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Abstract This paper introduces a concept called task muddiness as a metric for

higher intelligence. Task muddiness is meant to be inclusive and expendable in

nature. The intelligence required to execute a task is measured by the composite

muddiness of the task described by multiple muddiness factors. The composite

muddiness explains why many challenging tasks are muddy and why autonomous

mental development is necessary for muddy tasks. It facilitates better understanding

of intelligence, what the human adult mind can do, and how to build a machine to

acquire higher intelligence. The task-muddiness indicates a major reason why a

higher biological mind is autonomously developed from autonomous, simple-to-

complex experience. The paper also discusses some key concepts that are necessary

for understanding the mind and intelligence, such as intelligence metrics, the mode

a task is conveyed to the task executor, a human and a machine being a joint task

performer in the traditional artificial intelligence (AI), a developmental agent

(human or machine) being a sole task performer, and the need for autonomy in task-

nonexplicit learning.

Keywords Intelligence metrics � Human intelligence � Turing test �
Artificial intelligence methodology � Physical development � Mental development �
Sensors � Effectors � Internal representation � Vision � Audition � Languages �
Actions

Introduction

Despite the power of modern computers, we have seen a paradoxical picture of

artificial intelligence (AI): Computers have done very well in areas that are typically
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considered very difficult (by humans), such as playing simulated chess games.

However, they have done poorly in areas that are commonly considered easy for

humans, such as vision, audition, and natural language understanding. On the other

hand, there is a lack of appreciation of what the human mind does on a daily basis,

from one task to the next, partially due to a lack of general framework for measuring

tasks.

There have been numerous studies on the measurement of the intelligence of AI

systems. The ‘‘imitation game,’’ proposed by Turing (1950), now known as the

Turing Test, greatly influenced the ways machine intelligence was studied. The

limitation of such a symbolic text-based test has now been better recognized, e.g.,

Michie (1993) and Norman (1991). The proposed Total Turing Test (Russell and

Norvig 2003) includes computer vision to perceive objects and robotics to

manipulate objects and move about. The National Institute of Standards and

Technology has been sponsoring the Workshops on Measuring the Performance and

Intelligence of Systems, known as PerMIS, held annually since 2000 (Meystel and

Messina 2000), where many proposed metrics are application-specific and, thus,

lack the applicability to a wide variety of tasks. There have been some studies on the

procedures for evaluating research articles in AI, e.g., (Cohen and Howe 1988), but

not for evaluating tasks.

Intelligence quotient (IQ) and Emotional Intelligence (Goleman 1995) have been

proposed to measure human intelligence. The typical tests in the field of

psychometrics concentrate on the differentiation of human individuals in a human

age group, which consists of normally developing, physically healthy human

individuals. These tests are very useful for not only measuring the normal

development of a normal child, in contrast with, e.g., an autistic child, but also for

understanding what traditional robots lack. However, tests in psychometrics are not

designed for measuring tasks. Gardner (1993) proposed the concept of ‘‘multiple

intelligences,’’ in the sense that human intelligence is displayed not only in logical-

mathematical reasoning or emotional aspects, but also through other aspects such as

bodily kinesthetic and spatial skills. Giulio Tononi and Gerald Edelman proposed to

use mutual information to measure the complexity of integrated biological neural

systems (Tononi and Edelman 1998). Nevertheless, these studies do not provide a

mechanism for evaluating how tasks are across many tasks.

A task performer is called agent, regardless whether it is biological, artificial, or

mixed. The latter mixed type is becoming more and more important because of a

growing field called bioengineering or biomedical engineering. Biological networks

have been grown in Petri dishes and humans have been assisted by various types of

artificial organs, limbs, and aids (Enderle et al. 2005; Brooks 2002).

The term ‘‘muddy’’ is used to refer to tasks that are not ‘‘clean.’’ In this paper, a

composite muddiness is proposed, which contains an open number of axes of

muddiness (factors), each measuring a different characteristic of a given task. It is

overly simplistic to enforce independence among these axes, but each axis should

measure a different muddiness characteristic. We do not require each axis to

represent the same ‘‘level’’ of information, since this ‘‘simple-minded’’ requirement

is counter productive. Some tasks are somewhat general—they can be also called

‘‘problems,’’ but we use the term ‘‘task’’ for consistency.
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Five muddiness categories have been identified in this paper so that all of the

muddiness factors fall into these five categories. Alternative to other alternatives

that have been proposed (e.g., see an excellent survey by Russell and Norvig (2003))

we discuss the composite muddiness as a performance metric for intelligence, both

natural and artificial. Based on the muddiness discussed here, this paper outlines

three categories of tasks, Category 1 Clean Tasks; Category 2 Muddy Tasks, and

Category 3 Very Muddy Tasks. The task muddiness theory explains why the

traditional artificial machines perform the tasks in Category 1 well, but not for

Category 2, and perform worse for tasks in Category 3.

The implications of the task muddiness discussed here are likely to be multifold.

(1) The task muddiness concept facilitates the appreciation and understanding of the

end-to-end nature of biological intelligence: from the raw sensors end all the way to

the motors end. Why is this end-to-end nature, namely, sensory and motor

experience, important to intelligence? Is there any totally disembodied intelligence

in nature? (2) When a task-specific software executes a task (e.g., the Microsoft

Word program executes a word processing task), is the program the only executor of

the task or the human programmer and the program act together as a joint task

executor? When a human programmer designs a task-specific representation (e.g.,

the column width and line spacing), into a program, should such representational

intelligence attribute to the human designer’s intelligence or the machine’s? Does

the machine understand this task-specific representation? When a human hand-

writes a paragraph on a piece of paper, does he understand the concepts such as

column width and line spacing? (3) What are the typical modes of communication

through which a task is conveyed to the task executor? This question directly points

the sharp contrast between how a task-specific machine learns a task-specific skill

with programmed-in task representation and how humans acquire mental skills

through a autonomous developmental process. All these and other questions boil

down to the issue of mental development by humans and animals.

