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Abstract

This paper examines initial conditions dependence and initial conditions un-
certainty for climate projections and predictions. The first contribution is to
provide a clear conceptual characterisation of predictions and projections. Con-
cerning initial conditions dependence, projections are often described as experi-
ments that do not depend on initial conditions. Although prominent, this claim
has not been scrutinized much and can be interpreted differently. If interpreted
as the claim that projections are not based on estimates of the actual initial con-
ditions of the world or that what makes projections true are conditions in the
world, this claim is true. However, what is often meant is that the simulations
used to obtain projections are independent of initial conditions. This paper ar-
gues that evidence does not support this claim. Concerning initial conditions
uncertainty, three kinds of initial conditions uncertainty are identified (two have
received little attention from philosophers so far). The first (the one usually
discussed) is the uncertainty associated with the spread of the ensemble sim-
ulations. The second arises because the theoretical initial ensemble cannot be
used in calculations and has to be approximated by finitely many initial states.
The third uncertainty arises because it is unclear how long the model should be
run to obtain potential initial conditions at pre-industrial times. Overall, the
discussion shows that initial conditions dependence and uncertainty in climate
science are more complex and important issues than usually acknowledged.
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1 Introduction

This paper investigates initial conditions dependence and initial conditions uncertainty
in climate science. Initial conditions dependence refers to the dependence of simulation
results on initial conditions. Initial conditions uncertainty refers to uncertainty arising
because the initial conditions are not precisely known or because the calculations can-
not be performed with the precise initial conditions. The question of initial conditions
dependence and uncertainty arises for the two main types of forecasts performed in
climate science, viz. predictions and projections. The first contribution of the paper
will be to provide a clear conceptual characterisation of predictions and projections.

Climate predictions are claims about the actual evolution of the climate system
given knowledge of the current state of the climate system (and an external forcing
scenario). They are usually obtained by starting from an initial conditions ensemble
representing the uncertainty in the observations. Then models are used to evolve this
ensemble forward to obtain forecasts of the climate variables, assuming a certain exter-
nal climate forcing scenario. (Climate forcings are the factors that affect the climate:
they drive or “force” the climate system to change. Examples are variations in the
energy output of the sun, greenhouse gases or volcanic eruptions. External forcings are
forcings external to the climate system (as it is modelled), e.g., the variation in energy
output of the sun). Climate projections are claims about the response of the climate
system to external forcing scenarios (e.g. IPCC 2014, 953). They are usually obtained
by starting from initial conditions ensembles that (in contrast to predictions) repre-
sent possible (and not observation-based) initial conditions of the climate system at
pre-industrial times (where the system has at at least partially adjusted to the external
forcings at pre-industrial times). Then models are used to evolve this ensemble for-
ward to obtain a forecast of the climate variables (assuming a certain external forcing
scenario). Predictions and projections are crucial: they provide the most important
information about the future climate system and routinely inform policy decisions.
Indeed, it seems no exaggeration to claim that the forecasts that have been most often
shown to policy makers are projections.

Concerning initial conditions dependence, a widespread claim is that projections,
unlike predictions, are independent of initial conditions. This paper will distinguish
different interpretations of this independence claim. I will argue that projections are
indeed not dependent on estimates of the actual initial conditions (because they are
just based on potential initial conditions) and that because projections are claims,
their their truth maker is the world and not initial conditions. However, importantly,
it is often believed that simulations used to obtain projections deliver the same re-
sults, independent of the initial conditions (e.g. IPCC [2014], p. 958; Winsberg and
Goodwin [2016]). I will argue that evidence does not support this belief. This issue
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has not received any attention in the philosophy of climate science.

When initial conditions uncertainty is discussed, it is usually pointed out that,
just like for any other science, initial conditions are not precisely known. Hence there
is uncertainty about climate simulations (e.g. Parker [2010]; Stainforth et al. [2007],
p. 2148). This initial conditions uncertainty is usually regarded as less important
than other forms of uncertainty such as model or parameter uncertainty (cf. Parker
[2010]). This paper will argue that this initial conditions uncertainty is more severe
than often acknowledged. Furthermore, this paper will distinguish two other kinds of
initial conditions uncertainty (which have not been discussed in philosophy of climate
science before). Namely: the uncertainty arising because the theoretical initial ensem-
ble cannot be used in calculations and has to be approximated by finitely many initial
states, and the uncertainty arising because it is unclear how long the model should be
run to obtain initial conditions at pre-industrial times.

This paper proceeds as follows. First, a clear characterisation of projections and
predictions will be provided (Section 2). Then Section 3 will discuss initial condition
dependence and Section 4 initial conditions uncertainty. The conclusion will sum-
marise the findings (Section 5).

2 Projections and Predictions

Climate science distinguishes between predictions and projections (IPCC [2014], Chap-
ter 11). Both give rise to interesting philosophical questions concerning initial condi-
tions dependence and initial conditions uncertainty (but there will be more discussion
on climate projections as they raise more questions).

2.1 Predictions

Climate predictions are predictions in the sense ‘prediction’ is most commonly under-
stood. Namely, they are claims about the actual future evolution of the climate system
given knowledge of the current conditions of the climate system (and an external forc-
ing scenario). They are obtained by starting from an initial conditions ensemble (a
probability density over the space of all possible values of the climate variables, such
as the surface temperature, the surface pressure etc) representing the uncertainty in
the observations at time t0. Suppose the aim is to make predictions at time t1 under a
given external forcing scenario. Then a model or class of models is considered. If one
model is considered, the model is used to evolve the probability density forward to t1
and as outcome this evolved ensemble is presented. If a class of models is considered,
the model average of the evolved ensembles is presented (IPCC [2014], p. 1451; Meehl
et al. [2014]; Taylor et al. [2012]). What we have described so far are point predictions,
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i.e. predictions at time t1. Next to them often also aggregate predictions of the average
values of the climate variables over a certain time period (e.g. over thirty years) are
considered. One proceeds here as for point predictions but in the end presents the
average of the evolved ensembles over the time period of interest.

