of lotteries on the natural numbers; instead, they change the problem. The
probability measure that we have constructed is of mixed origins. It stands with one
leg in the classical universe, and with its other leg in the non-standard universe.

Asymptotic density and our probability measure are based on the same sequence of
partial fractions, and both look at its behavior ‘at infinity’. Only the formalization of
this statement is achieved differently: by (a generalization of) classical limits (Schurz
and Leitgeb, 2008) in the first case, and by free ultrafilter-based equivalence classes
in the second. Asymptotic density takes values in the standard [0,1]-interval. The
price for this is that such probability functions can only be finitely additive for fair
lotteries on N.

The solution that we propose meets the conceptual and intuitive requirements
connected with a lottery on N: it is fair, uniform, defined on the whole power set
algebra of N, and infinitely additive. We have seen that we do not end up with a
unique solution. The probability functions that we propose are only determined up
to the choice of an ultrafilter. As far as we can presently see, no choice of ultrafilter
is superior to any other. We do not exclude that when more intuitive constraints
are imposed, the class of satisfactory probability functions can be narrowed down
further. But at present we see no way of doing so.

The most notable feature of our solution is that whereas it is infinitely additive,
its additivity behavior is not adequately described by summing over the natural
numbers, but by summing over a non-standard extension of the natural numbers.
One might naively expect the relevant sum generally to be an ω-sum of non-standard
weights. But it emerged that the probability of an ω-length family of events will be
a sum of a much longer order type. In this context, it should be recalled that even
Kolmogorov, the discoverer of the classical σ-additivity axiom, emphasized that the
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condition is merely a useful assumption of idealization but is not contained in the
meaning of probability.15 It turned out that in the context of lotteries on the natural
numbers, σ-additivity is not the right idealization.

The obvious next step would be to consider larger, nondenumerable lotteries,
such as lotteries on R. The description of fair lotteries on R is a mathematically
significantly more difficult affair, and will be left for future work.

15Kolmogorov (1933, p. 15) states: “Infinite fields of probability occur only as idealized models
of real random processes. We limit ourselves, arbitrarily, to only those models which satisfy Axiom
VI.” (Emphasis in the original.) In Kolmogorov’s paper, ‘field’ means ‘algebra’ and ‘Axiom VI’
refers to the ‘Axiom of Continuity’ which, together with FA, automatically leads to CA in cases
where the algebra is a σ-algebra.
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Chapter 3

Stratified Belief and
Ultralarge Lotteries

There are no whole truths; all truths are half-truths. It is trying to
treat them as whole truths that plays the devil.

Alfred North Whitehead (Price, 1954, p. 14)

If the doors of perception were cleansed everything would appear to
man as it is—infinite.

William Blake (1790)

Five is a sufficiently close approximation to infinity.
Robert Firth

3.1 Introduction

Whereas the previous chapter dealt with the foundations of probability theory in
relation to infinite lotteries, the current chapter deals with the epistemology of finite
lotteries. The relation between the two cases will be examined in Chapter 4.

In order to study the epistemology of yes–no beliefs, in particular the conditions for
their rational acceptability, in so far as they are based on probabilistic information,
we will focus on a simple example of a lottery. Consider a fair lottery with N
tickets, exactly one of which will be randomly selected as the winner. This game of
chance can simply be described by a uniform probability function, which assigns a
probability of 1

N
to each ticket. Clearly, the description of a fair lottery does not pose

a problem within probability theory, but the interplay of probabilities and rational
beliefs triggers epistemological questions. We are interested in what is rational to
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believe for a participant in such a lottery in the case that N is very large and the
winning odds of a single ticket are correspondingly very small.

If you own only one ticket in such a large lottery, it may seem rational for you
to believe that your ticket will not win. Buying another ticket does not increase
your odds very much, so it still may seem rational for you to believe that none of
your tickets will win. Suppose that you keep buying tickets, each with a very small
probability of winning, and that you keep believing that none of your tickets will win.
At some point, you will own all the lottery tickets and thereby you will be certain
that one of them will win, which contradicts your belief that none of your tickets will
win. This is the Lottery Paradox, originally stated by Kyburg (1961).1

The Lottery Paradox occurs when three prima facie plausible principles are com-
bined: the Lockean Thesis, the Conjunction Principle, and the Law of Non-Contra-
diction. This is the first principle:

Lockean Thesis (LT, Informal Version) It is rational to believe a statement if
the probability of that statement is sufficiently close to unity.

The second principle, the Conjunction Principle or CP, states that if it is rational to
believe two statements, it is also rational to believe their conjunction. The Law of
Non-Contradiction or LNC expresses the idea that it is never rational to believe a
contradiction. According to Kyburg himself, it is the employed aggregation rule for
beliefs, CP, that causes the paradox (Kyburg, 1961). Whereas Kyburg’s argument
that rational belief is not closed under conjunction was supported by Foley (1979) and
Klein (1985), the idea that CP is the cause of the problem is now a minority position.
Some doubt the Law of Non-Contradiction (Priest, 1998), but most contemporary
authors are more suspicious of the Lockean Thesis. It has been suggested that LT
be modified with a defeater-clause. It seems natural to assume that such a defeater
can be made mathematically precise, but Douven and Williamson (2006) show that
any formally precise defeater does not work to avoid the Lottery Paradox, reducing
much of the initial appeal of this solution.

In this chapter, we will analyze the Lottery Paradox as an instantiation of vague-
ness. After all, the problem only occurs for a lottery ranging over a large enough
number of tickets, making the probability of winning with a single ticket small enough.
Also in the informal phrasing of LT, a vague element is present, where it states that
the probability has to be sufficiently close to unity.

It is the goal of this chapter to find a formal solution to the Lottery Paradox that
does justice to this vagueness. It may not seem likely that a formal solution of this
type exists: what mathematical method can help us out if the problem is intrinsically
vague?

We propose to apply relative or stratified analysis (Hrbacek, 2007, Hrbacek et al.,
2010), a type of non-standard analysis. Based on stratified analysis, we will give a
formalization of LT and refer to the resulting type of rational belief as ‘Stratified
Belief’. As it turns out, CP will have to be adapted too, in order to be compatible
with this soritic version of LT.

1The paradox can be restated in terms of knowledge (Nelkin, 2000). However, here we will
address only the original phrasing in terms of rational belief.
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Regarding CP, the conclusion of this chapter is close to the position of Kyburg,
Foley, and Klein: we find that the Conjunction Principle is too strong to be expected
to hold for rational beliefs. However, we do argue in favor of a weakened form of CP.
So, like Kyburg, we claim that you would be wrong to keep believing that none of
your tickets will win: the repeated addition of an extra ticket with a small probability
does not guarantee that the total probability of all the tickets that you own remains
small. The total probability of winning will be considerable before you have bought
all the tickets. Yet, knowing this does not tell you exactly when you should stop
adding tickets or change your opinion. The question “When do the winning odds of
a number of tickets cease to be small?” is not all that different from “When does a
number of lottery tickets start to be a heap?” In the application of the aggregation
rule, we see that induction fails at some point, making the property of rational
acceptability of beliefs intransitive.2

In the context of the philosophy of probability, two varieties of probability are
considered: objective (or physical) probability on the one hand, and subjective (or
epistemic) probability on the other. The probabilities occurring in physics are taken
to be objective3 and are thought of as real numbers in the [0,1]-interval. Subjec-
tive probabilities are often referred to as ‘degrees of belief’ in the Bayesian literature
(Ramsey, 1931, Foley, 2009). Unlike objective probabilities, degrees of belief do not
necessarily have a numerical value. However, in the case of a lottery or other situa-
tions in which all relevant information about the objective probabilities is explicitly
available, the agent’s subjective probability assignments should be equal to the ob-
jective probabilities. This requirement has been dubbed “the Principal Principle” by
Lewis and we consider it as a minimal, necessary condition for rationality, underly-
ing any attempt to formalize the notion of rational belief. Throughout this chapter,
we will focus on the case in which the subjective probabilities are indeed equal to
the objective ones. Therefore, we may use the term ‘probability’ without further
qualification.

Notation Consider an N -ticket lottery, with N some natural number at least
equal to 2. Here, we introduce some notation for probabilities of statements concern-
ing such a lottery. Denote the set of N tickets as: TN = {t1, . . . , tN}. From this set,
exactly one ticket will be randomly selected and assigned to be the winning ticket. If
A is a subset of TN , let ϕ(A) denote the statement that one of the tickets in A is the
winner. We introduce a similar notation for loss statements: if B is a subset of TN ,
let ψ(B) denote the statement that none of the tickets in B is the winner. Clearly,
ψ(B) is equivalent to ϕ(TN −B).

The assignment of probabilities (P ) to win and loss statements can be done as
follows:

2Intransitivity is a typical symptom of problems that are soritic in nature.
3Of course, even those probabilities are subjective to a certain extent: probability is a way to

model a system about which we have insufficient information to predict its behavior with certainty
or to summarize information about large numbers of particles.
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P(ϕ(A)) = #(A)/N

P(ψ(A)) = 1 −#(A)/N
(3.1)

where #(A) denotes the number of tickets in the set A.

Equation (3.1) is not intended to define probability measures (in particular, P ○ψ
is not additive, so it cannot be a measure), but rather to introduce some shorthand
notation. If A is a singleton, say {ti}, then we write ϕ(A) as ϕi; we define ψi analo-
gously. So, we write P (ϕi) as shorthand for P (ϕ({ti})) and P (ψi) for P (ψ({ti})).

Structure The chapter is structured as follows. In section 3.2, we frame the Lot-
tery Paradox in the broader context of finding a way to relate real-valued probabilities
to binary belief states. We specify three desiderata required for the conversion from
probabilities to beliefs. Because the threshold-based model is a popular approach,
in section 3.3 we review this model and show that it does not satisfy CP. In sec-
tion 3.4, we show that statements about a lottery, for which the paradox may be
invoked, show typical traits of vagueness. We claim that the Lottery Paradox occurs
in the threshold-based model, precisely because the approach does not deal well with
these soritic aspects. In section 3.5, we argue in favor of applying ideas from relative
analysis to the epistemology of large lotteries. This leads to the main result of this
chapter: our model of ‘Stratified Belief’ in section 3.6. In section 3.7, we discuss the
relation of our proposed solution to contextualism and the epistemicist account of
vagueness. We summarize our findings in section 3.8.

3.2 Mapping [0,1] onto {0,1}
Underlying the Lottery Paradox, there is a more general question: how do we

relate probabilistic information, represented by real numbers in the [0,1] interval,
to simple yes–no judgments (beliefs), which can be represented by the binary values
{0,1}? Note that there is an asymmetry between i) either you believe p or you don’t,
and ii) either you believe p or you believe its negation. Here, the binary values refer
to the first interpretation.4 So, in accordance with Leitgeb (2010), we take beliefs to
distinguish between three states: belief, disbelief, and suspension of judgement.

A first answer to the above question could be: we shouldn’t (convert probabilities
to unqualified beliefs). If we have detailed information in the form of probabilities,
we should stick to that. Indeed, in the lottery case, it is easy to calculate the winning
odds of any set of tickets simply by adding the individual probabilities. However,
stating that the winning odds of a subset is 0.125, for instance, does not answer the

4It is clear that the second notion of belief is even more restrictive: it does not allow a repre-
sentation of agnosticism, doubt, or suspension of belief, all of which would at least require either a
third value besides 0 and 1 or the option not to assign any value at all. We will not deal with this
issue here, because adding values shifts but does not remove the problem we want to study: under
which conditions is it rational to believe p? We will take into account different strengths of belief
in subsection 3.7.2.
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question “Do you believe that all tickets in this set will lose?” There still seems to
be a need for a translation.

Foley has argued that it is indeed indispensable to have some way of extracting
simple true-false judgments out of detailed probabilistic information (Foley, 2009).
He comes up with some very convincing examples: in court, for instance, the judge or
jury has to choose between ‘guilty’ and ‘not guilty’, no matter how fine-grained the
information on which they must base their conclusion. In daily life, simple answers
are often required to facilitate communication. As Mencken put it: “The public . . .
demands certainties; it must be told definitely and a bit raucously that this is true
and that is false. But there are no certainties” (Mencken, 1919, p. 46).

This situation is very analogous to that in image analysis, where black-and-white
pictures are sometimes more useful than grey-scale ones. Even the reasons behind this
are remarkably similar: conversion of grey-scale images to black-and-white images
helps to make certain features stand out more, or to facilitate sending the file by
e-mail—think of real-time images sent by a distant space craft—both of which can
be seen as facilitating communication. We will encounter this analogy again in the
next section.

At this point, we formulate the main requirements for dealing with the relation
between probabilities and beliefs:

Desideratum 1 There should be a method to translate continuous probabilities
into discrete beliefs.

Desideratum 2 There should be a rule to aggregate these beliefs.

Desideratum 3 The translation method and aggregation rule should be chosen such
that together they do not lead to a Lottery Paradox.

First, we look at a candidate for Desideratum 1: a popular model that achieves
the translation requirement is the threshold-based model for rational belief; it will
be discussed in detail in the next section. Now, let us think of a rule that could be
used for Desideratum 2. For logical truths, the aggregation rule is simple: if you
start out with two or more true propositions, their conjunction is true as well; this
rule of inference is called Adjunction or Conjunction Introduction. The Conjunction
Principle (CP) states that something very similar holds for rational beliefs instead of
logical truths: if two or more propositions are rationally acceptable, their conjunction
is rationally acceptable as well. We can show however (in section 3.3.2), that using the
threshold-based model for rational belief as Desideratum 1 and CP as Desideratum
2 makes it impossible to meet Desideratum 3. This is no new result: this is precisely
the Lottery Paradox.

The approach of this chapter is to critically examine the threshold-model, and
suggest an alternative model without explicit thresholds, which avoids the Lottery
Paradox without abandoning CP completely. In subsection 3.6.1, we will propose a
new option for Desideratum 1. In subsection 3.6.3, we will find a matching choice
for Desideratum 2, such that also Desideratum 3 is fulfilled.
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3.3 Threshold-based model of the Lottery Paradox

In this section we give an overview and critical examination of the wide-spread
threshold-based model for rational belief. It rephrases the Lockean Thesis as follows:

Threshold Belief (Informal Version) It is rational to believe a certain statement
if the probability of that statement is at least equal to a given threshold value.

This invites a crucial question: what is the value of this threshold used by actual
people (in a given context)? And, what ought it be? Usually, the threshold is taken
to be a number close to unity, such as 0.999. Achinstein (2003) considers a threshold
of exactly 1

2
to be an option, although he prefers the more liberal but less precise

condition that the threshold be larger than 1
2
. He also mentions the less liberal but

even more vague condition that the threshold be ‘much larger than’ 1
2
.

When we know that a statement has a sufficiently high probability, Threshold
Belief tells us that it is rational to believe the statement fully; this transition is
analogous to image processing, where a grey-scale picture can be converted into
a black-and-white image by setting a threshold on the brightness: darker pixels
become black and brighter pixels become white. In that context too, the question
of finding the ‘right’ thresholds is a non-trivial one: in some situations the threshold
and even the whole scale may be relative, which leads to adaptive thresholding and
image enhancement, respectively (Shapiro and Stockman, 2002). Similar to adaptive
thresholding, if the threshold-model is any good at all, it should allow for context-
dependent thresholds. Image enhancement is analogous to dramatization: even in
one context, it seems as though people use different thresholds in order to contrast
cases. This may have little to do with rational beliefs, but if you take into account
what it takes for humans to get a message across or remember it (Lang, 2000),
context-depending thresholds definitely serve a function.

Many related questions could be raised, for instance concerning experimental ac-
cessability and measurement precision of the thresholds (Douven and Uffink, 2003),
possible hysteresis (Égré, 2009) etc. However, we will not dwell on these points,
for there are more substantial problems with this approach, which will cause us to
discard it completely.

3.3.1 Formalizing the Lockean Thesis

We write B(x) to denote the belief in statement x, and B(x) ∈ Rα to denote that
it is rational for agent α to believe x. Then, the threshold-version of the Lockean
Thesis can be formalized as follows.

Threshold Belief (Formal Version)

B(x) ∈ Rα ⇔ P (x) ≥ θ (3.2)

where θ is the threshold value or cut-off (a real value in [0,1]).5
5Clearly, the range for θ can be made smaller. The interval given here is chosen such that it

is broad enough to encompass all the threshold values one may want to consider. There are good
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We could have used an agent’s personal probability estimate Pα, but since we
assume that all agents use the same probability function for a fair lottery (cf. the
aforementioned Principal Principle), we have omitted the subscript.

3.3.2 Illustration of the failure of CP

We can easily show that:

B(ψ1) ∈ Rα and B(ψ2) ∈ Rα ⇏ B(ψ1 ∧ ψ2) ∈ Rα (3.3)

This can be seen as follows. Applying equation (3.2) to the left-hand side:

B(ψ1) ∈ Rα ⇒ 1 − 1

N
= P (ψ1) ≥ θ

B(ψ2) ∈ Rα ⇒ 1 − 1

N
= P (ψ2) ≥ θ

Applying equation (3.2) to the right-hand side:

B(ψ1 ∧ ψ2) ∈ Rα ⇒ 1 − 2

N
= P (ψ1 ∧ ψ2) ≥ θ

However, 1 − 1
N

> 1 − 2
N

; thus 1 − 1
N

≥ θ does not guarantee that 1 − 2
N

≥ θ (unless
when θ = 1, but this case is of little interest for modeling belief anyway).

In words, this shows that, given a value for the threshold, θ, there exists a suffi-
ciently large lottery such that the losing odds of any specific ticket are at least equal
to the threshold, but the losing odds of two tickets are below it. If rational accept-
ability is identified with having probability above a certain threshold—that is to say,
the ‘if’ in the informal phrasing of LT is interpreted as ‘only if’—, the conjunction
of only two rational beliefs may fail to be rationally acceptable.

3.4 The vague lottery: a heap of tickets

In this section, we step away from the existing threshold-based model of LT and
take a fresh look at the Lottery Paradox. The first three observations of this section
will fuel our search for a new formalization of LT, which will be the foundation of a
new solution to the Lottery Paradox. The fourth observation foreshadows the idea
that also CP will have to be adapted.

reasons to doubt that θ ≤ 1
2

or θ = 1 are viable choices (Achinstein, 2003). Moreover, Achinstein

and many other authors suspect that θ should take a value much closer to 1 than to 1
2

.
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3.4.1 Observation 1: The soritic lottery

In formal epistemology, the Lottery Paradox may be seen as an easier (clearer)
problem to work on as opposed to cases in which the probabilities are not explicit,
such as the ‘Preface Paradox’ (Makinson, 1965) that deals with a book containing
a lot of statements, in each of which the author has ‘very high’ confidence. This
viewpoint may be misleading: to invoke the Lottery Paradox, the number of tickets
N just has to be ‘large enough’. Another way of saying this is: the probability of
winning 1

N
has to be ‘small enough’. ‘Large enough’ and ‘small enough’ are vague

concepts: vagueness is at the heart of the problem (both for the Lottery and the
Preface Paradox).

There is also vagueness in the informal version of the Lockean Thesis (LT), which
mentions a probability sufficiently close to unity, but this vagueness is not reflected
in the usual formalization of LT with thresholds. The threshold-model has stepped
into the trap of illusory exactness: it attempts to set a sharp boundary around what
is large, in particular what is a large enough probability. The idea that ‘being large’
is a well-defined property does not agree with our normal use of the concept. It is the
position of this chapter that counter-intuitive results such as the Lottery Paradox
follow from just this property. The Lottery Paradox is merely a symptom of this
deeper problem.

This first observation suggests that we should formalize LT such that the vague
aspect of it is respected and apply this vague version of LT to the lottery case. Now,
the puzzle is how to deal formally with the kind of vagueness at issue here.

3.4.2 Observation 2: Contextual element

Yet another formulation of the lottery case, which although still vague, at least
has the advantage of making clear that ‘large’ and ‘small’ are relative concepts: in
order to make it plausible that it is rational to believe that none of your tickets will
win, the number of tickets that you own has to be very small compared to the total
number of tickets. Although it is less quantitative, in a way the latter statement is
more informative than “You own two tickets in a fair 10,000,000-ticket lottery with
one winner”.

The observation that the vagueness involved in the Lottery Paradox is relative
suggests that we should allow a contextualist element in the solution.

3.4.3 Observation 3: Analogy with fair lottery on N
As Lavine (1995, p. 389) points out: “It is a familiar idea that our knowledge about

the infinite is obtained by in some sense extrapolating or idealizing our knowledge of
and about the finite.” This idea can also be applied in the opposite direction: large
finite phenomena are often modeled by infinite ones. In physics, a long thin cylinder
may be taken to be an infinitely long wire, a large surface to be an infinitely large
area (e.g. by using periodic boundary conditions), and so on. For our problem, it
seems natural that a sufficiently large lottery behaves qualitatively the same way as
does an infinite lottery.
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If we want to describe a lottery on N, it turns out that we do not have the freedom
to assign fair odds to the tickets within the classical axiomatization of probability
theory developed by Kolmogorov (1933). A fair lottery on N can be described if we
drop the requirement of Normalization or that of Countable Additivity. If we, like
de Finetti (1974), choose the latter option, the probability of winning of a single
ticket (or any other finite subset of N) is zero, the same probability as we assign to
the impossible event. Real-valued, finitely additive probabilities are not fine-grained
enough to distinguish between the impossible event and some possible but ‘highly
unlikely’ events. Within the real numbers, there is no way of quantifying just how
unlikely these events are; all we can express is that their probability is zero. Al-
though there is a clear qualitative difference between possible and impossible events,
some of the associated probabilities are quantified by the same number.6 Clearly,
this situation is unsatisfactory from an epistemological point of view. If we allow
infinitesimals in the range of the probability function, it is possible to distinguish
between the probability of the empty set and a non-empty set (cf. Chapter 2).

Thus, the infinite version of our problem requires the use of non-standard analysis
(NSA), originally developed by Robinson (1966). The idea of NSA is to extend N
and R to the strictly larger sets ∗N and ∗R. ∗N is called the set of hypernaturals
and contains infinite numbers, strictly larger than any natural number. ∗R is called
the set of hyperreals, and next to infinite numbers it also contains their inverse—
infinitesimals—which are smaller in absolute value than any strictly positive real.

