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Abstract

Abstract. Many examples of calibration in climate science raise no alarms

regarding model reliability. We examine one example and show that, in employ-

ing Classical Hypothesis-testing, it involves calibrating a base model against

data that is also used to confirm the model. This is counter to the ‘intuitive

position’ (in favour of use-novelty and against double-counting). We argue,

however, that aspects of the intuitive position are upheld by some methods, in

particular, the general Cross-validation method. How Cross-validation relates

to other prominent Classical methods such as the Akaike Information Criterion

and Bayesian Information Criterion is also discussed.
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1 Introduction

Many climate scientists are apprehensive about calibrating (or tuning) climate mod-

els to increase their reliability. This practice is commonly identified with including

parametrizations in a climate model that ‘stand in’ for physical processes such as

the behaviour of clouds that are not well enough understood or are smaller than the

grid-size. The worry is that parametrizations are selected specifically to enhance the

fit to the the relevant observational data (say, change in global surface air temper-

ature throughout the 20th century), i.e., to compensate in an ad hoc way for other

structural errors in the model (see Frisch, 2015, and references therein). Given this

understanding of ‘calibration’, it is no wonder that climate scientists are sceptical

about it. Indeed, the consensus, as echoed in the IPCC Fifth Assessment Report

(AR5), is apparently that empirical fit with the calibrating data provides little to no

confirmation for the calibrated model:

Model tuning directly influences the evaluation of climate models, as the

quantities that are tuned cannot be used in model evaluation. Quanti-

ties closely related to those tuned will provide only weak tests of model

performance. Nonetheless, by focusing on those quantities not generally

involved in model tuning while discounting metrics clearly related to it,

it is possible to gain insight into model performance. (Flato et al. 2013,

Box 9.1)

We dub this the ‘intuitive position’ regarding calibration and confirmation of base

models/theories : that use-novel data has a special role in confirmation, and more

strongly, that data cannot be used twice, both for calibration and confirmation (the
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no-double-counting rule).1 We suggest, however, that scientists and philosophers

alike overlook the diversity of model-calibration practices in science. Once one moves

beyond highly suggestive examples, it is not obvious that the intuitive position is

right. In the suggestive examples, calibration amounts to model construction that is

ad hoc. Indeed, whether it is a calibrated version of Ptolemy’s theory to fit planetary

retrogressions or a calibrated climate model to fit the temperature record, the prob-

lem is that the adjustments to the base model have dubious prima facie reliability.

If we think of calibration in this way – making ad hoc adjustments in order to get

better fit – scientists are right to be sceptical about whether there is a net increase

in reliability. The gain in empirical fit with the calibrating data must be traded off

against the loss of physical plausibility of the model.

More ‘modest’ calibration examples in climate and other sciences provide better

grounds for examining detailed questions of empirical fit vis-à-vis model confirma-

tion. Indeed, there is much model calibration in climate science that is subtly at

odds with the intuitive position: cases whereby data are used for both calibration

and confirmation. Elsewhere, Steele and Werndl (2013) examined the calibration of

the aerosol forcing parameter. In Section 1 below we describe an even more pedes-

trian example of double-counting in climate science. This sort of case differs from

those above in that the ‘tuned’ base models are not obviously inferior to any other

base models under consideration. We can thus focus purely on the significance of

model fit with calibration data.

1In this paper we use the phrase ‘confirmation’ broadly, as pertaining to assessments of model
reliability. Strictly speaking, confirmation (in philosophy) is about the truth of hypotheses.
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The main focus of the paper is the diversity of formal calibration methods, and

how these relate to the intuitive position. Steele and Werndl (2013) critiques the

intuitive position from the Bayesian perspective. Here we focus on the diverse class

of Classical or frequentist methods. Section 3 shows that the simplest Classical

method of Hypothesis-testing, employed in the case study described in Section 2, is

at odds with the intuitive position and is, in this regard, very similar to the Bayesian

method. Section 4 introduces the general method of Cross-validation, which allows

for a more nuanced stance with respect to the intuitive position. Cross-validation can

be refined depending on what frequentist properties of model assessment (estimation

or identification) are considered desirable. In Sections 4.1 and 4.2 we we examine

two methods, known as the Akaike and the Bayesian information criterion that can

each be related to special cases of Cross-validation, that accord with one or the other

of these aims. The paper ends with a conclusion in Section 4.

