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1. Introduction 

 
The guiding question of this paper is: can we simulate deterministic descriptions by 

indeterministic descriptions, and conversely? By simulating a deterministic description by an 

indeterministic one, and conversely, we mean that the deterministic description, when 

observed, and the indeterministic description give the same predictions.  

Answering this question is a way of finding out how different deterministic 

descriptions are from indeterministic ones. Of course, indeterministic descriptions and 

deterministic descriptions are different in the sense that for the former there is indeterminism 

in the future evolution and for the latter not. But another way of finding out how different 

they are is to answer the question whether they give the same predictions; and this question 

will concern us.  

Since the language of deterministic and indeterministic descriptions is mathematics, 

we will rely on mathematics to answer our guiding question. In the first place, it is unclear 

how deterministic and indeterministic descriptions can be compared; this might be one reason 

for the often-held implicit belief that deterministic and indeterministic descriptions give very 

different predictions (cf. Weingartner and Schurz 1996, 203). But we will see that they can 

often be compared. The deterministic and indeterministic descriptions which we will consider 

are measure-theoretic deterministic systems and stochastic processes, respectively; they are 

both ubiquitous in science. To the best of my knowledge, our guiding question has hardly 

been discussed in philosophy.  

In this paper I will explain intuitively some mathematical results which show that, 

from a predictive viewpoint, measure-theoretic deterministic systems and stochastic processes 

are, perhaps surprisingly, very similar. I won’t go into the technical details (ergodic theory 

and the modern theory of stochastic processes); they can be found in Werndl (2009c and 

2009d). 

This paper is organised as follows. In section 2 I will introduce measure-theoretic 

deterministic systems and stochastic processes. In section 3 I will explain how, at a basic level, 

deterministic systems and stochastic processes give the same predictions. Section 4 will be 

devoted to more advanced results on the predictive equivalence of deterministic and 

indeterministic descriptions. I will argue that the results show that from a predictive viewpoint, 

measure-theoretic deterministic systems and stochastic processes are very similar.  
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2. Indeterministic and Deterministic Descriptions 

 

Let us introduce the indeterministic and deterministic descriptions which will concern us. 

There are two kinds of indeterministic and deterministic descriptions: for discrete descriptions 

the time increases in discrete steps, and continuous descriptions involve a continuous time-

parameter. We confine ourselves to discrete descriptions. For continuous descriptions similar 

but also slightly different results to the ones discussed here hold (cf. Werndl 2009d).  

 

2.1 Stochastic Processes 

 

The indeterministic descriptions we are concerned with are stochastic processes. Basically all 

the indeterministic descriptions in science are stochastic processes, which are thus ubiquitous 

in science. A stochastic process is a process that evolves according to probabilistic laws. That 

is, for a stochastic process there usually is some indeterminism: even if the initial state of the 

process is known, there are many possibilities the process might go to, and these possibilities 

are measured by probabilities. A sequence describing a possible evolution of the stochastic 

process over time is called a realisation. 

Let me introduce stochastic processes in more detail.
1
 Probability theory is concerned 

with probabilistic experiments. The set of all possible outcomes of a probabilistic experiment 

is denoted by Ω and called the sample space. It comes equipped with a probability 

distribution Q which assigns probabilities to the subsets of Ω you are interested in. In applied 

problems you are usually interested in functions of the outcomes of a probabilistic experiment. 

Hence the concept of a random variable is introduced. A random variable is a function Z from 

a sample space Ω to a set E, called the state space, which assigns a value Z(ω) to each ω in Ω. 

An event A is a subset of the set E which you are interested in, and the probability distribution 

of the random variable Z is given by looking back to Q on Ω, i.e. P:=Q(Z
-1

(A)) defined for all 

events A of E. Finally, a stochastic process (Zt) with state space E is a collection of random 

variables Zt, where t is in an integer, defined on the same sample space Ω and taking values in 

E. The sequence r(ω):=(…Z-1(ω),Z0(ω),Z1(ω)…) for any ω in Ω is called a realisation of the 

stochastic process. Intuitively, t represents time; so that ω represents a possible history in all 

details, and r(ω) represents the description of that history by giving the ‘score’ at each t. 