Computational autonomous mental development (CAMD) is a relatively new

approach to intelligence (biological and artificial) that has attracted an increasing

amount of research activities. Although developmental psychology and develop-

mental neuroscience have been well recognized scientific discipline, computational

modeling of mental development was not raised explicitly until recently (Elman

et al. 1997; Weng et al. 2001). Computational models of mental development,

especially those that cross a wide variety of space scales (cellular, cortical,

corticocortical and brain scales) and time scales, are necessary for understanding

how the mind works.

A fundamental characteristic of CAMD is the computational modeling for agents

to learn tasks that are unknown during the conception time (i.e., formation of zygote

for animals and the programming time for robots) (Weng et al. 2001). Therefore,

the developmental learning agent (humans or robots) must internally (i.e., within the

brain) generate representations guided by a new kind of program called a

developmental program. For biological organisms, this developmental program1

1 Biologists and neuroscientists have no problem with calling it a program. Read, e.g., Reik and Dean

(2002) and Sur and Rubersein (2005).
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is represented by the genome in the zygote. For artificial machines, this

developmental program can be directly designed (Weng et al. 2001; Weng and

Hwang 2006) or artificially evolved.2

In biological development, two types of development are involved, physical and

mental. Through the process of physical development, a single-cell zygote is

developed into a fetus, a newborn baby, and an adult through interactions with the

environment, which provides the necessary physical conditions (e.g., temperature),

nutrition, sensory and motor experiences, etc. The older theory of preformation

holds that the gametes containing small but perfectly formed bodies waiting to

grow. This primitive theory has long been passed by the epigenetic theory of

development, which is supported by much recent evidence in developmental

biology. The theory of epigenesis explains that differences in cells and tissues arise

in development because gene-expression programs change as cells differentiate and,

furthermore, the actually occurred change depends on not only the gene-expression,

but also the cell’s environment, which includes the physical environment and other

cells. For example, during the growth of neurons, electrical activities can trigger

molecular or developmental programs that create connections, shape particular

connections and modify the connection strength (e.g., see a review by Sur and

Rubenstein (2005)).

The brain develops along with the body development. The mind is what the brain

does. Therefore, the mental development characterizes the functional development

of the brain. It takes place in parallel with, and is greatly shaped by, the physical

development (including the development of the brain), the activities of the body

(including the brain), and the environment of the agent. Through mental

development, the agent incrementally learns to perform increasingly more

sophisticated tasks through interactions with environments, using the agent’s

sensors and effectors and the mental skills that it has learned earlier in similar, but

typically different settings.

The field of developmental robotics aims to simulate biological mental

development, not necessarily including the biological physical development because

designing and fabricating a robot body by human engineers has long become

practical. The various modes of learning for a developmental machine are very

similar to that of human developmental learning (Weng et al. 2006). Therefore,

neural science, psychology, AI, and robotics face many common research issues

under the subject of autonomous mental development. Their advances can benefit

greatly through multidisciplinary communications and collaborations. The material

in the following sections may help to understand why the mind develops—many

human daily tasks seem to be too muddy for nature to choose the route outlined by

the preformation theory.

Section 2 discusses the basic principles that motivated the muddiness concept.

Section 3 provides examples of muddiness factors, which naturally calls for the

framework of multiple muddiness presented in Sect. 4. Section 5 introduces the

2 The reader is referred to a special issue on autonomous mental development in the vol. 11, no. 2 issue

of the IEEE Transactions on Evolutionary Computation, guest-edited by Jay McClelland, Kim Plunkett

and Juyang Weng.
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composite muddiness. Section 6 uses the muddiness concept to introduce three

categories of AI tasks. Section 5 discusses the composite muddiness as a metric for

intelligence. Section 8 contains some concluding remarks.

Principles of Task Muddiness

Designing a metric for evaluation of tasks is challenging. As discussed above, no

comprehensive metric previously existed. However, the issue of task evaluation is

important to understanding the mind as well as the tasks that the mind can process.

In order to understand the proposed muddiness measure for tasks, we need to

look into some fundamental principles that are related to evaluating a task.

Characteristics of Muddiness

The concept of the proposed muddiness was motivated by the following

considerations.

1. Across task domains. Muddiness can incorporate any task. For example, a

computer chess-playing task can be compared with a face recognition task, in

an intuitive way.

2. Independent of species or technology level. A task that is muddy for dog is also

muddy for humans. A task that is muddy for today’s computer technology

remains muddy for future technology, no matter how advanced computer

technology becomes.

3. Independent of the performer. A task that is muddy for machines is also muddy

for humans and vise versa. However, humans are good at performing muddy

tasks.

4. Quantifiable intuitively. It helps us to understand why a task is intrinsically

difficult in a quantitative way. It is impractical to expect that a measure of this

grand scale is totally quantifiable so that every task can be compared in concrete

numbers. This is because tasks that are interesting to consider for our purpose

are not those that give detailed specifications (e.g., the number of receptors in a

human’s retinas or the number of pixels in a robot’s cameras). It is more useful

to examine task muddiness intuitively and conceptually without requiring

mapping each muddiness factor to a concrete number. That is, we use the

intuition provided by simple algebra, without forcing us down to the calculation

detail of arithmetics.

5. Amenable to evaluating state-of-the-art intelligent machines and to appreciate

what humans can do. It objectively measures the overall capacity requirement

of tasks faced by humans and machines.

6. Indicative of human intelligence. It enables us to fully appreciate human

intelligence along multiple dimensions.

Before we are able to discuss muddiness, we first consider an animal or a robot as

an agent.
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An Animal or Robot as an Agent

Systematically modeling any intelligent being as an agent was an important

conceptual advance of the theory of AI. By definition, an agent is something that

senses and acts.3 An illustration is shown in Fig. 1. The input to the agent is what it

senses from its external environment and the output from the agent is the action that

it applies to the external environment. The device that the agent uses to sense input

from the environment is called a sensor. The device that the agent uses to deliver the

output to the external environment is called an effector. For example, our eyes are

visual sensors used for sensing visual information from the external environment

(e.g., watching a movie). Our hands are manipulatory effectors that deliver our

manipulatory actions to the external environment (e.g., picking up a pen from a

table).