If we consider a fair lottery on a finite subset of N, the probability assignment is
unproblematic: the winning odds of any non-empty subset are non-zero. However, in
our reasoning about such a lottery we sometimes deal with very small probabilities
as if they were zero. In such a situation, our beliefs are not fine-grained enough
to distinguish between the impossible event and some possible but ‘highly unlikely’
events. Because of the analogy between the infinite lottery puzzle and the Lottery
Paradox, we ask: can NSA be applied to solve the latter problem too?

It should come as no surprise that the study of an infinite lottery leads to a system
in which one has infinite numbers and infinitesimals available. However, at first sight,
there seems no good reason to bother with infinities when dealing with beliefs about
a finite lottery, no matter how large. Although we do not want to introduce infinite
numbers, this is not a valid objection to the use of NSA for this problem, since there
are approaches to NSA that do not extend the standard sets into the transfinite, but
work entirely within the standard sets N and R. This is true for Nelson’s ‘internal
set theory’ (IST) (Nelson, 1977), as well as Hrbacek’s relative analysis (inspired on
IST) (Hrbacek, 2007).

A promising aspect of relative analysis is that it is able to cope with soritic con-
cepts. Some vagueness is present in Robinson-style NSA, too. To see this, observe
that the standard sets N and R have no largest element. Likewise, in ∗N and ∗R
there is no smallest infinite number: although for any given number, it is easy to

6The problem is not limited to impossible and highly unlikely events: there are many more events
that are qualitatively distinguishable (they differ up to a finite subset of N) but get exactly the same
probability assignment. In particular, probability one is not only assigned to the necessary event
(‘Some ticket of N will win’), but also to infinitely many other events: N minus any finite subset.
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determine whether it is finite or infinite, the border between the finite numbers and
infinite numbers cannot be pinpointed by giving a number at or near it. In ∗R, there
is no largest infinitesimal, nor a smallest positive non-infinitesimal number. Stated
informally, the result of the internal-set approach is that the vague border between
the finite and infinite gets ‘pushed down’ into a vague border between standard and
large size, whereas that between finite and infinitesimal ‘scales up’ into a vague dis-
tinction between standard and small size. With relative analysis, we will model the
small probabilities that are indistinguishable from zero as ‘relative infinitesimals’ or
‘ultrasmall numbers’.

3.4.4 Observation 4: Weakening CP

For statements supported by probabilistic considerations, it is not self-evident that
CP should hold. First, let us recall how to calculate the probability of a conjunction.
In the case of two tickets for the same lottery, their losses are dependent events and
the probability of a loss statement decreases linearly with the number of tickets.7

Nevertheless, if we start out believing a statement that has a sufficiently high prob-
ability, the aggregation of some additional statements with equally high probability
will not dramatically change our (degree of) belief in the conjunction. So we do not
expect to see CP fail completely either. For the aggregation of beliefs, we expect to
find a weakened version of CP. In particular, for beliefs concerning a large lottery,
what we expect intuitively is this:

Weakened Conjunction Principle for Beliefs (Informal Version) It is accept-
able to aggregate a few rationally acceptable beliefs, but the conjunction of
many rationally acceptable beliefs is not necessarily rationally acceptable.

In a threshold-based model, this intuitive rule is violated, for we cannot even allow
the conjunction of two beliefs, as we have seen in subsection 3.3.2.

Another way of seeing that we may have to weaken CP is by observing the following
statements:

• The probability of winning for one ticket is small.

• The probability of winning for two tickets is small.

• . . .

In mathematics, it is often tricky to correctly interpret a continuation with an ellipsis:
it suggests a type of limit process. (The limit of classical calculus is not the only
option; we will come back to this.) Here, the same care is needed, for the ellipsis
does not generalize to the (incorrect) statement: “The probability of winning for all
tickets together is small”, but rather to:

7Consider two different tickets i and j in an N -ticket lottery. Then, the event that ticket i will
not win has probability P (ψi) = 1 − 1

N
, while the event that both tickets i and j will not win has

probability P (ψi ∧ ψj) = 1 − 2
N

.



3.5. Introduction to relative analysis 73

• The probability of winning for a few tickets is small.

Whereas ‘all tickets’ refers to a definite number, ‘few’ is a vague term of course. As
we have already seen in Observation 3, relative analysis may be able to deal with
this formally.

3.5 Introduction to relative analysis

Observing that the Lottery Paradox is related to vagueness may seem like saying
that it is a problem that escapes proper formalization. This is not true. For a first
attempt at such a formalization, we may get inspiration from the praxis of physics.

3.5.1 Vagueness in physics

Physics is the prototype of a hard science, a fortress of exactness. Indeed, exper-
imental physicists may put a lot of effort in high-precision measurements, such as
of the mass of an elementary particle. Yet, physicists are also experts in estimat-
ing quantities: figuring out the right unit (dimensional analysis) and prefix, which
expresses a power of 10. As long as they know where to locate a quantity on the
logarithmic scale, most physicists do not need more precise values for their back-of-
the-envelope calculations.

A way to represent structures at different scales of magnitude is given in Figure
3.1: this illustration is popular with researchers working in nanotechnology who want
to present their work to a general audience and often adapt the original image to
include examples of their specific field of study. Similar illustrations with logarithmic
scales are used by astrophysicists to indicate how large their objects of research are.

Physicists also frequently use the words ‘microscopic’ and ‘macroscopic’. What
these terms mean, however, is ambiguous: it may depend on the field, or the more
specific context in which they are used. For a computational physicist, used to
simulating single molecules or a unit cell of a crystal, a mole of matter is definitely
macroscopic, whereas it is microscopic for his colleague in astrophysics. Their close
contact with the external world through experiments has sharpened their intuitive
use of sliding scales of magnitude. Their heuristics include rules such as:

Small + Small = Small Large + Large = Large
Few × Small = Small Few × Large = Large
Small × Small = (Very) Small Large × Large = (Very) Large

Small × Large = (undetermined)

Although rarely made explicit, this type of rule is often employed in physical rea-
soning to estimate the order of magnitude of a quantity: if a certain contribution is
(very) small compared to the effect one wants to describe, it can often be neglected.
The above rules are very general, and could be applied to probabilistic problems, in
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Figure 3.1: Illustration based on “The scale of things – Nanometers and
more”. Original designed by the Office of Basic Energy Sciences for the U.S.
Department of Energy.

particular to lotteries, but this is a dangerous idea for as Hrbacek et al. (2010, p. 801)
say: “Scales of magnitude play an important role in the thinking of physicists, but
to a mathematician the concept seems incoherent.” So, if we want to use the above
rules to remedy the Lottery Paradox, we first need to find a consistent system to
handle them.

As we already know from the previous section, by combining Observation 1, 2, and
3, we need a formalism that is capable of dealing with vagueness, provides contextual
elements, and is a form of NSA.

The good news is that we do not have to develop a theory from scratch: there is a
formal system available that precisely formalizes the contextual and vague concepts
of largeness and smallness, and more generally different scales of magnitude. It is an
approach to NSA developed in Hrbacek (2007), Hrbacek et al. (2010), called ‘relative
analysis’ or ‘stratified analysis’.8

8Of course, there are other formal systems that deal well with vagueness and imprecise prob-
abilities, such as fuzzy logic, which has been applied to belief in Booth and Richter (2005), and
interval-valued probabilities of Dempster-Schafer theory (Dempster, 1967), but we will not discuss
those further, here.
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3.5.2 Scales of magnitude

Because stratified analysis was developed to deal with soritic quantities, let us
apply it to an example dealing with a heap, or rather a bucket, of sand. Relative to
the bucket, which is mesoscopic (neither small nor large), a single grain of sand is
negligibly small (microscopic). The whole beach, however, is gigantic (macroscopic)
compared to the bucket. This is depicted schematically in Figure 3.2.

The numbers 0, 1, 2, 3, . . . and 1
2
, 1

3
, . . . are mesoscopic numbers in relative

analysis. They are observable on the coarsest context level (to be defined below). In
order to apply relative analysis, we may let the numbers correspond to a physical
quantity. A bucket of sand is a conceivable quantity to us, humans: it is one “dose”
of sand, so we may use it as a unit of sand (much like dm3 is a unit of volume). In
a different application (e.g. when describing the viewpoint of a small animal on the
beach), it may be more useful to take one grain of sand as the unit (or mm3 as the
unit of volume). In this application, the grain of sand is mesoscopic, while both the
bucket and the beach are macroscopic. Thus, one and the same quantity can be both
gigantic and negligibly small, depending on the choice of unit (i.e. which physical
interpretation is given to the number 1, which is always considered to be mesoscopic
in relative analysis).

This example indicates that our observations are related to different scales. One
aspect of this can be understood from Lavine’s approach to finite set theory (Lavine,
1995). He uses a similar example (albeit with beans instead of grains of sand) as a
physical model for learning addition. Although the bucket contains a finite number
of grains, we have no idea how many: the bucket is an ‘indefinitely large’ supply
of grains of sand. Likewise, the beach is indefinitely large compared to the bucket.
Lavine points out that whenever necessary, we may take a larger supply of sand,
but this does not mean we ever need an infinite amount. The context of set theory
is less convenient to discuss ‘indefinitely small’: whereas we can consider larger and
larger collections, at the bottom we find singletons, and cannot look at smaller scales.
In other words, we cannot represent scales (of largeness and smallness) well by the
counting numbers (N) alone, but since the real numbers are closed under inversion,
R may do better.9

3.5.3 Levels

Relative analysis formalizes the aforementioned scales of magnitude as levels, a new
concept intended to correspond with the intrinsically vague concept of largeness. As
was mentioned already, unlike Robinson-style NSA, which extends N and R to the
strictly larger sets ∗N and ∗R, relative analysis works within N and R. To obtain the
concepts of infinitesimals and infinite numbers within R, relative analysis adds the
new primitive binary predicate ⊑ to the language (Hrbacek, 2007).10 The meaning

9Actually, Q would suffice for our current purpose.
10In Nelson’s Internal Set Theory, a new unary predicate is introduced to signify “x is standard”.

To allow for multiple levels of standardness, Péraire and Wallet (1989) introduced a binary predicate
to signify “x is standard compared to y”; they called their theory ‘relative internal set theory’ (RIST).
Also Hrbacek’s relative analysis is based on this binary predicate, for which he uses the symbol ⊑.
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Figure 3.2: A typical grain of sand is less than 1 mm in size. This is
negligibly small compared to a typical bucket. The length of the beach is much
larger than the dimensions of a bucket, so much that the factor is inconceivable
to us.

of this predicate is fixed by axioms, but informally x ⊑ y means that the number x is
observable at every level where the number y is observable: the number on the left is
observable at the coarsest level where that at the right is observable, and possibly at
coarser levels too. To express that x and y are observable at the same level, we may
write x ⊑ y and y ⊑ x. To simplify the formalism, the axioms can be represented in
terms of the aforementioned levels. So, “x belongs to the level of y” replaces x ⊑ y.
Levels stratify the set R into different levels or scales of magnitude; therefore, relative
analysis is also referred to as stratified analysis.

3.5.3.1 Axioms for levels

In Hrbacek et al. (2010), there are eight axioms that fix the meaning of the level-
concept. We paraphrase them here:

1. For every finite collection of real numbers, there is a coarsest level at which all
the specified numbers are observable.

2. There are also finer levels, on which more numbers are available. Two levels
can always be compared: we can always say which level is at least as fine as
the other. Although levels are not sets (see subsection 3.5.5), V1 ⊇ V2 is used
to indicate that level V1 is at least as fine as level V2.
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3. For any level, there exist non-zero real numbers that are ultrasmall compared
to it.

4. Neighbor Principle: at every level there is a best approximation to any real
number that is not ultralarge relative to that level.

5. Closure Principle: any number, function, operation, or set that is defined with-
out mention of levels from parameters that are observable at a certain level is
itself observable at that very same level. This level is called the context level
or observation level.

6. Stability Principle: if a statement is true about its context level, then it also
holds for any finer level. Using Stability, Closure can be generalized to the
Transfer Principle, an indispensable tool in any approach to NSA (Benci et al.,
2006a).

7. Definition Principle: for any internal statement (i.e. any statement that makes
no reference to levels coarser than the context level) and any set A of real
numbers, there exists a set B whose elements are exactly those elements of A
for which the internal statement holds.

8. Density of levels: given two levels V1 ⊂ V3, there is a level V2 such that V1 ⊂
V2 ⊂ V3.

In relative analysis, the number 1 is always standard at every level. From the
viewpoint of applications, this poses no limitation: after choosing any non-zero num-
ber as the unit of interest, one can always divide the whole scale by this value and
thus achieve normalization. This points out the fractal-like structure of the real line:
it is self-similar on all scales.11

3.5.3.2 Further terminology

Let us introduce some more of the vocabulary of relative analysis. Some numbers
can be used to define a level V (cf. axiom 1): these numbers are called ‘standard’
compared to level V ; they are also said to be ‘observable at that level’.

Given a level V , there are non-zero numbers ‘ultrasmall compared to’ other num-
bers (≪V ); ultrasmall numbers are ‘relative infinitesimals’. Likewise, on level V
there are numbers ‘ultralarge compared to’ other numbers (≫V , ‘relatively infinite
numbers’). A number that is not ultralarge compared to level V is called ‘finite’
compared to this level. Zero is the only number that can belong to a level while
being ultrasmall compared to that level. A level does not contain any numbers that
are infinite in comparison to it.

If the difference between two numbers is ultrasmall compared to level V , the
numbers are ‘ultraclose’ to each other on level V (≃V ). In other words, they are
indistinguishable (on that level), for their difference is negligible (on that level).

11With relative analysis, the fractal-like structure of R comes to expression in the fact that, for
any level V , true formulas that quantify only over levels finer than V are exactly the same. However,
not all formulas hold for all levels: for instance, a formula dealing with the existence of coarser levels
will not hold at the coarsest level.
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3.5.4 What levels are: a predicate on the domain

Like Lavine’s indefinitely large sets within N, levels on R are predicates on the
domain. Thus, a level is a collection of real numbers. It contains all the numbers
that have a unique name. At any given point in time, there can only be finitely
many numbers that have a unique name. Therefore, the set of reals always con-
tains infinitely many numbers that are larger than any uniquely named number (cf.
Lavine’s indefinitely large numbers), as well as infinitely many that are smaller than
any uniquely named real number. Thus there is always ‘room’ for ultralarge and ul-
trasmall numbers. (Of course you can refer to these ultralarge or ultrasmall numbers
indirectly, but you can never give all of them a unique name in finite time.)

When we apply relative analysis (as opposed to making a contribution to the devel-
opment of its mathematical formalism), we may allow different criteria for numbers
to be standard—not just uniquely named ones. Some examples:

• Distances in an image that are above the lower detection limit (resolution) and
smaller than the upper detection limit (field of view).

• The quantity of sand measured as numbers of buckets, including partially filled
buckets (fractions).

• Numbers of lottery tickets and their probabilities of winning.

3.5.5 What levels are not: sets

It is crucial to note that levels are not sets; in particular, the principle of mathe-
matical induction does not hold for levels. For instance, adding or multiplying two
numbers that are observable on a level V will result in a number that is standard
compared to the level as well. The addition and multiplication can be generalized,
but the result is only guaranteed to be standard for a relatively small (standard)
number of terms or factors.

The set of real numbers, R, forms a complete metric space, which means that
every Cauchy sequence of real numbers converges to a real number. Unlike R, the
extended set ∗R is incomplete and as a consequence the limit concept of classical
calculus is not available in it. However, within the various approaches to NSA, there
is a different limit operation available (such as the alpha-limit in Alpha Theory of
Benci and Di Nasso (2003a)).

Internal set theory and the related approach of Hrbacek do not introduce the
non-standard extension ∗R, but work on the standard set R. Yet, there is a form of
incompleteness that occurs within these approaches too: they introduce new pred-
icates that do not necessarily have a defined limit. Mathematical induction is like
a limit operation on sets; as noted at the beginning of this paragraph, it does not
apply to levels. This elucidates the meaning of the ellipsis following the sentences
“The probability of winning of one ticket is small”, “The probability of winning of
two tickets is small”, . . . Just as there is no last finite number in ∗N, there is no sharp
boundary around the number of tickets which collectively have a small probability of
winning. Whereas the (incorrect) application of induction would lead us to a crisp,
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but false conclusion (“The probability that the set of all tickets contains the winner is
small”), the correct interpretation using levels leads to a sound generalization, albeit
one containing a vague term (“The probability that the set of a few tickets contains
the winner is small”).

We may rephrase the analogy between extension-style NSA and relative analysis
as follows. Asking what is the supremum of a set in ∗R does not always make sense.
Because ∗R is incomplete, there is not necessarily an element of ∗R at the point to
which the limit seems to converge. The question posed may well point to a gap.
Asking what is the supremum of a level in R is equally misguided. There is no such
element; the question points to a gap in the system. There is no largest real number
that is standard on a given level. The borders of a level are vague.

Some form of incompleteness—the presence of gaps in the set itself or gaps related
to new predicates on the set—is necessary to invoke infinitesimals. If you try to make
the vague borders of a level precise, relative analysis collapses to standard analysis.
This points out that a model of beliefs based on relative analysis is incompatible with
a model involving explicit, sharp thresholds.

3.5.6 The grain of sand, the bucket, and the beach

The sand example given at the beginning of subsection 3.5.2 can now be repre-
sented as: Grain of sand ≪V Bucket (standard) ≪V Beach, where the level V is
that of a child playing on the beach (where V also contains the bucket).12

It is very likely that it does not make any difference to the child exactly how many
grains of sand a bucket contains. If there were one grain more or less, he would not
notice it, so he is indifferent to that. The same holds for any small number of grains
that are added or removed, where ‘small’ means ultrasmall compared to the total
number of grains of sand in the bucket. Clearly, the child will notice (and may care)
if, for instance, all or half of the grains of sand in his bucket are removed.

The transition between will and will not notice is vague. In an experimental
setting, this could mean that on one occasion the child will notice a certain difference,
whereas he might not register this at another time. If you keep removing grains of
sand one by one, you may get further than if you remove them all at once. We will
not dwell on these general properties of vagueness, for there is another aspect that
is more relevant to the application that we have in mind.

The child may weigh the bucket to estimate the number of grains of sand in it, or
may even count the actual number of grains of sand.13 In the first case, he will be
able to tell the difference between at least some buckets that appear equally filled to
the unaided eye. His increased ability to distinguish quantities can be represented
by a finer level. In the second case, given enough time the child will be able to spot

12Observe that although a grain of sand is at a smaller scale of magnitude than a bucket and a
beach is at a larger scale of magnitude, both appear at a finer level when the bucket is taken to be
at the standard level. Thus, although the intuitive notion of scales of magnitude was an important
motivation for developing a theory in terms of levels, the terms are not synonymous.

13It seems unlikely that the child would do any of this spontaneously, but he might be motivated
to do so for a project at school or because there is a prize connected to getting the answer right.
Of course, you are free to see this as an allegory of what is going on in science.
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any difference in the filling of the buckets: it is at the finest level relevant for this
example.14

3.6 Analysis of the Lottery Paradox using relative
analysis

We are now ready to formulate a new definition for rational belief. This new
definition is inspired by the Lockean Thesis, but developed along the lines of stratified
analysis rather than a view based on thresholds.

3.6.1 Stratified model for rational belief

Whereas the sand example dealt with our sensory limitations (the (in-)ability to
perceive differences in heaps of sand), forming rational beliefs about a lottery has to
do with our mental ability to deal with numbers. Here, the problem is not that we do
not see the difference between 0.999 and 1, but rather that we do not always attach
any significance to the difference. Sometimes we deal with 0.999 as we would with 1,
while in other contexts we may consider the difference as highly relevant. Even when
we know probabilities are quantitatively different, our means of categorizing them
qualitatively (large/small, comparable/different, . . . ) are limited. This limitation is
useful, for we are finite beings with finite capacities.

Epistemology often deals with highly idealized agents, but in order to make sense
of the Lottery Paradox, it is important to take into account at least this descriptive
element: humans use scales of magnitude to make qualitative assessments. Given this
limitation, we ask how we can deal with this as well as possible in the formation of
rational beliefs. The use of scales may introduce a type of rounding error, which may
go unnoticed when dealing with direct sensory information, but may produce some
strange consequences if the starting information is precise and explicitly quantitative,
as is the case with judgments based on probabilities.

If we have to judge whether or not we believe a certain event will take place, based
on the numerically specified probability of the event, we have to compare the given
probability value to unity. If the given value is zero or one, we can immediately answer
that we do not or do believe that the event will happen. For intermediate values,
we have to judge on a case-by-case basis whether or not the provided probability is
close to unity: we will model this as being ‘ultraclose to unity’ in the sense of relative
analysis.

14This idea of different levels in relative analysis is related to that of ‘degrees of availability’ in
finite mathematics (Lavine, 1995). Of course, if the next task were to keep track of the number of
atomic nuclei (or even smaller structures) in the bucket, and the child had an electron microscope
(and a really long holiday . . . ) then an even finer level could be appropriate. This is possible, for
we are working in the real numbers (a complete set with perfect self-similarity), where we have an
unlimited supply of finer (axiom 3) levels available. We may also model this differently: by choosing
the smaller structure of interest as the new unit of the context level.
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Definition 1 (Stratified Belief, SB). It is rational for agent α to believe x on
a level V if and only if the probability of x is indistinguishable from unity on the
context level of the agent. More formally:

B(x) ∈ Rα,V ⇔ P (x) ≃V 1 (3.4)

Compared to the threshold-version of the Lockean Thesis, there is a new contextual
element present here—that of a level—which will be discussed further in section 3.7.15

Expressed in words, SB says: relative to a certain level V , it is rational for an agent to
believe a proposition if and only if the probability of the proposition is ultraclose to
unity as compared to the level. Other ways of formulating this condition for rational
belief is that the probability should be indistinguishable from unity (on a given level)
or equal to unity up to an infinitesimal (relative to that level).

Also in the context of probabilistic approaches to conditionals, infinitesimals have
been applied to interpret conditionals by Adams (1966): the statement “If A then
B” is read as “The conditional probability of B given A is larger than 1 minus an
infinitesimal” or symbolically: P (B∣A) > 1 − ε.16 The latter expression can also be
used in default reasoning to represent the statement “Normally, if A then B (but
there may be exceptions)”. In the context of Adams’ work, ε does not refer to
an infinitesimal in the sense of NSA or relative analysis, but to the ε, δ-framework
of standard analysis. However, the interpretation is quite similar to that of SB: a
probability that is infinitesimally close to unity indicates ‘almost certainty’ (which
includes full certainty).