For instance, a Bernoulli process is a stochastic process where at each time point an N-

sided die is tossed and the tosses are independent. That is, it is a stochastic process (Zt) where 

(i) the state space is {e1,…,eN}, and for any t the probability for outcome ei is pi where 

p1+…+pN=1; and (ii) P(Zi1=ej1,…,Zin=ejn)= P(Zi1=ej1)•… •P(Zin=ejn) for any ej1,…, ejn in E 

and any integer-valued i1,…,in. 

 

2.2 Deterministic Systems 

 

A description is deterministic exactly if any two solutions which agree at one time agree at all 

times (Butterfield 2005). Hence for deterministic descriptions there is no indeterminism about 

the future evolution. A sequence describing the evolution of a deterministic description over 

time is called a solution. 

We are concerned with measure-theoretic deterministic descriptions, in short 

deterministic systems. They are denoted by (X,T,µ) and consist of three components: a set X, 

called the phase space, which represents all possible states of the system; a bijective map 

                                                
1
 All the seemingly mathematical definitions introduced in this paper are intuitive descriptions of measure-

theoretic definitions which are given in Werndl (2009c, 2009d). 
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T:X→X which describes how states evolve, namely every x in X evolves to T(x) in one time 

unit and so to T
t
(x) in t time units. And µ is a normalised measure; intuitively, the subsets of X 

you are interested in are called events, and the measure assigns to all events a nonnegative 

size with total size one, i.e. µ(X)=1. As we will see, for connecting deterministic with 

indeterministic descriptions it is crucial that a measure is given on the phase space. 

The solutions of a deterministic system are (…T
-1

(x), x, T(x)…) for any x in X. We will 

often be concerned with measure-preserving deterministic systems, which are deterministic 

systems where the measure is invariant under time-evolution, i.e. where µ(T(A))=µ (A) for all 

events A. There are various interpretations of invariant measures. For instance, according to 

the time-average interpretation the measure of an event A is the long-run proportion of time a 

solution spends in A and thus can be interpreted as probability. In what follows we make the 

common assumption that invariant measures can be interpreted as probability (cf. Werndl 

2009a).  

Deterministic systems, and measure-preserving deterministic systems in particular, are 

among the most important deterministic descriptions in science. To require that the measure is 

invariant is not very restrictive because for wide classes of deterministic systems invariant 

measures exist (cf. Werndl 2009c). For instance, all deterministic descriptions in Newtonian 

and statistical mechanics are measure-preserving deterministic systems. 

When you observe a deterministic system a value is observed which is dependent on, 

but maybe does not uniquely encode the actual state. Hence observing the system can often be 

modelled by an observation function, i.e. a function Φ:X→M where M contains all possible 

observed values.  

The deterministic system of the baker’s system will accompany us throughout this 

paper. States (x,y) in the unit square X:=[0,1]x[0,1] are mapped to T(x,y):=(2x,y/2) if 

0≤x<1/2 and (2x–1,(y+1)/2) otherwise. Figure 1 shows the dynamics of the baker's system. 

For the standard volume (the Lebesgue measure) we obtain a measure-preserving 

deterministic system. It describes a particle bouncing on mirrors (Pitowsky 1995).  

 

 
 

Figure 1: dynamics of the baker’s system 

 

 

3. Basic Indistinguishability of Deterministic Systems and Stochastic Processes 

 

This section is about indistinguishability results which are basic in the sense that they answer 

the question whether, given a deterministic system, we can find any stochastic process which 

simulates the system, and conversely. In section 3.1 I will explain how stochastic processes 

can be simulated by deterministic systems; these results seem to be unknown to philosophers. 