The above agent senses only the external environment and acts on only the

external environment. By external, we mean the environment outside the ‘‘brain.’’

The body of the agent is considered external. The brain (or the central nervous

system) senses its internal environment (the brain itself) and acts on it. For example,

a human has a new idea and he acts on the internal environment so that he

concentrates on the new idea instead of the music that is playing in his external

environment. The skill of controlling internal actions is an emergent capability

acquired from autonomous mental development. Weng (2004) formulated what is

called a Self-Aware Self-Effecting (SASE) agent model, which senses and acts on

its internal (brain) environment in addition to sensing and acting on the external

environment. The SASE model indicates that autonomous mental development

develops complex representations in the internal environment in order to perform

muddy tasks.

A Human Engineer as an Agent Constructor

An agent is used to perform single, multiple, or an open number of tasks. Depending

on how a task is specified, a task can be a subtask of another more complex task. For

example, making a move is a subtask of playing a game of chess, and playing a

game of chess is a subtask of participating in a chess tournament.

Suppose that we are given a task to be performed by a machine. Here, we need to

distinguish to whom the task is given. Is it given directly to a machine or to a human

engineer who fabricates the machine and writes the programs for it? We consider

that a task is given to a human being who constructs and writes programs for the

machine, which executes the task. Therefore, two phases are involved: the

developmental phase and the performance phase, as illustrated in Fig. 2. In the

developmental phase, a human engineer accepts a task that the machine is supposed

to perform. He understands and analyzes the task before constructing an agent

(machine) that is supposed to perform the task. Therefore, the product of the

developmental phase is an agent. In the performance phase, the agent is put into

3 See, e.g., an excellent textbook by Russell and Norvig (2003) and an excellent survey by Franklin and

Graesser (1997).
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operation. It accepts an input and produces an output. Through this process, the

agent performs an instance of the task. It may accept another input and produce an

output for each instance. This way, the agent can perform more instances of the

same task. This is the traditional approach of manual development.
In contrast, according to the approach of autonomous development, called the

developmental approach (Weng et al. 2001), the tasks that a machine is supposed to

perform are unknown during the time of programming. Therefore, understanding

the tasks to be performed is not the responsibility of the human engineer, but the

developmental machine itself. This is consistent with human learning: it is the

human learner who is responsible for understanding the tasks being learned, not his

parents.

Whether a human can produce a successful agent for a given task depends on (1)

how muddy the given task is and (2) how he constructs the agent. We will devote

much of the remaining part of this paper to the first issue as the second issue is

addressed elsewhere, e.g., (Weng et al. 2001).

The Constructors of a Human Agent

Then, who is the constructor of a human agent? One may say, well, his parents.

In a sense, it is true. The two parents gave birth to their child. However, modern

biology has provided deeper insight into this important issue: biologically, each of

the two parents provided only a cell called a gamete (egg or sperm). The two

gametes are combined to result in a single cell—a fertilized egg—whose entire set

Developmental phase:

Task

Performance phase:

Input Output

Agent

Agent

State

Fig. 2 The manual
developmental phase and the
automatic performance phase.
The developmental phase is not
automated. The performance
phase is partially or fully
automated. The agent may have
its internal state (e.g., firing
patterns of neurons) when it
performs a task in the
performance phase

?

agent

percepts

sensors

actions

effectors

environment

Fig. 1 The abstract model of an
agent, which perceives the
external environment and acts
on it (adapted from Russell and
Norvig 1995)
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of genes (i.e., genome) contains the complete information necessary for develop-

ment from the single cell to a normal human adult having about 60 trillion cells of

different types in a working configuration. We will call this genome the
developmental program. As we know it, the constructor of this developmental

program is mainly evolution, where not only the parents, but also many ancestors

and the environments in which many generations have lived in have played

compounding roles.

However, this miracle of development, from a single cell to a functional normal

adult, can take place successfully only if the environment provides necessary

biological conditions and information. The biological conditions include all the

post-conception biological conditions necessary for development, such as nutrients

and temperature. The information includes all necessary environmental information

for normal mental development, such as parenting, school teaching, and social

interactions.

In summary, at least three constructors are responsible for the construction of a

human agent: the biological parents, the human genome, and the human

environment in which the agent grows up. These three constructors are not

necessarily disjoint. For example, the biological parents may be part of the

environment for training the child, but this does not have to be the case without

exception (e.g., children raised in an adopted home).

Constructing a human agent is not that difficult for his parents, as the evolution

has got all the mechanisms ready, biological and environmental. The same is not

true for a machine agent. Even with modern computers, constructing a machine

agent for many muddy tasks is extremely difficult. In the following sections, we

study task muddiness to see why.

In the following, the term ‘‘programmer’’ for a machine agent means a computer

programmer. The term ‘‘programmer’’ for a human agent means the process of

human evolution, including the two human parents of the human agent. Whenever a

factor of task muddiness is discussed, both human and machine agents are

applicable.

Muddiness Frame Examples

It is not beneficial to put the muddiness of a task into a single abstract measure that

is arbitrarily defined. Any task can be positioned in a muddiness frame to allow a

visualization of how muddy this task is compared with other tasks. The muddiness

frame is like a coordinate system that we use to specify a point. Each axis represents

a factor of muddiness.

Let us first consider two such muddiness factors: the rawness of input and the size
of input.