2 A climate case study

Stone et al. (2007) aim to explain global mean surface temperature changes in the

past decades. A climate forcing measures the change in the net (downward minus

upward) radiative flux at the top of the atmosphere or at the boundary between the

troposphere and the stratosphere arising because of a change in an external driver of

the climate system. Stone et al. look at four such forcings – 1) one associated with

tropospheric greenhouse gases, 2) one associated with sulfate emissions, 3) one asso-

ciated with stratospheric volcanic aerosols, and 4) one associated with solar radiation.

There is a specific spatio-temporal pattern of temperature changes (called a fin-
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gerprint) associated with each forcing. In Stone et al. the fingerprint for each forcing

is known from energy balance models that incorporate information from a general

circulation model. Yet what is not known is the relative extent of the response to a

forcing. Hence the extent of the response to a forcing corresponds to a free parameter

that has to be estimated from the data.

Stone et al. use observations of mean surface temperature changes from 1940 to

2005 to estimate these free parameters and to measure the fit of the models with

the observations. Estimating the relative extent of response to the various forcings

amounts to finding the values of βi, 1 ≤ i ≤ 4, that give the best fit to the data Tobs.

That is, the βi in the following equation are fitted to minimise, within bounds, the

error:

Tobs =
4∑

i=1

βi ∗ Ti + ε, (1)

where Ti is the pattern of temperature change given by the fingerprint for forcing i

and ε is the error term.

More specifically, the base models Stone et al. consider is the equation (1) and all

other nested models derived from this (i.e. all in all sixteen base models). That is,

there is a base model where there is only one free parameter β1 corresponding to the

extent of the response to the greenhouse gases forcing,..., a base model where there

are two free parameters corresponding to the extent of the response to the greenhouse

gases forcing (β1) and the sulfate emissions forcing (β2),..., as well as base models

with the other combinations of free βi-parameters. Model instances are obtained

when the free parameters are assigned specific values.
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Stone et al. then compare the performance of these sixteen base models, assuming

that inclusion of the term βiTi is necessary just in case the estimated βi is significantly

different from zero (at the 95% level). Stone et al. conclude that the base model M1,2,3

that includes the three free parameters corresponding to the extent of the greenhouse

gases forcing (β1), the extent of the sulfate emissions forcing (β2), and the extent of

the stratospheric volcanic aerosols forcing (β3) is confirmed relative to all other base

models. Confidence intervals for the estimates of the greenhouse gases forcing, the

sulfate emissions forcing and the stratospheric volcanic aerosol forcing are provided.

Stone et al. emphasise that this demonstrates that both anthropocentric and natural

forcings are needed to account for the observations.

To sum up, Stone et al. use data about global mean temperature changes to

estimate the values of the free parameters (calibration) and to confirm M1,2,3 relative

to the other fifteen base models. That is, they engage in double-counting and use-

novelty does not play a role. The next section will reflect on the case study.

3 Classical Hypothesis-testing vis-à-vis the intu-

itive position

The simplest Classical method for assessing models is arguably standard Hypothesis-

testing – the procedure employed in our case study. We first describe Classical

Hypothesis-testing before turning to our case study.
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A base model in this context is a set of model hypotheses that all share the same

model structure (model equations) but which differ in the value of parameters that

are considered the free parameters. These are thus referred to as model-instance hy-

potheses. Commonly, the dependent variable or model output is hypothesised to

be an accurate representation of some aspect of the world. For climate models, the

model output might represent, say, mean global temperature change. Hypothesis-

testing concerns one base model, although this includes any nested base models (i.e.

subsets of the full set of model-instance hypotheses, where the value for one or more

of the free parameters is zero).

