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Abstract

The problem of inductive learning is hard, and|
despite much work|no solution is in sight, from neu-
ral networks or other AI techniques. I suggest that
inductive reasoning may be grounded in sensorimotor
capacity. If an arti�cial system to generalize in ways
that we �nd intelligent it should be appropriately em-
bodied. This is illustrated with a network-controlled
animat that learns n-parity by representing interme-
diate states with its own motion. Unlike other gen-
eral learning devices, such as disembodied networks,
it learns from very few examples and generalizes cor-
rectly to previously unseen cases.

Induction

In arti�cial inductive learning, the machine is trained
on only part of the set of possible input-output pairs;
once it reaches some criterion of success on this training
set, the machine is tested for \correct" generalization
on the remaining test set. The number of generaliza-
tions consistent with the training set is usually very
large. The trouble is: no purely formal, syntactic cri-
terion can systematically pick out what we consider
as the \correct" generalization out of this large �eld
of possibilities, as shown by Goodman in his "grue"
argument (Goodman 1983). From a strictly unbiased
(\objective") point of view any generalization that is
consistent with the training set is as good as any other.
Nevertheless, if all generalizations are equal, some gen-
eralizations are more equal than others: they strike us
as more clever or perspicacious, and it is these general-
izations that we want our learning machine to prefer.

The usual solution is to endow the learning system
with systematic inductive bias. No formal system can
be entirely free of bias, as it is obliged to formulate
its hypotheses in some language; any such language
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excludes some hypotheses, and of the ones it does in-
clude makes some some easier and more natural to ex-
press than others. Another type of bias is due to the
learning algorithm. This typically results in a norm,
\badness", on the hypothesis language|the size of the
classi�cation tree or LISP expression, for example. In-
duction is then just a form of optimization or search,
an attempt to minimize the badness of the hypothesis
while maximizing consistency with the training set.

The practical problem with this picture of biased
learning is the so-called bias/variance dilemma. Not
enough bias underconstrains induction, while too much
bias makes the system ad hoc or overly specialized, and
deprives it of plasticity. It is very di�cult to �nd robust
forms of bias that avoid these two extremes inside par-
ticular problem domains, and crossing domain bound-
aries is even more di�cult. The result is that learning
systems must be restricted to specialized domains, and
the inductive bias, to be put in by the programmer|
or by nature|carries a heavy load of speci�c infor-
mation. Such a solution to the problem of induction
begs the cognitive question: if bias is to be put in by
hand, whose hand is it? (If your answer is natural se-
lection, keep in mind that phylogenetic learning is at
least as di�cult as the ontogenetic kind.) Moreover,
both nervous system development and learning behav-
ior are more 
exible than such a picture would suggest.

The problem of induction has recently been dis-
cussed from the point of view of intermediate repre-
sentations (Kirsh 1992, Clark and Thornton 1997). In
the inductive learning of patterns, categories or rules,
the distinction is made between low-order regularities
that are present directly in the training data (such as
conditional probabilities between individual input and
output bits that are close to 0 or 1), and more sub-
tle higher-order regularities that can only be expressed
in a richer language and in terms of the lower-order
regularities (such as relational properties, etc.). The
lower-order regularities can certainly be picked up by
formal, fairly unbiased techniques. As for the higher-



order regularities, if the learner is to succeed it must
�rst re-represent the raw input in order to make the
more subtle pattern manifest. (The learner can of
course choose to treat the higher-order regularity as
if it were lower-order, by, e.g., simply memorizing the
input-output pairs, or by learning bit-by-bit associa-
tions. But then it would fail to generalize correctly: it
will certainly have learned something, but not what we
were trying to teach it.) The problem of perspicacious
re-representation is thus seen as the critical component
of higher-order learning.
Multi-layer neural networks have become popular

mainly due to the assumption that the intermediate
layers will somehow carry out this re-representation,
and the magic is supposed to be that this is induced
by means of a completely mindless procedure, hill-
climbing. Clark and Thornton (1997) have shown that
this is not so for a number of di�cult learning prob-
lems; the one I will discuss is n-parity, as I also use
this problem in my toy model (see below). The n-
parity mapping receives n bits as input and outputs
one bit, the sum of the input modulo 2. This mapping
is hard to learn from examples because they provide no
raw statistical information: all the conditional proba-
bilities between input and output bits are 0:5. It is
well known that multi-layer feed-forward networks can
\learn" parity by means of hill-climbing|but this is
only when they are trained on all the 2n input-output
pairs. No simple associationistic learning will do for
this rule: changing any bit of the input 
ips the an-
swer. Reproducing the training set is necessary but not
su�cient for having a concept or a rule; simple mem-
orization will lead to the same result, and we would
not then say that the memorizer has learned a rule,
because (among other reasons) no re-representation of
the input has taken place. A sharper test for having
learned a rule is of course correct generalization to pre-
viously unseen cases.
Clark and Thornton have found that no training al-