An example is the point-prediction of the sea level pressure of the ocean on 1 Jan-
uary 2020, performed with the Community Climate System Model version 3 under the
A1B emissions scenario (assuming a balanced emphasis on all energy sources) (Teng
et al. [2011]). Here the observational uncertainty of the climate variables is reprsented
by an initial conditions ensemble and this ensemble is evolved forward to predict the
sea-level pressure of the ocean on 1 January 2020.

As natural as the concept of a prediction is, until recently climate scientists were
unable to make predictions. It is only in the fifth assessment report (IPCC [2014],
Chapter 11) that climate predictions were considered to be successful and thus pre-
sented. In general, the practice of climate prediction is still in its infancy (IPCC [2014],
958-966; Meehl et al. [2014]; Taylor et al. [2012]).

Why have climate predictions only been made now? There are several reasons.
First and foremost, because climate models are at best only an approximation of the
climate system, the states the model will evolve to after a while (model equilibrium
states) will differ somewhat from the actual states the climate system evolves to after
some time and that are observed (observed equilibrium states). So when climate
models are initialized with observations, the simulations will be forced away from the
model’s equilibrium states to match the observations. They will then drift back to the
model’s equilibrium states, but this drifting back will be confounded with the climate
evolution that is being predicted. Until recently climate scientists did not know how
to disentangle the climate evolution and the drifting-back. Nowadays there are several
methods to deal with this (including “bias correction methods” where the drifting-back
is corrected and “anomaly initialization” where the anomalous component is added
at the beginning to the equilibrium values of the model to minimize the drifting-
back). There are also other reasons why performing predictions is difficult. Namely,
good data, in particular about the ocean, are needed to initialize climate models, and
they have have only become available recently (IPCC [2014], p. 965). Furthermore,
initializing models with actual initial conditions ensembles is highly nontrivial and
methods of initialization had to be developed (IPCC [2014], Chapter 11; Meehl et al.
[2014]; Parker [2015]).
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2.2 Projections

So until recently only projections were performed (and are still performed because the
practice of climate predictions is in its infancy and projections provide a different kind
of information).

What is a projection? Projections are claims about the response of the climate
system to external forcing scenarios (cf. IPCC 2014, 953). Projections are also ob-
tained with help of simulations. Indeed, the simulation performed are the same as
for predictions except that the initial conditions ensemble one starts with consists of
states of a climate model that has at least partially adjusted to the external forcings
at t0. A model has adjusted to the external forcings when there would not be any
more changes to the climate variables apart from internal variability (internal variabil-
ity refers to the variability of the climate variables due to natural internal processes
within the climate system; known examples of internally generated variability include
the El Nino Southern-Oscillation (ENSO) or the Atlantic Multidecadal Oscillation
(AMO)).1 Hence the initial conditions ensemble one starts with does not represent
the observational uncertainty at t0 (as for predictions) but the possible values of the
climate system that has at least partially adjusted to the external forcings at t0. Here
t0 has to be chosen in such a way that the actual climate system also has at least
partially adjusted to the external forcings at t0. In practice, t0 is chosen to be 1850 or
another point of time during the pre-industrial period.

Apart from this difference, the simulations performed are the same as those for
predictions. That is, a time point t1 in the future, an external forcing scenario and
a class of models is considered. Each model is used to evolve the initial ensemble
forward to t1. As outcome of the projection what is presented are either these evolved
ensembles for all models or a model average, i.e. an average of the evolved ensembles
over all models. What we have described so far are point projections, i.e. forecasts at
a certain time t1. As for predictions, sometimes also aggregate projections are consid-
ered. One proceeds here as for point projections but in the end presents the average
of the evolved ensembles over the time period of interest.

Why is the initial ensemble composed of possible states of the climate system that
has at least partially adjusted to the external forcings at t0? The theoretical reason
is that some input is needed for climate models. Because the input cannot be actual
observations (because of the difficulties of performing predictions), instead possible
initial conditions are considered. Yet the possible initial conditions constitute an ex-
tremely wide set, which is restricted by only considering states of a climate system

1Sometimes, this is also described by saying that the model is close or in equilibrium with the
external forcings at t0 (cf. Stouffer et al. [2004]).
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Figure 1

that has at least partially adjusted to the external forcings at t0. The practical reason
is that if initial states are chosen where the system has at least partially adjusted to
the external forcings, then drifting-back to the equilibrium states can be avoided (cf.
Subsection 2.1) (IPCC [2007], Section 8.2.7; IPPC [2014], 978; Stouffer [2004]).

To arrive at an ensemble of possible initial conditions of the climate system that
has at least partially adjusted to the external forcings at t0, climate models are initial-
ized with current observations2 and then are integrated backwards to pre-industrial
times.3 The model is run for a long time with pre-industrial forcings (between a few
hundred to thousand years) to ensure that the system has at least partially adjusts to
the pre-industrial external forcings (this is called the spin-up period). Once adjusted,
an ensemble of possible initial conditions is generated from various points of the sim-
ulation.