In section 3.2 I will show how deterministic systems can be simulated by stochastic processes; 

here the basic idea is known to philosophers of physics (Butterfield 2005).  
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3.1 Deterministic Systems Simulated by Stochastic Processes 

 

How can you simulate deterministic systems by stochastic processes? Contrary to 

deterministic systems, for stochastic processes there is usually indeterminism in the future 

evolution. But when you observe a deterministic system, you see only how the system moves 

from one observed value to another; and because the observation function can map two states 

to the same value, the same current observed value can lead to different future observed 

values. Hence only if you make the assumption that a deterministic system is observed with 

an observation function can you hope to simulate it by a stochastic process. But this 

assumption is unproblematic: deterministic systems in science typically have an uncountably 

large phase space, and scientists can only observe finitely many different values.  

A deterministic system comes equipped with a probability measure. Hence when 

observing the system, you see the probability distributions of sequences of possible 

observations of the deterministic system; and the predictions you obtain are these probability 

distributions. A stochastic process is defined by the probability distributions over its 

realisations, and these probability distributions are the predictions you obtain. Consequently, 

when saying that a stochastic process (Zt) and a deterministic system, as observed with Φ, 

give the same predictions we mean the following: (i) the possible states E of the stochastic 

process are the possible observed values of the deterministic system, and (ii) the realisations 

of the stochastic process have the same probability distribution as the solutions of the 

deterministic system observed with the observation function. Recall that we say that a 

deterministic system is simulated by a stochastic process, and conversely, exactly if the 

deterministic system, when observed, and the stochastic process give the same predictions.  

Formally, for any (X,T,µ) and any observation function Φ, (Zt):=Φ(T
t
) is a stochastic 

process and hence simulates the deterministic system observed with Φ. But the question is, of 

course, whether this stochastic process is nontrivial. To stress the point, if Φ is the identity 

function, then although Φ(Tt
) is formally a stochastic process, it is evidently equivalent to the 

original deterministic system. But several results show that we often obtain nontrivial 

stochastic processes. Let me mention one result which is shown in Werndl (2009c).  

 

Proposition 1. Assume that a measure-preserving deterministic system is weakly mixing
2
. 

Then for any observation function with finitely many different values
3
 the stochastic process 

(Zt):= Φ(T
t
) is nontrivial: there are observed values, that is, elements ei, ej of the state space 

E of the stochastic process such that 0<P(Zt+1=ei given that Zt=ej)<1. 

 

Let us assume that only finitely many different values can be observedMost measure-

preserving deterministic systems, including many systems in science, are weakly mixing 

(Halmos 1944). Hence Proposition 1 says that for most measure-preserving deterministic 

systems, regardless how you observe them, you always obtain nontrivial stochastic processes. 

For instance, the baker’s system is weakly mixing. Therefore, regardless of how you observe 

it, you obtain a nontrivial stochastic process.  

 

 

 

 

                                                
2
 A measure-preserving deterministic system (X,T,µ) is weakly mixing iff for all events A, B  

limn→∞ 1/n (|µ(A∩B)–µ (A)µ(B)|+|µ (T(A)∩B)–µ(A)µ (B)|+…+(|µ(T
n–1

(A) ∩B)– µ(A)µ(B)|)=0.  
3
 We assume that the observation function does not only take one value. 
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3.2 Stochastic Processes Simulated by Deterministic Systems 

 

How can a given stochastic process be simulated by a deterministic system? Again, 

simulating the behaviour of a stochastic process by a deterministic system will only work if 

you allow that the deterministic system is observed. As argued, this assumption is 

unproblematic.  

Assume that a stochastic process (Zt) is given. We can construct a deterministic system 

as follows: X is the set of all imaginable realisations of the stochastic process, i.e. the set of 

sequences e=(...e-1,e0,e1…) where ei are elements of the state space E of (Zt). Let T be the map 

on X which shifts each sequence to the left, i.e. T((...e-1,e0,e1…))= (...e0,e1,e2…). Finally, (Zt) 

determines a probability distribution on the realisations and hence a measure µ on X. Then 

(X,T,µ) is a deterministic system.  Now assume you observe the 0
th

 coordinate, i.e. you 

employ the observation function Φ(e)=e0. Clearly, the deterministic system (X,T,µ) observed 

with Φ simulates the process (Zt). (X,T,µ,Φ) is called the deterministic representation of (Zt). 