gorithm on any network architecture leads to networks
that generalize correctly to previously unseen cases of
parity; in fact, even in the best cases it su�ces to
withhold a very small fraction of the problems from
the training set for generalization to fail completely.1

(Other, non-network general algorithms fail just as
badly.) This is very bad news for neural networks.
Practically, it shows how bad general network meth-
ods are at generalization: many complex problems can

1To the author's knowledge, the closest that any neural
network|or any other general learning system|has come
to generalizing parity is Pollack's (1992) cascaded network,
which, given input strings of length 1 and 2 as well as some
longer strings for training, generalizes correctly to some
longer input strings.

be expected to contain embedded parity or more com-
plicated higher-order structures, and in cases of prac-
tical interest no system can be trained on all cases.
More fundamentally, it shows that, at least in this case,
that when a network learns to reproduce input-output
pairs, what it has actually learned is entirely unlike
the rule that we have used to arrive at the training
set. Indeed, what reason do we have to suppose that
a neural network, with its peculiar dynamics and bias,
would generalize beyond the training set in the way
we would? The only possible reason would be the bio-
logical verisimilitude of arti�cial neural networks; but
this, apparently, is not enough.

Embodiment and action

I would like to suggest that the at least some of di�cul-
ties of induction in arti�cial systems are due to those
systems' lack of embodiment, their incapacity for ex-
ternal action. By action I do not mean muscle contrac-
tions, or the planning of complex movements, though
these are indispensable to it. What I do mean is: the
ability to act on, that is to modify one's environment

and to perceive the results, direct or indirect, of the ac-

tion. Thus, issuing verbal commands to others counts
as action on my de�nition (provided they get carried
out, and you can perceive their e�ects), although in
this case the immediacy of physical feedback|an im-
portant aspect of embodiment|is lost.

A more formal way to talk about action and cog-
nition is through the action-perception cycle. A cog-
nitive system consists of two components, the inter-
nal and external, at any given time each of which is
in a particular state, Si and Se. At every moment
the internal, mental state Si is mapped into some ac-
tion on the external component, executed by means
of motor transducers. This action modi�es the ex-
ternal, world state Se ! S0

e. This leads to new per-
ceptions (via sensory transducers), which modify the
internal state Si ! S0

i
, which leads to new actions,

etc. The view of cognition as \information process-
ing" collapses this cycle to a linear process|sensory
input, leading to cognitive processing and modi�cation
of the internal state, leading to motor output|which
overlooks the fact that natural cognitive systems are
themselves largely responsible for their \inputs". Even
purely mental operations rely on this external control.
The role of action and embodiment has been recently
stressed in the situated robotics and animat commu-
nities (although with somewhat di�erent motivations),
in linguistics by Lako� (1987) and Johnson (1987), in
philosophy of mind by Putnam (1981); the view that
the external half of the perception-action cycle plays
an integral role in cognition has recently been dubbed



\active externalism" by Clark and Chalmers (1996).

Thus action, besides serving pragmatic ends, may be
fundamental to what are generally considered \higher"
cognitive functions. The main thesis of this work is
that, in particular, sensorimotor routines or schemas
may ground (Harnad 1990) the mental (and other)
operations involved in induction. In the language of
Clark and Thornton, the earliest re-representations of
the raw input (and therefore the ones most di�cult to
learn) may very well be provided by action schemas.
This somewhat paradoxical notion can be 
eshed out
by the following toy model.

Induction in an animat

The �ne detail of one's embodiment is probably very
important. It may turn out, for instance, that the de-
gree of opposability of one's thumb constrains one's
cognitive capacities. I believe, however, that embod-
iment also confers very general cognitive advantages
on the embodied system, advantages that can, and
should, be studied independently of the mechanical-
physiological details. It is my goal, therefore, to create
a minimal model to illustrate the general role that em-
bodiment and action can play in cognition.