If the input to a machine is edited by a human being, the input rawness is low

(e.g., computer chess playing and text-based language processing). If the input is

directly from a sensor without human editing, the rawness is high (e.g., visual

recognition and sonar-based navigation).
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The input space is a space that contains all of the possible inputs. The size of the

input space, or the size of input for short, indicates the number of possible different

values that the agent has to consider while performing the task. For a symbolic input

where each frame is an alphanumeric input from A to Z followed by 0 to 9, its input

size is 26 ? 10 = 36. For a vector input of dimension d whose each component

takes m different values, the size of input is md. For example, an image of

d = 240 9 320 = 76800 pixels, with each pixel taking a byte from 0 to 255, the

size of input is 25676800, an astronomical number.

The muddiness frame using only these two muddiness factors is shown in Fig. 3.

Some typical tasks are positioned in this frame. The direction of each axis denotes

the direction of increase in the corresponding muddiness factor. Since the meaning

of each muddiness factor is not simple, it is not useful to assign a concrete number

to each class of tasks. Thus, we should interpret the coordinates of these tasks

qualitatively instead of quantitatively.

The next factor to introduce is the richness of the goal of a given task, or richness
of goal for short. This refers to how difficult it is to describe the goal of the task in

well-established mathematical terminology. We insist on mathematical terminology

since it is a concise and precise way of expressing programs. A task that can be fully

described in mathematical terms can be converted into an algorithm with little

ambiguity. Conversely, a program can always be written in mathematical

terminology. We also insist that the description of the goal of the task must be in

terms of the input of the system since information available to the agent is only from

its input when it performs the task.

Consider playing a computer chess game. The goal of the task is to checkmate

your opponent’s king. One can use mathematical terminology to describe this

condition. Thus, the richness of this goal is low.

Next, consider identification of humans from video images, a task of visual

recognition. A series of questions are raised if you attempt to describe this task in terms

of input to the system. What do you mean by humans? How do you describe an image

that contains a human and one that does not? More questions need to be asked before

one can construct a machine to perform the task. You will quickly realize that it is

almost impossible to describe this task in mathematical terminology based on only

image input. You probably can describe a human face well in terms of common sense,

but you cannot precisely describe a human face in terms of image input.

Size of
 input

Language
translation

Computer
   chess

  Visual
recognition

Sonar−based
  navigation

Rawness
of input

Fig. 3 A muddiness frame for
two muddiness factors: rawness
of input and size of input. This
diagram is for conceptual
visualization only
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Take language translation as another example. It is almost impossible to write

down mathematically the goal of translation of an article based on the text input.

What do you mean by translating well? What do you mean by ‘‘meaning’’ in

mathematical terminology? Many more questions must be asked before one can

construct a translation machine. Thus, it is extremely difficult to express the goal of

translation in mathematical terminology. Thus, the richness of this goal is high.

Augmenting the previous muddiness frame by adding the richness of the goal, we

have the muddiness frame shown in Fig. 4. We should not consider such positions

for these tasks as absolute. A particular task arising in actual application can vary

tremendously in all three muddiness factors. For instance, technical language

translation from a text in a very specific domain with a very small vocabulary may

not have a very high measure in richness of goal.

Muddiness Frames

In order to acquire a more complete view about the muddiness of any given task

arising from the real world, we need to introduce more factors for muddiness. We

divide the factors into five categories: external environment, input, internal

environment, output, and goal. The external environment is the world in which the

agent’s brain works, including the agent’s body. The input is the information that

the agent’s brain receives from the external environment. The internal environment

is the agent’s brain, which does not include the body. The output is the (motor)

actions from the agent’s brain. The goal is the objectives of the tasks that the agent

performs, which is considered to be separated from the external environment for our

purpose.

It can be seen that given a task, the five categories constitute a partition of the

universe. In other words, any additional muddiness factor has a category to which it

belongs. Of course, there are many other ways to partition the universe. Other

partitions may not necessarily be as intuitive and concise as the one defined here for

our purpose.

Size of
 input

Language
translation Computer

   chess

  Visual
recognition

Sonar−based
  navigation

Richness
of goal

Rawness
of input

Fig. 4 A muddiness frame for three muddiness factors
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Table 1 gives some major muddiness factors grouped into the above five

categories. Although these muddiness factors superficially look ad hoc, they are not

since they are natural things for a programmer to consider before constructing a

machine. They are meant to be explanatory, not exhaustive.

Let us examine the additional factors of muddiness.

External Environment

Awareness. refers to the degree to which the programmer knows about the external

environment in which the agent works. If he knows the environment, he can define

features that the machine can use. Otherwise, recognizing objects in an unknown

external environment is a much harder task to accomplish.

Table 1 A list of muddiness

factors for a task
Category Factor Clean Muddy

External env. Awareness Known Unknown

Complexity Simple Complex

Controlledness Controlled Uncontrolled

Variation Fixed Changing

Foreseeability Foreseeable Nonforeseeable

Input Rawness Symbolic Real sensor

Size Small Large

Background None Complex

Variation Simple Complex

Occlusion None Severe

Activeness Passive Active

Modality Simple Complex

Multi-modality Single Multiple

Internal env. Size Small Large

Representation Given Not given

Observability Observable Unobservable

Imposability Imposable Nonimposable

Time coverage Simple Complex

Output Terminalness Low High

Size Small Large

Modality Simple Complex

Multimodality Single Multiple

Goal Richness Low High

Variability Fixed Variable

Availability Given Unknown

Conveying-mode Simple Complex
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Complexity. measures how complex the external environment is. If the

environment contains exclusively cubic blocks, the task of working in the

environment is cleaner than an environment of human daily living, where very

complex objects are present. Just think about what you can see from a busy street.

Controlledness. gauges the degree in which the environment is controlled. If an

environment is not controlled, then the complexity of the environment is not

bounded. Although a human infant does not necessarily recognize his parents,

brothers, or sisters, he is exposed to their faces early on, as well as complex

interactions which include their conversations, smiles, and tickles. In a controlled

environment, some objects and activities are disallowed.