An example is the projection of the global mean annual surface air temperature
at 2050, performed with the CMIP5 (Coupled Model Intercomparison Project Phase
5) models under the RCP4.5 representative concentration pathway (where emissions
peak around 2040 and then decline) (IPCC [2014], p. 981). This is an aggregate
projection (annual forecast), and the outcome of these projections is a wide range of
temperature simulation results, shown in light blue in Figure 1 (IPCC [2014], p. 981).

Now that we have introduced projections, let us discuss the two major intuitive
characterisations of them. First, it is sometimes emphasised that projections are
dependent on the external forcing scenario while predictions are not. For example:

2Sometimes instead the input of the atmospheric variables is obtained from simulations, which are
run for a long time to ensure that the atmospheric variables have adjusted to the present external
forcings (Stouffer et al. [2004]).

3An alternative is to start under pre-industrial external forcing conditions and then perform even
longer integrations (Stouffer et al. [2004]).
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A climate projection is the simulated response of the climate system to
a scenario of future emission or concentration of greenhouse gases and
aerosols, generally derived using climate models. Climate projections are
distinguished from climate predictions by their dependence on the emis-
sion/concentration/radiative forcing scenario used, which is in turn based
on assumptions concerning, for example, future socioeconomic and tech-
nological developments that may or may not be realized (IPCC [2014], p.
1451; see also Schmidt [2008], Slide 5).

From description given above it is clear that both predictions and projections de-
pend on the emission/concentration/radiative forcing scenario. It is true, however,
that for predictions usually short lead-times are considered and then they are approx-
imately the same for all plausible emission/concentration/radiative forcing scenarios.
Projections, on the other hand, are made both over shorter and longer time periods,
and in the latter case they are strongly dependent on the emission/concentration/radiative
forcing scenario (IPCC [2014], Chapters 11 and 12). Thus a charitable interpretation
is that this first intuitive characterisation emphasises that in contrast to climate pro-
jections, the external forcing scenario only has negligible influence on predictions.

However, this does not constitute the core difference between projections and pre-
dictions. More specifically, from the description above it is clear that projections are
not just like predictions, except that the prediction lead time is longer and hence
the external forcings becomes more important. A prediction with a longer prediction
lead time would still be a prediction. The fundamental difference is that predictions
aim to estimate the actual evolution of the climate system based on current initial
conditions, but projections aim to to estimate the reponse of the climate system to
external forcings scenarios. The procedure of obtaining predictions and projections
is the same, except that the initial ensembles are interpreted differently (as observed
initial conditions for predictions; and as possible initial conditions where the system
has at least partially adjusted to the external forcings for projections).

Second, projections are commonly characterised as independent of initial conditions
(or at least that the influence of initial conditions is negligible), motivating the idea
that projections are about the forced response of the system, i.e. the response of the
system to the factors that affect the Earth’s climate (Brandstator and Teng [2010];
Meehl et al. [2014], p. 251; Taylor et al. [2012], p. 487; Schmidt [2008], Slide 5). For
instance, the IPCC ([2014], p. 958, see also p. 560) describes projections as:

climate change experiments with models that do not depend on initial
conditions but on the history and projection of climate forcings.

Clearly, projections about various different variables are performed (e.g., some projec-
tions just concern the temperature, some temperature and precipitation, many con-
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cern several climate variables). Note that what is claimed in the quotes is that all (or
nearly all) projections are independent of initial conditions (i.e. a general claim about
the concept of a projection is made). Let us now investigate this independence claim.

3 Initial Conditions Dependence

3.1 Projections

It is important to distinguish different interpretations of the independence claim. Ac-
cording to a first interpretation4, what is meant is that projections, unlike predictions,
are not based on estimates of actual initial conditions. This is true: as outlined above,
projections are based on potential initial conditions at pre-industrial times. Second,
projections are claims about the response of the climate system given a certain exter-
nal forcings scenarios. Hence their truth makers are the world and do not include any
initial conditions and can be said to be (in a sense) independent of initial conditions.5

Third, for projections the question arises how the forced response of the climate
system is defined. When one looks at how projections are obtained, initial conditions
ensembles (representing potential initial conditions of the climate system in equilib-
rium at pre-industrial times) are evolved forward to arrive at the evolved ensemble,
which is identified with the forced response of the climate system. But then the forced
response (independent of any details about initial conditions) is only well defined if
the same evolved ensemble is obtained for all possible initial conditions ensembles.
This claim that projections are independent of the details of the initial ensemble is the
third interpretation of the independence claim. It is endorsed in several publications
(e.g. Brandstator and Teng [2010]; IPCC [2014], p. 961) and will now be discussed.

Dynamical Conditions Justifying Independence of Initial Conditions?

Climate scientists often justify this claim by assuming that the dynamics of climate
models is such that over time all initial ensembles eventually approach the same proba-
bility distribution, which is then identified with the forced response of the system (e.g.
Brandstator and Teng [2010]; IPCC [2014], p. 961). In all discussion I have found
this dynamical condition is stated intuitively and no formal definition is given. Given
this, it is important to point out that the corresponding formal condition is the one of
having a time-dependent strong physical measusre.