Whereas the version of SB given in this section models rational belief as almost
certainty, we will relax this condition in section 3.7.2.

3.6.2 Stratified belief applied to a large lottery

Now we can apply the definition of SB to the case of an (ultra)large lottery. For
an N -ticket lottery, where N is large (as judged by a specific agent), consider level
Vlott which contains 1 but not N .17 In other words, on this level 1 is standard
and N is ultralarge. In that case, 1

N
is ultrasmall compared to 1 on this level

(N ≫Vlott
1 ≫Vlott

1
N

), which shows that level Vlott is a good starting point for
discussing the probabilities of an (ultra-)large lottery. Figure 3.3 illustrates how
relative analysis helps us to understand what the number line looks like to such
an agent: he only takes into account the standard numbers of the level Vlott. The
standard numbers in the [0,1]-interval are of particular interest, since, in the current
view, they guide the agent in his belief-forming practices.

Since 1
N

is ultrasmall, 1
N
≃Vlott

0, we find that:

15Also in the discussion of Threshold Beliefs, it has been remarked that the threshold should
be thought of as context-dependent (see e.g. Hawthorne and Bovens, 1999, p. 246); in SB, this
consideration is taken into account as an explicit parameter.

16Thanks to Sonja Smets for the pointer.
17Before proceeding, we should check that such a level exists. Axiom 3 of Hrbacek et al. (2010)

ensures that there always exists a number ε that is ultrasmall compared to the given level; thus, all
numbers N > 1

ε
are sufficiently large for such a level to exist. We can give examples of values for

N that are not large enough (such as N = 2), but because we cannot give an explicit example of ε,
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Figure 3.3: An agent’s mental picture of the real number line only contains
the standard numbers of a certain context level (Vlott). N represents the total
number of tickets in an ultralarge lottery (e.g. 10+8); n is some standard num-
ber of tickets (e.g. 3). The inverse of N (e.g. 10−8) is ultrasmall, whereas the
inverse of n (e.g. 1

3
) remains standard. The lower part of the figure represents

the same number line on a logarithmic scale. On such a scale, the context
level extends equally wide to the left and to the right of the number 1: it shows
the inversion between the ultralarge and the ultrasmall numbers as a mirror
symmetry.

1 − 1

N
≃Vlott

1

Let us consider two groups of tickets: 1) the set of all but one lottery tickets (N − 1)
and 2) the set of all tickets (N). The above equation formalizes that, on a certain
level, an agent is not able to appreciate the difference between the winning odds of
both sets of tickets.

We may interpret the same equation in terms of losing odds instead of winning
odds: then it expresses that on this level, the agent also cannot distinguish between
the losing odds in the situation 1) in which he owns one ticket and 2) in which he has
no ticket at all. If the difference between having a ticket or not appears negligible to
an agent, it is only rational for him to believe that his single ticket will not win.18

there also is no clear threshold for N being large enough—a remark that should sound familiar at
this point.

18Because the winning odds of all but one ticket are equal to the losing odds of one ticket, on the
same level they are either both distinguishable from unity or both indistinguishable from it. This
may be a drawback if we want to model an optimistic person, who is less worried that he will not
win if he owns all but one ticket than he is expecting to win if he owns just one ticket, and vice
versa for a more pessimistic mind. Although this could be modeled using different levels for the two
cases, or levels that are asymmetric under inversion, it is probably better to regard the psychological
factors of risk seeking and risk aversion as outside the scope of what the model of stratified belief
intends to capture.
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3.6.3 Aggregation of stratified beliefs

The next question is whether the Conjunction Principle holds for this type of be-
liefs. We will see that it is allowed, but only within a level. This stratified conjunction
principle (SCP) formalizes our intuitive weakening of CP given in section 3.2.

Although we started our search for a solution to the Lottery Paradox from the
viewpoint that we need to adapt the formalization of the Lockean Thesis, it does
turn out that we have to adapt CP too.

3.6.3.1 Aggregating beliefs concerning single lottery tickets

First we show that the conjunction of two rational beliefs (in the sense of SB),
each concerning only one lottery ticket, amounts to a new rational belief.

Definition 2 (Stratified Conjunction Principle, SCP).

B(ψ1) ∈ Rα,V and B(ψ2) ∈ Rα,V ⇒ B(ψ1 ∧ ψ2) ∈ Rα,V (3.5)

To show that SCP indeed holds, apply equation (3.4) to the left-hand side:

B(ψ1) ∈ Rα,V ⇒ 1 − 1

N
= P (ψ1) ≃V 1

B(ψ2) ∈ Rα,V ⇒ 1 − 1

N
= P (ψ2) ≃V 1

and apply equation (3.4) to the right-hand side of SCP:

B(ψ1 ∧ ψ2) ∈ Rα,V ⇒ 1 − 2

N
= P (ψ1 ∧ ψ2) ≃V 1

Since 1 − 1
N
≃V 1 − 2

N
, 1 − 1

N
≃V 1 guarantees that 1 − 2

N
≃V 1.

At first sight, SCP takes the same form as CP. To see that SCP is nevertheless a
weakened form of CP, note that SCP does not generalize to the conjunction of any
number of stratified beliefs. In particular, it does not hold that the conjunction of
an ultralarge number of rational beliefs is rational. That is to say, B(ψ1) ∈ Rα,V and
. . . and B(ψN) ∈ Rα,V ⇏ B(ψ1 ∧ . . . ∧ ψN) ∈ Rα,V (because 1 − N

N
= 0 /≃V 1).

3.6.3.2 Generalization of SCP

Although SCP does not generalize to the conjunction of ‘many’ (i.e. an ultralarge
number of) and in particular all beliefs, it does allow the conjunction of ‘a few’ (i.e. a
standard number of) beliefs, or—which is equivalent—the conjunction of two beliefs,
each concerning ‘a few’ (standard number of) tickets. As such, SCP can be considered
as the formal counterpart of our intuitive weakening of CP stated in section 3.2.

Here, we will prove this slightly stronger version of SCP, that is valid for arbitrary
events E1 and E2, not just singletons:19

19Thanks to Karel Hrbacek for suggesting this.



84 Chapter 3. Stratified Belief and Ultralarge Lotteries

B(ψ(E1)) ∈ Rα,V and B(ψ(E2)) ∈ Rα,V ⇒ B(ψ(E1) ∧ ψ(E2)) ∈ Rα,V
The proof of this conjunction rule is as follows: by the definition of SB in equa-
tion (3.4), the two assumptions are equivalent to P (ψ(E1)) ≃V 1 and P (ψ(E2)) ≃V 1,

respectively. Thus, 1 − #(E1)
N

≃V 1 and 1 − #(E2)
N

≃V 1, which imply that #(E1)
N

≃V 0

and #(E2)
N

≃V 0. If two numbers are ultraclose to zero, this is also true for their sum:
#(E1)
N

+ #(E2)
N

≃V 0. Since #(E1)+#(E2) ≥ #(E1∪E2), we find that #(E1∪E2)
N

≃V 0.

This implies that 1− #(E1∪E2)
N

≃V 1, or in terms of probability: P (ψ(E1 ∪E2)) ≃V 1.

Because of the definition of ψ, this is equivalent to: P (ψ(E1)∧ψ(E2)) ≃V 1. Finally,

by the definition of SB, we conclude that: B(ψ(E1) ∧ ψ(E2)) ∈ Rα,V .

3.6.4 Is the solution psychologically plausible?

In Figure 3.3, we have represented a person’s mental picture of the number line.
There is psychological evidence that people indeed use such a picture (Dehaene et al.,
1999, p. 970): “Within the domain of elementary arithmetic, current cognitive models
postulate at least two representational formats for number: a language-based format
is used to store tables of exact arithmetic knowledge, and a language-independent
representation of number magnitude, akin to a mental ‘number line,’ is used for quan-
tity manipulation and approximation. . . . [E]xact calculation is language-dependent,
whereas approximation relies on nonverbal visuo-spatial cerebral networks.” Applied
to the Lottery Paradox, this finding suggests that the winning odds of a single lottery
ticket in a very large lottery is represented in the brain in two different ways: one
part of the brain registers that it is ‘definitely different from zero’, while the other
part processes it as ‘zero or approximately zero’.

Moreover, there is evidence that a logarithmic mental scale (as in the lower part
of Figure 3.3) comes first in the human cognitive and cultural development, whereas
the linear scale (represented in the upper part of Figure 3.3) is only acquired through
formal education (Dehaene et al., 2008). Observe that, on a linear scale, the absolute
error due to approximation is constant. On a logarithmic axis, however, errors due
to approximation scale the same way as the quantities they apply to: in that case,
the relative error is constant.

Even persons who have learned mathematics at school, and are thus able to think
of quantities on a linear scale, still apply the log scale in situations that discourage
counting (situations involving large and/or continuous quantities) (Dehaene et al.,
2008). Thus, when confronted with a heap of sand, we are likely to visualize the
amount of sand on a logarithmic scale. If we repeatedly remove one grain of sand
from the heap, the relative difference increases as the heap becomes smaller (although
the absolute difference is the same each time). When confronted with a number of
grains that can easily be counted, we will use a linear scale and think in terms of the
absolute difference. The discrepancy between our two types of mental number scales
may at least be partially responsible for what strikes us as paradoxical in soritic
cases.
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Despite the experimental evidence for the approximation that occurs when humans
reason about numbers of different scales of magnitude, which fits well with our model
of Stratified Belief, a word of caution is also called for: SB is a very simple model.
In particular, it only allows us to use one context level for one person at a given
point in time. This means that the person’s counting and reasoning capacities are
modeled with one and the same context level. From the psychological point of view,
it seems rather unrealistic that these mental abilities should be so perfectly balanced.
We admit that SB is a crude model in this respect, but adding more realism to the
model always comes with a price: it makes the formalism less transparent.

In a more advanced approach, we could use different context levels to indicate
different mental capacities and attitudes. For instance, an additional context level
could be included to reflect how much money a person has available to spend on
buying lottery tickets: a large number of tickets may be considered ultralarge by a
person because their price is much more than his total budget.20

3.7 Relation to philosophical theories and applica-
tion to other problems

3.7.1 Relation to contextualism

Skepticism tells us that there is always the possibility that our whole life is an
illusion and we are just brains in a vat (Putnam, 1981), or, that when we say “We
will be there in one hour”, the Earth will get hit by a huge meteor and we never get
there. (Similar examples are considered by Harman (1986).) In daily conversation,
it would be tiresome to always sum up these and similar highly unlikely events. Yet,
it seems like we should, for there is no way to exclude these options with absolute
certainty. The analysis in terms of levels gives a post-hoc justification of what we
actually do: we usually treat the unlikely events as infinitesimals, but there is a
finer level available—which may be relevant in scientific or philosophical contexts—
on which even these minuscule probabilities are appreciable.21 Moreover, we may
compare the highly unlikely events: I judge the probability of my whole life being
an illusion as ultrasmall, even compared to the probability of the Earth being hit by
a large meteor in the next hour, which is itself ultrasmall (compared to the chance
of a coin landing heads, for instance). Because we are free to use a different level in
different situations, we may say to a friend that we believe that we will arrive in 60
minutes because our GPS says so, but deny that we believe that the extinction of
the dinosaurs has been caused by anything other than a meteor. In both cases we
use the verb “to believe”, which suggests a fixed scale of belief, but apparently the
scale does depend on the context.

20Thanks to Bryan Renne for this suggestion.
21Whereas conditionalizing on zero-probability events is problematic when using Kolmogorov’s

ratio formula (Hájek, 2003), it is unproblematic to conditionalize on events with a relatively in-
finitesimal probability, since these are just ordinary, non-zero real numbers. This is similar to the
solution to the countably infinite lottery problem given in Chapter 2, where the use of NSA allows
one to assign (actual) infinitesimal probabilities to single tickets.
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Contextualism is “a theory according to which the truth-conditions of knowledge-
ascribing and knowledge-denying sentences . . . vary in certain ways according to the
context in which they are uttered” (DeRose, 2009, p. 2). The variable parameter is
the epistemic standard. We hope that it is clear at this point that a rise in epistemic
standard can be modeled as switching to a finer level of probability values. We will
look at three examples: 1) the sand case, 2) the lottery case, and 3) the bank case,
well-known in the contextualism literature and to be discussed in subsection 3.7.3.

With the sand example and the possibility of counting the individual grains, we
saw that whereas some properties may be vague on one level, the region of vagueness
may be shifted or removed by going to a finer level. We also indicated that such
a change in context is typically triggered by a higher reward for the agent, since
the refinement of the level usually requires more effort of the agent (observing for a
longer time, using larger equipment, . . . ).

Let us find an application of this in our lottery example: suppose a person is
quick to say “I do not believe that my ticket will win.” Of course, the probability
of winning for any ticket is non-zero, so he can never be absolutely certain that he
will not win, no matter how large the lottery is and how small the probability. Yet,
there is a level at which the winning odds of a single ticket are indistinguishable from
zero. In other words, the agent only makes a very small rounding error if he takes
his probability of winning to be zero. Doing so may not be justified on the highest
standards of rationality, but for practical purposes it seems to be good enough and
certainly not completely irrational.

Of course, the agent is by no means forced to ignore the small difference of his
winning odds compared to zero. Suppose the same agent notices that he has just
been robbed and really needs the money. He may now be more receptive of the very
small chance that he might win the lottery with his single ticket, which would solve
his current financial problems. This change of context may make him reconsider his
previous statement, a process that can be modeled as a transition to a finer level.

Relative analysis may also be considered in relation to contextual identity. As
we have seen, Stratified Belief formalizes a probability being ‘sufficiently close’ to
unity in LT as that probability being ‘ultraclose’ to 1 on a certain level (≃V 1). In
other words, it requires the probability to be indistinguishable from 1. Whether or
not this is the case, depends on the context level for all values of the probability
except for those exactly equal to 1. In the philosophical literature, there are some
well-known paradoxes related to identity, such as the Ship of Theseus. It has been
suggested that there is a contextual element to the identity predicate involved in these
paradoxes. Some examples of the context-dependence of words as ‘same’ (identical)
and ‘different’ (not identical) are discussed in Crawshay-Williams (1957, p. 22–24).
Also Douven and Decock (2009) comment on the vagueness and relativity of the
identity predicate. We conclude here that the relation ≃V can be used to formalize
these ideas of contextual identity.
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3.7.2 Relation to the epistemicist account of vagueness

3.7.2.1 Threshold-free scales of belief

Since largeness is a vague concept, beliefs about topics in which largeness is a
crucial element, such as a large lottery, ‘inherit’ some of this vagueness. Therefore,
a model for belief about ultralarge lotteries has to be construed within a framework
capable of handling vagueness, and, as we have seen, relative analysis provides such a
framework. We have used it as the basis for a threshold-free model of rational belief:
the model of Stratified Belief.

It may be argued that our model for Stratified Belief—and associated scales of
belief—can be interpreted as having ‘hidden’ thresholds too. In that case, however, it
should be noted that it is of crucial importance that the thresholds are implicit. Any
attempt to make their value explicit makes the stratified analysis core of the model
collapse back into standard analysis, which means we get back all the threshold-
related problems (such as the total failure of CP).

So far, we have only discussed yes–no beliefs. Now we return to the topic of
qualified belief and subjective probability, quickly passed over in the Introduction.
In our language, there are various words and word combinations to express subtle
differences in the strength of our beliefs. We may say: ‘I suspect that’, ‘I believe
that’, or ‘I am convinced that’ to give only three examples in the order of firmness
of belief.22

These various expressions could be thought of as expressing different degrees of
belief. In the threshold-based model, a higher degree of belief can be be made
to correspond to the probability being at least equal to a higher threshold value.
In our model of Stratified Belief, we replace the degrees with the threshold-free
notion of scales of belief: a higher scale of belief corresponds to the probability being
indistinguishable from unity still at a finer level.23

3.7.2.2 Vague thresholds

We will now show how we can adapt Stratified Belief to encompass weaker forms
of belief. This adapted form of SB, SBθ, can also be used to model the epistemicist
account of vagueness (Williamson, 1994, 1997), which assumes that the threshold
does have a sharp value, but that this value is essentially inaccessible to us.

Let us fix an approximate threshold θ (in the interval ] 1
2
,1]) and define SBθ by:24

22As indicated before, we do not consider the knowledge-version of the Lottery Paradox. Although
‘I know that’ would certainly rank as a very strong expression of firmness of belief, knowledge requires
something more than firm belief.

23It may seem appealing to let knowledge correspond to the finest level. Axiom 3, however, states
that for any level there are numbers that are ultrasmall compared to it. Therefore, for any level there
is a finer level, and ‘the finest level’ does not exist (an illustration of incompleteness). However, in
the case of a specific N -ticket lottery there are levels at which all the relevant knowledge is available:
those which contain N and (thus) 1

N
. The point is that there is no such level with this property for

general N .
24Thanks to Karel Hrbacek for this suggestion.
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Definition 3 (Stratified Threshold Belief, SBθ).

B(x) ∈ Rα,V ⇔ P (x) ≳V θ

where P (x) ≳V θ means that either P (x) > θ or P (x) ≃V θ.

Applied to an ultralarge lottery, the Stratified Conjunction Principle would remain
valid for two singletons, or for an arbitrary event E1 and a singleton (but no longer
for arbitrary E2). Observe that the initial formulation of Stratified Belief is a special
case of SBθ with θ = 1.

If we compare SBθ to the usual threshold-model, we see that although the thresh-
old θ is a specific real number, it functions merely as an arbitrarily chosen repre-
sentative of all the numbers r ∈ R such that r ≃V θ.25 The vagueness works in two
ways: in determining what the threshold is or ought to be, and in the formation of
beliefs. Therefore, SBθ can be used to model thresholds that have no precise value,
as well as thresholds that do have a precise value but which is inaccessible to us.
Using the latter interpretation, SBθ can be thought of as a formal representation of
the epistemicist account of vagueness.

3.7.3 Application of Stratified Belief to similar problems

The model for Stratified Belief was motivated by cases in which information in
terms of objective probabilities is explicitly available. It replaces the idea of degrees
of belief with scales of belief. However, the former notion is not restricted to cases
in which the objective probabilities are known, and actually fits better with cases in
which they are not. In this subsection, we apply the analysis in terms of Stratified
Belief to three examples in which the exact values of the objective probabilities are
not known. Moreover, the first example is usually presented in terms of knowledge
rather than (rational) belief. Nevertheless, stratified belief does seem to provide a
sensible account of this case, too.

In the contextualism debate, there are many examples without explicit probabili-
ties. A popular example is Keith DeRose’s ‘bank case’: given circumstantial evidence,
we may claim to know that the bank is open on Saturday if little is at stake, but
when the stakes are higher, we may deny doing so. When the stakes are higher,
the epistemic standard rises, and this may be modeled by using a finer level. The
(implicit) probability value for the bank being open on Saturday is so close to unity
that on the coarse level used in a case with low stakes, it is indistinguishable from
unity. One may be aware that there is no absolute certainty, but the difference is
a relative infinitesimal and therefore inappreciable: it is rational to believe or say
one knows the bank to be open. When the stakes are higher, there is an incentive
to reconsider the importance of the difference between the relevant probability and
unity. Using a finer level, a previously infinitesimal difference becomes appreciable
and it becomes rational to say that one does not know that the bank will be open.

25Note that these numbers—like a level—do not form a set. In the context of extension-style
NSA, this would be called the ‘halo’ of the number θ. Here it is again a predicate, not a set, and
level-dependent.



3.8. Conclusions 89

In the contextualism literature, there are more complicated examples (with different
speakers as well different contexts), but because the second axiom of relative analysis
ensures that it can always be established which of two levels is at least as fine as the
other, these cases could be analyzed in terms of levels, too.

A problem similar to the Lottery Paradox arises in thinking about elections: it is
rational for anyone to believe that the impact of his or her single vote on the result
of the elections is negligible, because it is only one out of an (ultra-)large number
of votes. However, the combined impact of all individually negligible votes is not
negligible at all. This is called the paradox of (non-)voting (Owen and Grofman,
1984). Clearly, the same analysis given here for the ultralarge lottery can be applied
to the paradox of voting: the paradox can be blocked by noting that the unrestricted
application of mathematical induction would be unreasonable.

3.8 Conclusions

We want to model the formation of rational beliefs related to probabilistic infor-
mation, expressed as real numbers, but our mental capabilities are finite and do not
allow us to form beliefs with such infinite precision. This means that even if we recog-
nize that some real-valued probabilities are different, we cannot always form distinct
beliefs based on those numbers. If we think of the integers on a number line, we
imagine them as clearly and evenly separated. If we think of the rational numbers or
the real numbers, we may imagine the position of some simple fractions ( 1

2
, 1
3
, 2
3
, . . .)

and some well-known irrational numbers (e, π,2π, . . .). However, if we try to focus on
one specific number, zero for instance, we have to admit that the position we think
of as the position of this number is not precise enough and actually contains a whole
cloud of numbers, all very close to zero. In other words, infinitely many numbers
that are quantitatively different from zero are nevertheless indistinguishable from it
in our mental image of the real line. The same is true for any other real number
that we may want to consider. Unlike N, Q and R are dense sets. If we try to form
ourselves a mental picture of these numbers on a line, it is as if we look at them
through frosted glass.

Imposing levels on the standard set of real numbers, as relative analysis does, is a
way to model what we see through the glass. We do have the capability of focusing
on a region of interest, so as to be able to distinguish more numbers in that region. In
relative analysis, this is modeled as a transition to a finer context level (or a different
choice for the unit). Although there is no limitation on the amount of ‘zoom’, at
each point in time the zoom is limited to some finite factor and we can never look
at the real numbers directly, in all their infinite depth; we cannot look behind the
frosted glass.

Our search for a model of rational beliefs based on probabilistic information was
motivated by the Lottery Paradox. We observed that vagueness is an essential in-
gredient to that paradox, that there is a contextual aspect to this vagueness, and
that a similar problem exists for infinite lotteries. We also observed that we expect
a weakened form of the Conjunction Principle to hold for rational beliefs. The com-
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bination of these observations led us to the application of relative analysis. Based
on the relative analysis framework, we formulated a soritic, contextual version of the
Lockean Thesis. This led us to a new definition of rational belief as ‘almost certainty’
(including absolute certainty), which we called Stratified Belief.