Variation. indicates whether the environment is changing. A fixed environment,

such as a static office setting, is cleaner than a dynamic one where pages of a book

can be turned, people can move around, the lighting can change, and all the furniture

can be rearranged.

Foreseeability. reflects whether the future environment is foreseeable or not. A

static environment is not necessarily foreseeable, if no information is given about

the environment. If it is known that a car driving environment is the Mojave Desert

between Barstow, California, and Primm, Nevada, the environment is partially

foreseeable, but many details of the actual environment are still unknown such as

other cars.

Input

We have already discussed the rawness of input and the size of input. The

background of input indicates whether the input includes information that is not

related to the task (e.g., background in a face recognition task). Also, if the input

does include background, how complex is the background (e.g., uniform gray or a

busy street)? The variation of input refers to the complexity of variation among

inputs that require the same output (e.g., a static horse or a running horse, in a horse

recognition task). The occlusion of input is another factor of muddiness. Presence of

occlusion in input makes a task muddier (e.g., an occluded face in a face recognition

task). The activeness for input indicates whether the agent must actively acquire

input in order to perform the task (e.g., the robot must go to libraries to find the

required information). The modality of input measures the complexity of the input

modality. The sensory modality affects how muddy a task is. The task of

accomplishing this using a laser range scanner, for example, is less muddy than the

one that uses two video cameras based on stereo ranging. The multi-modality of
input indicates how many distinct sensory modalities are used (e.g., vision alone

versus vision and audition).

Internal Environment

It has been a common mistake to neglect that the internal environment is a

necessary and important category for characterizing tasks. For example, few AI

researchers have paid sufficient attention to a stark contrast between a human and a

traditional AI system: the former autonomously generates internal task-specific
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representations, but the latter requires a human programmer to design its internal

task-specific representations.

It is difficult to understand the requirements of internal memory without

considering a key concept called context. The need of an internal environment is

determined by the need of representing a distinguishable context state, or often

simply called state. It is important to note, however, that the true state of the agent is

represented not only by the context state (which uses short-term memory) but also

the entire memory (which includes the long-term memory). The behavior generated

by the agent depends not only on the context state (e.g., hear an insult), but also the

long-term memory (e.g., how he has been educated in the past). For consistency

with the AI literature, we call the context state simply state.

An AMD agent is a sequential processing agent. It processes one input frame at a

time and then produces one frame of control vector for its motors at a time. A

sequential processing agent needs a state to identify and distinguish context. It

corresponds to that part of memory that is recalled and kept active for the current

step. A state indicates the current cognitive situation of the agent.

The size of an internal environment is the measured value of the minimally

required size of the internal storage space. With all other muddiness factors fixed,

translation of a page of technical writing requires less memory than translation of a

page of a well-composed essay. Although the actual required internal memory size

depends on the approach adopted for the agent, there is a minimally required

memory size from the viewpoint of information. It is typically difficult to estimate

such a minimal size. The larger the space that is minimally required to perform a

task, the muddier the task. As mentioned above, each state in the state space is used

to record the context that the agent must currently attend to. The space of the state

must contain the information about all the contexts that must be distinguished for

the task, whether directly or through interpolation or generalization. Thus, the size

of state (space) indicates how many possible contexts are required and how large

those contexts are for a given task. Further, the long-term memory space, in addition

to the context space, indicates how much space is minimally needed to carry out the

task.

The representation of internal environment concerns whether the internal

representation is given or from the task specification to the task execution agent. It

also characterizes how much information is given. The less information about

internal representation is given, the muddier the task is. For this concept, the

following distinction is important:

(a) A human is the sole task executor.

(b) A machine is the sole task executor.

(c) A human and a machine are combined as the task executor: The programmer

programs the machine, which in term executes the task.

In cases (a) and (b), the task specification is directly conveyed to the sole task

executor. In case (c), typically the task specification is conveyed to the human who

in turn designs a representation for the machine.

In the current AI field, this distinction has been largely overlooked. For human

intelligence, (a) is the case. In the current AI field, case (c) is prevailing since it is
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the mode of traditional, manual-development AI. However, with an AMD agent, (b)

is the case (Weng et al. 2001; Weng 2004). The distinction between (b) and (c) are

philosophically important, and it clarifies the dilemma of the traditional AI: If a

traditional non-developmental machine does a muddy task well (hardly any so far),

it is the human programmer who is intelligent, not the machine. If a developmental

machine does a muddy task well (more and more are expected to be demonstrated),

it is truly the machine task-performer that is intelligent in the same sense as a human

task-performer who is intelligent.

The observability of internal environment means the degree to which the internal

representation of the agent is observable by the outside world during the construction

(or development) of the agent. This is important since the developmental phase may

include a training process during which the agent is trained before it is mature enough

to do the job. During this training process, the difficulty level of the training depends,

to a large degree, on whether the state of the agent at that time is observable, partially

observable, or completely unobservable. Why does it matter? Let us consider how a

human mother teaches her child. If the mother can observe what the child is thinking

about (i.e., the current state of his brain), then she can teach the child more

effectively. For example, if the mother knows that the reason why the child does not

want to eat is because he wants to play with a favorite toy, then the mother can give

the toy to the child while feeding him. Unfortunately, the state of the human brain is

not directly observable. We can only observe the behavior of an individual. But, his

behavior does not have to be consistent with what he thinks about. For example, a

child can make up various excuses for his poor performance in school without

revealing the real reason. If the agent’s state is not observable, the human teacher

does not have sufficient information about the true state of the agent during the

training process and, thus, it is harder to train such an agent.

Closely related to the observability of internal environment is the imposability of
the internal environment. The imposition here means that the human teacher

directly sets the value of the internal representation of the agent. The representation

of the human brain is not imposable through direct brain manipulation, assuming

that brain surgery is not what we are interested in here. A parent can tell his child

what the right thing to do is. However, the parent cannot directly impose what a

child actually thinks about (e.g., through electric wires linking into various areas of

the brain). If a human teacher can directly impose desired values to the internal

representation of the agent under training, it is more effective to conduct the

training, but the training is tedious. The observability and imposability of the

internal environment are closely related. For example, if the internal environment is

both observable and imposable, the imposed value of the state can be determined by

a human according to the observed current state.