This condition will now be stated intuitively (for the formal definition see the Ap-
pendix). Time-dependent strong physical measures are defined for time-dependent

4I am grateful to an anonymous referee for suggestion this interpretation.
5A referee urged me to include this interpretation.
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climate models (the models used for projections depend on time; for instance, the
incoming solar radiation, the greenhouse gas concentrations etc. change with time).
Intuitively speaking, this condition expresses that for any arbitrary initial ensemble,
if the ensemble is evolved forward for a sufficiently long time, the probability assigned
to any set A at time t will approach the value µSPM

t (A). In other words, any arbitrary
initial ensemble that is evolved forward eventually approaches the same probability
µSPM
t (the time-dependent strong physical measure). When a model average is consid-

ered, of interest is whether each model has a time-dependent strong physical measure.
If this is so, then also for any arbitrary initial ensemble, if the ensemble is evolved for-
ward for a sufficiently long time, the probability assigned to any set A will approach
the model average of the strong physical measures of the individual models. When ag-
gregate forecasts over time are considered and the model has a time-dependent strong
physical measure, for any initial ensemble, if the ensemble is evolved forward for a suf-
ficiently long time, the probability assigned will be the average over the probabilities
assigned by the time-dependent strong physical measure.6

Do climate models have time-dependent strong physical measures? Answering
this question is very difficult because the dynamical properties of climate models are
poorly understood. On the one hand, Brandstator and Teng ([2010]) find evidence for
a strong physical measure for the upper ocean temperature (but note that for the up-
per ocean temperature initial conditions are expected to play less of an influence than
for other variables (such as all the ocean variables)). Teng et al. ([2011]) is another
study that finds evidence for a strong physical measure for the Atlantic overturning
streamfunction. It cannot be excluded that for certain specific climate variables the
models used for projections have strong physical measures (and the studies here might
provide examples where this is the case).

Yet what matters is whether all (or nearly) models used for projections have strong
physical measure. Evidence does not support this claim. In particular, if a system is
independent of initial ensembles, it cannot have several attractors (several equilibrium
states). Intuitively speaking, an attractor is a set where the model converges to after
some time has passed (for some initial conditions) and this set is also often referred to
as equilibrium state. If there are several attractors, the initial condition influences in
which attractor the system ends up; then certain initial conditions ensembles evolve to
one attractor and others to another attractor, contradicting the condition of a strong
physical measure.

6For time-independent models that are studied in classical dynamical systems theory the concept
analogous to a time-dependent strong physical measure is mixing (cf. Werndl [2009]). However,
mixing is not of interest in the context of climate projections because models used for projections are
time-dependent (mixing is still of interest to climate science, namely when the behaviour of climate
models under constant external forcings is studied).
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Yet several attractors were found for simple as well as complex climate models.
For example, the ocean circulation is associated with several equilibrium states (IPCC
[2014], p. 433; IPCC [2007], p. 111; Stainforth et al. [2007], p. 2150). In particular,
Manabe and Stouffer ([1999]) for a coupled ocean-atmosphere model found that the
ocean circulation gives rise to two equilibria: a thermohaline circulation with sinking
regions in the North Atlantic Ocean (resembling those of our Earth) and a reverse
thermohaline ciculation with sinking in the circumpolar ocean of the southern hemi-
sphere. There is also evidence for multiple equilibria of the atmosphere-vegetation
system. For instance, Zeng and Neelin ([2000]) investigated the climate in Africa and
found two equilibria: a desert-like and a forest-like state. Furthermore, Wang and
Eltahir ([2000]) found two equilibria for a simple biosphere-atmosphere model: a wet
equilibrium with a desert border at 17.5 and a dry equilibrium with a desert border at
16. Another relevant study is Conradie ([2015], pp. 110-119). He discovered several
attractors for a low-resolution version of a CMIP5 climate model under the RCP8.5
concentration pathway for the global average surface air temperature, and the surface
air temperature in the Southern Hemisphere, in the Antarctic, in the South of South-
ern Africa and in the Antarctic Circumpolar region.

In sum, that some climate models show several equilibrium states at least for some
regions on Earth is plausible, and they could then also have a non-negligible effects on
global variables. Further, having a strong physical measure is a very strong dynamical
condition. In the absence of clear evidence for it, it has to be assumed otherwise.
We conclude that evidence does not support the claim that climate models have strong
physical measures.

Even if climate models had strong physical measures, this would not imply inde-
pendence of initial conditions ensembles. For systems with a strong physical measure,
the probability assigned to a set A by the evolved ensemble only relaxes to µSPM

t (A)
after some time (see equation (2) in the Appendix). Hence there would only be in-
dependence if the convergence to the strong physical measure were quick enough and
happened already for the standard prediction-lead times of interest. However, this
is doubtful: Fraedrich [(1987)] argues that for climate systems predictability is only
lost after about 10.000-15.000 (!) years. Daron and Stainforth ([2015]) and Selten et
al. ([2004]) and Smith ([1987]) also argue that it is plausible that there is no con-
vergence for prediction lead times of interest, and they underscore this with evidence
from Lorenz’s 1963 model and a community climate systems model.

Furthermore, even if climate models had strong physical measures, projections
could not be independent of initial conditions ensembles. Why? The more an ini-
tial ensemble peaks around a certain value, the longer the convergence to the strong
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physical measure will need – otherwise the fundamental mathematical requirement of
continuity would be violated (intuitively speaking, the dynamics of a climate model
is continuous if it has no holes or sudden jumps). So given a certain fixed prediction
lead time of interest, if the ensemble is sufficiently peaked around a certain value,
there will be no convergence within the time period of interest. This problem can
only be avoided if restrictions are placed on the ensembles that are allowed. However,
since the ensembles just represent possible initial conditions, there are no principled
reasons to exclude certain initial ensembles. This is also reflected in scientific practice,
where there are no requirements that highly peaked ensembles are not allowed. This
argument it strong because it shows that projections can for no climate variable of
interest be independent of initial conditions ensembles.