Thus we can conclude that every stochastic process can be simulated  by at least one 

deterministic system which, when observed, gives the same predictions, namely its 

deterministic representation.  

The deterministic representation is, from a philosophical perspective, a cheat because 

its states are constructed to encode the future and past evolution of the indeterministic process; 

also, the observation function is unnatural because scientists usually do not observe the 0
th

 

coordinate of a bi-infinite sequence. Still, it is important to see how, mathematically, 

stochastic processes can be simulated by the deterministic representation. There remains the 

question whether there are also other deterministic systems that simulate a stochastic process; 

we will return to it later (in section 4.1).  

For instance, for a Bernoulli process with N different outcomes the deterministic 

representation is the following: the phase space is the set of all possible bi-infinite sequences 

of the N outcomes, the evolution equation shifts each sequence to the left, and the observed 

value is the 0
th

 coordinate of the sequence. Generally,—and this definition will be important 

later—a deterministic Bernoulli system is a deterministic system which is probabilistically 

equivalent to the deterministic representation of a Bernoulli process, and hence (observed 

with specific observation functions) simulates a Bernoulli process. 

 

Let me briefly comment on the philosophical significance of the above results. The guiding 

question of this article is: can we simulate deterministic systems by indeterministic processes 

which give the same predictions, and conversely? Our results show that stochastic processes 

can always be simulated by deterministic systems, and that many deterministic systems, when 

observed, can be simulated by nontrivial stochastic processes. Therefore, from the perspective 

of predictive power, stochastic processes and deterministic systems are similar. 

 

 

4. Advanced Indistinguishability of Stochastic Processes and Deterministic Systems 

 

This section is about indistinguishability results which are advanced in the sense that they 

concern the question whether it is possible to separate deterministic systems in science from 

stochastic processes in science. 
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4.1 Deterministic Systems Simulating Stochastic Processes in Science 

 

We have seen that any stochastic process can be simulated by at least one deterministic 

system, namely its deterministic representation. However, the deterministic representation is 

artificial in the sense that scientists do not encounter it when modelling phenomena. So you 

might still guess that the deterministic systems which simulate the stochastic processes in 

science, such as Bernoulli processes, are very different from the deterministic systems in 

science, such as Newtonian systems.  

Until the late 1950s it was widely believed that stochastic processes and deterministic 

systems are different in this way. More specifically, Kolmogorov conjectured that while the 

deterministic systems which simulate stochastic processes in science produce positive 

information, the deterministic systems in science produce zero information. Kolmogorov and 

Sinai introduced the Kolmogorov-Sinai entropy to capture the property of producing positive 

information; and this property was expected to be able to separate stochastic processes from 

deterministic systems. It was a big surprise when it was found that many deterministic 

systems in science, among them Newtonian systems, have positive Kolmogorov-Sinai entropy 

and thus produce positive information (Frigg and Werndl 2009; Sinai 1989, Werndl 2009b). 

What is more, Bernoulli processes are often regarded as the most random stochastic 

processes because past outcomes are independent of future outcomes. And there are even 

deterministic systems in science which are deterministic Bernoulli systems; hence there are 

deterministic systems in science which, when observed with specific observation functions, 

simulate a Bernoulli process. For instance, to mention a few, dispersive billiard systems, the 

logistic map (for some parameter values) which models population dynamics and the climate, 

and the Hènon map which models weather phenomena (Lorenz 1964; Lyubich 2002; May 

1976; Ornstein and Weiss 1991; Young 1997; see also Winnie 1998). Also the baker’s system 

produces a Bernoulli process. Assume that you only see whether the state of the baker’s 

system is to the left or to the right of the unit square, i.e. Φ((x,y)):=0 if x<1/2 and 1 otherwise. 

This makes the system equivalent to a fair coin toss, viz. a Bernoulli process with outcomes 0 

and 1 which have both probability 1/2. 

