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I had the good fortune of meeting Teddy Seidenfeld early in my career and learning from him over many
years how to approach probability in general, and imprecise probability in particular. I first learned about
Teddy’s work from Henry Kyburg, Teddy’s undergraduate teacher and my Ph.D. supervisor, who intro-
duced me to Teddy’s and Larry Wasserman’s work on dilation, among other striking contributions that
Teddy made while I was graduate student in the 1990s, many with his longtime collaborators Jay Kadane
and Mark Schervish. I cannot overstate the impact Teddy’s work has had on me. He will doubtlessly
conclude that I have not learned from him well enough, but I am nonetheless grateful for his years of in-
struction.

The field of of imprecise probability has matured, in no small part because of Teddy’s decades of origi-
nal scholarship and essential contributions to building and sustaining the ISIPTA community. Although the
basic idea behind imprecise probability is (at least) 150 years old, a mature mathematical theory has only
taken full form in the last 30 years. Interest in imprecise probability during this period has also grown, but
many of the ideas that the mature theory serves can be difficult to apprehend to those new to the subject.
Although these fundamental ideas are common knowledge in the ISIPTA community, they are expressed,
when they are expressed at all, obliquely, over the course of years with students and colleagues.

A single essay cannot convey the store of common knowledge from any research community, let alone
the ISIPTA community. But, this essay nevertheless is an attempt to guide those familiar with the basic
Bayesian framework to appreciate some of the elegant and powerful ideas that underpin the contempo-
rary theory of lower previsions, which is the theory that most people associate with the term ‘imprecise
probability’.

1 Bayesianism in a Nutshell

For a Bayesian, a probability statement represents a person’s “degree of belief” about the
true value of a random variable. Bayesian inference, in turn, is the practice of estimat-
ing the conditional distribution of such random quantities given observed data. While
no one objects to applying Bayesian inference to instances where the prior distribution
is known, or at least backed by an accepted scientific model, Bayesian statistics stands
out by endorsing the practice of applying Bayesian inference without requiring any such
exogenous constraints. Bayesianism instead places an internal, coherence condition on
your degrees of belief whereby the comparable weights you assign to every event in a
given class are rational just in case they satisfy the axioms of (finitely additive) probabil-
ity.

There are competing explanations for what Bayesians are doing with this framework.
Daniel Garber characterizes two of them as the thought police model and the learning
machine model. The thought police model imagines a Bayesian scold looking over your
shoulder threatening penury (de Finetti 1937) or shame (Savage 1954) should you make
an incoherent assessment. The learning machine model is more aspirational. On this
view the Bayesian framework describes an ideal learning machine (Carnap 1962), or the
principles an ideal learning machine would follow once everything inconvenient about
learning and machines is abstracted away. Garber doesn’t find much of a difference be-
tween these two accounts of Bayesianism. To him, whether the thought police is coercing
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you to be an ideal learner or the learning machine describes an ideal citizen with a clean
record “seem interchangeable” (Garber 1983, p. 101).

If however the question is why your degrees of belief ought to comport with the
probability axioms, that question is answered by the carabiniere. De Finetti’s canonical
book argument is this: If your degrees of belief at a moment in time are identified with the
fair prices you provide at that time for some finite number of gambles,1 thereby obliging
you, hypothetically, to either buy or sell units of each gamble at your named prices on
demand, then you expose yourself to the possibility of sure loss if and only if your degrees
of belief fail to satisfy the axioms of finitely additive probability.