We conclude that even the condition of having a time-dependent strong physical
measure cannot guarantee that projections are independent of initial ensembles. Fur-
thermore, it does not make sense to look for stronger conditions because otherwise
continuity would be violated.7

What Projections Can and Cannot Provide

What are the implications of the above discussion for the kind of information projec-
tions provide? First, projections are often claimed to estimate the forced response of
the system (independent of initial conditions). It is understandable that it would be
attractive if such a forced response existed: we would then have a measure of what
happens to the climate system when certain external forcings are applied, independent
of internal variations and initial conditions. However, as we have seen in the previous
subsection, evidence does not support the independence of projections on initial ensem-
bles. Thus projections cannot be taken to measure the forced response of the system
(independent of initial conditions).

Second, when seeing a graphical display of projections as in Figure 1, one might
easily think that what is shown there are forecasts of the evolution of the climate
system given the uncertainty in the present observations or the uncertainty in the
observations in 1850s. However, as our discussion has made clear, this is not what
projections provide us with – they do not provide us with forecasts based on observa-
tional input.

7Note that dynamical systems theory is among the most important mathematical theories for
climate science. In this field mixing (the time-independent analogue of a strong physical measure; cf.
footnote 6) is a very prominent condition. This might partially explain why the idea that all initial
ensembles smooth out to a certain probability measure features so prominently in climate scientists’
thinking about projections.
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Projections still provide very valuable information: they tell us about about some
of the possible paths of a climate system that started from initial conditions at a point
of time where the system has at least partially adjusted to the external forcings (usu-
ally at pre-industrial times). There is no requirement that for projections all possible
initial conditions have to be included in the initial ensemble.8 Therefore, projections
only provide information about some but not all possible paths of the system that
has at least partially adjusted to the external forcings at pre-industrial times.

There are already interpretations that emphasise that projections are possibilities.
In particular, Stainforth et al. ([2007], p. 2155) argue that projections are “possi-
bilities for future real-world climate”. Betz ([2009]) and Katzav ([2014]) argue that
climate projections and climate models describe possibilities. Parker ([2010]) inter-
prets projections as a set of predictive outcomes that are plausible given the current
knowledge, which is close to a view based on possibilities. However, neither Stainforth
et al.’s nor Betz’s nor Katzav’s nor Parker’s view is mainly motivated by considera-
tions about initial conditions, but by concerns about model limitations and parametric
uncertainty. Furthermore, neither of these views explicitly interprets projections as
providing more specific possibilities, namely those of a climate system that had at least
partially adjusted to the external forcings at pre-industrial times.

3.2 Predictions

The question whether the simulations used to obtain predictions are dependent on
initial conditions also arises for predictions. As discussed in subsections 2.1 and 2.2,
the simulations made for predictions and projections are very similar. The main dif-
ference lies in the interpretation of the initial conditions ensemble. Because of this
similarity, the arguments given in the previous subsection immediately show that evi-
dence does not support that simulations used to obtain predictions are independent of
initial ensembles. This is in agreement with common belief: climate predictions are
usually not claimed to be independent of initial ensembles, even by those who claim
that projections are independent (cf. Brandstator and Teng [2010]; IPCC [2014], 960-
962). The reason for this is that predictions are performed over very short time periods
(not longer than 10-20 years). It is believed that over such short time spans, initial
conditions are influential.

To obtain predictions, usually initial conditions ensembles are evolved forward.
Sometimes, instead of initial condition ensembles, just one initial condition (repre-
senting the best guess of the current state of the climate variables) is used to arrive

8Furthermore, climate models are not considered realistic enough so that they could provide
information about all the possible paths of the climate system where the system has at least partially
adjusted to the external forcings at pre-industrial times (cf. Thompson et al. [2016]).
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at a forecast. In this case also the question of initial condition dependence arises, to
which we now turn.9

Let us first consider point predictions of the climate variables at time t1 based
on one initial condition at t0, or a model average of such predictions. Clearly, such
predictions will depend on the initial condition.10 Of real interest is therefore only the
question whether aggregate predictions over time are independent of initial conditions.
When several models are considered, the question is whether the model average of the
aggregate predictions is independent.

For time-independent models, ergodicity is often invoked to formalize the condition
that aggregate predictions are independent of initial conditions. Intuitively speaking,
ergodicity expresses that aggregate predictions taken over infinite time periods equal
the phase average over the dynamics (the formal definition can be found in the Ap-
pendix). Indeed, it can be shown that aggregate predictions taken over infinite time
periods are the same for almost all initial conditions if and only if the system is
ergodic (cf. Peterson 1983). When model averages are considered, the question is
whether each model is ergodic.

Ergodicity is often invoked in climate science. For instance, Dymnikov and Grit-
soun ([2001]), North et al. ([1981]) and von Storch and Zwiers ([2002], Section 11.2.8)
assume that climate models are ergodic.11 However, ergodicity is of very limited rel-
evance for climate predictions because it is defined for time-independent dynamical
systems and the models used for predictions are time-dependent. Still, it is interest-
ing to ask whether climate models are ergodic because ergodicity is such a common
assumption and because ergodicity is still relevant to climate science when trying to
understand the behaviour of climate models under constant external forcings.

Answering this question is difficult because the dynamics of climate models is
poorly understood. In general, evidence does not support the claim that climate mod-
els under constant external conditions are ergodic. Daron ([2012]), McGuffie and
Henderson-Sellers ([2005]) and Schneider and Dickinson ([1974]) provide evidence
against ergodicity. Peicai et al. ([2003]) view the climate system as a cascade of
hierarchical sub-systems, implying that it is not ergodic. Also, the evidence of mul-

9This question also arises for projections that are calculated on the basis of just one initial con-
dition. Since the case of just one initial condition is more often considered, we comment on it here.
Yet our discussion carries over to projections.