 

Hence even Bernoulli processes, often regarded as the most random stochastic processes, are 

simulated by deterministic systems in science when observed with specific observation 

functions. But then any attempt to separate such deterministic systems from the deterministic 

systems which simulate the stochastic processes in science must fail. The philosophical 

implication of this result is that the above guess is wrong, viz. the deterministic systems which 

simulate the stochastic processes in science include deterministic systems in science. This 

indicates that from a predictive viewpoint, stochastic processes and deterministic systems are 

very similar.  

 

4.2 Stochastic Processes Simulating Deterministic Systems in Science at Any Observation 

Level 

 

The deterministic systems which simulate the stochastic processes in science include 

deterministic systems in science. Still, you might conjecture that only if you employ specific 

coarse observation functions for such deterministic systems, do you obtain stochastic 

processes in science; and if you make observations of such deterministic systems which are 

precise enough, you will not any longer obtain a stochastic process in science or an 

observation of a stochastic process in science. Hence you might guess that stochastic and 

deterministic descriptions are different in the following way: the stochastic processes which 
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simulate deterministic systems in science at any observation level are very different from the 

stochastic processes in science.  

Let us introduce two natural ways of understanding the notion that stochastic 

processes of a certain type simulate deterministic systems at any observation level. In practice, 

for sufficiently small α1, you cannot distinguish states of a deterministic system which are 

less than α1 apart; and, for sufficiently small α2, you won’t be able to observe differences in 

probabilistic predictions of less than α2 , and you can thus neglect events of probability less 

than α2. Assume that α is smaller than α1  and α2. Then a deterministic system and a 

stochastic process in practice give the same predictions if the solutions of the deterministic 

system can be put into one-to-one correspondence with the realisations of the stochastic 

process such that the state of the deterministic system and the corresponding outcome of the 

stochastic process are less then α apart except for states of probability less than α. Formally, 

this idea is captured by the notion of α-congruence (Ornstein and Weiss 1991). The 

deterministic system (X,T,µ) and the stochastic process (Zt) are α-congruent exactly if there is 

a function Ψ:X→ X such that (i) (Zt) is the stochastic process Ψ(T
t
), and the deterministic 

representation of (Zt) is probabilistically equivalent to (X,T,µ); and (ii) x and Ψ(x) differ by 

less than α for all x in X except for a set of measure smaller than α. Note that the notion of α-

congruence does not assume that the deterministic system is observed with an observation 

function. But observation functions can, of course, be brought in: assume you make a coarse-

grained observation of a deterministic system. Then the probabilistic predictions you obtain 

are essentially the same (differ at most by α) as the probabilistic predictions of the 

corresponding observed stochastic process, i.e. the process obtained by applying the 

observation function to the stochastic process which is α−congruent to the deterministic 

system. So we arrive that a plausible meaning of the notion that stochastic processes of a 

certain type simulate a deterministic system at any observation level is that for any α>0 there 

is a stochastic process of this type which is α-congruent to the system. 

Another approach is to start with the idea that for sufficiently small α>0, you won’t be 

able to distinguish an observed deterministic system from a stochastic process if the stochastic 

process nearly simulates the deterministic system; i.e. if the deterministic system, when 

observed, and the stochastic process have the same outcomes, and their probabilistic 

predictions are either the same or differ by less than α. The following notion captures this 

idea: a stochastic process (Zt) (α,Φ)-simulates a deterministic system (X,T,µ) observed with 

Φ: X→Μ exactly if there is a function Ψ:X→Μ  such that (i) (Zt) is the stochastic process 

Ψ(T
t
), and (ii)Ψ has the same ranges as Φ and differs from Φ only on a set of measure <α (cf. 

Ornstein and Weiss 1991, 95). Hence the notion of (α,Φ)-simulation captures the idea that in 

practice the observed deterministic system and the stochastic process give the same 

predictions. Unlike α-congruence, (α,Φ)-simulation assumes that the deterministic system is 

observed with an observation function. By generalising over α and Φ  we obtain a plausible 

meaning of the phrase that stochastic processes of a certain type simulate a deterministic 

system at any observation level, namely: for every Φ and every α  there is a stochastic process 

of this type which (α,Φ)-simulates the deterministic system. 