For simplicity, let us restrict ourselves to propositions, which are gambles that map
elements of X to 1 or 0, corresponding to whether a proposition is true or false, respec-
tively. If your degree of belief is 0.7 that a proposition is true, such as the assertion that
the random variable X takes the value x, then you are specifying that the certain gain of
e 0.70 is equivalent, in your judgment, to the uncertain gain of X . Thus, according to the
rules of this scheme, you are indifferent2 to engaging in two types of hypothetical trans-
actions. The first transaction requires you to buy a contract for e 0.70 that returns to you
e 1 if X = x and returns to you nothing otherwise. In other words, according to the terms
of this first hypothetical transaction, you are required to surrender the sure reward of 70
cents to acquire the uncertain reward of 1 euro that you receive if X = x is (verifiably)
true. The second transaction requires you to sell a contract for 70 cents that commits
you to pay out e 1 if X = x and to pay nothing otherwise. In other words, the second
transaction requires you to receive the sure reward of 70 cents but acquire the uncertain
obligation to pay 1 euro in the event that X = x is true. Your interlocutor is empowered to
put together a contract consisting of any finite combination of your fair prices—obliging
you to simultaneously buy this gamble, sell that gamble, et cetera. If your posted fair
prices are incoherent, there exist a contract of positions he can oblige you to take such
that no matter which of the possible states obtains, you will incur a loss. You are rational
if and only if resolving whether in fact X = x or X 6= x cannot expose you to a sure loss,
and you avoid sure loss if and only if the prices you give satisfy the axioms of finitely
additive probability.

A degree of belief then is a judgment of uncertainty expressed in terms of your will-
ingness to have your fortune change by an unknown outcome. The price µ at which you
value a random variable X , written P(X) = µ and called a linear prevision, is the value
you choose on the understanding that you are committed to accept any bet of the form
c(X − µ), where c is a positive or negative constant chosen by your opponent, and the
possible values of X are the set X. The sign of c determines whether you are obliged to

1A gamble is a function from a set of possible values X= {x1,x2, . . . ,xn} to R, where the set of possible
values serve as a partition against which to describe the consequences of that gamble. Strictly speaking,
de Finetti formulates his theory in terms of random quantities that do not presume a fixed possibility space
X, where a random quantity is simply a unique real number unknown to you. Nevertheless, with a suitable
translation appealing to the possible states of your random quantities and their combination (Walley 1991,
§2.1.4), the two are mathematically equivalent. Gambles are discussed in more detail in Section 4.

2Frank Ramsey (1926) put the same argument, independently, in slightly different terms, emphasizing
your indifference between the uncertain reward of the gamble X and the sure reward of a real number µ ,
your degree of belief, where the utility of the rewards are presumed to be comparable on a linear scale. In
effect, µ is your “fair price” for X . The canonical Bayesian account of degrees of belief is a creole of the
de Finetti (fair prices) and Ramsey (fair betting rates) approaches.
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buy (positive) or sell (negative), and the magnitude of c specifies how many units of X
are bought or sold. Your net outcome is the sum of the payoffs Y ,

Y = c1(X1−µ1)+ c1(X2−µ2)+ · · ·+ c1(Xn−µn)

and your n previsions are coherent just in case there is no linear combination of this form
in which Y is negative no matter how the random variables X1,X2, . . . ,Xn are resolved,
that is, no matter which x ∈ X obtains. This is de Finetti’s first definition of previsions
and his first criterion for coherence.3

2 A Simple Extension

Every degree of belief is constructed from two hypothetical commitments, one to buy a
gamble and another to sell. De Finetti’s argument, and the theory of linear previsions
that stands behind it, requires you to announce the same price for buying and selling a
gamble. In short, this is what degrees of belief are: a collection of two-sided fair prices
elicited from you about a finite collection of gambles.

A fair price of µ for a gamble expresses that you are disposed to buy the gamble for
any price less than µ , and similarly disposed to sell for any price greater than µ . A simple
extension of this account, first proposed by C.A.B. Smith (1961) and, independently, by
Peter Williams (1975, 1976), allows for two different prices for each gamble, one for
buying and another for selling. The routine for eliciting a pair of one-sided bets for
each gamble is otherwise identical to the canonical procedure for eliciting a single, two-
sided fair price. Committing to a maximum buying price of e 0.30 for a gamble that
returns to you e 1 if X = x, and returns to you 0 otherwise, is understood colloquially
as the maximum price you are willing to pay for that gamble: you are announcing your
commitment to surrender a sure reward up to 30 cents for the uncertain reward of 1 euro
awarded to you in the event that X = x is true. Conversely, committing to a minimum
selling price of e 0.70 for that same gamble obliges you to surrender e 1 if X = x, 0
otherwise, is understood as the minimum price you demand for selling that gamble: you
are announcing your commitment to surrender the uncertain reward of 1 euro in the event
that X = x is true in exchange for the sure reward of at least 70 cents. For prices offered
between 30 and 70 cents you are neither obliged to sell nor obliged to buy.