10They would not depend on initial conditions only if there were a fixed point to which all initial
states converged. However, there is no evidence for this.

11Ergodicity is a crucial notion in measure-theoretic dynamical systems theory (also called ergodic
theory), which is one of the most important matheamtical theories for climate science. This might
partially explain why ergodicity figures prominently in climate scientists’ thinking.
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tiple attractors discussed above provides evidence against ergodicity (ergodic systems
cannot have multiple attractors). Furthermore, even if climate models were ergodic,
the assumption needed for ergodicity to imply independence, namely that aggregate
predictions are approximately equal to averages taken over an infinite time period is
doubtful. Evidence suggests that the climate system shows significant variability un-
der constant external forcings. Thus distributions taken over relatively short periods
such as thirty years will vary over time and hence cannot be identical to the infinite
distribution (Dethloff et al. [1998]; Fraederich [1987]; Lovejoy [2015]; IPCC [2014], pp.
104 and 1103; Stouffer et al. [2004], p. 237).

On might hope that there is an analogous condition to ergodicity for time-dependent
dynamical systems. However, this hope is in vain: there can be no such analogous
condition because it cannot be guaranteed that averages taken over an infinite time
period converge.

Finally, instead of ergodicity and distributions taken over infinite time periods, let
us consider aggregate predictions over finite time-periods because these are calculated
in practice. Is there evidence that they are independent of the initial conditions? The
answer is negative because studies find that distributions taken over time periods such
as thirty years will vary over time (Dethloff et al. [1998]; Fraederich [1987]; IPCC
[2014], pp. 104 and 1103; Lovejoy [2015]; Stouffer et al. [2004]).

In conclusion, and this is an important contribution of the paper since ergodicity
is sometimes invoked by climate scientists, ergodicity cannot be appealed to in order
to argue that aggregate predictions based on single initial conditions are independent
of initial conditions. Furthermore, evidence does not support the claim that aggregate
predictions based on single initial conditions are independent of initial conditions.

4 Initial Conditions Uncertainty

4.1 Projections

Let us now turn to initial conditions uncertainty and first consider projections. Our
main finding is that there are three different types of initial conditions uncertainty.
In the context of projections, initial conditions uncertainty is usually identified with
the spread of the ensemble simulations12 (this is the first kind of initial conditions
uncertainty). The underlying idea here is that projections are defined relative to en-
sembles of possible initial conditions that represent states where the system has at
least partially adjusted to the external forcings. Thus the spread of the ensemble

12The spread is also often referred to as internal variability.
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results represents possible outcomes (and thus represents the uncertainty about the
outcome). Let us now compare this initial conditions uncertainty to the influence of
the external forcings and other uncertainties.

In the literature one often finds the claim that the forced response is more im-
portant in magnitude than initial conditions uncertainty (for common concentration
pathways/emission scenarios) (cf. IPCC [2014], 1039-1040; Parker [2010]). Note that
in practice, the forced response is usually estimated from the mean of the ensemble
simulations. As argued above (Subsection 4.1), the notion of a forced response (in-
dependent of initial conditions) is ill defined because the simulations depend on the
initial ensembles. Despite this, because it is so common, we will now compare the
forced response and initial conditions uncertainty.

In general, initial conditions uncertainty depends on the variables considered and is
more important on smaller scales. Studies that compared the magnitudes of the forced
response and model uncertainty (for standard concentration pathways/emissions sce-
narios) found that over the first 10-40 years initial conditions uncertainty is most
important for certain climate variables, and the second most important after model un-
certainty for other variables (Cox and Stephenson [2007]; Hawkins and Sutton [2009];
Yip et al. [2011]). Over 40-60 years some studies found that initial conditions uncer-
tainty decreases in influence (Cox and Stephenson [2007]; Hawkins and Sutton [2009];
Yip et al. [2011]). Other studies such as Selten et al. ([2004]), which considered larger
initial ensembles than usual, found that initial conditions uncertainty is at least as
important as the forced response over a sixty year time span for the global mean tem-
perature. In general, for time spans longer than 60 years, the forced response is usually
regarded as more important, but initial conditions uncertainty is still an important
factor (Selten et al. [2004]). In sum: initial conditions uncertainty is more important
or equally important than the forced response for the first 40-60 years (most climate
projections are made on this time scale). The forced response is more important than
initial conditions uncertainty only for longer prediction lead times.

Let us now compare this initial conditions uncertainty with other uncertainties.
Cox and Stephenson ([2007]) for the decadal global mean temperature and Hawkins
and Sutton ([2009]) for the decadal global mean temperature and the temperature of
the British Isles found that the most important uncertainty is initial conditions un-
certainty for the first 10-40 years. For longer prediction lead times they found that
parameter and model uncertainty are more important. Because of such studies, initial
conditions uncertainty has often been regarded as less important than other uncer-
tainties (cf. Parker [2010]).

However, first, the first 10-40 years are very important (most climate projections
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are made on this scale). Second, recent studies have casted doubts on the above study
results. The criticism is that these studies only implemented very few initial condi-
tions and that the spread within the CMIP models (used in the studies) is very difficult
to interpret because individual ensemble members have differing physics, dynamical
cores, resolutions, initial conditions and the models are not independent. Therefore,
to properly investigate initial conditions uncertainty, a large number of simulations
with just one climate model is needed (Deser et al. [2012]; Kay et al. [2015]; Daron
and Stainforth [2013]; Selten et al. [2004]).