Hypothesis-testing considers whether the observational data is ‘in keeping’ with

one or more of the model-instance hypotheses. If so, these hypotheses are treated

as plausible candidates for the truth. What confers reliability is the testing proce-

dure: as for all Classical methods, long-run properties matter. More specifically, the

Hypothesis-testing procedure is as follows: all model-instance hypotheses for which

the n data at hand fall in the unlikely or rejection region are discarded. The remain-

ing accepted hypotheses form a confidence interval of plausible parameter values.

The long-run properties of the testing procedure of interest are the type I error or

significance level and the corresponding confidence level. It is assumed that the set

of model-instance hypotheses under consideration form a suitable continuum and the

true hypothesis is amongst them. As such, the type I error is the (long-run frequen-

tist) probability of rejecting any given model-instance hypothesis when it is in fact

true (typically set at 0.05 or 0.01). The confidence level is the flip-side of the type

I error; the two values add to 1; the confidence level gives the (long-run frequentist)

probability that the set of accepted model hypotheses, i.e., the confidence interval for
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the various parameter values, contains the true hypothesis/parameter values, if the

same testing procedure (with n data) were repeated indefinitely.

We return to our climate science example. Recall that the base model here is a

linear combination of the ‘fingerprints’ of the various forcings (denote by Ti):

Tobs =
4∑

i=1

βi ∗ Ti + ε, (2)

where the free parameters, βi, 1 ≤ i ≤ 4, indicate the extent of the forcings (and ε

specifies probabilistic model error). The data are records of mean global temperature

changes for the given time period, Tobs.

Hypothesis-testing treats every possible combination of βi-values associated with

the base model as a model-instance hypothesis. Any hypothesis for which the ob-

served temperature record is too ‘unlikely’ (with type I error set at 0.05), is discarded,

yielding a 95% confidence interval for the true model-instance hypothesis, which can

be articulated in terms of 95% confidence intervals for each of the four βi terms. It

turned out that three of these βi confidence intervals did not contain zero: the βi

associated with the greenhouse gases forcing, the sulfate emissions forcing and the

stratospheric volcanic aerosol forcing. Thus, the base model which includes these

parameters is deemed more reliable (or confirmed) relative to the nested base models

which do not include these parameters (effectively setting them to zero).2

2This is a weaker conclusion than those of Stone et al. (2007). By our analysis, the base models
which do not have positive values for β1, β2 and β3 are falsified; all other base models are consistent
with the data.
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Contrary to the intuitive position, Classical Hypothesis-testing does not respect

use-novelty and the no-double-counting rule: calibration is the assessment of particu-

lar model-instance hypotheses – these hypotheses are either accepted in the confidence

interval or are rejected. When forming a confidence interval, one base model may be

accepted over another otherwise nested base model (when the confidence interval for

some free parameter does not include zero).3 Thus there is double-counting and data

used for confirmation are not use-novel.

4 Cross-validation vis-à-vis the intuitive position

While Hypothesis-testing may be the most widely used Classical method, other Clas-

sical methods have been proposed. For all these methods, the focus is the long-run

properties of the procedure that is used to assess/identify models. The Hypothesis-

tester asks herself: What confidence level, 1 − α, is suitable for my purposes, given

that if I were to repeat this procedure indefinitely, then my confidence interval would

contain the true hypothesis in (1 − α)% of cases? The crucial assumption is that

the base model (or otherwise a nested counterpart) is true. But there may be con-

texts in which the scientist is not sure which base model is true, and the plausible

candidates do not simply amount to a nested family of base models. In this case,

Hypothesis-testing is not very telling – we are assured only of the long-run accuracy

of the confidence interval for each base model, conditional on that base model being

true. This does not licence any comparison of base models, unless they are nested.

The Cross-validation method, by contrast, is more general. It also sheds a different

3Admittedly, the most inclusive base model is simply assumed true in Hypothesis-testing and
so cannot be confirmed or disconfirmed. Subsets of this base model may, however, be confirmed
relative to other subsets.
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light on the intuitive position with respect to use-novelty and double-counting.

Cross-validation is a general method for assessing/identifying models for predic-

tion, which has also been applied and discussed in climate science (e.g. Elsner and

Schwertmann 1994; Michaelsen 1987). It has several main components that can be

adjusted, depending on the context and the desired long-run properties. The first

component is the procedure that is being assessed for each base model. This is the

calibration step and is akin to the Hypothesis-testing procedure, but is generally an

abbreviated version whereby what is identified is just the model instance for each

base model that gives best fit with (confers highest probability to) the n data points.