A pair of one-sided bets represents your highest buying price b and your lowest sell-
ing price s for a gamble, given the status quo alternative option of receiving no reward
at all. The span (b,s) (when b < s) consists of prices at which you are not obligated to
either buy or to sell that gamble. Note that you are not obliged to buy or to sell gambles
at prices between b and s, which does not mean you are obliged to abstain come what
may. Indeed, if instead of the alternative being the status quo option yielding you 0, a
Smith-Williams agent were instead offered a combination of gambles that is dominated
by the original gamble offered at some price between b and s, then she is not forced
to abstain from this dominating choice. On the standard Bayesian two-sided fair price

3De Finetti’s second definition of previsions and his second criterion for coherence appeals to a
quadratic scoring rule. Briefly, according to the second criterion, if your price µ is scored by the amount
(µ − 1)2 when X = x and by µ2 otherwise, and if the scores for different events are additive, then µ is
undominated just in case µ is a finitely additive probability. The first and second criteria are equivalent in
the sense that they identify the same previsions (de Finetti 1974, §3.3.7).
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model, s−b = 0, for all gambles under consideration. So, any gamble that fails to max-
imize expected utility may be found by pairwise comparisons between gambles under a
precise probability. This pairwise comparison rule for identifying gambles as inadmissi-
ble is not valid when (non-trivial) one-sided prices are used, however.4 More generally,
since the Smith-Williams extension calls for accommodating preferences that are more
general than a total preorder, a rational Smith-Williams agent may be unable to identify a
preferred gamble from a given set, which is why decision making with imprecise proba-
bilities typically involves choice functions.5 The upshot is that a rational Smith-Williams
agent is obligated to avoid sure loss but is nevertheless permitted to forgo a sure gain.

3 A Surprising Implication

Conceptually, the Smith-Williams extension is a straightforward generalization of the
Bayesian framework. It is not, as some critics maintain, a radical break from tradition.
The theory of lower previsions (Walley 1991; Troffaes and de Cooman 2014), which ac-
commodates this simple extension and much more, includes de Finetti’s theory of linear
previsions as a special case. Nevertheless, the switch from linear previsions to the more
general theory of lower previsions is mathematically less straightforward—and deeply
interesting for that very reason.

It should come as no surprise that a mathematical generalization of the Bayesian
framework will, as a matter of course, derive some properties under special circum-
stances that are immutable features of the original theory. No one is phased by this
in other contexts. Propositional logic appears as a special case of first-order logic, but the
model theory and grammar of first-order logic operate very differently than the semantics
and syntax of propositional logic. The model theory for first-order logic is not a simple
generalization of truth table semantics for propositional logic, as it is impossible to evalu-
ate every formula of first-order logic by evaluating all logically exhaustive combinations
of interpretations. Open formulas of first-order logic are syntactically well-formed by
the rules of the grammar but fail to be semantically determinable, an impossibility for
propositional logic. If semantic interpretability were deemed inseparable from syntactic
well-formedness, truth tables fundamental to model theory, or decidability the sine qua
non of logic itself, then first-order logic would be an aberration. Yet such objections have
no standing in logic. They are matters resolved in the classroom, not debated in learned
journals. The same unfortunately cannot be said for the theory of lower previsions.6

The theory of lower previsions is not constructed from the same elementary building
blocks used to construct the canonical Bayesian framework. Foremost, the language of
events and degrees of belief, which are fundamental to the Bayesian framework, are not
foundational to lower previsions. At the heart of the Bayesian framework is a one-to-
one correspondence between linear previsions and additive probability which says that a

4For discussion and examples, see (Seidenfeld 2004) and (Jansen, Schollmeyer, and Augustin 2021).
5We discuss partial preference in Section 7. See (Augustin, Coolen, de Cooman, and Troffaes 2014,

Ch. 8) and (Bradley 2019) for a discussion of decision making with imprecise probability models, and the
seminal work by (Seidenfeld, Schervish, and Kadane 2010) and later by (De Bock and de Cooman 2019a)
involving choice functions.