We also investigated the aggregation of this type of beliefs. Kyburg’s own response
to the Lottery Paradox was to abandon CP (Kyburg, 1961), whereas many later au-
thors have tried to rescue (part of) it (Wheeler, 2007). We found that a weakened
version of CP indeed holds for stratified beliefs. Because the aggregation is restricted
to ‘a few’ (a standard number of) beliefs, the Lottery Paradox does no longer occur.
Based on the lottery example, we may compare aggregating beliefs to doing a calcu-
lation based on rounded values: it is better to avoid this, but if the rounded values
are all you have, some calculations still give reasonably good outcomes. All of this
can be stated more rigorously using the language of relative analysis.

One of the observations that led to our solution, was the analogy with an infinite
lottery. In an infinite lottery, it is possible that a specific ticket will win, but the
real-valued probability assigned to this possibility is zero, exactly the same as for the
impossible event. This leads to some counter-intuitive results (such as the failure of
Countable Additivity), which can be blocked using NSA, by allowing infinitesimals
as the value of the probability function. In a finite lottery, no matter how large, the
probability of any single ticket is strictly larger than zero. However, in our mental
representation of it and our resulting rational beliefs, we may not always be able
to distinguish between an event with a very small probability and the impossible
event. This leads to the counter-intuitive result that even the conjunction of two
such rational beliefs is not guaranteed to be rational. Again, NSA can be applied to
solve the puzzle: using relative analysis, probabilities that are indistinguishable from
zero can be modeled as ultrasmall numbers or relative infinitesimals. As was already
mentioned, the concept of beliefs based on this framework does allow the conjunction
of, for example, two beliefs.

In short, by looking at the Lockean Thesis from the viewpoint of relative analysis,
we have found a new way to incorporate its inherent soritic and contextual nature
in the formalization. This leads to a definition for and aggregation rule of rational
beliefs, whose combination does not lead to a Lottery Paradox. However, we do not
regard dealing with the Lottery Paradox as the end goal of this chapter. It serves
merely as a case study, prompting reflection about the presence of vagueness in our
statements and judgments concerning topics about which we have precise probabilis-
tic information. It is our conviction that the proposed model of Stratified Belief can
be a useful tool for epistemology in general. In particular, the model matches well
with various contextualist approaches—in epistemology as well as metaphysics—that
have appeared in the last few decades.

Apart from this application to rational beliefs, relative analysis may have a further
role to play in formal philosophy: it is a powerful mathematical system capable of
dealing with vagueness and its contextual aspect. To what extent this is a contribu-
tion to the philosophy of vagueness in general may be worth further reflection.
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Chapter 4

Ultralarge and Infinite
Lotteries

Our minds are finite, and yet even in these circumstances of finitude
we are surrounded by possibilities that are infinite, and the purpose
of human life is to grasp as much as we can out of the infinitude.

Alfred North Whitehead (Price, 1954, p.160)

‘Can you do Addition?’ the White Queen asked. ‘What’s one and
one and one and one and one and one and one and one and one
and one?’
‘I don’t know,’ said Alice. ‘I lost count.’

Lewis Carroll (1871, Chapter IX)

One, two, three . . . infinity.
George Gamow (1947)

4.1 Introduction

This chapter is intended to summarize the findings of Chapters 2 and 3, to em-
phasize the analogy between the problems and the solutions discussed there, and to
develop the epistemology of an infinite lottery.

The problem of describing a fair infinite lottery (subsection 4.1.1) and the Lottery
Paradox (subsection 4.1.2) are usually considered to be unrelated issues, appearing
in different subdisciplines of philosophy. In this chapter, however, we will emphasize
the analogy between them. This approach allows us to diagnose them as suffering
from an ‘adding problem’, which is in both cases due to the accumulation of rounding
errors (section 4.2). Because the diagnosis is the same, we can proscribe the same
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treatment, too: we will achieve this with the help of infinitesimals, which are available
in non-standard analysis (NSA) (section 4.3). For each of the two cases, we can select
an approach to NSA that suits the application best. In section 4.4, we will combine
our findings to analyze the epistemology of an infinite lottery.

4.1.1 Case 1: Failure of Countable Additivity in an infinite
lottery

In standard probability theory, with the axioms as introduced by Kolmogorov
(1933), it is not possible to describe a fair lottery on a countably infinite sample
space.

To see this, consider N as the sample space (usually denoted by Ω). The axiom
of Normalization requires that the probability of the full set of tickets equals one.
To model a fair lottery means that all the tickets have the same probability. If this
is so, the probability of a single ticket cannot be any number larger than zero, for
then the infinite sum ranging over all the tickets diverges, and either Normalization
or Countable Additivity (CA) fails. However, the probability cannot be zero either,
because then the infinite sum of all the individual probability values evaluates to
zero, which is not equal to one as demanded by Normalization and CA. Hence, we
cannot assign any probability to the individual tickets: Kolmogorov’s approach to
probability theory cannot describe a fair infinite lottery.

It is puzzling that the formalism is not flexible enough to deal with this case,
in particular since a countably infinite lottery corresponds to a sample space of the
lowest infinite cardinality.

Various solutions have been proposed to solve this problem:

(1) Give up the property of Countable Additivity.

(2) Give up the axiom of Normalization.

(3) Deny that there exists a fair lottery on N.

(4) Assign an infinitesimal probability to the single tickets, rather than zero.

The most prominent advocate of option (1) was de Finetti (1974), who argued to
replace CA by the weaker requirement of Finite Additivity. Solution (2) was proposed
by Rényi (1955). If we hold on to Kolmogorov’s system, including Normalization and
CA, we arrive at option (3): probability measures on countable domains are always
biased. This solution has some strange consequences, to say the least (see for instance
Kelly, 1996, p. 321–323).

We find solution (4), advocated by Lewis and Skyrms (1980), to be the most plau-
sible one. It is not immediately clear which changes have to be made in Kolmogorov’s
axioms in order to realize this solution. A detailed analysis (as the one presented
in Chapter 2) shows that not only has the range of the probability function to be
adapted (from the standard unit interval of the real numbers to a non-standard set),
but that even then the property of Countable Additivity cannot hold (although it
can be replaced by another form of infinite additivity). Hence, it turns out that (1)
and (4) are not completely independent solutions after all.
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4.1.2 Case 2: Failure of Conjunction Principle for rational
beliefs concerning a large, finite lottery

The probability assignment for a fair, finite N -ticket lottery with exactly one
winner is trivial: every ticket has a probability of winning equal to 1/N . From an
epistemological viewpoint, however, the case where N ≫ 1 is problematic: a paradox
can be obtained for rational beliefs about such a lottery.

Consider a very large, but finite fair lottery. If you own just one ticket, it may seem
rational for you to say: “My single ticket will not win.” Suppose that you receive an
additional ticket for the same lottery. It may still be rational for you to say: “My
two tickets will not win.” Likewise for three tickets, and so on. If you generalize the
previous statement to “Likewise for all (N) tickets”, you obtain a paradox, for you
know the lottery to have a winner for certain.

This Lottery Paradox was first constructed by Kyburg (1961), who concluded that
the Conjunction Principle (CP) does not hold for rational acceptability. Many later
authors have tried to rescue at least part of CP (Wheeler, 2007).

Although we are in favor of a formal approach to epistemology, the popular
threshold-based model for rational beliefs—which states that it is rational to be-
lieve a statement if the probability of that statement is larger than some positive
threshold smaller than one—does not seem adequate. In particular, it does not do
justice to the intrinsic vagueness of both the Lockean thesis—the thesis stating that
it is rational to believe a statement if the probability of that statement is ‘sufficiently
close to unity’—and the Lottery Paradox itself, which, after all, only occurs in cases
in which the number of tickets is ‘sufficiently large’. The phrasings ‘sufficiently close
to unity’ and ‘sufficiently large’ are strongly suggestive of a vague and contextual
element, both of which are absent in threshold-based models.

Intuitively, we would expect a weakened version of CP to hold, allowing us to ag-
gregate at least ‘a few’—again a vague and context-dependent term—rational beliefs.
Applied to the example of the Lottery Paradox, the maximal generalization that can
rationally be obtained is: “Any set containing a few ticket will not win”—not ‘many’,
in particular not ‘all’. In the threshold-based model, however, CP fails and there is
no weakened version of it available either.

4.2 The analogy between the two cases

Though appearing in different contexts, both cases have common characteristics:

(a) They both involve the assignment of fair probabilities to a denumerable lottery.

(b) They deal with either a ‘sufficiently large’ or an ‘infinite’ sample space, two
concepts that are intimately related.

(c) They both involve a vague distinction.

(d) They both involve a limit process.

(e) They both pose an adding problem.
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Whereas characteristic (a) is immediately clear, we will now provide further mo-
tivations for the statements (b)–(e).

Characteristic (b) claims that the properties of being finite but sufficiently large
and of being infinitely large are intimately related. This is not on original claim:
Lavine (1995) has argued that our whole concept of infinity has to have originated,
somehow, from our experience with finite quantities (since our senses do not allow us
to experience any infinite quantity). In particular, Lavine sees ‘infinity’ as a way of
dealing with the ‘indefinitely large’ numbers. Although the former has the benefit of
being a context-independent concept, it is not strictly necessary, and Lavine (1995)
argues to practice mathematics only in terms of the latter, finite concept. Those who
do not endorse a finitistic attitude towards mathematics may employ Lavine’s claim
for the analogy between ‘indefinitely large’ and ‘infinite’ in both directions: whereas a
generalization occurs from the finite to the infinite realm in the development of NSA,
we will apply NSA to the infinite lottery first and use this result as an inspiration
for dealing with the Lottery Paradox, involving a large but only finite domain.

The presence of vague distinctions (c) has already been demonstrated for the
Lottery Paradox, but may seem an unwarranted claim when considering the infinite
lottery problem. Admittedly, the claim there is of a more subtle nature: it says that
the distinction between finite and infinite is vague. As we will see, in NSA there are
infinite hypernatural numbers, which are larger than any finite natural number. Just
like there is no last (i.e. largest) finite natural number, there is no first (i.e. smallest)
infinite hypernatural one. Hence, the distinction between finite and infinite, clear as
it may seem, does not amount to a sharp threshold between the two, but a transition
that can only be indicated by points of ellipsis.

An ellipsis often indicates a type of limit process, which brings us to (d). The limit
process involved in the infinite lottery seems clear: we want to idealize a fair lottery
on N as N becomes larger, in such a way that the answer is no longer dependent
on how large N is precisely. Kolmogorov’s framework—in particular, his Axiom of
Continuity, which has CA as a consequence—implies using a classical limit, which
is always defined on the real numbers. However, this is not the only limit operation
mathematics has to offer. As we will see in the next section, one approach to NSA
has a limit operation available that evaluates to an infinitesimal rather than zero, for
the winning odds of a single ticket in an infinite lottery. Likewise, we may interpret
another approach to NSA as blocking the generalization of the statements in the
Lottery Paradox to a statement about ‘many’ (in particular, ‘all’) tickets, while
allowing the corresponding statement in terms of ‘a few’ tickets.

The adding problem referred to in (e) refers to the failure of CA on the one hand
and to the failure of CP, even in a weakened form, on the other. We will now show
that the problem seems to be due to the accumulation of rounding errors in both
cases. To see this, all we need is a basic understanding of error propagation. For
instance, if two or more rounded values are added, the total error on the sum is equal
to the sum of the errors on the terms. On its own, a rounding error it just that:
one small error. However, in a sum with many terms, all of which have a small error
associated with them, the total error is of the form ‘many × small’, which is not
guaranteed to be small.
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In the next section, we will investigate whether we can employ the analogies ob-
served here to resolve the two issues with the same solution strategy.

4.3 Solution using non-standard analysis

The solution we will pursue is to represent the aforementioned rounding errors by
infinitesimals. Whereas it has long been thought that infinitesimals are an inconsis-
tent concept, Robinson (1966) has developed NSA as a framework that allows us to
deal with infinitesimals—as well as infinite numbers—consistently.

4.3.1 Infinite additivity for a fair lottery on N

Because the infinite lottery case seems the most natural one to apply NSA to, we
will consider this first. In fact, there are multiple approaches to NSA that can be
followed here. A model in terms of free ultrafilters can be constructed, as is done in
Chapter 2. One may also start from the numerosity theory of Benci and Di Nasso
(2003b). Since this approach starts from an axiomatic basis, it allows us to stress the
concepts behind the theory rather than the technical details, as seems appropriate
within the scope of a relatively short chapter.

Numerosity offers a way to assign sizes to sets such that a set is guaranteed to have
a larger size than any of its proper subsets (Benci and Di Nasso, 2003b). This entails
that sets of equal cardinality may have different numerosities, whereas the opposite
does not hold. In particular, numerosities provide a way of distinguishing the size
of infinite subsets within the natural numbers. In order to turn the numerosity
function into a probability function, all that remains to be done is to take care of
Normalization. Because numerosities are hyperreal numbers, they are closed under
division and, thus, Normalization poses no difficulty. The numerosity of the full set of
natural numbers is denoted by α (which is an infinite hypernatural number). Hence,
we divide the numerosity of a subset of N by α to define a probability function that
is defined on the whole power set of N. Because the numerosity of a singleton is
1, the probability of a single ticket in a fair lottery on N is 1/α, an infinitesimal
hyperrational number.1

What this approach amounts to in terms of a limit operation is the alpha-limit,
which can be considered as a finer limit than the classical limit of standard analysis:
sequences with equal classical limits, may have infinitesimally different alpha-limits.
In particular, whereas the empty set and any finite subset of N both result in zero
as the limiting probability in the classical approach (called asymptotic density, see
e.g. Schurz and Leitgeb, 2008), only the finite set has probability zero in terms
of the alpha-limit. Thus, for the infinite lottery, NSA makes it possible to assign
infinitesimal probabilities to each ticket, which in turn allows us to have an infinite
additivity property—though not CA (for details, see Chapter 2).

1A hyperrational number is a fraction of hypernatural numbers. The set of hyperrational numbers
form a proper subset of the hyperreal numbers.
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4.3.2 Conjunction Principle within a level for Stratified Be-
liefs concerning an ultralarge lottery

For the finite lottery, the application of NSA is slightly more indirect. After all, it
is not the probability function itself that is unable to distinguish between the winning
odds of an almost empty set of tickets and that of the empty set. The problem seems
to arise only when we start to form beliefs based on those probability values. We
propose a threshold-free model for beliefs based on an alternative formulation of
NSA, called relative or stratified analysis (Hrbacek, 2007). We derive a rule that
tells us when CP holds and when it is violated: it is allowed within a level, which is a
concept from relative analysis intended to model the mesoscopic scale of magnitude.
These levels always contain only a finite number of numbers, though some may be
‘finer’—i.e. contain more numbers, both larger and smaller ones. A level always
contains the number 1 and all quantities that are neither too small nor too large
to be observable (depending on the context), but these quantities are not known
with infinite precision. Real numbers that are larger than any number of a certain
level are relatively infinite or ultralarge numbers compared to that level; positive real
numbers that are smaller than any non-zero number belonging to the level are relative
infinitesimals or ultrasmall numbers. In our model, the probability of winning for a
single ticket in a fair, ultralarge lottery is a relative infinitesimal; this means that it
is indistinguishable from zero (on that level). Details of the solution may be found
in Chapter 3.

One may wonder whether it is really rational to believe that some non-empty set
of possible outcomes will not occur, in exactly the same way as one believes that
the impossible event will not occur. The answer is ‘it depends’, which is precisely
the reason for the context-dependent element of levels in the model. If an agent is
interested in, for instance, comparing the winning odds of someone owning a small
set of tickets to that of someone who has no ticket at all, the very nature of the
question is aimed at the difference between a small non-zero and a zero probability.
In such a case, it is not likely that the agent will ignore the non-zero probability
of a non-empty set. However, it may be rational for the agent to approximate an
almost impossible event as having zero probability when comparing it to a certain or
almost certain event. In that case, the error introduced by the approximation is of
no significance to the conclusion.

The role of a level is similar to that of quantifier domain restriction, known from
the philosophy of language.2 Typically, when we refer to ‘everbody’ or ‘everywhere’,
we do not mean ‘all the people on Earth’ or ‘the whole Universe’, but rather a
more specific subgroup of people or a certain region on Earth, respectively. Clearly,
the meaning of such a quantifier depends on the context in which the statement is
uttered. Likewise, a level makes it possible to quantify only over the numbers that
are observable in a given context.

2Thanks to Lorenz Demey for this suggestion. For a survey of quantifier domain restriction, con-
sult for instance Stanley and Szabó (2000). The relation between domain restriction and vagueness
is explored by Pagin (2010).
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4.3.3 Visual summary of the solution

Figure 4.1 visualizes the analogy between the two cases. Figure 4.1(a) shows how
the hyperrational probability values assigned to a fair lottery on N correspond to
the real-valued approximation of (generalized) asymptotic density (as discussed by
Schurz and Leitgeb, 2008). Whereas the former are fully additive, the latter is only
finitely additive. Figure 4.1(b) shows why the full additivity of probabilities does
not necessarily lead to full ‘additivity’ (CP, in this case) of rational beliefs based
on precise knowledge of the probability function: in a context in which the total
number of lottery tickets is considered to be ultralarge, the probability of one (or a
few) tickets is ultrasmall and rounded to zero.

4.4 The epistemology of an infinite lottery

In this final section, we will illustrate how we can combine the two approaches to
describe rational beliefs about an infinite lottery. In that case, two rounding processes
occur: one in Step 2 and another in Step 3.

Step 1. If we want to determine the winning odds of a specific ticket or set
of tickets in a fair, countably infinite lottery, we may express this probability as a
hyperrational number, in particular, as a normalized numerosity. This solution is
exact (although there is some freedom in the choice of the non-standard model).

Step 2. If we want to apply our definition of Stratified Belief to a hyperrational
probability value, we cannot do so directly, for it works only on real-valued proba-
bilities. Taking the standard part of the outcome, however, results in a real-valued
approximation to the probability. In other words, the value is rounded up to an
infinitesimal a first time.

Step 3. Subsequently, we can apply the usual definition of Stratified Belief on
this already rounded probability value, which results in an additional rounding, this
time up to a relative infinitesimal.

According to this solution, it is equally rational to believe that your tickets will not
win if you own any finite number of tickets in a fair infinite lottery, as it is rational to
do so for a finite lottery in which you own ‘a few’ tickets. Admittedly, the probability
of winning is not zero in either case, but beliefs are modeled here as almost certainty,
which may be completely false in some (i.e. an infinitesimal fraction) of all cases.
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(a) Infinite lottery: hyperrational and real probability.

(b) Finite lottery: real probability and Stratified Beliefs.

Figure 4.1: Illustration of the analogy between (a) an infinite lottery and (b)
a large but finite lottery. Before rounding off the (relative) infinitesimals, the
probability functions are fully additive. For the rounded values, an appropri-
ately weakened additivity rule applies.
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Chapter 5

Determining the Probability
of Inconsistencies in Theory
Updating under Bounded
Confidence

I refer to the theoretical assessment of probabilities concerning the
future as psychohistory.

Isaac Asimov (1988)

Go not to the elves for counsel, for they will say both yes and no.
J. R. R. Tolkien (1954, p. 111)

He thinks by infection, catching an opinion like a cold.
John Ruskin

5.1 Introduction

So far, we have discussed the foundations of probability theory and epistemologi-
cal issues closely associated with it. In the current chapter, we will apply probability
theory to solve a question in formal epistemology. We aim to contribute to the
blossoming field of opinion dynamics, which investigates groups of epistemically in-
teracting agents in an artificial society, in particular how the opinions or belief states
of the agents evolve through time as a result of their interactions.

Analytical sociology aims at describing and understanding social patterns and
processes. An important methodology to achieve this goal is the ‘structural indi-
vidualism’ approach, which looks for the explanation of social mechanisms at the



100 Chapter 5. Probability of Inconsistencies

level of individual agents: their characteristics, behavior, and interactions. To quote
Hedström and Bearman (2009, p. 13):

In order to understand collective dynamics we must study the collectivity
as a whole, but we must not study it as a collective entity. Only by taking
into account the individual entities, and most critically the relations be-
tween them and their activities, can we understand the macro structure
we observe.

On this view, macro-level phenomena should be studied in terms of models that
apply to the micro-level: it is a bottom-up approach.

The use of agent-based models has become increasingly popular in social dynam-
ics research (Macy and Willer, 2002, Macy and Flache, 2009). The branch of social
dynamics we are interested in here is opinion dynamics, which investigates groups of
epistemically interacting agents. There is evidence from psychological experiments
that agents adjust their opinion when they are informed about the opinion of another
agent (see for instance Wood, 2000). Partly inspired by such accounts, opinion dy-
namics studies how the opinions or belief states of agents evolve over time as a result
of interactions with other agents, which may lead to cluster formation, polarization,
or consensus on the macro-level.

Social psychologists have also investigated whether groups are better at finding the
correct answer than individual agents. Their results depend on the precise context,
in particular the type of task. When the task is to estimate a quantity, aggregat-
ing individual estimates may lead to a result that is closer to the truth than any
of the individual guesses; this effect is called ‘wisdom of the crowds’ (Surowiecki,
2004, Douven and Kelp). When the task involves an intellective problem—in par-
ticular, one that has a demonstrably correct answer—groups of interacting agents
perform better than the best agent among an equivalent number of agents who work
individually; this type of cooperative problem solving is called ‘collective induction’
(Laughlin et al., 2002).

In general, the processes involved in opinion dynamics are very complex. Apart
from analytical results, also computer simulations of agent-based models are used to
study these large, complex systems. Simulations allow researchers to perform pseudo-
experiments in situations in which real-life experiments are impossible, unpractical,
or unethical to perform. This gives rise to the relatively young field of ‘computational
sociology’ (Macy and Willer, 2002).