This is referred to as the maximum likelihood estimator for the base model. The

second component is the performance measure for the base-model procedure. Typi-

cally it is the mean predictive accuracy (with respect to predicting a new data point)

of the base-model procedure, if it were conducted indefinitely in response to n data

generated randomly by Nature. Given that we do not know Nature’s data-generating

mechanism, we must estimate the mean predictive accuracy of the base-model pro-

cedure. The way this estimate is determined is the key characteristic of any model

selection method.

The typical (n − 1)-Cross-validation estimator for the mean predictive accuracy

is calculated as follows: Given n data points, one starts by using the first n − 1

data points to construct the best-fitting model instance of the base model given this

data, and then uses the remaining data point to assess the performance of the model

instance (by calculating the distance between the predicted data point and the ac-

tual data point). This is repeated for all possible selections of n − 1 data points to
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calculate the mean distance between the predicted and actual data points. An alter-

native is (n− k)-Cross-validation, where n− k data points are used to find the best

fitting model instance, and the remaining k data points are used to assess predictive

accuracy. The key assumption is that the data are independently and identically

distributed (Arlot and Celisse 2010).

Unlike Hypothesis-testing, Cross-validation gives use-novel data a special stand-

ing. It effectively involves repeated tests whereby one or more data points are ‘left

out of calibration’ to serve as the telling novel data. However, cross-validation does

not respect the no-double-counting rule: all data are used for confirmation and cali-

bration.

The cross-validation estimators of long-run predictive accuracy of base-model pro-

cedures themselves have long-run properties. One property is the bias: how well

the expected estimate of predictive accuracy matches the true predictive accuracy of

the maximum-likelihood procedure. The smaller the value for k in (n − k)-Cross-

validation, the less biased the estimator. The (n− 1)-Cross-validation estimator, for

instance, is an asymptotically unbiased estimator (Linhard and Zucchini 1984; Zuc-

chini 2000; Arlot and Celisse 2010). For larger values of k, we get biased estimates

because we are assessing the performance of the base-model procedure when n − k

data points are used for calibration and not what one would like to test: the perfor-

mance of the procedure when n data points are used for calibration (as is actually

done).

Whether one should opt for a biased or an unbiased estimator of predictive ac-
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curacy is related to the question of one’s aims in model selection (Arlot and Celisse

2010). A method is efficient if, as the number of data points, n, approaches infinity,

the probability approaches one that the base-model procedure (maximum likelihood

estimator) with greatest predictive accuracy is selected. This property characterises

the goal of estimation. A method is model consistent if, as the number of data points,

n, approaches infinity, the probability approaches one that the true model instance

is selected. This property characterises the goal of identification. As it happens, the

usual situation is that is not possible for a Cross-validation method to have both

properties. Indeed, efficiency corresponds to an unbiased while model consistency

corresponds to a biased estimator. In what follows, we analyse this distinction fur-

ther by relating Cross-validation to two well-known model selection methods: the

Akaike Information Criterion (AICc) and the Bayesian Information Criterion (BIC).

This comparison also allows a clearer picture of how AICc and BIC measure up with

respect to use-novelty and no-double-counting.

4.1 Comparison to the Akaike Information Criterion

The Akaike Information Criterion for finite sample sizes (AICc) aims at estimation,

i.e., to determine the base-model procedure that performs best for predictive tasks.

For AICc the distance between the actual and the simulated observations is mea-

sured by the Kullback-Leibler discrepancy4 and the data have to be independently

and identically distributed (there are some further technical assumptions; see Burn-

ham and Anderson 1998; Linhard and Zucchini 1986).