6Some authors criticize replacing numerically determinate degrees of belief with a range of values by
appealing to arguments that may be valid for precise probability models but are invalid with respect to
imprecise probability models. See footnote 18 for examples.
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class of additive probabilities on a domain uniquely extends to linear previsions on the
set of measurable gambles defined on that domain. This equivalence between additive
probability and linear previsions is the reason why additive probability, and therefore
why degrees of belief expressed over the language of events, is taken as primitive in the
canonical Bayesian framework. Previsions are simply expectations, defined by taking the
integral with respect to a given probability.7 The equivalence is also why de Finetti, who
prioritized previsions over probability, is treated as an apostle of Bayes rather than an
apostate.8

A similar one-to-one correspondence between lower probability and lower previsions
does not hold. Unlike linear previsions, two lower previsions can have the same values
on all events, and therefore express the same lower probabilities, but nevertheless have
different values for some bounded gambles. In other words, coherent lower previsions
defined with respect to the language of gambles is strictly more expressive than lower
probabilities defined with respect to the language of events.9 Thus, probability and de-
grees of belief do not play a fundamental role in imprecise probability models: instead,
they are derived and appear as special cases.10 Thus (bounded) gambles, not events, are
taken as primitives in imprecise probability models. One consequence from this is that
probability is not fundamental to imprecise probability models—as paradoxical as that
sentence may sound. Yet, since linear previsions appear as a special case of lower previ-
sions, much as propositional logic appears as a special case of first-order logic, there is a
sense in which probability is not fundamental to the Bayesian framework, either.

4 Gambles and Events

Before turning to see why the theory of lower previsions is built from the language of
gambles rather than the language of events, we should pause to introduce some terminol-
ogy and notation. A gamble f is a map from the possible values of a random variable
to the real numbers, representing the (possibly negative) reward to you that is associated
with each of the possible outcomes of that random variable. So, if you accept the gamble
f with respect to a random variable X , then when the true value of X is revealed, X = x,
you will receive the reward f (x). For example, if you were offered a gamble f on a coin
flip that rewarded you 1 euro on the outcome heads but returned to you 0 on the outcome
tails, your willingness to pay c for the risky reward of f would reflect your assessment of
the coin turning up heads, with c = 0 included as a possibility to indicate that you’d take
the gamble for nothing but otherwise are unwilling to exchange any sure reward for this
risky one.

Let script X= {x1,x2, . . .} denote the set of possible values of the random variable X .
A gamble f defined with respect to X will then assign a real number to each outcome in
X. The set of all gambles with respect to a set of possibilities X is denoted by G(X), or
simply G when the underlying possibility space is clear. For a pair of gambles f and g,

7Namely, a probability p determines a unique expectation (prevision) P with respect to a random vari-
able X with possibilities X, if Pp(X) := ∑

n
i=1 X(xi)p({xi}), for finite x ∈ X; and Pp(X) :=

∫
X X(x)p(dx),

when p is a density. Pp then is the unique linear expectation, with P restricted to the events under p.
8Discussions and proofs of this equivalence, ordered in length from extensive to concise, are found in

(de Finetti 1974, Ch. 3 and §3.8), (Walley 1991, §2.8 and §3.2), and (Troffaes and de Cooman 2014, §5.1).
9A running example illustrating this point begins in Section 5.

10This point is emphasized by Walley (1991, §2.7) and Troffaes and de Cooman (2014, §5.2).
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both defined with respect to a space X, the combination f ◦g is a gamble on X when the
arithmetical operation ◦ is applied point-wise to all x ∈ X:

( f ◦g)(x) := f (x)◦g(x) for all x ∈ X

Thus, if f and g are gambles, then so are f −g, f +g, and f ·g. Gambles may be ordered
point-wise, too, such that f ≤ g just in case for all x ∈ X, f (x) ≤ g(x). A gamble is
bounded above when its supremum value is finite, bounded below when the infimum is
finite, and simply bounded when it is both bounded above and bounded below. Although
our discussion will only involve bounded gambles, and Walley’s treatment is restricted to
bounded gambles (Walley 1991), the general theory of lower previsions accommodates
unbounded gambles (Troffaes and de Cooman 2014).

An event E is a subset of X, and an indicator function IE selects from X all x that are
members of E:

IE(x) :=
{

1 if x ∈ E
0 otherwise

Indicator functions are a special type of gamble, namely bounded {0,1}-valued gambles,
which assign the value 1 if the state x is in E and the value 0 otherwise.