For Bernoulli processes future outcomes are independent of past ones. In contrast, for 

deterministic systems in science future states are strongly constrained by its previous state. 

Thus, intuitively, such deterministic systems cannot be simulated at every observation level by 

Bernoulli processes. This intuition is correct. First, as shown in Werndl (2009c), for any 

deterministic system in science there is a α>0 such that no Bernoulli process is α-congruent to 

the deterministic system. Second, for any deterministic system there is an observation 

function and a α>0 such that no Bernoulli process (α,Φ)-simulates the deterministic system 
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(Werndl 2009d). Despite these results, there remains the question whether deterministic 

systems in science can be simulated by other paradigm stochastic processes at every 

observation level.  

To answer it, we have to introduce two paradigm stochastic processes, namely Markov 

processes and multi-step Markov processes. For a Markov process the probability distribution 

of the next state only depends on the previous state. That is, (Zt) is a Markov processes 

exactly if (i) the state space consists of N states e1,…,eN, and (ii) P(Zt+1=ei given Zt,Zt-1 ,…, 

Zk)=P(Zt+1=ei given Zt) for any t and any k, k≤ t, in the integers and any i, 1≤ i≤ N.
4
 We will 

be concerned with irreducible and aperiodic Markov processes. These are Markov processes 

which cannot be split into two separate processes and which have no periodicities, and they 

are generally regarded as the most random Markov processes. 

Multi-step Markov processes generalise Markov processes. They consist of all Markov 

processes of order n, where n is a natural number. For a Markov process of order n the 

probability distribution of the next state only depends on the previous n states. That is, (Zt) is 

a Markov process of order n exactly if (i) the state space consists of N states e1,…,eN, and (ii) 

P(Zt+1=ei given Zt,Zt-1,…,Zk)=P(Zt+1= ei given Zt,…,Zt+n-1) for any t and k, k≤ t, in the integers 

and any i, 1≤ i≤ N.
 
Again, we will be concerned with the most random multi-step Markov 

processes: namely those which cannot be split into two separate processes and which have no 

periodicities, called irreducible and aperiodic multi-step Markov processes. 

Recall that deterministic Bernoulli systems are deterministic systems which are 

probabilistically equivalent to the deterministic representation of a Bernoulli process (section 

3.2), and that many deterministic systems in science are deterministic Bernoulli systems 

(section 3). It holds that several deterministic systems in science, namely all deterministic 

Bernoulli systems, can be simulated at any observation level by paradigm stochastic 

processes, namely by Markov processes or by multi-step Markov processes. More precisely, 

for the first meaning of the phrase that deterministic systems are simulated at every 

observation level it holds that every deterministic Bernoulli system can be simulated at any 

observation level by irreducible and aperiodic Markov processes. For the second meaning of 

the phrase it holds that every deterministic Bernoulli system can be simulated at any 

observation level by irreducible and aperiodic multi-step Markov processes. It is not hard to 

see that any Markov processes of order n is an observed Markov process, i.e. a process which 

is obtained by assigning to some of the states of the Markov process the same value (Werndl 

2009d).
5
 Hence we rediscover a result which we already arrived at for the first meaning of 

simulation at every observation level, viz. that regardless how fine we observe a Bernoulli 

system, the outcomes could have resulted from an observed Markov process: 

 

Theorem 1. Let (X,T,µ) be a deterministic Bernoulli system. Then for every α>0 there is an 

irreducible and aperiodic Markov process which is α-congruent to the deterministic system 

(Werndl 2009c). 

 

Theorem 2. Let (X,T,µ) be a deterministic Bernoulli system. Then for every observation 

function Φ and every α>0, there is an irreducible and aperiodic multi-step Markov process 

which (α,Φ)-simulates the deterministic system (cf. Werndl 2009d). 

 

                                                
4
 We assume that the probability distribution of Markov processes and of Markov process of order n is 

independent of time. 
5
 This follows because a multi-step Markov process can be reduced to a Markov process by considering the 

process whose state space consists of all possible n-tuples of the states of the of the Markov process of order n. 
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Also, deterministic Bernoulli systems are the only systems in science which can be 

simulated at every observation level by multi-step Markov processes or by Markov processes. 