Studies performed in this way highlight that initial conditions uncertainty is more
important than previously thought. For instance, Deser et al. found that initial con-
ditions uncertainty is more important than model uncertainty for annual-mean extra-
tropical sea level pressure and precipitation trends during 2005–2060, and that inter-
nal variability is comparable to model uncertainty for temperature trends over North
America, Eurasia and Antarctica during 2005–2060. They stress that initial conditions
uncertainty has not been taken serious enough and that “given the inevitable compe-
tition between ensemble size and model resolution for a fixed level of computational
resources, the former should not be sacrificed at the expense of the latter” (Deser et al.
[2012], p. 545). Kay et al. ([2015]) find that initial conditions uncertainty can generate
substantial spread in global trends for the period 1920-2100, and they even arrive at
the result that for December to February surface air temperature the CMIP5 spread
in many regions during 1979-2046 can be explained by initial conditions uncertainty
alone. To conclude, the first kind of initial conditions uncertainty is more important
than often thought.

Let us now turn to the second kind of initial conditions uncertainty. In the climate
literature it is sometimes asked how many initial conditions are needed to estimate
the forced response of the system (e.g. Deser et al. [2012]). Note that this question
is not well-defined because there does not exist a forced response independent of the
initial conditions (Section 3). What can be asked is what exactly the initial ensemble
amounts to relative to which a certain projection is defined. One possibility is simply
to say that a projection is defined relative to the ensemble of initial conditions that
has actually been used in the simulations.

However, this is not how many climate scientists think about projections because
they ask how many initial conditions are needed to reliable estimate the evolved en-
semble for a projection. That is, projections are conceived as being defined relative
to a theoretical initial ensemble (usually consisting of infinitely many points). Then
there is (a second kind of) initial conditions uncertainty because this theoretical initial
ensemble cannot be used in calculations and has to be approximated by finitely many
initial states.
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Then the crucial question arises how many initial conditions are needed to reliably
estimate the evolved ensemble (Deser et al. [2012] can be interpreted along these lines;
see also Daron and Stainforth [2013] and [2015]; Taylor et al. [2012]). Generally, the
answer depends on the model, the theoretical initial ensemble as well as the prediction
lead time, and there has been little research on this question. However, it is common
practice to only consider very few initial states (often only 1-5 and rarely more than
ten, CMIP5 requires a minimum of just three; cf. Taylor et al. [2012]; Daron and
Stainforth [2013]).

The research that has been carried out is sobering and suggests that a large number
of initial conditions (and not just a few) are needed to reliably estimate projections.
For instance, Daron and Stainforth ([2013]) using a low-dimensional nonlinear system
that exhibits behaviour similar to that of the atmosphere and ocean found that several
hundred initial conditions are needed (see also Daron and Stainforth [2015]; Kay et
al. [2014]). Similarly, Deser et al. ([2012]) perform simulations with one of the CMIP5
models, and argue that large initial conditions ensembles are needed. To conclude,
there is considerable initial conditions uncertainty of the second kind.

The third kind of initial conditions uncertainty concerns the adjustment to the
pre-industrial external forcings in the construction of initial ensembles. As outlined
in Section 2, to produce initial ensembles, the model is integrated backwards to pre-
industrial times; then it is run for a long time (between a few hundred or thousand
years) to ensure that it adjusts to the pre-industrial external forcings. The model
should adjust to the pre-industrial forcings, but there should also be some radiative
imbalance present because some imbalance was actually present in 1850. There is
uncertainty how long the model should be run with the pre-industrial forcings to
achieve this because we do not know the radiative imbalance present in 1850 (Stouffer
et al. [2004]; IPCC [2014], p. 607). Hence there is initial conditions uncertainty because
the simulations depend on the initial ensembles, and the initial ensembles depend on
how long the model is run with the pre-industrial external forcings.13

4.2 Predictions

Let us now ask whether the uncertainties arising for projections also arise for pre-
dictions. Because the adjustment procedure to obtain initial conditions is specific
to projections, the third initial conditions uncertainty does not arise for predictions.
However, analogues of the first and the second uncertainty do arise.

13It is an interesting question how severe this uncertainty is, but I am not aware of any systematic
studies exploring this issue.
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Consider first initial conditions uncertainty as the spread of the ensemble simu-
lations. For predictions this uncertainty is what is most commonly understood by
initial conditions uncertainty: because the precise state of the climate variables is un-
known, there is uncertainty and it is quantified by the predictions consistent with the
observations (i.e. the spread of the ensemble simulations).14 From the discussion on
projections, because the prediction lead-times for predictions are usually short (not
more than thirty years), it follows that initial conditions uncertainty is crucial and is
more important than the external forcings or other uncertainties.

Let us turn to the second initial conditions uncertainty. For climate predictions the
initial ensemble represents the observational uncertainty and it is usually represented
by a density (of infinitely many states). In calculations it has to be approximated
by finitely many points, and hence there is uncertainty about the evolved ensemble
(prediction). How many initial conditions are needed to reliably estimate a prediction
depends on the model, the initial ensemble and the prediction lead time, and there
has been little research on this question. However, in practice only very few initial
conditions are considered (rarely more than ten; CMIP5 requires just three – Taylor
et al. [2012]). The research that has been carried out is sobering and suggests that
a large number of initial conditions are needed to reliably estimate preditions (Daron
and Stainforth [2013]; Daron and Stainforth [2015]; see also Kay et al. [2014]). Hence
there is considerable initial conditions uncertainty of the second kind.