Alternatively, an indicator function may be viewed as the the truth conditions for a
proposition q with respect to a partition X of states. So, rather than choosing the gamble
q that returns to you the reward of 1 or 0 depending on which element of X is observed,
the proposition q is true or false depending on which state in X is realized. There is a long
tradition in philosophy, following (Jeffrey 1965), that treats propositions as fundamental.
The point to emphasize is that formulations of subjective probability in terms of proposi-
tions depends on the one-to-one correspondence between linear previsions and additive
probability mentioned in Section 3, and breaks down without this correspondence.

EXAMPLE 4.1 Suppose there are two possible outcomes, X= {x1,x2}, and let f ,g,h be
gambles on X with the associated rewards to you displayed on the left side of Figure 1.
All three gambles are bounded gambles. Both f and g are {0,1}-valued gambles and h
is a constant gamble. Your payoff naturally depends on which gamble you choose and,
in the case of f and g, which state, x1 or x2, obtains. Thus, viewed as a non-sequential
decision problem, f ,g,h are acts that you may choose from, where a choice refers to you
selecting a single gamble from the set of gambles available to you for choice, and your
reward is the value you receive from your choice once the true state is revealed. Your
expected payoff is calculated in the usual manner, if an additive probability assessment
is provided for the two states, x1 or x2.

If instead a sub-additive or super-additive probability assessment is provided for the
two states x1 and x2, then your upper and lower expected payoff, respectively, may be
calculated. The dashed lines in the plot in Figure 1 represent two hypothetical probabili-
ties that E, namely p1(E) = 0.3 and p2(E) = 0.7, which may be interpreted as witnesses
for the lower probability and upper probability that E, respectively. The expected utility
for f and g under lower and upper probabilities would then each have the interval values
[0.3,0.7], whereas the expected utility of the constant gamble h is 0.4.

There are several proposed decision rules for imprecise probabilities, two of which
are Γ-maximin and E-admissibility. According to Γ-maximin, options are ranked by
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x1 x2

f 0 1

g 1 0

h 0.4 0.4
0 1

0.4

1

P(E)

f

g

h

Figure 1: Left: The payoffs for gambles f , g, and h. Right: A plot of the binary-state decision
problem whose expected payoff (y-axis) is a function of the probability of E (x-axis), where E is
defined by the indicator IE(x) = 1 if x = x1 and 0 otherwise.

lower expectation and an option that is maximal under this ranking is selected (Berger
1985, §4.7.6) and (Gilboa and Schmeidler 1989). According to E-admissibility, an op-
tion is selected for choice if there is some probability in the credal set under which that
option maximizes expected utility (Levi 1980). The decision problem in Example 4.1
is introduced in (Seidenfeld 2004) to show that, although h is uniquely optimal under
Γ-maximin, h is uniquely excluded from choice by E-admissibility. Thus, an optimal
choice under maxmin reasoning does not entail that it is an E-admissible choice. Here
again we see the theoretical insights afforded by a more expressive language: the re-
lationship between E-admissibility and Γ-maximin is not a simple logical extension of
one to the other. For a discussion of decision rules for imprecise probability models, see
(Troffaes 2007; Etner, Jeleva, and Tallon 2012; Bradley 2019).

5 Credal Sets and Lower Probability

What mathematical models are suited to representing coherent Smith-Williams assess-
ments? To motivate our answer, presented over Sections 6, 7 and 8, we begin with an
illustration of the language of events failing to capture all of the information contained in
an imprecise probability model.

Closed convex sets of probability mass functions – called credal sets (Levi 1980) –
are the most familiar imprecise probability model even if not, as we will see later, the
most expressive or easiest with which to work. Credal sets have been used in a wide
range of applications,11 and lower and upper probabilities defined in terms of a credal set
are among the most mathematically straightforward representations available for pairs
of one-sided bets on {0,1}-gambles. Indeed, several topics in the foundations of im-
precise probability are effectively addressed using this simple model, including dilation
(Seidenfeld and Wasserman 1993; Pedersen and Wheeler 2014; Pedersen and Wheeler
2019), the value of information (Grünwald and Halpern 2004; Kadane, Seidenfeld, and