The time coverage of the internal state characterizes how complex the required

temporal coverage pattern is for the context when the task is performed. If the

temporal context required is short, the task is cleaner. If the extent of the temporal

context is fixed, the task is cleaner. If the temporal context is monolithic, meaning

that everything sensed in a time window can be used in the same way, the task is

cleaner. A non-monolithic context means that attention selection is required to

attend to only old events that are related to the task at hand, instead of putting
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everything that happened within a time window into the context. In other words,

long, time-varying, non-monolithic temporal context makes the task muddy. Many

tasks that humans perform routinely require a temporal context that spans several

days or even years. However, not everything that happens in this long time window

is used in making a decision. Here are some examples. A college student works

harder whenever he recalls how his parents sent him to college three years ago. But,

how he works now has little to do with what he ate this morning for breakfast. A

successful entrepreneur conducts his business more prudently whenever he recalls

how his grandparents’ business went bankrupt and how he started his new business

from scratch. In these examples, the human subjects appropriately select only

temporal events that are closely related to the decision they want to make.

Therefore, the temporal context used by humans tends to be of a long temporal span,

time-varying, and non-monolithic. In Table 1 the term ‘‘complex’’ is used to

describe these characteristics.

Output

The agent outputs its actions to its effectors. The terminalness of output reflects how

the output can be used directly without human processing (e.g., text versus the

motor control signals). While raw input means that it does not require preprocessing

by humans, terminal output means that it does not require post-processing by

humans. The size of output is similar to the size of input. The modality of output
determines how complex the output is (e.g., just the heading direction of a car

versus controlling all the muscles in the vocal tract to speak). The multi-modality of
output indicates how many distinct effector modalities are used (e.g., driving only

versus driving and speaking concurrently).

Goal

Each task has a goal. The goal is very much related to task muddiness. We have

already discussed the richness of the goal as a factor of muddiness.

The variability of goal indicates whether the goal of a task may change, and the

degree of change. For a game of chess, the goal is fixed: to checkmate the

opponent’s king. However, in our daily life, our goal may change. One may change

his plan to go to a gymnasium for a work-out after witnessing a hit-and-run

accident. For a 3-year-old child, his goals are more or less playing, eating, and

sleeping. When he becomes a college student, however, he may have very different

goals. His goals may change depending on how well he does in college, the new

knowledge he learns while in college, and so on.

The availability of goal measures whether the goal is given at the time of

machine construction. One might feel puzzled: If you want to construct a machine to

do jobs, you must provide the machine with a goal. This is true for simple or fixed

tasks. When the tasks are complex, such as in the case of a household service robot,

is the goal given? One may say, ‘‘well, the goal is to let the robot do what I say.’’ Do

you want to tell the robot what to do every time the door bell rings? Do you want to

tell it what to do every time a child steps into the lawn area when the robot is
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mowing? Therefore, the issue is how much detail has to be specified for a robot that

does numerous tasks and whether the goal of every task needs to be given before it

is constructed. A human child is born independent of whether his parents have a

clear idea of what the child will do in his lifetime. The goals of doing something,

including even what to do, are taught after the construction (birth) of a human being,

not before. Future advanced developmental robots will be able to self-decide what

to do when the detailed goal is not clearly conveyed. They will be able to show

autonomous intention.

The conveying mode refers to the mode in which the goal is specified to the task

executor. Is it explained via a keyboard in a computer language or in a spoken

natural language? The former is clean and the latter is muddy. If a human is the sole

task executor or a human is the programmer for a machine, conveying the task goal

in a spoken natural language is not a major challenge. This means that humans can

execute very muddy tasks. If a machine is the sole task executor, the machine must

understand the goal of the given task in whatever conveying mode used. The more

complex the mode is, the muddier the overall task.

We have finished our examples of muddiness factors. We did not intend to

scrutinize every possible factor. We have passed a number of other factors without

mention. Some of them can be considered a finer classification within the discussed

muddiness factors. For example, noise in the input can be a measurement for input.

On the other hand, rawness covers this aspect since a signal from a real sensor

contains noise, which reflects the imperfection of a real sensor and its electronic

parts. We did not mention the hierarchy of goals since it is considered as belonging

to the richness of the goal. Therefore, one can include as many muddiness factors as

needed. The list of muddiness factors in Table 1 is not meant to be exclusive. It is

meant to provide enough detail for explanation.

Composite Muddiness

If we use n muddiness factors, we can construct an n-dimensional muddiness frame,

similar to what is in Fig. 3 for a 2-D case and Fig. 4 for a 3-D case. From the 25

muddiness factors in Table 1, we have a 25-D muddiness frame.

A caveat here is that the muddiness measures along different axes are very

different in nature and, thus, it is hard to compare different muddiness factors using

the concrete values of their coordinates. We should only use the muddiness frame in

an intuitive and conceptual sense. Then, why bother defining a scalar quantity if we

do not compare the muddiness of different tasks quantitatively? This is because a

conceptual understanding about how different factors are combined in mathematical

operations is more general and more useful than comparing two concrete numbers.

For a similar reason, algebra is more general than arithmetics. Two different

concepts cannot be combined into a single measure until both are converted into a

number by an abstract scheme.

Another caveat is that the sense of muddiness created by a muddiness frame

depends very much on what kinds of muddiness factors are included in the

muddiness frame.
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We would like to give a composite measure in terms of how muddy a task really

is. Denote the muddiness coordinate of the ith row in Table 1 as mi. The value of mi

should never be smaller than 1, mi C 1. Each original muddiness xi (e.g., the size of

input space or the size of internal memory) is mapped by a nonlinear function fi, so

that mi = fi (xi) is a properly transformed muddiness. For example, for xi C 0, we

choose

mi ¼ fiðxiÞ ¼ ai log2ðxi þ 1Þ þ 1;

where ai, with 0 \ ai \ 1, determines the relative importance of each muddiness mi

in the following composite mudidiness.