As usual in model selection, AICc estimates the predictive accuracy of the maxi-

4Our conceptual points carry over to other distance measures.
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mum likelihood estimator. So the calibration step is to identify the best-fitting model

instance for each base model relative to the n data points; these are the model in-

stances that would be used for prediction. To estimate the long-run average predictive

accuracy of each base-model procedure, first the discrepancy between the best-fitting

model instance and the actual data points is calculated. It is − ln[L]
n

, where L is the

maximum of the likelihood function (Zucchini 2000, 52-53). The following expression

then gives the score estimating the average predictive accuracy of the base-model

procedure given n data points:

CAICc = − ln[L]

n
+ (

p

n
+

p(p+ 1)

n(n− p− 1)
) (3)

(p is the number of free parameters). CAICc can be shown to be an unbiased estimator

(Burnham and Anderson 1998; Linhard and Zucchini 1984).

Clearly, for AICc there is double-counting : all the data are used first for calibra-

tion and then for confirmation (i.e., to calculate the score (3)). Also, clearly, the data

used for confirmation are not use-novel since the maximum likelihood given all the

data is used for calculating the score (3). So, in contrast to Cross-validation, there is

no apparent assessment of how the base-model procedure fares on new data. Despite

this, in a precise sense, there is a penalty term in the expression for the estimation of

the predictive accuracy (3) due to the data already having been used for calibration.

To demonstrate this, we will now compare two methods for estimating the average

predictive accuracy of procedures where n data points are used for calibration with

the only difference that (A) in the first case the data used for confirming the proce-

dure are use-novel, and (B) in the second case they are not.
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We start with case (A). Here one first engages in calibration, i.e. one uses the

n data to determine the model instance that fits the data best. Then with n novel

data points the distance between the predicted and the actual data points is calcu-

lated in order to estimate the average predictive accuracy of the procedure (n data

points are considered because later we compare this method to the AICc, where

also n data points are used for confirmation). As explained above, this yields an

unbiased estimator of the average predictive accuracy of the maximum likelihood es-

timator constructed from n data points (Linhard and Zucchini 1984; Zucchini 2000).5

We now turn to AICc and case (B) where the data are not use-novel. One starts

as in (A) and uses n data points for calibration to determine the best model instance.

Yet for confirmation one now uses the same n data points that have been used for cal-

ibration before (hence these are not use-novel). More specifically, these n data points

are used exactly as in (A) to determine the average Kullback-Leibler divergence be-

tween the n data points and the best fitting model instance. In this way one obtains

the term on the left hand side of CAICc. Note that the way we proceeded so far has

been exactly as in (A), with the only difference that the data are not use-novel. Yet

the term on the left hand side of CAICc would lead to a statistically very biased esti-

mate (the fit is assessed by the same data that have been used to determine the model

instance and is thus likely to be better than if novel data had been used). In order to

obtain an unbiased estimator (when n data points are used for calibration), the term

on the right hand side of CAICc is needed. Consequently, the term on the right hand

side amounts to a penalty term because the data have already been used for calibration.

5The estimator would also be unbiased if more than n data points were used for confirmation.
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In sum: for AICc the data are not use-novel and there is double-counting. Still,

comparison with cross-validation yields that use-novelty plays a role: since the data

have already been used for calibration, there is a penalty term in the score that

measures confirmation.6

4.2 Comparison to the Bayesian Information Criterion

The Bayesian Information Criterion (BIC), in contrast to AIC, aims at identification

of the true model. Indeed, as the name suggests, BIC is purportedly a Bayesian

approach that aims to assess base models in terms of their comparative posterior

probabilities. The posteriors for base models are measured in terms of the marginal

likelihoods of the base-model hypotheses (the weighted average of the likelihoods for

the relevant model-instance hypotheses). The marginal likelihoods track the posterior

probabilities just in case the prior probabilities for the base models are the same (or

in case n is very large, such that the prior probabilities have negligible importance).