11A sample of examples includes models for the strength of evidence (Shafer 1976), support for an ar-
gument (Haenni, Romeijn, Wheeler, and Williamson 2011, Ch. 3), opinion pooling (Walley 1981; Stewart
and Ojea Quintan 2018; Elkin and Wheeler 2018), sensitivity analysis (Walley 1991; Oberguggenberger,
King, and Schmelzer 2009), ‘objectively’ chaotic systems (Fierens, Rêgo, and Fine 2009), probabilistic
graphical models (Cozman 2000; Cozman and Seidenfeld 2009), the foundations of probability (Kadane,
Schervish, and Seidenfeld 1999; de Cooman and Miranda 2007), parimutuel betting (Corsato, Pelessoni,
and Vicig 2019), machine learning (Augustin, Coolen, de Cooman, and Troffaes 2014, Chs. 9, 10), and
much more.
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Schervish 2008; Pedersen and Wheeler 2015; Bradley and Steele 2016), different in-
dependence concepts (Cozman 2012), full conditional probabilities and indeterminacy
(Wheeler and Cozman 2021), and decision making (Levi 1980; Seidenfeld 2004; Trof-
faes 2007; Bradley 2019). Let’s turn now to consider how lower and upper probabilities
are defined in terms of a credal set.

A lower probability space, (X,A ,P,p), consists of a set of possible states, X; an
algebra of events A over X; a nonempty set of probability functions P on A ; and a
lower probability function p on A with respect to P defined by:

p(E) := inf{p(E) : p ∈ P} for each E ∈A (1)

When the set of probability mass functions P is convex and closed, P is a credal set.
While strictly not necessary to the definition of a lower probability space, standard co-
herence conditions for lower previsions are defined in terms of the lower envelope of
closed convex sets of probability mass functions. Specifically, every weak∗-compact and
convex set of linear previsions determines a unique lower prevision by constructing lower
envelopes.12 Thus, hereafter we assume that P is a closed convex set.

If your maximum buying price is 30 cents for a gamble that pays you one euro if E
obtains and zero otherwise, your commitment can be represented by the lower probability
p(E) = 0.3. The upper probability function p is then defined in terms of lower probability
by a conjugacy relation

p(E) := 1−p(Ec) for each E ∈A (2)

So, if your minimum selling price is 70 cents for a gamble that obliges you to pay out 1
euro if E and 0 otherwise, this is equivalent to 1 minus your buying price of the gamble on
the complement of E: p(E) = 0.7. Conditional lower and upper probabilities are defined
as

p(E | F) := inf{p(E | F) : p ∈ P} and p(E | F) := sup{p(E | F) : p ∈ P},

respectively. With this notation in place, we now turn to an extended example.
Imagine a soup can is to be flipped and you are interested in the outcome. The can

may land topside up (heads), on its side (side), or topside down (tails). Suppose further
that you regard these three possibilities, X= {h,s, t}, to be exclusive and exhaustive for
this experiment. Now suppose you wish to assess the outcome of the can landing on
its side. Owing to the one-to-one correspondence between a probability mass function
(p) and a linear prevision (P), when X is finite, p(x) = P(I{x}) = P({x}), for all x ∈ X.
So, if you were to judge the can toss to be fair, you might be disposed to assign equal
probability mass to the three basic outcomes, p0(h) = p0(s) = p0(t) = 1

3 . This equal-
probability assessment is represented by the point

(1
3 ,

1
3 ,

1
3

)
labeled ‘0’ in the center of

the unit 3-simplex of Figure 2(a).
Each point in an n-simplex represents a probability mass function, where the dimen-

sion n corresponds to the number of possibilities in X. So, returning to the 3-simplex

12That is, P is the lower envelope of P, if p(E) = min{p(E) : p ∈ P} for all E ∈A . This result extends
to lower previsions of gambles as well (Walley 1991, §2.7.3 and §3.6.1). Axioms for lower previsions,
which include lower probability as a special case, are presented in Section 6.
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Figure 2: Probability 3-simplex for the three outcome can-toss experiment. (a): a single uniform
probability mass function, p0 =