We begin therefore with a highly simpli�ed|but not
altogether unrealistic|embodied creature, an animat.
This particular animat lives on a 2-dimensional plane;
its external \world" state is simply its position on the
plane and its heading. Time is taken as discrete. At
each tick the animat's muscles receive a motor com-
mand, telling them the distance to travel forward and
the angle by which to turn. The sensory input returned
consists of the distance to a �xed landmark, and the
angle between the animat's heading and the landmark
(given as a sine and cosine, to avoid discontinuities).

The goal is for the system to learn n-parity. To this
end we introduce two neural networks to connect the
animat to its task (the system is illustrated in Fig.
1b). The animat always starts out in the same posi-
tion and orientation (at (1,0) where the landmark is at
the origin, and facing north). The parity problem is
fed bit-by-bit to the input-motor network (a one-layer
perceptron), whose job is not to give the answer to
the problem but to issue motor commands to the ani-
mat. The sensory signals from the animat are fed to a
second, sensory-output network (also a one-layer per-
ceptron), which at the end of the presentation of the
problem is supposed to output the answer|the par-
ity of the input string. (To be in conformance with
the action model given above, there should also be a
recurrent connection between the sensory signal and
the input of the input-motor network. Such a connec-
tion is not needed to learn parity, but can be added
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Figure 1: (a) A disembodied learning system. (b) An
embodied system used in this work.

without substantially changing the results to be pre-
sented below. For more complex problems it becomes
necessary.) Having no other representational methods
at its disposal (such internal recurrent connections),
the system is obliged to represent the problem, and to
keep track of the intermediate results, by means of its
action.

The networks are trained by means of a genetic al-
gorithm. Each experiment proceeds as follows. A frac-
tion f of the 2n problems are assigned to the test set,
and are never used in training (the training set always
has an equal number of even and odd cases). In each
generation of the GA each member of the (initially ran-
dom) population is evaluated on the 2n(1 � f) train-
ing problems. (The weights and thresholds of the net-
works are coded as 10-bit strings in the genome.) The
score on each problem is the absolute value between
the output of the sensory-output network and the true
answer (since logical 0 is represented by �1:0 and 1
by +1:0, the best score is 0, the worst is 2, and 1 is
chance level); the score on the entire training set is
the mean of the scores on each problem. The popu-
lation (size 50, 10 bits/weight) is evolved by both 2-
point crossover and mutation, with rank-based �tness.
The experiment was stopped as soon as a member of
the population reached criterion on the training set, a
score of 0:001 or below. (Occasionally experiments ran
over 200 generations without reaching criterion; these
were discarded.) The best member of the population
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Figure 2: Generalization error (chance=1) for embod-
ied systems and disembodied controls

is then tested on the 2nf problems in the test set,
which, I stress, the population had never seen during
its training. The average score on the best popula-
tion member on the generalization test is the score for
the experiment. I ran 100 experiments for each value
of f and averaged the scores, where new training and
test sets were chosen for each experiment. (Further
details available on request. All techniques used were
very generic. The results were not sensitive to small
variations in the parameters.)

For the control, I wanted to make things as hard
as possible for myself by comparing the generalization
performance of the embodied systems with that of the
best generalizing disembodied networks. As shown by
Clark and Thornton (1997), feed-forward networks for
the non-temporal version of the problem are miser-
able at generalization. For the temporal version feed-
forward networks won't do, as they do not preserve
state, and therefore at least some recurrent connections
are required. After experimenting with a number of
architectures, I found that simple recurrent (\Elman")
networks generalize best. Within this class, 1-a�-b-1
architectures are best (� denotes a recurrent context
layer), and as long as b is not too large the perfor-
mance depends essentially on a; b = a seems a good
choice. The three best architectures are 1-2�-2-1, 1-3�-
3-1, and 1-4�-4-1. These disembodied networks were
trained by exactly the same method as the embodied
systems. It should be noted that the disembodied sys-
tems got stuck in local minima much more often than
the embodied.

The results for 4-parity are presented in Fig. 2, where
the mean generalization error is plotted against f , the
fraction of the 24 problems that were withheld from
the training set. Error of 1 corresponds to chance

level. (There is a good but uninteresting explana-
tion for why the disembodied networks actually per-
form worse than chance for large values of f .) The
embodied systems generalize almost perfectly up to
f = 0:75. As for the disembodied networks, with the
marginal exception of the 1-2�-2-1 architecture (which
is almost pre-engineered to become a parity-calculating

ip-
op), they generalize very poorly (as do Clark and
Thornton's models): omitting just two problems gives
very high error, and at four problems they are close to
chance level. Even the 1-2�-2-1 architecture has errors
that are 50-100 times greater than those of the em-
bodied systems for f below 0:75. The problem length
can be increased without substantially changing the
results: keeping f �xed I got similar generalization
performance for 5-, 6-, and 7-parity.