The composite muddiness of any task can be modeled by the product of all the

property transformed muddiness coordinates mi:

m ¼ m1m2. . .mn ¼
Yn

i¼1

mi; ð1Þ

where m is the composite muddiness and n is the number of muddiness axes adopted

in a muddiness frame. Note mi C 1, for i = 1, 2, …, n. This way of modeling the

muddiness of a task is not meant to compare relative importance of different

muddiness factors on different axes of the muddiness frame.

Once the set of muddiness factors is determined, we can visualize the muddiness

of a given set of tasks. For example, in a 2-D muddiness frame, we can plot an iso-

muddiness curve. It is a curve on which all the tasks in the muddiness frame have

the same muddiness. Figure 5 plots three iso-muddiness curves in a 2-D muddiness

frame using two muddiness factors mi and mj. In a 3-D muddiness frame, all the

tasks having the same composite muddiness value form an iso-muddiness surface.

In an n-dimensional muddiness frame, they form a hyper-surface:
Qn

i¼1 mi ¼ c;
where c is the constant composite muddiness measure. Note that the coordinate 1

can be used for the simplest useful case, since mi C 1.

It can be seen clearly why we did not define the composite muddiness as the

Euclidean distance from the position of a given task to the origin of the muddiness

frame. Our composite muddiness takes into account the composite muddiness of

many axes, not just a single axis. A position that is near an axis still corresponds to a
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m i

j
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Fig. 5 Iso-muddiness curves in
a 2-D muddiness frame
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relatively clean task. The Euclidean distance from the origin does not have this

property.

Three Task Categories

The composite muddiness and the muddiness factors in Table 1 enable us to

appreciate what a developed adult brain can do. The 30,000 genes (i.e., genome) of

the human being, residing in a single fertilized egg cell, enables its development

from a single cell to a adult human being who handles many muddy tasks. The

human genes are a result of evolution, while the human brain is a combined result of

the inherited genes and the environments of the human individual while he lives in

his society. Clearly, much information in the brain is from the environment, but the

genome regulates its development.

Now that we have mastered the muddiness frame as a tool. We are ready to

examine whether a given task is muddy. To facilitate our discussion, we divide all

possible tasks into three major categories: 1, 2, and 3.

Category 1: Clean Tasks

What kinds of tasks are clean tasks? The list is extremely long. Examples of tasks in

Category 1 include: Word processing, industrial control, digital communication,

appliance control, digital computation, and playing some (simulated) games (e.g.,

IBM’s Deep Blue). If we locate these tasks in our 26-dimensional muddiness frame

as shown in Table 1, they all lie around the origin of our muddiness frame.

Category 2: Muddy Tasks

The tasks in Category 2 are muddy but they are intensively studied by researchers.

This category contains tasks that are currently considered as core subjects of AI.

Some example tasks in this category are visual object recognition, visual navigation,

speech recognition, text-based language translation, sign language recognition, and

text-based discourse.

Category 3: Very Muddy Tasks

Category 3 consists of mostly tasks for which humans have not yet built a machine

to try. Some tasks in Category 3 are:

1. Learn about new muddy subjects—autonomously learn any possible subjects
that are of high values, including those the machine maker does not know

about. For example, learn about a new disease (e.g., AIDS and SARS when they

were first discovered).

2. Create new knowledge—discover new facts about science and produce creative

works on any possible subjects that are of high values, including those that not

only the machine maker but also we humans do no know about. For example,
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when the human conventional energy resources have been nearly exhausted,

discover new sources of energy for humans.

The term ‘‘any possible subjects’’ above includes all the subjects that a normal

human can potentially learn in his lifetime, although he may not necessarily actually

learn all of them.

The tasks in this category are so muddy that little has been done for machines.

However, this category is of fundamental importance, since a solution to the tasks in

Category 3 holds the key to the solutions to the tasks in Category 2. Further, this

category helps us to understand and appreciate human intelligence which in turn

motivates us to seriously embark on the developmental route toward machine

intelligence for muddy tasks. When robots can perform tasks in Category 3, they

should be able to participate in the design, construction and training of robots with

inputs from humans.

It is expected that the traditional, non-developmental agents are not going to

handle tasks in Category 2 well, depending on how muddy the tasks are. This is

mainly because those traditional agents require human programmers to program

task-specific representations into the machines, which quickly gets out of hand if the

tasks become muddy in the composite muddiness, as shown in Fig. 5.

That is why it is necessary to study and construct autonomous developmental

agents. In the brain of such an agent, various task-specific internal representations are

emergent, along with the emergent skills for internal (brain) and external (outside

brain) actions, while the agent autonomously interacts with its living environments

(including humans) (Weng 2004). Task-nonspecificity during the programming time

is a fundamental difference between a developmental agent and a machine that can

only learn in the sense of traditional machine learning (task-specific programming).

Although a human can program a machine to execute a relatively clean task,

autonomous mental development is the only practically way a general purpose highly

intelligent agent comes into being if it must deal with many muddy tasks.

Intelligence Metrics

Based on the muddiness introduced above and the sample tasks discussed, I propose

a measure of intelligence in terms of the capability of performing muddy tasks.

Definition 1 A measure of intelligence for an agent is in terms of the composite

muddiness of the tasks that it performs. Collectively, the intelligence of an agent is

measured in terms of the variety of muddy tasks it carries out and the muddiness of

these tasks.

Thus, the muddier a task, the more intelligence is required on the part of the

performer. The larger the variation of such tasks, the more intelligence is required.

The proposed measure is not the only measure for intelligence, but it is certainly a

candidate.