5 Conclusion

This paper examined initial conditions dependence and initial conditions uncertainty
for climate projections and predictions. The first contribution was to provide a clear
conceptual characterisation of predictions and projections.

Concerning initial conditions dependence, the main conclusions are as follows.
First, climate projections are often described as independent of initial conditions –
a claim that can be interpreted differently. If interpreted as the claim that projections
are not based on estimates of the actual initial conditions of the world or that what
makes projections true are conditions in the world, it is true. However, what is often
meant is that the simulations used to obtain projections are independent of initial con-
ditions ensembles. This claim has not been investigated much and this paper aimed
to fill this gap (among others, by studying the dynamical condition of time-dependent
physical measures). The conclusion is that evidence does not support this claim. Sec-
ond and not surprisingly, evidence also suggests that climate predictions are dependent

14This initial conditions uncertainty would disappear if climate predictions were independent of
initial ensembles. However, there is no evidence for independence (cf. Subsection 3.2).
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on the initial ensemble. In the extreme case of a prediction based on just one initial
condition, one can ask whether aggregate predictions over time are independent of
initial conditions. This paper has argued that this claim is not supported by evidence.

Concerning initial conditions uncertainty, the main contribution was to identify
three kinds of initial conditions uncertainty. The first kind (the one usually discussed)
arises for both climate projections and predictions and is the uncertainty associated
with the spread of the ensemble simulations. It was stressed that this initial condi-
tions uncertainty is larger than often acknowledged. The second kind arises because
the theoretical initial ensemble (relative to which a projection or prediction is defined)
cannot be used in calculations and has to be approximated by finitely many initial
states. The third kind of initial conditions uncertainty only applies to projections and
arises because it is unclear how long the model should be run with the pre-industrial
external forcings to obtain initial conditions that represent states where the system
has at least partially adjusted to the external forcings.

Overall, the discussion shows that initial conditions dependence and initial condi-
tions uncertainty are more complex and important issues than usually acknowledged.
Hopefully, this paper will contribute to raising awareness that this is so.

6 Appendix

Time-dependent Strong Physical Measures

First, formal definitions of time-dependent deterministic models15 and attractors are
needed. A (time-dependent) deterministic model is a triple (XM ,ΣXM

, TM(x, t0, t)).
The set XM represents all possible values of the climate variables. ΣXM

is a σ-algebra
on XM . TM(x, t0, t) : XM × Z × Z → XM is the dynamics, where TM(x, t0, t) :
XM × R × R → XM is a measurable function such that TM(x, t0, t0) = x and
TM(x, t0, t+ s) = TM(TM(x, t0, t), t, s) for all t0, t, s and x (cf. Kloeden and Rasmussen
[2011]).16

A pullback attractor Ω ⊆ Z × XM (where Ω(t) := {x ∈ XM | (t, x) ∈ Ω}) with
basin of attraction U ⊆ XM is an invariant set17 where for all initial values x ∈ U

lim
t0→−∞

dist(TM(x, t0, t),Ω(t)) = 0, (1)

15Climate science studies deterministic and stochastic models. We focus on deterministic models;
but all the arguments of this paper have a stochastic counterpart.

16Climate science studies models where time varies in discrete steps (t ∈ Z) and models where time
is a continuous parameter (t ∈ R). Because models used in practice are discrete, we focus on them.
However, all our arguments have a continuous-time counterpart.

17That is, Ω(t) = TM (Ω(t0), t0, t) for all t, t0 ∈ Z.
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where dist(x) measures the distance.

Time-dependent strong physical measures µΩ
t on Ω(t), t ∈ Z, where Ω is a pullback

attractor, are defined by the condition that for any t and t0, any initial density pt0
(relative to the Lebesgue measure λ) on XM and for any set A (where Pt0,t is the
density that arises when pt0 is evolved forward from t0 to t):

lim
t0→−∞

Pt0,t(A) = µΩ
t (A), (2)

whenever µΩ
t (δA) = 0 (δA denotes the boundary of A18) (cf. Buzzi [1999]).

6.1 Ergodicity

First, time-independent deterministic models need to be introduced. Formally, a
measure-preserving deterministic model is a quadruple (XM ,ΣX , TM(x, t), µ) (where
t ∈ Z). XM is the set of all possible states, ΣX is a σ-algebra on X, TM(x, t) :
X × Z → X (the dynamics) is a bijective function that is measurable in (t,m) such
that TM(x, t1 + t2) = TM(TM(x, t2), t2) for all t1 and t2. Finally, µ is a probability
measure on XM which is invariant, i.e. µ(TM(A, t)) = µ(A) for all A and all t ∈ Z.
Such time-independent model is ergodic iff

lim
r→∞

1

r

r+t1∑
i=t1+1

TM(x, i) =

∫
X

TM(x, 1)dµ (3)

for almost all x ∈ XM and all t1.19

Acknowledgements

I am indebted to Roman Frigg, Wendy Parker, David Stainforth and two anonymous
referees for comments on the paper and discussions about the role of initial conditions
in climate science. Many thanks also to audiences at the Sophia Conference 2017 in
Salzburg, the Workshop on Evidence, Uncertainty and Decision Making with a Par-
ticular Emphasis on Climate Science in Salzburg, the Making and Breaking Physical
Theories Workshop at the MCMP Munich and the Philosophy Colloquium at the
Leibniz University of Hannover for stimulating discussions.

18This latter condition is fulfilled in all applications in climate science.
19The standard definition of ergodicity is that limr→∞
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i=1

TM (x,i)
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∫
X
TM (x, 1)dµ for almost all
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