Contributions to opinion dynamics have come from mathematicians, physicists,
economists, philosophers, computer scientists, and social psychologists: so far, not
many sociologists have been involved. Indeed, many seminal contributions have been
published in physics journals (for instance Sznajd-Weron and Sznajd, 2000, Galam,
2002, Lorenz, 2005). Although the methodology of opinion dynamics is akin to
that of statistical physics, the application is clearly sociological. We hope that our
contribution will help to familiarize sociologists with this interdisciplinary field.1

1Maybe the situation is changing already, as in 2010 a PhD-dissertation in sociology was devoted
entirely to the topic of opinion dynamics (Mäs, 2010).
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In most approaches to opinion dynamics, an agent’s belief state is modeled as an
opinion on either a single issue or multiple unrelated issues. We propose a model
for opinion dynamics in which an agent’s belief state consists of multiple interrelated
beliefs. Because of this interconnectedness of the agent’s beliefs, his belief state may
be inconsistent. Our goal is to study the probability that an agent ends up with an
inconsistent belief state. In order to explain how the beliefs are interrelated, how
the agents revise or update their belief state, and how this leads to the possibility of
inconsistency, we briefly review six aspects of our model: the content of an agent’s
opinion, the update rule according to which agents adjust their own opinion upon
interaction with others, aspects related to the opinion profile, the time parameter,
the group size, and the main research question. The notions introduced in the current
section will receive a more formal treatment further on.

We compare our model with earlier approaches, in particular with the arguably
best-known model for studying opinion dynamics, to wit, the Hegselmann–Krause
(HK) model (Hegselmann and Krause, 2002). In this model, the agents are trying
to determine the value of an unspecified parameter and only hold one belief about
this issue at any point in time. In the most basic version of the HK model, an agent
updates his belief over time by averaging the beliefs of all those agents who are are
within his ‘bound of confidence’; that is, the agents whose beliefs are not too distant
from his own. The model we present can be regarded as an extension of the HK
model.

5.1.1 Content of an agent’s opinion

Agent-based models of opinion dynamics come in two flavors: there are discrete
and continuous models. In discrete models (such as Sznajd-Weron and Sznajd, 2000),
an agent’s belief is expressed as a bit, 0 or 1 (cf. Ising spin model in physics). The
opinion may represent whether or not an agent believes a certain rumor, whether or
not he is in favor of a specific proposal, whether or not he intends to buy a particular
product, or which party the agent intends to vote for in a two-party system. This
binary system can be generalized into discrete models that allow for more than two
belief states (cf. multi-spin or Potts spin), which makes it possible to model multiple
attitudes towards a single alternative or to represent preferences among multiple
options (e.g. Bernardes et al., 2001, Stauffer, 2002). In continuous models (such as
Deffuant et al., 2000, Hegselmann and Krause, 2002), the agents each hold a belief
expressed as a real number between 0 and 1. This may be used as a more fine-grained
version of the discrete models: to represent the agent’s attitude towards a proposal,
a political party, or the like. In such models, values below 0.5 represent negative
attitudes and values above 0.5 are positive attitudes. Alternatively, the continuous
parameter may be employed to represent an agent’s estimation of a current value or
a future trend.

These models can be made more realistic by taking into account sociological and
psychological considerations. For instance, they may be extended in a straightforward
manner to describe agents who hold beliefs on multiple, independent topics (such as
economic and personal issues, see Sznajd-Weron and Sznajd, 2005). As such, the
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models can account for the observation that agents who have similar views on one
issue (for instance, taste in music) are more likely to talk about other matters as well
(for instance, politics) and thus to influence each other’s opinion on these unrelated
matters.2 Nevertheless, it has been pointed out in the literature that these models
are limited in a number of important respects, at least if they are to inform us about
how real groups of agents interact with one another (Douven, 2010, Douven and
Riegler, 2010). One unrealistic feature of the current models is that the agents only
hold independent beliefs, whereas real agents normally have much richer belief states,
containing not only numerous beliefs about possibly very different matters, but also
beliefs that are logically interconnected.

In the discrete model that we propose, the belief states of the agents no longer
consist of independent beliefs; they consist of theories formulated in a propositional
language (as will be explained in Section 5.2.1). We will show that this extension
comes at a cost. Given that the agents in earlier models hold only a single belief, or
multiple, unrelated beliefs, their belief states are automatically self-consistent. This
is not true for our model: some belief states consisting of interrelated beliefs are
inconsistent.

5.1.2 Update rule for opinions

The update rule specifies how an agent revises his opinion from one point in time
to the next. A popular approach is to introduce a bound of confidence. This notion—
which is also called ‘limited persuasion’—was developed first for continuous models,
in particular the HK model (Hegselmann and Krause, 2002),3 and was later applied
to discrete models as well (Stauffer, 2002). Moreover, the idea of bounded confidence
can be extended to update rules for belief states which are theories: such an HK-like
update rule will be incorporated into our current model.

There is some empirical evidence for models involving bounded confidence. In
a psychological experiment, Byrne (1961) found that when an agent interacts with
another agent, the experience has a higher chance of being rewarding and thus oft
leading to a positive relationship between the two when their attitudes are similar,
as compared to when their attitudes differ. According to this ‘Similarity Attraction
Paradigm’, in future contacts, people tend to interact more with people who hold
opinions similar to their own. Despite this evidence, some readers may not regard
updating under bounded confidence as a natural way for individuals to adjust their
opinions in spontaneous, face-to-face meetings. Those readers may regard the agents
as experts who act as consultants in a Delphi study.4 In such a setting, the agents do

2This has been implemented for continuous opinions by Fortunato et al. (2005), Jacobmeier
(2005), Pluchino et al. (2006), Lorenz (2008), and for discrete opinions by Sznajd-Weron and Sznajd
(2005).

3See also Hegselmann and Krause (2005), Hegselmann and Krause (2006), and Hegselmann and
Krause (2009). For related approaches, see Deffuant et al. (2000), Weisbuch et al. (2002), and
Ramirez-Cano and Pitt (2006). This approach was partly inspired by DeGroot (1974) and Lehrer
and Wagner (1981).

4A Delphi study is a survey method typically applied to forecast future trends, to estimate the
value of a parameter, or to come to a consensus regarding a decision. Multiple experts answer a
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not interact directly, but get feedback on each other’s opinions only via a facilitator.
When the facilitator informs each expert only of the opinion of those other experts
that are within their bound of confidence, an HK-like update rule seems to apply
naturally.

5.1.3 Opinion profile

An opinion profile is a way to keep track of how many agents hold which opinion.
This can be done by keeping a list of names of the agents and writing each agent’s
current opinion behind his name. An anonymous opinion profile can be obtained by
keeping a list of possible opinions and tallying how many agents currently hold a
opinion; we will employ the latter type of profile. Opinion dynamics can be defined
as the study of the temporal evolution of opinion profiles.

5.1.4 Time

Many studies in opinion dynamics investigate the evolution of opinion profiles in
the long run. Usually, a fixed point or equilibrium state is reached. Hegselmann and
Krause (2002), for instance, investigate whether iterated updating will ultimately lead
groups of agents to full or partial consensus. Mäs (2010) also investigates consensus-
versus cluster-formation, as a function of the sociological make-up of the group under
consideration.

For sociologists, the behavior of opinion profiles at intermediate time steps may
be more relevant than its asymptotic behavior. Research on voting behavior, for
example, should focus on intermediate time steps (Bernardes et al., 2002); after all,
elections take place at a set date, whether or not the opinion profile of the population
has stabilized at that point in time.

In our study, we calculate the probability that an agent comes to hold an incon-
sistent opinion by updating. We do not investigate the mid- or long-term evolution
of the opinion profile, but focus on the opinion profiles resulting from the very first
update. In other words, we consider the opinion profile at only two points in time:
the initial profile and the profile resulting from one round of updates.

5.1.5 Group size

Another interesting parameter to investigate in opinion dynamics is the group size.
We are interested in updates which lead to inconsistent opinions, which may occur
already for groups as small as three agents (see Section 5.2.4 below). The social

questionnaire separately from each other. There are additional rounds in which the experts receive
additional information, including feedback on the answers gathered in the previous rounds. It has
been observed that the experts tend to adjust their initial opinion in the direction of a consensus.
The Delphi method was initiated by the RAND corporation for a study commissioned by the US Air
Force (Dalkey and Helmer, 1963): the goal of this first published Delphi study was to estimate the
number of bombs required to realize a specified amount of damage. Currently, Delphi studies are
particularly popular in health care and nursing; see Keeney et al. (2011) for a review of applications
in that context.
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brain hypothesis of Hill and Dunbar (2003) states that 150 relations is the maximum
people can entertain on average: Lorenz (2008) presents this as an argument to
model groups of agents of about this size. Whereas this figure seems moderate from
the sociological point of view, this is not necessarily the case from a mathematical
viewpoint. As observed in Lorenz (2008, p. 323), “[c]omplexity arises with finite but
huge numbers of agents.” Therefore, opinion dynamics is often studied in the limit of
infinitely many agents, which makes it possible to express the equations in terms of
‘density of agents’. We will not do this in our current study: because of the previous
observations, we should at least investigate the interval of 3 up to 150 agents.

5.1.6 Research question

As we have remarked, the agents in our model may end up in an inconsistent belief
state, even when all agents start out holding a consistent theory. The main question
to be answered in this chapter is: how likely is it that this possibility will materialize?
More exactly, we want to know what the probability is that an agent will update to
an inconsistent belief state and how this probability depends on the number of atomic
sentences in the agents’ language and on the size of their community. To this end,
an analytical expression is given and evaluated numerically, both exactly and using
statistical sampling. It is shown that, in our model, an agent always has a probability
of less than 2 % of ending up in an inconsistent belief state. Moreover, this probability
can be made arbitrarily small by increasing the number of atomic sentences or by
increasing the size of the community.

5.2 Preliminaries

In this section, we first present the logical framework we assume throughout this
chapter. Then we specify the representation of the opinion profile and the employed
update rule. Finally, we relate our work to previous research on judgment aggregation
and the so-called discursive dilemma.

5.2.1 Logical framework

5.2.1.1 Language and consequence relation

The agents in our model will have to judge a number of independent issues; we use
the variable M for this number (where M ∈ N+). Throughout this section, we will
illustrate our definitions for the case in which M = 2, the easiest non-trivial example.
Each issue is represented by an atomic sentence. If the agents are bankers, the
issues may be investment proposals; if they are scientists, the issues may be research
hypotheses. As an example, one atomic sentence could be ‘It will rain tomorrow’, and
another ‘We should invest in the food industry’. Atomic sentences can be combined
using three logical connectives: ‘and’, ‘or’, and ‘not’. The collection of sentences that
can be composed in this way is called the language L.
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We assume a classical consequence relation for the language, which, following
standard practice, we denote by the symbol ⊢. If A is a subset of the language (a set
of sentences) and a is an element of the language (a particular sentence), then A ⊢ a
expresses that ‘a is a logical consequence of A’. That the consequence relation is
classical, means that it obeys the following three conditions: (1) if a ∈ A then A ⊢ a;
(2) if A ⊢ a and A ⊆ B then B ⊢ a; and (3) if A ⊢ a and for all b ∈ A it holds that
B ⊢ b, then B ⊢ a. Semantically speaking, that a is a logical consequence of A means
that, necessarily, if all the sentences in A are true, then so is a.

5.2.1.2 Possible worlds

If we were to know which of the atomic sentences are true in the world and which
are false, we would know exactly what the world is like (at least as far as is expressible
in our language, which is restricted to a finite number of aspects of the world). The
point is that our agents do not know what the world is like. Any possible combination
of true–false assignments to all of the atomic sentences is a way the world may be,
called a possible world.

Formally, a possible world is a subset of the atomic sentences. Therefore, a lan-
guage with M atomic sentences allows us to distinguish between wmax = 2M possible
worlds: there is exactly one possible world in which all sentences are true; there
are M possible worlds in which all but one of the sentences are true; there are (M

2
)

possible worlds in which all but two of the sentences are true; and so on.

We may represent a possible world as a sequence of bits (bit-string). First we have
to decide on an (arbitrary) order of the atomic sentences. In the bit-string, 1 indicates
that the corresponding atomic sentence is true in that world, 0 that it is false. Let
us illustrate this for the case in which there are M = 2 atomic sentences: call ‘It will
rain tomorrow’ atomic sentence m = 0 and ‘We should invest in the food industry’
atomic sentence m = 1. Then there are wmax = 4 possible worlds, w ∈ {0, . . . ,3},
which are listed in Table 5.1. Also the numbering of the possible worlds is arbitrary,
but for convenience we read the sequence of 0’s and 1’s as a binary number. The
interpretation of possible world w = 2, for example, is that sentence m = 0 is false and
sentence m = 1 is true: in this possible world, it holds that it will not rain tomorrow
and we should invest in the food industry.

Table 5.1: With M = 2, there are wmax = 2M = 4 possible worlds, w =
0, . . . ,w = 3.

m = 1 m = 0

w = 0 0 0
w = 1 0 1
w = 2 1 0
w = 3 1 1
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5.2.1.3 Theories

A theory is a subset of possible worlds.5 Let us explain this: an agent believes the
actual world to be among the possible worlds that are in his theory; he has excluded
the other possible worlds as live possibilities. To see that a theory may contain more
than one specific possible world, consider an agent who is sure that ‘We should invest
in the food industry’ is true, but has no idea whether ‘It will rain tomorrow’ is true
or false. If these are the only atomic sentences in his language, the agent holds a
theory with two possible worlds. Given that we can order the possible worlds, we can
represent theories as sequences of 0’s and 1’s, which in turn can be read as binary
numbers. (This procedure is similar to the one used above for representing possible
worlds by binary numbers.) Note that there are tmax = 2wmax theories that can be
formulated in a language with M atomic sentences.

Table 5.2 below illustrates this set-up for the case where M = 2. In that table,
theory t = 0 is the inconsistent theory, according to which all worlds are impossible;
syntactically, it corresponds to a contradiction. We know beforehand that this theory
is false: by ruling out all possible worlds, it also rules out the actual world. Theory
t = 15 regards all worlds as possible; syntactically, it corresponds to a tautology. We
know beforehand that this theory is true—the actual world must be among the ones
that are possible according to this theory—but precisely for that reason the theory is
entirely uninformative. The other theories are all consistent and of varying degrees
of informational strength. The most informative ones are those according to which
exactly one world is possible; a little less informative are those according to which
two worlds are possible; and still less informative are the theories according to which
three worlds are possible.

In Table 5.2, we have numbered the theories by interpreting their bit-string nota-
tion as a binary number. The reverse order of the worlds in the top line is so as to
make world w correspond with the wth bit of the binary representation of the theory.

5.2.2 Opinion profile

So far, we have focused on the belief state of a single agent, which is expressed
as a theory. Now, we consider a community of N agents. The agents start out with
(possibly different) information or preferences, and therefore may vote for different
theories initially. The only assumption we make about the agents’ initial belief states
is that they are consistent. Subsequently, the agents are allowed to communicate
and adjust there preference for a theory accordingly. In particular, we model what
happens when the agents communicate with all other agents whose belief states are
‘close enough’ to their own—that are within their bound of confidence, in Hegselmann
and Krause’s terminology—and update their belief state by ‘averaging’ over the close
enough belief states, where the relevant notions of closeness and averaging are to
receive formally precise definitions. The totality of belief states of a community at a

5By defining a theory in terms of possible worlds, we have chosen for a semantic approach.
The equivalent syntactical approach would define a theory as a subset of sentences in the agents’
language closed under the consequence relation for that language.
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Table 5.2: With M = 2, there are wmax = 2M = 4 possible worlds, w =
0, . . . ,w = 3, and tmax = 2wmax = 16 different theories, t = 0, . . . , t = 15. The
penultimate column gives the sum of bits (bit-sum), st, of each theory. The
last column represents the opinion profile of the community.

w = 3 w = 2 w = 1 w = 0 st opinion profile

t = 0 0 0 0 0 0 n0
t = 1 0 0 0 1 1 n1
t = 2 0 0 1 0 1 n2
t = 3 0 0 1 1 2 n3
t = 4 0 1 0 0 1 n4
t = 5 0 1 0 1 2 n5
t = 6 0 1 1 0 2 n6
t = 7 0 1 1 1 3 n7
t = 8 1 0 0 0 1 n8
t = 9 1 0 0 1 2 n9
t = 10 1 0 1 0 2 n10
t = 11 1 0 1 1 3 n11
t = 12 1 1 0 0 2 n12
t = 13 1 1 0 1 3 n13
t = 14 1 1 1 0 3 n14
t = 15 1 1 1 1 4 n15

given time can be represented by a string of tmax numbers, n0, . . . , ntmax−1, where
the number nt indicates how many agents hold theory t at that time. We may also
represent these numbers as a vector, Ð→n . We refer to this string or vector as the
(anonymous) opinion profile of the community at a specified time. Because each
agent has exactly one belief state, the sum of the numbers in an opinion profile is
equal to the total number of agents, N . Also, given that initially no agent has the
inconsistent theory as his belief state, n0 is always zero before any updating has taken
place. Later this may change. By updating, an agent may arrive at the inconsistent
theory; we shall call such an update a zero-update (because the inconsistent theory
is represented by a string of only 0’s).

In most opinion dynamics studies, a random opinion profile is used as a starting
point. Because our question deals with a probability in function of the initial opinion
profile, we explicitly take into account all possible initial opinion profiles, or—where
this is not possible—take a large enough statistical sample out of all possible initial
opinion profiles. The different opinion profiles can be thought of as resulting from
the individual choices the agents make regarding which world or worlds they deem
possible. Here, we assume that the adoption of a theory as an initial belief state can
be modeled as a sequence of 2M independent tosses of a fair coin, where the agent is
to repeat the series of tosses if the result is a sequence of only 0’s. As a consequence,
all consistent theories have the same probability—namely, 1/(tmax − 1)—of being
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adopted as an initial belief state by an agent. That is to say, we are studying what
in the literature are sometimes referred to as ‘impartial cultures’ (cf. Section 5.2.4).
Furthermore, the agents are assumed to choose independently of each other.

5.2.3 Update rule

Theorists have studied a variety of update rules, depending on the application the
authors have in mind. For instance, to model gossip communication, Deffuant et al.
(2000) use a rule in which updates are triggered by pairwise interactions. To model
group meetings, the updates should rather be simultaneous within the entire group
of agents. During a conference, the agents meet each other face-to-face; in that case,
additional effects should be taken into account, such as the ‘primacy effect’, which
demonstrates that the order in which the agents’ opinions are publicly announced
may influence how the others revise their opinion.

As mentioned before, we may think of our group of agents as a group of scientists,
bankers, or other experts who act as consultants in a Delphi-study. The choices in the
selection of the update rule follow from that. Delphi-studies are typically conducted
in a way such that the experts do not have any direct interaction (Linstone and
Turoff, 1975). Thus, we need a model with simultaneous updating but without
primacy effects: in this respect, the update rule of the HK model (Hegselmann and
Krause, 2002) applies to this situation in a natural way.

Another relevant aspect of the HK model is that an agent may not take into
account the opinions of all the agents in the group. This may occur when the agent
knows all the opinions but does not want to take into account the opinions of agents
who hold a view that is too different from the agent’s own, or because the facilitator
of the Delphi-study only informs the agent about the opinions of experts who hold
an opinion similar to the agent’s.

In order to quantify what counts as a similar opinion, we introduce the ‘maximal
distance’ or ‘bound of confidence’, D. This parameter expresses the number of bits
that another agent’s opinion may maximally differ from one’s own if that agent’s
opinion is to be taken into account in the updating process. To quantify the difference
between two theories, we use the so-called Hamming distance of the corresponding
bit-strings, defined as the number of digits in which these strings differ (Hamming,
1950).

It is possible to consider heterogeneous populations, where agents may have differ-
ent bounds of confidence, as in Hegselmann and Krause (2005). Because Hegselmann
and Krause (2005) report no qualitative difference between the homogeneous and the
heterogeneous case, we choose the simpler, homogeneous approach: D has the same
value for all agents in any population we consider. We investigate the influence of the
value of D on the probability of updating to the inconsistent theory. By an agent’s
‘neighbors’ we refer to the agents whose opinions fall within the bound of confidence
of the given agent. Note that, however D is specified, an agent always counts as his
or her own neighbor.

At this point, we still have to specify how agents update on the basis of their neigh-
bors’ belief states. Like Hegselmann and Krause in most of their studies (Hegselmann
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and Krause, 2002, 2006, 2009), we choose the arguably simplest and also the most
plausible averaging method, which is to determine an agent’s new belief state based
on the straight average of his neighbors’ belief states. Our update rule for theories is
a bitwise operation in two steps—averaging and rounding. First, each bit is averaged
by taking into account the value of the corresponding bit of an agent’s neighbors.
In general, the result is a value in [0,1] rather than in {0,1}. Hence the need for
a second step: in case the average-of-bits is greater than 1

2
, the corresponding bit

is updated to 1; in case the average-of-bits is less than 1
2
, the corresponding bit is

updated to 0; and in case the average-of-bits is exactly equal to 1
2
, the corresponding

bit keeps its initial value.6

In the current study, we are only interested in the probability of arriving at an
inconsistent conclusion after a single update. However, again following Hegselmann
and Krause, one could also designate one of the theories expressible in the agents’
language as the truth and allow the agents to gather evidence which points toward
the truth. One could then study the interplay between convergence to the truth and
avoiding inconsistencies. We plan to implement this in future research.

We want to keep the model as simple as possible. Therefore, we will not imple-
ment any of the following additional parameters: trustworthiness of agents, physical
closeness and/or social network (such as in Galam, 2002), and other psychologically
relevant aspects (such as bias, self-justification, and getting tired of repeated updat-
ing; see Tavris and Aronson (2007)). Because we only have one update rule, there
is no need to consider mixed groups and/or agents changing their update rule over
time, which would complicate matters even further. In general, pure cases have the
drawback of being less realistic, at the benefit of showing more clearly the effect of a
single parameter.

5.2.4 Comparison with related work

The possibility of inconsistent outcomes resulting from a voting procedure, similar
to updating beliefs, has already received some discussion in the literature on the
so-called discursive dilemma. According to majority voting on a set of interrelated
propositions, a proposition should be made part of the collective judgment if it is part
of a majority of the individual judgments. The discursive dilemma (Pettit, 2001),
which is a more general form of the doctrinal paradox (Kornhauser and Sager, 1986),
shows that this voting procedure may result in an inconsistent collective judgment
even if all the individuals judgments are consistent.7 This is immediately relevant to
our present concerns, given that majority voting falls under the definition of averaging
to be employed in our update rule.