That is, a deterministic system where for every observation function and every α there is an 

irreducible and aperiodic Markov process which is α-congruent to the system is a 

deterministic Bernoulli system (Ornstein 1974, 45). And a deterministic system in science 

where for every Φ and α>0 there is an irreducible and aperiodic multi-step Markov processes 

which (α,Φ)-simulates the system is a deterministic Bernoulli system (Werndl 2009d). For 

instance, the baker’s system is a deterministic Bernoulli system. Thus it can be simulated by 

Markov processes or by multi-step Markov processes at any observation level.  

 

Let me comment on the philosophical significance of these results. We guessed that the 

stochastic processes which simulate deterministic systems in science at any observation level 

are very different from the stochastic processes in science. Clearly, the above results show 

that this guess is wrong because several deterministic systems in science can be simulated at 

any observation level by Markov processes or by multi-step Markov processes. This further 

underlines that from a predictive viewpoint deterministic systems and stochastic processes 

are very similar. 

Suppes (1993), Suppes and de Barros (1996) and Winnie (1998) are the only 

philosophical discussions about the results of this section I could find. They all discuss some 

results involving the notion of α-congruence. Suppes and de Barros (1996) and Winnie (1998) 

claim that the philosophical significance of some α-congruence results is that, at every 

observation level, you have a choice between a deterministic description in science and a 

stochastic description. However, this seems weak and hence misguided: that, at every 

observation level, you have a choice between a deterministic description in science and a 

stochastic description is already shown by the results in section 3.1, and these results were 

known much earlier. As argued, the real philosophical significance of the α-congruence 

results is that the stochastic processes which simulate deterministic systems in science at any 

observation level include paradigm stochastic processes (cf. Werndl 2009c).
6
  

There remains, of course, the very important question: if we have a choice between a 

deterministic and a stochastic description, which one is better? Winnie (1998) criticises 

Suppes (1993) for arguing that in the case of the α-congruence results both descriptions are 

equally good. Winnie thinks that the deterministic description is preferable, and his argument 

goes as follows. Assume we have a Markov process which simulates the deterministic system 

for the current observation level. The observation level in the future may become so fine that 

we need to introduce another Markov process to simulate the deterministic system at the finer 

observation level. Hence the deterministic system is better. However, I think the situation is 

often not as clear as Winnie claims. For instance, suppose that in principle the states of the 

modelled phenomenon can never be distinguished beyond a certain level, e.g. because these 

states do not take infinitely precise values. Then it seems less clear what is preferable: the 

deterministic system or the stochastic process resulting from an observation function which 

assigns to any two states that can never be distinguished the same value. I think the question 

of whether the deterministic or stochastic description is better needs more careful 

consideration. For some thoughts see Werndl (2009d), and it is my hope that further work will 

be dedicated to this question. 

 

 

                                                
6
 Furthermore, Suppes and de Barros (1996) and Winnie (1998) both do not really understand the meaning of α-

congruence (see Werndl 2009d). 
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5. Conclusion 

 

Our guiding question has been: can we simulate deterministic systems by stochastic processes 

which give the same predictions, and conversely? I have first explained that many 

deterministic systems, when observed, can be simulated by nontrivial stochastic processes, 

and that every stochastic process can be simulated by at least one deterministic system. Yet 

you might still guess that the deterministic systems which simulate the stochastic processes in 

science are very different from the deterministic systems in science. I have shown this to be 

false since there is a class of deterministic systems, including several paradigm deterministic 

systems, which even produce the most random stochastic process of tossing a die. Given this, 

you might still guess that the stochastic processes which simulate the deterministic systems in 

science at every observation level are very different from the stochastic processes in science. I 

have explained that also this guess is wrong because there are many deterministic systems in 

science which can be simulated at every observation level by paradigm stochastic processes, 

namely by Markov processes or by multi-step Markov processes. I have argued that all these 

results show that from a predictive viewpoint, deterministic systems and stochastic processes 

are very similar. 
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