The BIC score for a base model is eventually an approximation of -2 times the log

of the marginal likelihood of the base model. It is assumed that the likelihood prob-

ability density functions (w.r.t. the Lebesgue measure µ) belong to the exponential

family. The approximating expression is as follows (for derivation, see Schwarz 1978;

reproduced in Sprenger 2013):

BIC = −2 · ln[L] + k · ln[n], (4)

6Another important result is that (n − 1)-Cross-validation is asymptotically equivalent to the
Akaike Information Criterion (Stone 1977).
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where L is the maximum of the likelihood function (the likelihood for the maximum

likelihood estimator), n is the number of data and k is the number of free parameters

for the base model. In short, the term k · ln[n] corrects for the fact that the likeli-

hood for the maximum likelihood estimator overestimates the marginal likelihood for

the base model, in a way dependent on both the number of free parameters and the

number of data. The lower the BIC score, the more ‘choice-worthy’ the base model.

Strictly speaking, BIC assesses models in terms of their marginal likelihoods rather

than their posterior probabilities; it is only in special cases that the two yield the

same results (cf. Romeijn et al. 2012; Sober 2008). Indeed, where nested models

are concerned, the base models do not have the same prior probabilities (except for

trivial cases), and neither prior nor posterior probabilities will ever favour the more

nested base model, since logic dictates that it has lesser probability than any wider

base model that it entails. Thus BIC is not exactly Bayesian, because it is unclear

why a Bayesian should care about the relative marginal likelihoods of base models if

these do not track posterior probabilities.7 Indeed, the use of BIC to compare models

is generally justified in terms of the frequentist properties of this method, such as

model consistency, as discussed above. Hence our grouping of BIC with Classical

model selection methods.

As for AICc, there is double-counting for BIC because all the data are used for

calibration and confirmation (i.e., to determine the score (4)), and the data used for

confirmation are not use-novel since the maximum of the likelihood function is used to

7It is also not clear why Bayesians should care about sets of model hypotheses rather than
individual model hypotheses.
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calculate the score (4). Still, as for AICc, one can compare BIC with cross-validation

to see that k · ln[n] – the term on the right hand side of equation (4) – corresponds to

a penalty term due to the data having already been used for calibration (though the

comparison is much less general because it has been established rigorously only for

certain cases, including linear regression – Arlot and Celisse 2003). More specifically,

for linear regression, (n− k)-cross-validation (where use-novelty is important), when

k/n goes to 1 as n goes to infinity, is consistent (Arlot and Celisse 2003). BIC is

consistent too and by comparing it to (n− k)-cross-validation when k/n goes to 1 as

n goes to infinity we see that the term k · ln[n] can be interpreted as a penalty term

because the data have already been used before for calibration.8

In sum: for BIC the data are not use-novel and there is double-counting. Still,

for certain cases there is at least a role for use-novelty in the sense that there is a

penalty term in the score that measures confirmation, due to the data having been

used already for calibration.

5 Conclusion

This paper focused on the diversity of calibration methods and how these relate to

the ‘intuitive position’, which claims that data for confirmation have to be use-novel

and that double-counting (using the same data for calibration and confirmation) is il-

legitimate. We first showed that the simplest Classical method of Hypothesis-testing

8For AICc and cross-validation the comparison is neater: it is more general, and for both cross-
validation and AICc, the number of data points (n) used for calibration and for confirmation is the
same. In contrast, when comparing (n−k)-Cross-validation with BIC, the number of data points is
different: for Cross-validation n− k data are used for calibration and then k for confirmation, but
for BIC n data are used for calibration and confirmation.
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(employed in many climate science papers) is at odds with the intuitive position.

Then we discussed the general method of Cross-validation, which presented us with

a more nuanced stance with respect to use-novelty and double-counting: here use-

novelty is important but there is still double-counting. Cross-validation can be refined

depending on what frequentist properties of model assessment (estimation or iden-

tification) are considered desirable. Finally, we compared cross-validation with the

Akaike and the Bayesian information criterion: in this way we have seen that while

for these criteria the data are not use-novel, the idea of novel data is still relevant in

the sense that that there is a penalty term in the score that measures confirmation

because the data have been used for calibration before.

Our discussion has normative bearing in the following sense: If the intuitive posi-

tion is inconsistent with prominent formal methods of calibration, as we have shown

here, so much the worse for the intuitive position. At the very least, this suggests

that the intuitive position must be refined. We leave the question open as to whether

the most minimal refinement of the intuitive position (arguably the class of Cross-

validation methods) is to be preferred, normatively speaking.
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