The original example of the doctrinal paradox is stated in the context of a legal
court decision. It presents three judges who have to vote on three propositions: two

6The precise definition of the update method is stated in Appendix A. Relative to an agent who
initially holds theory tref , Equation (5.3) expresses how to calculate the straight average of the wth

bit within the agent’s bound of confidence. Equation (5.4) formalizes the subsequent rounding step
of the update rule for the wth bit of the agent’s theory.

7A good review of the discursive dilemma can be found in List and Puppe (2007).
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premisses P and Q, and a conclusion R. The connection between the premisses and
the conclusion is motivated by legal doctrine and formalized as R↔ (P ∧Q). A vote
is called consistent if it satisfies this rule, and inconsistent otherwise. Readers will
have no difficulty assigning consistent individual judgments to the judges which, given
proposition-wise majority voting, nevertheless give rise to an inconsistent collective
judgment.

In Pettit (2001), it is argued that this type of paradoxical result can occur in
group decisions on interrelated propositions in other contexts as well. The example
can be generalized to cases with more than two premises (Pettit, 2001), more than
three judges (List, 2005), or to cases with a disjunctive connection rule R↔ (P ∨Q)
rather than a conjunctive one (List, 2005). There are many impossibility results to be
found in the literature (List and Puppe, 2007), that show that—given some plausible
conditions—there is no way of aggregating consistent individual judgments so as to
guarantee a consistent group judgment.

List (2005, p. 5) addresses the question of how serious the threat posed by this
paradox is. He gives a probabilistic analysis of the discursive dilemma. In the general
case of k premisses, P1, . . . , Pk, and one conclusion, R, there are 2k combinations of
the premisses being true or false (possible worlds). Each time, the truth or falsehood
of the remaining proposition, the conclusion, is determined by the conjunctive con-
nection rule R↔ (P1∧⋯∧Pk). The simplest case is that in which all the probabilities
are equal that an agent holds a particular opinion out of the 2k consistent ones; this
situation is called an impartial culture. List (2005) considers this case as well as
variants thereof. In his paper, he also analyzes the case of an impartial anonymous
culture, which takes every anonymous opinion profile to be equally likely (rather than
every individual choice of the agents). Following the literature on the Condorcet jury
theorem, he assumes identical probabilities for all agents and independence between
different agents. The focus of List (2005) is mainly on convergence results (in partic-
ular, on the probability of inconsistency in the limit of the number of agents going
to infinity), although some results are stated in terms of a finite (but always odd)
number of agents.

While we also intend to give a probabilistic analysis of the occurrence of inconsis-
tencies in what may be interpreted as group judgments and make the result general
for the number of atomic propositions considered by the agents, there are some dif-
ferences between our model and that of List (2005) that merit highlighting.

First, we want to model agents that—in the terminology of the discursive di-
lemma—vote on a theory. The type of inconsistencies encountered in the doctrinal
paradox can be avoided relatively easily by having the jurors vote either on the
premisses only (and then derive the conclusion from the collective judgments on the
premises) or on the conclusion only (Pettit, 2001). For voting on theories, which
are by definition closed under derivability, there is no quick fix available to avoid
the problem that agents reach the inconsistent theory by majority voting (or, in our
terms, updating by averaging). Therefore, the question regarding the probability of
this event seems all the more pressing.

Second, we are interested in calculating the probability of an inconsistency for a
completely general number of agents (odd as well as even), rather than in convergence
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results (in the limit of infinitely many agents).

And third, rather than considering majority voting where the relevant majority
has to be relative to the whole group of agents, we assume an update rule that admits
of greater and smaller bounds of confidence, which effectively comes to requiring a
majority only relative to a subgroup of agents. This also implies that if one agent
comes to hold an inconsistent theory, this need not be so for all agents in the group.

On a more practical level, we note that, because we already take into consideration
three parameters (number of atomic sentences, number of agents, and the bound
of confidence parameter related to the update rule), we confine our discussion to
impartial cultures.

5.3 The probability of inconsistencies

We now turn to the question of how probable it is that an agent with a consistent
initial belief state updates to the inconsistent belief state by averaging the (also
initially consistent) belief states of that agent’s neighbors. More precisely, we consider
a fixed update rule—a fixed way of averaging belief states—and study the effects on
the said probability of the following parameters:

1. the number M of atomic sentences of the agents’ language;
2. the number N of agents in the community;
3. the bound of confidence, D, which is the maximal Hamming distance for one

agent to count as a neighbor of another.

The analytical solution consists of many nested sums. In the next section, we evaluate
the analytical expression numerically. Because exact calculations are only feasible
for small populations, we extend the calculations by a simulation based on statistical
sampling.

Given M atomic sentences, N agents, and a maximal Hamming distance or bound
of confidence D, we want to calculate, first, the fraction of agents who update to the
contradiction, when we consider all agents in all possible initial opinion profiles,
FAG(M,N,D); and second, the fraction of all possible opinion profiles that have at
least one agent who updates to the contradiction, FOP(M,N,D). In other words,
FAG(M,N,D) is the probability for an agent to update to the inconsistent theory
in a single update under the assumption that nothing is known about the opinion
profile—only the parameters M , N , and D are known. Likewise, FOP(M,N,D) is
the probability that at least one agent in the entire population will update to the
inconsistent theory in a single update. Clearly, the latter probability should be at
least as great as the former.

Readers who are interested in the details of the derivation of the analytical expres-
sions for these probabilities are referred to Appendix A. Here, we state the result of
the derivation, introduce previously undefined parameters occurring in it, and clarify
the overall form of the expressions for FAG(M,N,D) and FOP(M,N,D):
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FAG(M,N,D) =
N

∑
n1=0

N−n1

∑
n2=0

⋯
N−(n1+n2+⋯+ntmax−3)

∑
ntmax−2=0

N !

n0!n1!⋯ntmax−1!
×

1

(tmax − 1)N
tmax−1
∑
t=0

(nt
N

wmax−1
∏
w=0

INV[⟨Bw(t)⟩]) ; (5.1a)

FOP(M,N,D) =
N

∑
n1=0

N−n1

∑
n2=0

⋯
N−(n1+n2+⋯+ntmax−3)

∑
ntmax−2=0

N !

n0!n1!⋯ntmax−1!
×

1

(tmax − 1)N ZUP(M,N,D,Ð→n ). (5.1b)

Because these expressions take the form of nested sums, in order to explain them, we
should start by looking at the last part, which is the actual core of the equation. The
expression for the population-based fraction, FOP(M,N,D), is very similar to that
for FAG(M,N,D) except for that most central part. First we look at the expression
for the agent-based fraction, FAG(M,N,D).

At the heart of the expression for FAG(M,N,D), we find the function ⟨Bw(t)⟩,
which specifies how a given agent in a fixed opinion profile updates the bits of his
theory: it calculates the average of the wth bit for an agent in opinion profile Ð→n
with bound of confidence D whose initial opinion is theory t. Because we can do this
for all bits, we can determine whether or not this agent updates to the inconsistent
theory; the expression

wmax−1
∏
w=0

INV[⟨Bw(t)⟩] (5.2)

evaluates to 1 if this is the case, and to 0 otherwise.
As a next step, we need to count the zero-updates for all the agents in the opinion

profile, not just for one: ∑tmax−1
t=0 sums over all possible initial opinions and the factor

nt takes into account how many agents hold each of these opinions initially. We
divide by N for normalization.

Moreover, we need to take into account all different, anonymous opinion profiles
Ð→n , not just a particular one:

N

∑
n1=0

N−n1

∑
n2=0

⋯
N−(n1+n2+⋯+ntmax−3)

∑
ntmax−2=0

sums over all possible anonymous opinion profiles. Thus, at the right-hand side
of these summations, all the nt’s have a fixed value, meaning that there, the full
opinion profile, Ð→n , is specified. The weight factor N !

n0!n1!⋯ntmax−1!
takes into account

that certain individual choices of agents result in the same anonymous opinion profile.
With this weight factor, we consider an impartial culture; omitting it would result in
an impartial anonymous culture (see also List, 2005). The remaining factor 1

(tmax−1)N



5.4. Numerical evaluation of the probability of inconsistency 113

is yet another normalization factor: it divides the result by the number of different
(non-anonymous) opinion profiles.

We have seen that for the agent-fractions, the central expression (5.2) calculates
the fraction of agents in the particular opinion profile Ð→n which perform a zero-
update. Let us now look at the opinion-based fractions: there, the central expression
is replaced by

ZUP(M,N,D,Ð→n ),

which evaluates to 1 if the corresponding agent-based term (5.2) is non-zero, and to
0 otherwise. Because the rest of the expression is identical for FAG(M,N,D) and
FOP(M,N,D), this ensures that FAG(M,N,D) ≤ FOP(M,N,D).

5.4 Numerical evaluation of the probability of in-
consistency

It is far from trivial to estimate the outcome of the expressions for FAG(M,N,D)
and FOP(M,N,D) or to analyze their limiting behavior as N and/or M become
large. To obtain an idea of the quantitative output and qualitative behavior of the
formulae, we evaluate them numerically.

5.4.1 Exact calculations

Because the number of computations required to evaluate Equation (5.1) is consid-
erable, we have written a computer program (in Object Pascal) capable of evaluating
the expression for the number of atomic sentences M = 1 to M = 3.8 Here we sum-
marize the results.

If M is equal to 1, there are no opinion profiles in which any agent updates to the
contradiction, no matter which values N and D have. For M = 2, we obtained exact
results for N = 2 up to N = 21, as shown in Panels A and C of Figure 5.1. For M = 3,
we could obtain exact results for N = 1 up to N = 4, as shown in Panels B and D of
Figure 5.1.

If D = 1 or N = 2, a zero-update never occurs. For D > wmax = 2M , the number
of zero-updates is equal to that for D = 2M (data not shown). Because for values
of D = 2M onward, all agents have all other agents as their neighbors, increasing D
further makes no difference.

The lowest values for M , N , and D that may result in a zero-update are: M = 2,
N = 3, and D = 2. (In agreement with the doctrinal paradox, we find that a zero-
update can occur for three agents.) This is a case that can be checked on paper,
and can thus be used for testing the validity of the analytical expression and the
program. Checking an example by hand is also a good way to get to understand the
model better.

8For larger values of M , both the required time and memory become too large for easy compu-
tation.
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Figure 5.1: Results of exact calculations. The number M of atomic sentences
equals 2 in the graphs at the left hand side (A, C, and E), and 3 in those at
the right (B, D, and F). All graphs are presented as a function of the number
of agents, N . The different curves in each graph represent different bounds of
confidence, D. (A, B) Fraction (%) of agents who update to the inconsistent
theory. (C, D) Fraction (%) of opinion profiles with at least one agent who
updates to the inconsistent theory. (E, F) Computation time on one CPU in
seconds on a semi-logarithmic scale.
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For M = 2, we can consult Table 5.2. We see that there are four theories with a
bit-sum st = 1: t = 1, t = 2, t = 4 and t = 8. The distance, d, between any two of
these theories equals 2. Consider an opinion profile with one agent holding t = 1,
one agent holding t = 2, and one agent holding t = 4. If D ⩾ 2, then all agents
are each others’ neighbors. Therefore, to update, they all take the same average:
1
3
((t = 1)+ (t = 2)+ (t = 4)) = (0, 1

3
, 1
3
, 1
3
). After rounding, their new opinion becomes

(0,0,0,0); that is, they all arrive at t = 0, the inconsistent theory. For N = 3,
populating three out of four of the theories t = 1, t = 2, t = 4, and t = 8 may happen in
four different ways (given anonymity). If we keep track of the identity of the agents
within each of these four opinion profiles, the agents may choose their belief states in
six different ways, giving rise to 4 × 6 = 24 non-anonymous configurations that lead
at least one agent, and thereby in fact all agents, to the inconsistent theory in just
one update. For M = 2 and N = 3, there are 3 375 possible non-anonymous opinion
profiles; with D = 2, the aforementioned 24 opinion profiles are the only starting
points from which to arrive at the inconsistent theory. Therefore, the opinion-profile-
fraction is FOP(2,3,2) = 24/3 375 = 0.711 %. Because all three agents update to the
inconsistent theory, the agent-fraction is exactly equal to this: FAG(2,3,2) = 0.711 %.
These results are identical to the calculated value represented in the graphs.

For D = 3 and D = 4, the previous four anonymous (or 24 non-anonymous) config-
urations still lead to a zero-update, but there are additional possibilities which lead
to the same result, to wit, those in which one agent occupies one of the six theories
that have bit-sum st = 2 (namely, t = 3, t = 5, t = 6, t = 9, t = 10, and t = 12) and the
other two agents each occupy a theory of bit-sum 1 such that the single 1-bit of the
latter corresponds with a 0 in the first agent’s theory. For instance, the combination
of one agent holding t = 3 with another holding t = 4 and the third holding t = 8 leads
to an average of 1

3
((t = 3) + (t = 4) + (t = 8)) = ( 1

3
, 1
3
, 1
3
, 1
3
), which becomes t = 0 after

rounding. As is readily seen, higher bounds of confidence and larger population sizes
soon become too complex to check by hand. That is why computer calculations are
indispensable for this type of research.

As for agent fractions, for M = 2 (Panel A of Figure 5.1), all curves have a similar
peak shape. The values for D = 3 and D = 4 are very similar, and almost double
as compared to those for the smaller bound of confidence D = 2. The former curves
exhibit an ‘odd–even wobble’ near the top: for an odd number of agents a larger
fraction of the population updates to the inconsistent theory than one would expect
based on the behavior of even-numbered groups of similar size.

For M = 3 (Panel B), it is clear again that higher maximal distances give rise
to higher fractions. Also the odd–even wobble seems present, especially for higher
maximal distances, but we need more data to confirm this.

As for opinion profile fractions, for M = 2 (Panel C), the curves D = 3 and D = 4
again exhibit an odd–even wobble. Curiously, here the trend is opposite to that
observed in Panel B: for an even number of agents a larger fraction of the population
updates to the inconsistent theory than one would expect based on the behavior of
odd-numbered groups of similar size. Furthermore, D = 3 and D = 4 are not as
similar as is the case in panel B: for D = 3, the wobble decreases as the curve attains
a maximum or plateau, whereas for D = 4 the wobble only decreases along with the
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overall amplitude decrease of the curve.

The onset of the curves for M = 3 (Panel D) seems to indicate a similar reversed
odd–even wobble, but again we need more data to confirm this.

Finally, a word on computing time: Although exact results for higher numbers of
agents than shown here are attainable in principle, they come with ever increasing
computational costs. Panels E and F of Figure 5.1—note the log-scale on the vertical
axis—show that the required computing time increases nearly exponentially with the
number of agents. For M = 3, we have extrapolated the computing time to N = 5
for D = 1 and D = 8, and found that one additional data point would require about
5 (for D = 1) to 21 (for D = 8) days of computation. Of course, these results are
machine-dependent, but the exponential trend is intrinsic, since it is related to the
fast increase in the number of terms in Equation (5.1). Obtaining more data is thus
limited by practical constraints, unless we approach the problem differently.

5.4.2 Extending the numerical analysis by statistical sampling

Instead of calculating all possible opinion profiles and counting how many agents
update to the inconsistent theory, we now consider a statistical approach: we have
adapted the program used for calculating the exact results of the previous section to
draw a random sample from all possible opinion profiles and calculate the fractions of
agents and opinion profiles within the sample that update to the inconsistent theory.
If the sample size is sufficiently large, these sample fractions are good estimates of
the respective fractions in the complete set of opinion profiles.

We have done tests with different sample sizes, looking for a good trade-off between
low noise on the data and acceptably low computational costs. All results presented
in Figure 5.2 were obtained using samples of 103 sets of 103 opinion profiles each,
that is 106 opinion profiles in total per data point. (Smaller sample sizes such as 104

opinion profiles per data point require a computation that is 100 times faster, but
produce curves that are visibly noisy.)

Because we have some exact results, we can use these to assess the statistical
program: the onset of the curves in panels A–D of Figure 5.2 corresponds well with
the data presented in the respective panels of Figure 5.1.

As can be seen in panels E and F of Figure 5.2, the computation time increases at
first, but then remains almost constant: a typical calculation no longer depends on
the number of agents, N , but only on M and D. (The outliers are due to periods of
standby time of the computer that was used for the calculations.) Thus, the approach
with statistical sampling makes it possible to investigate the curves up to a much
higher value of N than using the exact formula.

We have plotted the curves for M = 2 up to N = 200, where all the curves have long
passed their maximum and are decreasing smoothly. For M = 3, we have plotted the
curves up to N = 2 500, because the maximum for D = 6 is only obtained at around
N = 1 800. Because the curves are smooth (apart from the odd–even wobble), instead
of computing every point, from N = 110 onwards we have increased the step size to
∆N = 100.
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Figure 5.2: Results of calculations based on statistical sampling, consisting
of 1 000 sets of 1 000 opinion profiles each. (A, B) Fraction (%) of agents who
update to the inconsistent theory. (C, D) Fraction (%) of opinion profiles with
at least one agent who updates to the inconsistent theory. (E, F) Computation
time on one CPU in seconds (linear scale). The number M of atomic sentences
is two in the graphs at the left hand side (A, C, and E), and three in those at the
right (B, D, and F). All graphs are presented as a function of the number N
of agents. The different curves in each graph represent different bounds of
confidence, D.
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First let us first examine the odd–even wobble that we noticed in the onset of the
curves from the exact calculations.

For M = 2, in Figure 5.2.A we see that for the agent-based fractions, the oscillation
is only present for low N -values. In Figure 5.2.C, we see that for D = 2 there is no
odd–even wobble. For D = 3, it is present before the maximum in the curve, but
not beyond it. For D = 4, the oscillation is well pronounced throughout the curve,
although the amplitude of the oscillation diminishes as the curve drops.

For M = 3, in the agent-based fractions in Figure 5.2.B we see no odd–even wobble
in the decreasing tails of the curves. Figure 5.3 provides a detail of the curves in
panel D for the region near the origin where all curves overlap. There is no wobble
visible for D ∈ {2, . . . ,5}. For D = 6, there is an oscillation for N up to about 30
(long before the curve attains its maximum). For D = 8, the oscillation seems to
go on for all values of N (much like curve D = 4 for M = 2). Because the start of
curve D = 7 overlaps with that of D = 8, we present the former in a separate graph
(cf. Figure 5.4). D = 7 is the only case in which we can see an amplitude modulation
(like that in interfering sound waves, where the phenomenon is known as ‘beats’):
the oscillation seems to disappear at about N = 34 but its amplitude increases again
for larger N until N = 100. There, a new oscillation starts, but because we have
lowered the sampling from thereon to ∆N = 100, we cannot examine it further.

We realize that this odd–even wobble cries out for an explanation. Currently,
however, we have no conclusive explanation for it. For now, we present it as a
puzzle.

Figure 5.3: Detail of Panel D in Figure 5.2: fraction (%) of opinion profiles
with at least one agent who updates to the inconsistent theory in the case where
M = 3.

Let us now consider the positions for which the various curves become maximal.
This is a worst-case analysis, because the maximal fractions correspond to situations
with the highest probability for an agent to obtain the inconsistent theory by following
the studied update rule, and for a population to have at least one agent who updates
to the inconsistent theory. In Table 5.3, the maximal fractions for M = 2 and M = 3
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Figure 5.4: Separate graph of maximal distance D = 7: fraction (%) of
opinion profiles with at least one agent who updates to the inconsistent theory
in the case where M = 3.

are listed in terms of agents (left) and opinion profiles (right).9 From the table, we
see that compared to M = 2, for M = 3 the maximum occurs for larger N . Moreover,
the percentage at the maximum is much larger for the opinion-profile-based fractions,
but much smaller for the agent-based ones.

At first blush, this may seem a strange combination, so let us explain what is
going on here: looking at the set of all possible opinion profiles (for the same N),
there is a certain number of them that contains at least one agent who updates to the
inconsistent theory. However, as the population grows larger, the average number
of agents who update to the inconsistent theory decreases. Zero-updates require
‘asymmetrical’ opinion profiles, with all agents more or less evenly distributed at
the lower bit-sum theories. (Recall the example for M = 2 and N = 3.) However,
if there are many more agents than theories, N ≫ tmax, then there are many more
combinations of individual choices that lead to a situation with a similar number
of agents at each theory (low and high bit-sum) than there are combinations which
produce opinion profiles with the agents primarily present at low-bit-sum theories.
This is a consequence of the statistical law of large numbers: due to symmetry
reasons, in the ‘average opinion profile’ (each possible belief state instantiated by
N/(tmax−1) agents) no zero-updates are possible and, as N increases, the probability
of an initial opinion profile being close to the average opinion profile also increases.
Thus, large interacting groups act as a protective environment to keep the belief
states of the group members consistent.

The general impression of the obtained agent- and opinion-profile-based curves
in Figure 5.2 is that they vary smoothly in N . It seems that their behavior can be
described effectively by an equation that has a substantially simpler form than Equa-

9For M = 2, all maxima occur for N < 100; hence, the data points represented in Figure 5.2
suffice. For M = 3, in all but two cases the maximum occurs for N < 110 and the data used to make
Figure 5.2 suffice; only for M = 3 and D = 5 or D = 6 additional data points had to be calculated.



120 Chapter 5. Probability of Inconsistencies

Table 5.3: Maximal probability of obtaining the inconsistent theory after one
update expressed as fraction (%) of agents (left) and opinion profiles (right).

M D N FAG (%)

2 1 / /
2 2 6 1.0081
2 3 3 1.7824
2 4 5 1.8112

3 1 / /
3 2 22 0.0462
3 3 14 0.1368
3 4 11 0.2380
3 5 15 0.2986
3 6 13 0.3210
3 7 19 0.3215
3 8 13 0.3202

M D N FOP (%)

2 1 / /
2 2 15 6.2930
2 3 15 6.4298
2 4 6 5.5932

3 1 / /
3 2 44 1.0805
3 3 37 2.5250
3 4 59 6.0837
3 5 235 15.633
3 6 1780 16.867
3 7 10 1.3213
3 8 8 1.3079

tion (5.1). We tried to fit a continuous function to the discrete curves in Figure 5.2:
the results are presented in Appendix B.