A �nal word concerning technique. The crucial as-
pect of this model is the sensorimotor embodiment, not
the details of the two (input-motor, sensory-output)
controllers. Although I used as controllers neural net-
works evolved by genetic algorithms|mainly because I
am familiar with these techniques|other general pur-
pose learning systems would probably do just as well,
unless they are especially maladapted to the task. The
point is that given a proper embodiment, the task of
the controllers becomes very simple.

External representation

The interesting question is how the embodied sys-
tems managed to generalize so well. As I have al-
ready discussed, these systems had no internal means
to represent the problem, therefore they had to per-
form all \computations" externally, i.e., by means of
their movement. All the successfully generalizing sys-
tems adopted variations on the following strategy in
the input-motor network: do not move forward, do
nothing on 0, turn by 180� on 1. To calculate parity,
the sensory-output network just has to give 0 if the an-
imat is facing north (the landmark is to its left), and
1 if it is facing south (landmark to the right).

The representation of the parity problem sponta-
neously evolved by the embodied systems is closely
akin to \epistemic action" recently investigated by
Kirsh in the context of human problem solving (Kirsh
1995, Clark and Chalmers 1996). The idea is that for
reasons having to do with human cognitive limitations,
people choose to o�oad certain mental operations onto
the external world; i.e., instead of performing an oper-
ation \in the head" one performs a much simpler phys-
ical action, lets the world evolve, and then reads o� the
answer. For instance, instead of mentally rotating the
falling pieces in the computer game Tetris in order to
see where they would best �t, people o�oad the ro-



tation by physically rotating the pieces on the screen.
On-line planning is another example: instead of plan-
ning where one will turn on the next street corner, one
simply goes there, fully expecting that once there, it
will be obvious where to go. In these examples and in
many others, the cognitive operation is spread beyond
the con�nes of the cognitive system into its external
world. This kind of o�oading, I suggest, may play an
important role in grounding and channeling inductive
learning. Even when overt physical action is absent
(the usual case in human reasoning), such action and
its bene�ts may be present in the covert, internalized
form of mental imagery (visual and kinesthetic) and
its transformations, often reported in reasoning.

The conclusion we can draw is as follows. The pe-
culiar internal dynamics of arti�cial neural networks
do not lead them to generalize \correctly" (i.e., in
a way that makes sense to us) to previously unseen
cases of di�cult problems such as parity|indeed, why
should they? If we trade this internal dynamics for an
external, sensorimotor dynamics of a simple embod-
ied creature, the generalization becomes correct. This
suggests that induction is less a matter of formal se-
lection criteria on hypotheses,2 but rather a procedure
grounded in one's sensorimotor relations with the ex-
ternal world. Indeed, we choose the hypotheses that we
do, even in abstract contexts, partly because they have
a certain meaning for us|for a human being parity is
simply more meaningful than one of the \erroneous"
hypotheses generated by the disembodied networks|
and meaning is not present in formal, ungrounded, dis-
embodied systems (Putnam 1981, Harnad 1990). The
problem of induction is to discover what is it about
certain hypotheses that makes them more meaningful
than others in certain contexts. Perhaps a relation to
sensorimotor schemas is part of the answer.

The obvious direction for future work is to vary
both embodiment and learning problem, to discover
the types of embodiment that can ground particular
inductive hypotheses. In doing so one rapidly realizes
that the simple architecture used here is insu�cient.
Its chief drawback is an inability to combine simple
action schemas into more complex routines that would
support more complex hypotheses. What is required
is a robust, general framework for progressive modu-
larization, combining simpler, successful schemas into
larger wholes. Another interesting avenue is to study
how the external routines of the type evolved here may
be internalized. After all, we do not always use our
hands when we think|sometimes we use mental im-

2Inductive learning in neural networks is no less formal
than in classical AI; the formal computations simply occur
on a lower and less explicit (\subsymbolic") level.

ages, an internalized form of perception and action.
By varying the internal \mental" apparatus during the
course of inductive learning, perhaps a mechanism can
be found for the internalization of perception and ac-
tion.
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