As is somewhat expected, humans and higher animals (such as dogs and cats) are

much more intelligent than modern computers, if we use the muddiness introduced
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here as the measure. Using this measure, intelligence is not something that is easy to

demonstrate by current machines.

If intelligence is measured as the capability of performing a specific task,

different AI tasks are then measured by very different metrics. However, what a

special purpose machine can do under a specific setting represents mainly the

intelligence of the machine programmer, not necessarily the machine’s own

intelligence. Further, a special purpose machine does not do well for muddy tasks,

as defined here.

On one hand, it is totally justified to construct machines that perform specific

tasks that humans do not like to do or cannot do well in specific settings. On the

other hand, there are many tasks that are extremely muddy and humans would like

machines to perform, such as autonomous driving, house cleaning, and personalized

tutoring.

Therefore, the criteria for measuring machine intelligence need careful studies

to systematically take into account muddy tasks. Consequently, the metrics to

measure the power of intelligent machines should emphasize the capabilities of

autonomous development in muddy human environments. As reaching a desired

end needs means, testing the means is critical for identifying the potential to reach

the end.

This is indeed the case with well-accepted test scales used by clinical

psychologists for measuring mental and motor scales of human children. Two such

well-known scales are The Bayley Scales of Infant Development (for 1–42 months

old) (Bayley 1993), which has been widely used for operational clinical tests, and

The Leither International Performance Scale (for 2–12 years old), which has several

modern adaptations for operational clinical tests (e.g., (Arthur 1952)). These scales

have a systematic methodology for the administration of tests and scoring. The

reliability and calibration of these scales have been supported by a series of validity

studies, including construct validity, predictive validity, and discriminant validity

that cover a large number of test subjects and different age groups across wide

geographic, social, and ethnic populations.

Let us take a look at an example of tests in the Leither International Performance

Scale for a two-year old. The name of the test is Matching Color. The test setup is a

row of 5 stalls, as shown in Fig. 6. Each stall is marked with a color card that

indicates a certain color, black, red, yellow, blue, and green, respectively.

During the test, color blocks are presented, one at a time, in the order of: black,

red, green, blue, and yellow. The examiner places the black block in the first stall

and tries to get the subject to put the red block in place by putting it on the table

before him, then in the appropriate stall, then on the table again, nodding to him to

do it and at the same time pointing to the second or red stall. As soon as the subject

begins to take hold of the test, the final trial can be attempted. In this test, the

examiner tries to get the subject to imitate his procedure. The test is scored as

passed if the subject is able to place the four colors (the first one is placed by the

examiner) in their respective stalls on his own during any one trial, regardless of the

number of demonstrations or the amount of help previously given by the examiner.

As we can see, the test is not concerned about whether the child has learned the

abstract concept of color, but rather the capability of autonomous learning during
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which tasks to be learned about are not explicitly given. In particular, the subject

must recall a series of desired actions from the corresponding real-time contexts,

from imitating the actions of the examiner, to identifying visual color information

as a major attended cue, to the coordination of his motor effectors (hands and

arms), while the environments contain many irrelevant stimuli. All these desired

perceptual and motor behaviors must be invoked in time even though imitation and

the keys for success have not been explicitly specified before or during the test.

This type of test requires the child to be able to pay attention to the examiner, the

stall, the card, the color, etc., respectively, and to autonomously come up with the

desired intent for each current context (e.g., what to imitate). Of course, color is just

one of the many desired features required by the series of tests in a well designed

performance scale. Variants of the matching colors include matching shapes,

matching objects, etc.

The mental age that is used for measuring human intelligence in these scales can

be used as a measure for general purpose machine intelligence. Currently metrics

that have been used for various AI studies mainly measure what a machine can do

under a specific setting, instead of the capability of mental development. Such a

capability requires an online, interactive and incremental learning capability as the

above test demonstrates. For example, an interactive dictionary stores a vast amount

of human knowledge and can do remarkable things for humans, but it is not truly

intelligent. If a machine can pass the systematic tests like the one shown above, it

must have already learned many other skills that no traditional machine has. The

performance metrics for measuring intelligent machines should be adapted from

those used by clinical psychologists for testing the mental development of human

children. Although autonomous mental development is a relatively new direction,

its impact on the future of machine intelligence and understanding of human

intelligence is far reaching.

Black
Red

Yellow
Blue

Green

Black

Fig. 6 The setting of Matching Colors in the Leither International Performance Scale for a two-year old.
In the original test, actual colors are used. Here, the names of the colors are used instead for illustrating in
black and white
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Conclusions

The composite muddiness of a task introduced here is proposed as a measure of the

intelligence of the performer, a human or a machine. Although mathematic tools are

used by the model, the proposed model addresses mainly philosophical and

conceptual questions of measuring muddiness of tasks. Of course, it is not the only

way to carve up intelligence. However, currently such a metric is missing and it is

important to propose one. It is useful for understanding tasks that are dealt with by

humans and machines.

A manually designed task-specific representation in a traditional AI approach

restricts its capability to deal with muddy tasks.

With many muddiness factors in a muddy task, it seems that autonomous

development is suited for muddy tasks and is necessary for very muddy tasks, due to

the task-nonspecificity of autonomous development. That is one of the major reasons

why all natural higher intelligent agents go through an extensive process of

autonomous mental development. Therefore, a critical metric for measuring general

purpose machine intelligence is the capability of autonomous learning while the

tasks and subtasks are implicit, as measured by test scales widely used by clinical

psychologists. The true answers to how the brain works and how to realize higher

machine intelligence lie in understanding how the brain develops. By how the brain

develops, I mean not only how the brain’s morphology changes, but also the

biological and computational mechanisms of cell-centered (Sur and Rubenstein

2005; Weng et al. 2008) dynamic connection, cortical self-organization, adaptation

and activity-dependent plasticity scheduling. Higher brain functions, such as

perception, cognition, emotion, reasoning, thinking, motor skill perfection, emerge

from extensive processes of situated autonomous development, regulated by these

biological and computational mechanisms.
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