5.5 Concluding remarks

We have presented what can plausibly be regarded as an extension of the HK
model, which currently is the most popular model for studying the dynamics of
epistemically interacting agents. The extension consisted of equipping the agents
with the capability of holding belief states significantly richer than the single beliefs
the agents in the HK model have. As we pointed out, and as already followed
from earlier work on the discursive dilemma, the extension has a price (apart from
the greater mathematical and computational complexity), to wit, updating is not
guaranteed to preserve consistency of an agent’s belief state. The main goal of this
chapter was to measure this price by determining the probability that an agent in
our model indeed updates to the inconsistent theory. We investigated the effect on
this probability of three key parameters: the number of agents in a community; the
number of atomic sentences taken into consideration by the agents; and the bound
of confidence, determining which agents count as an agent’s neighbors.

Taking a social engineering perspective, and based on our results, one can make the
following general recommendations for avoiding a zero-update: (i) make (if possible)
the number M of atomic sentences large; (ii) avoid (if possible) even-numbered groups
of agents; (iii) for a given M , choose (if possible) the number N of agents well below
or above the maximum in the curves such as are given in Figure 5.2 for the specific
cases of M = 2 and M = 3; and (iv) let (if possible) the agents adopt either a very
low or a very high bound of confidence, D, relative to 2M .
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As we saw, apart from the trivial cases with N = 2 or M = 1, the probability
for an agent (or a population) to reach the inconsistent theory after one update is
always non-zero given the update rule we considered. But the good news is that an
agent always has a probability < 2% of ending up in the inconsistent belief state.
By making either the number of agents or the number of atomic sentences large
enough, this probability can be made arbitrarily small. Seen on the scale of the
whole population, the probability that one agent ends up with a contradiction is—of
course—more complex; however, for sufficiently large populations, that value also
decreases with N .

Because the update rule of our model seems to apply naturally to the case of
a group of experts participating in a Delphi-study, the recommendations derived
from this model may be useful in the design of a Delphi-study in which the experts
have to state their preferences in the form of a theory. It may well be that the
recommendations made here to lower the probability of inconsistencies differ from
those that promote other desired features of communication among agents, such as
their ability to converge to the truth. Because the present model is a very simple one,
we do not claim to have captured all relevant aspects of opinion-revision of experts
in Delphi-studies or of real-life communication of scientists or people in general.
However, while a limited number of variables makes it easier to investigate and
interpret the outcomes obtained in a model, we intend to investigate in future research
the effect of some other parameters that have been held fixed in the present study.
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Appendix A to Chapter 5:
Derivation of analytical expressions

This appendix describes how Equation (5.1) for the agent- and population-based
fraction of zero-updates is derived. In the course of this derivation, notions such as
‘possible world’, ‘opinion profile’, and ‘update rule’ which have been introduced in
the main text in informal terms receive a formal definition applicable to our model.

First, we take the M atomic sentences to be numbered (arbitrarily) from 0 to
M −1. We can thus characterize possible worlds by means of bit-strings of length M :
if the bit bm(w), with m ∈ {0, . . . ,M − 1}, is 1/0, the atomic sentence m is true/false
in world w. There are wmax = 2M such bit-strings.

These 2M bit-strings of length M can be numbered as well, most conveniently by
their binary value. Each agent is in a particular belief state, which can be thought of
as a set of worlds that the agent deems possible. Thus, the belief state of an agent can
be represented as a longer bit-string of length wmax = 2M with a single bit for each
world equal to 1 or 0 depending on whether the agent deems that world possible or

not. This results in tmax = 2wmax = 22
M

different theories and thus, correspondingly,
possible belief states. Each theory t, with t ∈ {0, . . . , tmax−1}, can be written as wmax

bits, Bw(t), with w ∈ {0, . . . ,wmax − 1}, such that:

t =
wmax−1
∑
w=0

Bw(t) 2w.

One readily verifies that, given this notation, theory t = tmax − 1 assigns 1 to all
possible worlds indeed, and t = 0 assigns 0 to all possible worlds.

The sum of bits of a theory t—the ‘bit-sum’, written as st—indicates the number
of bits equal to 1 in theory t. This can be stated formally as follows:

st =
wmax−1
∑
w=0

Bw(t).

Recall that, to specify the entire community of all N agents and their belief states,
we can count the number of agents whose belief states are represented by a given
theory t and denote it as nt ∈ {0, . . . ,N}, with ∑tmax−1

t=0 nt = N . Hence, the entire
opinion profile is specified by10

Ð→n = ⟨n0, n1, . . . , ntmax−1⟩.

Recall further that, because the inconsistent theory t = 0 is excluded as an initial
belief state for all agents, n0 is always 0 in the initial opinion profile.

To determine the new opinion profile of the whole community of agents after one
update, we first formalize how a single ‘reference’ agent updates his belief state, tref ,
on the basis of the belief states of the other agents in the community.

10Because we do not keep track of which agent endorses which theory, this is an anonymous
opinion profile. With the update rule used in this chapter, agents who initially are in the same
belief state, will always update to the same belief state, so no information is lost by this choice of
notation.
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As a first step, the reference agent has to calculate the Hamming distance of the
bit-string representing his belief state, tref , to that of the bit-strings representing the
belief states of the other agents. The Hamming distance between tref and another
bit-string t is equal to the bit-sum of the difference bit-string, which can be found
by applying an exclusive-or (XOR) operator: t XOR tref . Whereas this operation is
familiar in information theory, here we prefer the equivalent algebraic procedure of
performing a bit-wise addition followed by modulo 2:

d(t, tref) =
wmax−1
∑
w=0

((Bw(t) +Bw(tref)) mod 2).

In a community with opinion profile Ð→n , the number of agents with a belief state
at a distance d from tref is called ad(tref ,Ð→n ):

ad(tref ,Ð→n ) =
tmax−1
∑
t=0

nt δd,d(t,tref),

where δd,d(t,tref) is a Dirac delta, which is 0 if the two indices are different and 1 if
they are equal.

Now, the reference agent may count the number of agents A within his or her
bound of confidence, d(t, tref) ⩽ D (which, it will be recalled, necessarily includes
him- or herself) as follows:

A =
D

∑
d=0

ad(tref ,Ð→n ) = a0(tref ,Ð→n ) + . . . + aD(tref ,Ð→n ).

The next step is to determine how to update any specific bit in the reference agent’s
belief state, Bw(tref). To stay as close as possible to the HK model, the agents in our
model take the arithmetic mean (straight average) over the corresponding bits of the
belief states of all their neighbors. We denote the average using angle brackets:11

⟨Bw(tref)⟩ = 1

A

D

∑
d=0

tmax−1
∑
t=0

Bw(t) nt δd,d(t,tref). (5.3)

Based on the above average, the agent decides how to update the value of the wth bit.
If the average is smaller than 1

2
, the agent sets this bit to 0; if it is larger than 1

2
, to 1;

and if it is precisely equal to 1
2
, the agent will keep his or her initial value for that bit.

So, in a sense, we have majority voting here, with the important proviso that the
majority is taken relative to an agent’s neighbors and not (necessarily) relative to all
agents in his or her community.

11Given that the average depends on the bound of confidence D and the opinion profile of the
community Ð→n , we could put those next to the brackets as a subscript. However, to keep the notation
light, we have omitted this.
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The update rule for the wth bit of an agent who initially holds theory tref is
formalized as a function UPD:

UPD[⟨Bw(tref)⟩] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if ⟨Bw(tref)⟩ > 1
2

Bw(tref) if ⟨Bw(tref)⟩ = 1
2

0 if ⟨Bw(tref)⟩ < 1
2
.

(5.4)

To make counting zero-updates more convenient, we introduce a function INV (for
‘inverse’) that has value 1 if the corresponding updated bit is equal to 0 and vice
versa:

INV[⟨Bw(tref)⟩] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if ⟨Bw(tref)⟩ > 1
2

1 −Bw(tref) if ⟨Bw(tref)⟩ = 1
2

1 if ⟨Bw(tref)⟩ < 1
2
.

An update to the contradiction corresponds to updating all bits to 0. We can count
those events by multiplying the result of INV over all bits: due to the former defini-
tion, this product will only be 1 if all bits are updated to 0.

In order to determine the opinion-profile-based fraction, we introduce a function
ZUP (for ‘zero-update’) that is 1 if there is at least one agent in the community who
updates to the contradiction, and 0 otherwise:

ZUP(M,N,D,Ð→n ) =
⎧⎪⎪⎨⎪⎪⎩

0 if ∑tmax−1
t=0 (nt

N ∏
wmax−1
w=0 INV[⟨Bw(t)⟩]) = 0

1 if ∑tmax−1
t=0 (nt

N ∏
wmax−1
w=0 INV[⟨Bw(t)⟩]) > 0.

Now we can determine the agent- and opinion-profile-based fractions of zero-up-
dates, FAG(M,N,D) and FOP(M,N,D), by summing over all combinations of the
agents’ belief states, Ð→n . Because each theory t, with t ∈ {0, . . . , tmax − 1}, is equally
likely to be chosen by all agents, we need to sum over all possible combinations
of choices. For the sum-indices we use the following notation: t(n) is the theory
representing agent n’s initial belief state. The requisite functions can then be written
as follows:

FAG(M,N,D) =
tmax−1
∑

t(0)=1
⋯

tmax−1
∑

t(N−1)=1

1

(tmax − 1)N ×

tmax−1
∑
t=0

(nt
N

wmax−1
∏
w=0

INV[⟨Bw(t)⟩]) ; (5.5a)

FOP(M,N,D) =
tmax−1
∑

t(0)=1
⋯

tmax−1
∑

t(N−1)=1

1

(tmax − 1)N ZUP(M,N,D,Ð→n ). (5.5b)

Because the number of terms is equal to the number of ways the agents can choose
a theory as their belief state, that is (Rosen, 2000, p. 55),

PR(tmax − 1,N) = (tmax − 1)N ,
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each term is weighted by the inverse of this.
Equation (5.5) does not have the exact same form as Equation (5.1). To sim-

plify the evaluation of FAG(M,N,D) and FOP(M,N,D), we can reduce the number
of terms drastically by only summing over all different anonymous opinion profiles
and introducing an additional weight function (multiset coefficient—see Rosen, 2000,
p. 55) N !

n0!n1!⋯ntmax−1!
:12

FAG(M,N,D) =
N

∑
n1=0

N−n1

∑
n2=0

⋯
N−(n1+n2+⋯+ntmax−3)

∑
ntmax−2=0

N !

n0!n1!⋯ntmax−1!
×

1

(tmax − 1)N
tmax−1
∑
t=0

(nt
N

wmax−1
∏
w=0

INV[⟨Bw(t)⟩]) ;

FOP(M,N,D) =
N

∑
n1=0

N−n1

∑
n2=0

⋯
N−(n1+n2+⋯+ntmax−3)

∑
ntmax−2=0

N !

n0!n1!⋯ntmax−1!
×

1

(tmax − 1)N ZUP(M,N,D,Ð→n ).

This concludes the derivation of Equation (5.1).
The number of terms in Equation (5.1) is the multiset coefficient, which represents

the number of ways to choose N out of tmax − 1 with repetition (see Rosen, 2000,
p. 55):

CR(tmax − 1,N) = ( N + tmax − 1 − 1
N

) = (N + tmax − 2)!
(N)!(tmax − 2)! .

This number is smaller than or equal to the number of terms in Equation (5.5),
PR(tmax − 1,N).13

12There is no summation over ntmax−1, because we know by the condition ∑tmax−1
t=0 nt = N that

ntmax−1 = N − (n1 + n2 +⋯ + ntmax−2).
13To illustrate how drastic the reduction in computational cost is, consider the case where M = 2

andN = 12: Equation (5.5) has PR(tmax−1,N) = 129 746 337 890 625 terms, whereas Equation (5.1)
has ‘only’ CR(tmax − 1,N) = 9 657 700 terms. This means that the number of evaluations in this
example is more than 13 million times smaller for Equation (5.1) as compared to Equation (5.5).
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Appendix B to Chapter 5:
Fitting curves to the statistical data

We tried to fit different asymmetric peak shapes—such as Poisson, Weibull and
log-normal—to the data series presented in Figure 5.2. The fitting procedure was per-
formed with commercial software (SigmaPlot). Although no single equation resulted
in least-square fits with good R2 values for (almost) all agent- and opinion-profile-
based D-curves, a three parameter log-normal distribution gave the best overall re-
sult. Its distribution function is given by:

f(N) = Ae
− 1

2(
log N

C
B )

2

The goal of a least-squares fit is to determine the values of the parameters—here A,
B, and C—such that the sum of the squares of the distance between the data points
and the value of the fit-curve is minimal.

To avoid deterioration of the fit quality due to the odd–even wobble, we have
split the data sets into separate files for the values at odd and at even numbers of
agents prior to the fitting procedure. The results for all odd and even, agent- and
opinion-profile-based D-curves can be found in Table 5.4 for M = 2 and in Table 5.5
for M = 3. For M = 2, R2 > 0.9 for all curves. For M = 3, there are eight curves with
R2 < 0.9, five of which with R2 between 0.8 and 0.9. For the three remaining cases
with R2 < 0.8 (FAG for N odd and D = 2, FOP for N even and D = 7, and FOP for
N odd and D = 8) the values for the parameters A, B, and C are not shown.

Figure 5.5: Values of parameters obtained by fitting a log-normal curve to
the agent- and opinion-profile-based D-curves for the case M = 3. The filled
dots represent the values for an even number of agents, the open dots for odd
numbers. For the agent-based values, a linear scale is used; for the opinion-
profile-values, a logarithmic scale.

A graphical representation of the case where M = 3 can be found in Figure 5.5.
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These curves suggest a relation among the obtained parameter values, especially for
the agent-based curves. For instance, the fit parameters for the even and odd case
correspond well for low D-values, but diverge at higher values, and more drastically
so ranging from parameter A over B to C. In all curves, the behavior changes at
D = 5 or D = 6. For the agent-data, parameter A starts off with a linear trend in D,
reaching a plateau from D = 5 on. For the opinion profile data, the initial trend of
parameter A is exponential linear on the log-scale); this only changes at D = 6. For
parameters B and C, the initial behavior in terms of D increasingly deviates from
linearity (or exponential behavior in the opinion profile case). Though suggestive,
the number of data points is insufficient to predict the shape of D-curves for higher
values of M .

Table 5.4: M = 2. Values of R2 and the three fit parameters with standard
error for a log-normal fit to the agent- and opinion-profile-based D-curves, for
an even and odd number of agents.

FAG at even positions

D 2 3 4

R2 0.946 0.9736 0.9317
A 0.0157 ± 0.0004 0.0099 ± 0.0002 0.0152 ± 0.0004
B 0.4750 ± 0.015 0.3654 ± 0.0094 0.5110 ± 0.017
C 9.0200 ± 0.42 7.8600 ± 0.22 9.3900 ± 0.50

FAG at odd positions

D 2 3 4

R2 0.9975 0.9988 0.9982
A 0.0102 ± 7E-5 0.0181 ± 9E-5 0.0182 ± 0.0001
B 0.4051 ± 0.0035 0.6744 ± 0.0047 0.6169 ± 0.0052
C 6.8190 ± 0.076 4.6630 ± 0.085 4.7780 ± 0.095

FOP at even positions

D 2 3 4

R2 0.9892 0.9516 0.9516
A 0.0660 ± 0.0008 0.0651 ± 0.0009 0.0500 ± 0.0015
B 0.3342 ± 0.0050 0.5770 ± 0.014 0.4230 ± 0.014
C 14.440 ± 0.20 16.280 ± 0.50 8.0300 ± 0.35

FOP at odd positions

D 2 3 4

R2 0.9898 0.9934 0.9982
A 0.0663 ± 0.0008 0.0639 ± 0.0003 0.0182 ± 0.0001
B 0.3320 ± 0.0048 0.5444 ± 0.0045 0.6169 ± 0.0052
C 14.510 ± 0.20 18.240 ± 0.18 4.7780 ± 0.095
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Chapter 6

Evaluation and Outlook

A good question is never answered.
It is not a bolt to be tightened into place.
But a seed to be planted and to bear more seed.
Toward the hope of greening the landscape of idea.

John Ciardi (1972)

In Chapter 1, we have formulated two goals for this dissertation on the philosophy
of probability. In section 6.1, we will evaluate to what extent these goals have been
met. In section 6.2, we sketch a plan for future work.

6.1 Evaluation

[T]he point of philosophy is to start with something so simple as not
to seem worth stating, and to end with something so paradoxical that
no one will believe it.

Bertrand Russell (1986)

The first goal was to develop a mathematical basis for probability theory that
allows us to deal with infinite sample spaces in a way that is satisfactory from the
epistemological point of view. In Chapter 2, this goal has been met for the specific
case of a fair lottery on the natural numbers, which is a situation that could not
be modeled within Kolmogorov’s axiomatization of probability. At the beginning
of this investigation, we did not know about numerosity theory; we started from a
construction based on free ultrafilters, which later on turned out to be equivalent
to a model for numerosities. With the benefit of hindsight, we can summarize our
solution in just two words: “normalized numerosities”. The solution leads to a non-
zero, infinitesimal probability of winning for all non-empty, finite subsets of tickets.
This restores Regularity for this case. The generalized limiting frequency of the
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associated sequence, which is necessarily a standard real number, can be obtained by
taking the standard part of our non-standard probability function.

An additional part of the first goal was to check whether the obtained solution
generalizes to smaller and larger cardinalities. In Chapter 3, we proposed a solu-
tion for a problem with rational beliefs related to probabilities on sample spaces of
smaller—i.e. finite—cardinalities: the Lottery Paradox. The solution was inspired
by that for the infinite lottery and is also based on non-standard analysis, in partic-
ular on the framework of relative or stratified analysis. This led to the definition of
Stratified Belief, which is intended to overcome a number of unsatisfactory properties
of the threshold-based model of rational belief: Stratified Belief formalizes the vague
notion of probabilities ‘sufficiently close to unity’ without imposing a sharp boundary
on the probability values and it is explicitly context-dependent. In Chapter 4, we
focused on the analogies between large but finite (or indefinitely large) sample spaces
and (countably) infinite sample spaces. The method of Chapter 2 generalizes to all
countably infinite sample spaces, but not directly to the uncountable case. A natural
follow-up study would be to develop a more general approach that is also suitable for
higher cardinalities. We will come back to this in the outlook, given in section 6.2.

The second goal was to apply probability theory and an agent-based model to a
problem in formal epistemology. In Chapter 5, we selected the problem of a group of
agents whose opinions take the form of a theory. This study merges two research lines:
that of opinion dynamics in sociophysics, and that of the discursive dilemma. Even
when all agents start out with a consistent theory, they need not hold a consistent
theory at a later point in time, if the agents update their opinion by averaging (in
a specific way) each other’s opinions. The goal was to find the probability that an
agent arrives at an inconsistency after a single update. We regarded this probability
as a function of three parameters: the number of atomic sentences in the theory, the
number of agents, and the bound of confidence, which influences how many other
agents’ opinions are taken into account in a specific update. Although an analytical
solution was found, it proved to be necessary to run computer simulations in order
to evaluate it numerically.

Apart from providing an answer to a specific research question, Chapter 5 can also
be regarded as a case study of what the application of probability theory and com-
puter simulations can (and cannot) contribute to philosophy. Probability provides
a formal framework and simulations provide data. Neither diminishes the need for
critical thinking, thorough analysis, and other philosophical skills—on the contrary.
What they contribute to philosophy are new opportunities as well as pitfalls: new
challenges that philosophy cannot (and should not) refuse to take up. These new ap-
proaches deserve a place in philosophy, but their true merits will only become clear
over time.
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6.2 Outlook

Any change or reform you make is going to have consequences you
don’t like.

Morris K. Udall

Although a PhD dissertation is the end product of a doctoral study, it is really
only the beginning of a research project. At this point, important questions have
been left unanswered, but at least we now have some clues as to where we may find
the answers.

As remarked in the evaluation of section 6.1, we have developed a method to
describe a lottery on any countably sample space, but not for the uncountable case,
yet. The remainder of this chapter presents a preliminary account of a general method
of dealing with infinite sample spaces using probability functions that take values on
a non-standard field. This will be developed further, in collaboration with Vieri
Benci and Leon Horsten.

First, we will show that there are multiple, interrelated problems with Kolmogorov’s
axioms (as presented in section 1.4.2.1). To solve all of them, it does not suffice to
make a minor adaptation of one of the axioms. Instead, we propose a new system
of axioms and show that they are consistent. Kolmogorov (1933) presents proba-
bility theory as a part of measure theory, which is a branch of standard analysis or
calculus. Because standard analysis does not allow for non-Archimedean quantities
(i.e. infinitesimals), we may call Kolmogorov’s approach an ‘Archimedean probabil-
ity theory’. We show that allowing non-Archimedean probability values may have
considerable epistemological advantages in the infinite case.

6.2.1 Problems with Kolmogorov’s axiomatization

Kolmogorov’s probability theory works fine as a mathematical theory, but the di-
rect interpretation of its language leads to counterintuitive results. Also, the fact that
some seemingly simple situations cannot be described within Kolmogorov’s system
calls for some epistemological reflection. First, we will give an overview of known
problems with Kolmogorov’s axiomatization of probability theory. Then, we will lay
out our solution strategy for these issues: instead of fighting the symptoms one-by-
one, we will carefully select a new set of axioms. These axioms are stated in the next
section.

6.2.1.1 Non-measurable sets

The elements of the domain of the probability function, A, are called events. A
peculiarity of axiom (K0A) is that it allows A ≠ P (Ω). In fact, it is well known
that there are (probability) measures (such as the Lebesgue measure on [0,1]) which
cannot be defined for all the sets in P (Ω). Thus, there are sets in P (Ω) which are
not events, which means that their probability value is undefined. This may even
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occur for sets that are the union of elementary events in A.1

There does exist a type of function that is related to probability functions and
that does always have the full set P (Ω) as its domain: outer measures, but these
functions are only countably subadditive, thus not necessarily CA. The way to turn
an outer measure into a probability measure, which is necessarily CA, is by means of
the Caratéodory extension theorem. However, the domain may have to be restricted
in the process, and the resulting domain A may be a proper subset of P (Ω). This
shows that there is a hidden connection between axiom (K0A) and axiom (K4): if
we want to change the former, we will have to adapt the latter as well.

6.2.1.2 Problems with the interpretation of P = 0 and P = 1 events

It seems natural to interpret events that have zero probability as impossible events.
This idea lies at the basis of the concept of ‘Regularity’, which can be stated formally
as follows:

Regularity. For any event A:

P (A) = 0⇔ A = ∅ (6.1)

Observe that axiom (K1) does allow for events other than the empty set to have
probability zero. In particular, when Ω is infinite, it may occur that possible events
have probability zero. Thus, whereas Kolmogorov’s axioms do guarantee the impli-
cation from right to left, they fail to secure the implication in the opposite direction.
Hence, Kolmogorov’s approach violates Regularity.

In particular, there are situations such that Ω is infinite and all the elementary
events have probability zero. Then it seems like we have:

P (Ej) = 0, j ∈ J (6.2)

and

P
⎛
⎝⋃j∈J

Ej
⎞
⎠
= 1. (6.3)

This situation is very common when J is not denumerable. It looks as if eq. (6.2)
states that each event Ej is impossible, but eq. (6.3) states that one of them will
certainly occur. In this case, not only is Regularity violated, but CA, which is axiom
(K4) of Kolmogorov’s system, also fails. In other words, this situation cannot be
described in the system at all.2

The interpretation of P = 1 events turns out to be just as problematic as the
interpretation of P = 0 events: axiom (K2) does not forbid that a set A ⊊ Ω has
probability zero, and indeed, when Ω is infinite, the occurrence of an event with

1For example, if Ω = [0,1]R and P is given by the Lebesgue measure, then all the singleton {x}
are measurable, but there are non-measurable sets; namely the union of events might not be an
event.

2Hence the ‘seems’ in ‘Then it seems like we have. . . ’.
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probability unity is not necessary. This observation can serve as an alternative mo-
tivation for Regularity. Indeed, Easwaran (2010) proposed to let ‘Regularity’ also
refer to the ‘twin’ of eq. 6.1, which says that unit probability should be reserved for
the certain event. This can be formalized as follows:

Regularity†. For any event A:

P (A) = 1⇔ A = Ω (6.4)

Again, Kolmogorov’s axioms only ensure the implication in the right-to-left direc-
tion.

For those who regard Regularity (and its twin) merely as a convenience, there is
an obvious solution at hand: interpret probability 0 as ‘very unlikely’ (rather than
simply as ‘impossible’), and interpret probability 1 as ‘almost certain’ (instead of
‘absolutely certain’). Yet, there is a philosophical price to be paid to avoid these
contradictions: the correspondence between mathematical formulas and reality is
now quite vague—just how probable is ‘very likely’ or ‘almost certain’?—and far
from intuition.3

Moreover, this solution is not acceptable for authors who regard Regularity as a
norm of rationality, such as Skyrms (1980) and Lewis (1986a). These authors have
suggested that Regularity can be restored by allowing infinitesimals in the range
of the probability function. In contrast to their optimistic viewpoint, Williamson
(2007), Hájek (2010), and Easwaran (2010) have argued that switching to a non-
Archimedean range may be of help in some cases, but does not restore Regularity in
all circumstances.

We agree with the position of Easwaran (2010), who states that simply claiming
that introducing infinitesimals restores Regularity is insufficient. We hope to convince
the reader that it actually does, by proving it, as we will do in a paper that is in
preparation at the time of this writing. In particular, we will show that Regularity
can be obtained for a non-Archimedean probability function in the case of an infinite
sequence of fair coin tosses.

6.2.1.3 Problems with conditional probability

The fact that in Kolmogorov’s theory possible events may have probability zero
also leads to problems with conditional probability, as defined by (D2). Popper
(1938) developed his own basis for probability theory (see also the new appendix iv in
the reprinted version of Popper, 1959), consisting of six axioms, in which conditional
probability—denoted as p(a, b)—is fundamental. Within his system, conditionalizing
on P = 0-events does not pose a particular difficulty. However, Popper limits his
system to situations with, at most, denumerably many elements. Thus, his approach
does not pose a general alternative to conditionalization on P = 0-events.

3The situation is somewhat similar to the study of probabilistic semantics for ‘default rules’
(rules to which there are exceptions). Adams (1966) interpreted the conditional statement ‘if A
then B’ as a constraint on the conditional probability: P (B∣A) > 1 − ε, where ε is a positive real
number that can be arbitrarily small. Later authors, such as Lehmann and Magidor (1992), have
considered a similar semantics, but replacing the ε with a positive infinitesimal in the sense of NSA.



134 Chapter 6. Evaluation and Outlook

6.2.1.4 Fair lotteries

Fair odds is a very fundamental concept, not only in ethics (Stone, 2008b), but also
in probability theory. In the classical interpretation of probability theory of Laplace
(1814), equiprobability shows up in the important ‘Principle of Insufficient reason’ or
the ‘Principle of Indifference’ (PI). PI states that if there is no reason to give a higher
weight to any of all (n) of the elementary events, then we should assign exactly the
same probability (1/n) to each of them. Although there are known problems with PI
(cf. the paradoxes of Bertrand, 1888), the idea behind the principle is still appealing.
After all, the Principle of Maximal Entropy can be regarded as a modern version of
PI (Jaynes, 1957, 1973, Uffink, 1995).

Considering fair lotteries, we discover two things. First, we discover that the choice
for [0,1]R as the range of P is neither necessary to describe a fair lottery in the finite
case nor sufficient to describe one in the infinite case:

• For a fair finite lottery, the unit interval of R is not necessary as the range of
the probability function: the unit interval of Q suffices.

• In the case of a fair lottery on N, [0,1]R is not sufficient as the range: it violates
our intuition that the probability of any set of tickets can be obtained by adding
the probabilities of all individual tickets.4

Second, we discover that some very simple problems cannot be dealt with in
Kolmogorov’s formalism. In order to illustrate this, let us focus on the fair lottery
on N (de Finetti, 1974). In this case, the sample space is Ω = N and we expect
D to contain all the singletons of N—otherwise there would be ‘tickets’ (individual,
natural numbers) whose probability is undefined, which would be strange because
we know they are equal in a fair lottery. Also, we expect to be able to assign a
probability to any possible combination of tickets. This assumption implies that
E = P (X) (though not necessarily that D = P (Ω)). Moreover, we expect to be able
to calculate the probability of an arbitrary event by some sort of summing over the
individual tickets.

A critical inspection of this example leads us to two important observations:

A If we want to have a probability theory which describes a fair lottery on N,
assigns a probability to all singletons of N, and follows a generalized additivity
rule as well as the Normalization Axiom, the probability has to be non-zero
but smaller than any finite, strictly positive real number. Hence, the range of
P has to include infinitesimals. In other words, the range of P has to be a
subset of a non-Archimedean field. Therefore, it cannot be R+, but it could be
a non-standard set such as Q∗,+ or R∗,+, which are known from NSA.

B Our intuitions regarding infinite concepts are fed by our experience with their
finite counterparts. So if we need to extrapolate the intuitions concerning finite
lotteries to infinite ones, we need to introduce a sort of limit-operation which

4An investigation of our intuitions concerning finite and infinite lotteries can be found in Chap-
ter 2.
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transforms ‘extrapolations’ into ‘limits’. Clearly, this operation cannot be the
limit of classical analysis. Because the latter is used in Kolmogorov’s Finite
Additivity, axiom (K4) is suspect.

Motivated by the case study of a fair infinite lottery, we know at this point which
elements in Kolmogorov’s classical axiomatization we do not accept: the use of [0,1]R
as the range of the probability function and the application of classical limits in the
Continuity Axiom. However, we have not yet offered an alternative to his approach:
this is what we present in the next section.

6.2.2 Solution strategy

In order to solve one particular element of the problems mentioned, it may suffice
to tinker with a single axiom. For instance, in order to be able to describe a fair
lottery on the natural numbers, one seems to have the following options:

• Drop the axiom of Normalization (K2). This solution was explored by Rényi
(1955).

• Drop the axiom of CA (K4). This solution was advocated by de Finetti (1974).

• Change (K0B), replacing R by R∗, in order to allow infinitesimals in the range
of the probability function. This was suggested by (Skyrms, 1980, Lewis, 1986a,
Elga, 2004).5

Note that none of the above solutions generalizes to allow for the description of
probabilistic problems on sample spaces of larger cardinalities as well (e.g. a fair
lottery on R).

Likewise, if some other of the previously discussed problems was our only concern,
we could fix it by adjusting one of the axioms. However, from Figure 6.1, we see
that all of Kolmogorov’s axioms are involved in some of the epistemological prob-
lems mentioned. In particular, this chart shows that for cases dealing with infinite
sample spaces, the main problem comes from the combination of the choice of the
range of P with the axiom of CA (K4). Therefore, if we want to cure all symptoms
simultaneously, we should formulate an entire, new set of axioms on which to base
our theory of probability. Here, we list our main requirements for the new axioms:

• Whereas (K0A) allows for a domain which is strictly smaller than the full
power set, it would be convenient if every set in P(Ω) represents an event. For
finite problems, the maximum number of different values taken by the function
P depends on the problem (in particular, the size of the sample space Ω).
Therefore, instead of fixing the range in advance, we will allow the range to
depend on Ω for the finite as well as the infinite case.

5On closer inspection, we see that this approach also implies that (K4) has to be dropped, as we
saw in Chapter 2.
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Figure 6.1: Schematic representation of Kolmogorov’s axioms and definitions
on the left hand side and their consequences (with some examples) on the right
hand side. Positive features are indicated in blue, negative properties in red.

• We intend to replace (K1) by a formalization of Regularity. We should replace
(K2) in a similar way, so as to ascertain that the interpretation of P = 1 events
is also intuitively clear.

• The axiom of Finite Additivity (K3) is involved in one problematic issue, but
does not seem to be the main culprit. So far, it seems as though we can keep
this principle intact.

• Our replacement for (K4) will be the most drastic removal from Kolmogorov’s
approach. Because (K4) implies the use of classical limits, it is incompatible
with our planned introduction of non-standard numbers in the range of P (cf.
Chapter 2). Our new axiom will imply a limit operation of a different kind.
In the case of a denumerably infinite sample space, this limit turns out to
be the α-limit, as defined by Benci and Di Nasso (2003a) in the context of
Alpha-Theory—an axiomatic approach to non-standard analysis (NSA). In the
case of a non-denumerably infinite sample space, a generalization of the ideas
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underlying the α-limit will have to be derived.

We will translate the above considerations into axioms in the next section.

6.2.3 Axioms for Non-Archimedean Probability (NAP)

Because the range of the probability function may contain infinitesimals in our
approach, we call it Non-Archimedean Probability (NAP).

These are the Axioms of NAP, where Ω is a set called the sample space:

(NAP0) The probability function P has as its domain the full powerset of Ω (event
space = P(Ω)) and as its range the unit interval of a suitable, ordered field F
(range = [0,1]F ).

(NAP1) P (A) = 0⇔ A = ∅

(NAP2) P (A) = 1⇔ A = Ω

(NAP3) For all events A,B ∈ P(Ω) such that A ∩B = ∅:

P (A ∪B) = P (A) + P (B).

(NAP4) There exists a directed set ⟨Λ,⊆⟩6 with Λ ⊆ Pfin(Ω)7 such that:

∀E ∈ Pfin(Ω),∃λ ∈ Λ ∶ E ⊂ λ.8

When the sample space Ω is finite, the NAP-axioms have no advantage over Kol-
mogorov’s axioms. This should not be surprising, as they were intended to overcome
difficulties that arise only when considering problems on infinite sample spaces. We
see that the NAP-axioms indeed fulfill the desiderata of the previous subsection:

• The axiom (NAP0) ensures that every set in P(Ω) represents an event. Whereas
Kolmogorov fixes the range of all probability functions (as [0,1]R), in our case,
the range depends on the problem (in particular, the sample space Ω).

• The pair (NAP1) & (NAP2) makes it possible to interpret probability 0 and
1 events safely as impossible and necessary, respectively: they formalize Regu-
larity and Regularity†, respectively.

• The axiom (NAP3) is exactly the same as Kolmogorov’s addition-rule for events
(finite additivity).

• The axiom (NAP4) implies the use of a generalized limit (direct limit), just as
the Continuity Axiom implies the use of classical limits.

6⟨Λ,⊆⟩ is a directed set if and only if Λ is a non-empty set and ⊆ is a preorder such that every
pair of elements of Λ has an upper bound: (∀A,B ∈ Λ)∃C ∈ Λ ∶ A ∪B ⊆ C.

7Pfin(Ω) denotes the family of finite subsets of Ω.
8This condition implies that ⋃λ∈Λ λ = Ω.
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Collectively, the axioms may force the range [0,1]F to be non-Archimedean. In
particular, when the sample space Ω is countably infinite and the odds are fair, or
when Ω is uncountably infinite, (NAP1) forces F to be a non-Archimedean field.9

In the case of a denumerably infinite sample space Ω, the limit implied by (NAP4)
can be the axiomatically defined α-limit. A non-standard model for this concept can
be obtained in terms of maximal ideals or free ultrafilters; the use of the directed set
⟨Λ,⊆⟩ has the advantage that unlike the other two options, Λ can be stated explicitly
and can be chosen such as to model ‘the physics’ of the problem.

There is another analogy between Kolmogorov’s axiom (K4) and the NAP-axiom
(NAP4). Axiom (K4) allows you to extend the probability to a σ-algebra once you
have defined the probability on a smaller family of sets. For example, if you want to
define a uniform probability on [0,1]R, you start by defining the probability on the
family of semi-open intervals (∀a > b ∈ [0,1]R) P ([a, b)) = b−a. Then you extend the
set of semi-open intervals to the σ-algebra generated by them. The Axiom (NAP4)
has the same role: if you want to define a probability on P(Ω), you start by defining
the probability on a suitable family of finite sets first, and then you extend it to the
whole power set.

The NAP axioms can be shown to be consistent by giving a model for them. The
construction of such a model is a mathematical matter rather than a philosophical
one, so it is not presented here. Once we have a working system, we can apply
the new approach to all kinds of problems: countable lotteries (fair lottery on N
or Q), uncountable ones (fair lottery on R), and infinite sequences of tosses with
a fair coin (2N). This means that we can express the probability of a particular
outcome of an infinite sequence of coin tosses as an infinitesimal, pace Williamson
(2007). The development of these examples, however, goes beyond the scope of the
outlook-section.

The further development of Non-Archimedean Probability and its application to
examples known in the philosophy of probability are the topics of future work. Even
in its preliminary form, however, the NAP system clearly illustrates that the analysis
for a fair lottery on N given in Chapter 2 can be generalized to any lottery (fair
or otherwise) on any sample space (countable or otherwise). Put differently, Non-
Archimedean Probability shows that if we want to incorporate the advantages of
qualitative approaches to probability into a quantitative framework, we can do so
by allowing infinitesimals in the range of the probability function. As such, it is my
hope that this dissertation can be regarded as a new step towards a better framework
for the philosophy of probability.

9A fair lottery is the simplest but not the only example which leads to a non-Archimedean F in
the case of a countably infinite Ω: the same is true if the winning odds of a ticket increase with the
ticket number, and more advanced examples can be construed.
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und Beispielen aus der Versicherungs- und Finanzmathematik. Verlag Ver-
sicherungswirtsch, Karlsruhe, Germany, 2010. 17
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Summary

Any philosophy that can be put ‘in a nutshell’ belongs there.
Sydney J. Harris—‘Leaving the Surface’

In Chapter 1, we give a motivation for this study and formulate two main goals.
We introduce the branch of philosophy to which this work is a contribution: formal
and computational philosophy. We give a review of the foundations of probability
and randomness, which includes mathematical and philosophical aspects. Special
attention goes out to the case of infinite sample spaces in probability.

In Chapter 2, we discuss how the concept of a fair finite lottery can best be
extended to denumerably infinite lotteries. Techniques and ideas from non-standard
analysis are brought to bear on the problem.

Chapter 3 analyzes rational belief as ‘almost certainty’ and proposes a solution
to the Lottery Paradox. A popular way to relate probabilistic information to bi-
nary rational beliefs is the Lockean Thesis, which is usually formalized in terms of
thresholds. This approach seems far from satisfactory: the value of the thresholds is
not well-specified and the Lottery Paradox shows that the model violates the Con-
junction Principle. We argue that the Lottery Paradox is a symptom of a more
fundamental and general problem, shared by all threshold-models that attempt to
put an exact border on something that is intrinsically vague. We propose application
of the language of relative analysis—a type of non-standard analysis—to formulate a
new model for rational belief, called Stratified Belief. This contextualist model seems
well-suited to deal with a concept of beliefs based on probabilities ‘sufficiently close
to unity’ and satisfies a moderately weakened form of the Conjunction Principle.
We also propose an adaptation of the model that is able to deal with beliefs that
are less firm than ‘almost certainty’. The adapted version is also of interest for the
epistemicist account of vagueness.

Chapter 4 gives a summary of the findings of Chapters 2 and 3. It shows that
by exploiting the parallels between large, yet finite lotteries on the one hand and
countably infinite lotteries on the other, we gain insights in the foundations of prob-
ability theory as well as in epistemology. We solve the ‘adding problems’ that occur
in these two contexts using a similar strategy, based on non-standard analysis. The
new element in this chapter is the development of the epistemology of an infinite
lottery.
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In Chapter 5, we present a model for studying communities of epistemically
interacting agents who update their belief states by averaging (in a specified way)
the belief states of other agents in the community. Our main goal is to calculate the
probability for an agent to end up in an inconsistent belief state due to updating
(in the given way). To that end, an analytical expression is given and evaluated
numerically, both exactly and using statistical sampling. It is shown that, under the
assumptions of our model, an agent always has a probability of less than 2 % of ending
up in an inconsistent belief state. Moreover, this probability can be made arbitrarily
small by increasing the number of atomic sentences in the agents’ language or by
increasing the size of the community of agents.

In Chapter 6, we evaluate the goals set out in Chapter 1. We draw some con-
clusions from the philosophy of probability to the philosophy of science in general.
In the outlook, we present a preliminary version of a paper on Non-Archimedean
Probability (NAP) theory, which extends the solution of Chapter 2 to uncountable
sample spaces.
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Samenvatting

Een filosofie die ‘in een notendop’ verteld kan worden, hoort daar
thuis.

Sydney J. Harris—‘Leaving the Surface’

In Hoofdstuk 1 geven we een motivatie voor dit onderzoek en formuleren we
twee hoofddoelstellingen. We geven een inleiding over die takken van de filosofie
waaraan dit werk een bijdrage wil leveren: formele en computationele filosofie. We
geven een overzicht van de grondslagen van waarschijnlijkheid en willekeur, waarbij
zowel wiskundige als filosofische aspecten aan bod komen. Speciale aandacht gaat
uit naar situaties met oneindige kansruimten.

In Hoofdstuk 2 bespreken we hoe het concept van een eerlijke, eindige loterij het
beste uitgebreid kan worden naar aftelbaar oneindige loterijen, waarbij we gebruik
maken van technieken en ideëen uit de niet-standaard analyse.

Hoofdstuk 3 analyseert rationeel geloof in termen van ‘bijna zekerheid’ en stelt
een oplossing voor van de Lotterijparadox. Een populaire manier om probabilis-
tische informatie te relateren aan binaire, rationele overtuigingen is de ‘lockeaanse
stelling’, die gewoonlijk geformaliseerd wordt in termen van drempelwaarden. Deze
aanpak lijkt verre van bevredigend: de waarde van de drempel wordt niet duidelijk
gedefinieerd en de Lotterijparadox toont aan dat dit model niet aan het Conjunc-
tieprincipe voldoet. Wij voeren aan dat de Lotterijparadox een symptoom is van
een meer fundamenteel en algemeen probleem, dat gedeeld wordt door alle modellen
met drempelwaarden, die trachten een exacte grens te plakken op iets dat inherent
vaag is. We stellen voor om een nieuw model voor rationeel geloof te formuleren, in
termen van relatieve analyse—een soort van niet-standaard analyse—en noemen dit
model ‘Gelaagd Geloof’. Dit contextualistisch model lijkt geknipt te zijn om over-
tuigingen die gebaseerd zijn op kansen ‘dicht genoeg bij n’ te beschrijven en voldoet
aan het Conjunctieprincipe, zij het in een iets afgezwakte vorm. We stellen ook een
aangepaste versie van het model voor, dat in staat is om geloof dat minder sterk
onderbouwd is dan ‘bijna zekerheid’ te beschrijven Deze aangepaste versie is ook
relevant voor de epistemische aanpak van vaagheid.

Hoofdstuk 4 vat de bevindingen uit Hoofdstuk 2 en 3 samen. Het toont aan
dat we door parallellen te trekken tussen grote, maar eindige loterijen enerzijds en
oneindige loterijen anderzijds, inzicht kunnen verwerven zowel in de grondslagen
van de kansrekening als in de epistemologie. De ‘optel-problemen’ die in deze twee
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contexten opduiken, kunnen via een gelijklopende strategie opgelost worden, namelijk
met behulp van niet-standaard analyse. Een nieuw element in dit hoofdstuk is dat
we nu ook de epistemologie van een oneindige loterij ontwikkelen.

In Hoofdstuk 5 stellen we een model voor om een gemeenschap van epistemisch
interagerende individuen te bestuderen. Deze individuen herzien hun geloofsovertui-
gingen aan de hand van een middeling (op een specifieke manier) over de geloofs-
overtuigingen van andere individuen in hun gemeenschap. Onze doelstelling is om de
kans te berekenen dat een individu in een inconsistente geloofstoestand terechtkomt
door deze manier van updaten. Hiertoe stellen we een analytische uitdrukking op
en evalueren we deze numeriek, zowel op een exacte manier als via een statistische
sampling-methode. We tonen aan dat, onder de aannames van ons model, de kans
dat een individu in een inconsistente geloofstoestand belandt altijd lager is dan 2 %.
Deze waarschijnlijkheid kan bovendien willekeurig klein gemaakt worden door het
aantal atomaire zinnen in de taal van de individuen uit te breiden, of door het aantal
individuen in de gemeenschap te verhogen.

In Hoofdstuk 6 evalueren we de doelstellingen die we in Hoofdstuk 1 voorop-
gesteld hebben. We trekken een aantal besluiten uit de filosofie van de waarschijn-
lijkheid voor de wetenschapsfilosofie in het algemeen. In de outlook presenteren we
een voorlopige versie van een artikel over niet-Archimedische kansrekening, die de
oplossing uit Hoofdstuk 2 uitbreidt naar niet-aftelbare kansruimten.
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