(1
3 ,

1
3 ,

1
3

)
. (b): two probability mass functions, p1 = (1

2 ,
1
4 ,

1
4) and

p2 =
( 3

20 ,
3
5 ,

1
4

)
. The points p1 and p2 and all points in the linear span between these two points is

a credal set.

representation of our soup can toss in Figure 2, if you were to assign probability 1 to the
event of the can landing on its side, that assessment would correspond to the probability
mass function represented by the point (0,1,0) at the apex. The simplex in Figure 2(b)
includes two probability assessments, p1 =

(1
2 ,

1
4 ,

1
4

)
and p2 =

( 3
20 ,

3
5 ,

1
4

)
, each formatted

for the outcomes (h,s, t). The probability mass function p1 witnesses the lower probabil-
ity of 1

4 that the can lands on its side, whereas p2 witnesses the upper probability 3
5 that

the can lands on its side. The linear span in blue and the extremal points 1 and 2 represent
a credal set.

There are a continuum of lines whose endpoints witness the same upper and lower
probabilities in Figure 2(b) for the event of the can landing on its side. Each of these
alternative credal sets happen to realize different upper probabilities or different lower
probabilities for the outcomes heads or tails. Thus, in this case, there would be no differ-
ence in credal sets without a difference in lower/upper probability. But, in general, there
is a many-to-one relationship between credal sets and lower/upper probability, which we
may illustrate with the six following probability assessments,

p1 = (0.50,0.25,0.25) p2 = (0.50,0.35,0.15)
p3 = (0.25,0.60,0.15) p4 = (0.15,0.60,0.25)
p5 = (0.15,0.35,0.50) p6 = (0.25,0.25,0.50)

which serve as the extremal points of the credal set P1 in Figure 3(a), and the subset
{p2, p4, p6} serves as the extremal points of the credal set P2 in Figure 3(b).

Although the credal sets P1 and P2 are distinct, both realize the same upper and lower
probabilities for all three basic outcomes of X, namely

p(h) = 0.50 p(s) = 0.60 p(t) = 0.50
p(h) = 0.15 p(s) = 0.25 p(t) = 0.15
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Figure 3: Two credal sets which induce the same lower and upper probabilities on X. (a): the
credal set P1 with extremal points {p1, p2, p3, p4, p5, p6}; (b): the credal set P2 with extremal
points {p2, p4, p6}.

which are represented by the three pairs of parallel dashed lines in the simplexes of
Figure 3. This many-to-one relationship between credal sets and lower probability was
observed by Peter Williams (1976, Theorem 2), who also remarked on the advantages
afforded to the subjective interpretation of probability from moving away from the lan-
guage of events. We will return to this point in Section 7.

The credal sets in Figure 3 are distinct. There are probability mass functions included
in P1 that are excluded from P2, but this difference is not expressible in the language of
lower/upper probability of events. A natural question to ask is whether this mismatch
is merely a technical matter that has no practical bearing on probability judgments we
may wish to represent and reason about. We turn in the next two sections to see that
there is indeed different information encoded by different credal sets which have different
behavioral consequences.

6 Gambles and Lower Previsions

The question raised in Section 5 is what mathematical models are suited to represent-
ing information encoded by credal sets that the language of lower probability on events
cannot capture. In this section we introduce such a model but defer until Section 7 the
issue of how your probability judgments are elicited and how the norms of the model are
imagined to work, constructively, to ensure the mathematical properties necessary for co-
herence are invoked to evaluate such judgments. De Finetti’s theory, for each of his two
accounts of linear previsions, bundles together the definition of a prevision with criteria
for coherence. The theory of lower previsions allows us to unpack some of these steps,
but we nevertheless can begin by introducing lower previsions in a manner very similar
to de Finetti’s introduction of linear previsions, namely by providing the definition of a
lower prevision together with conditions for coherence.

A lower prevision model is a triple (X,G,P), where X is a set of possibilities, G is a
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linear space13 of bounded gambles defined with respect to X, and P is a real functional
defined on G called a lower prevision. For gambles f and g in G and any strictly positive
number λ , P is a coherent lower prevision if and only if the following conditions are
satisfied (Walley 1991, Thm. 2.5.5):

LP1. P( f )≥ inf f (bounds)

LP2. P( f +g)≥ P( f )+P(g) (super-additivity)

LP3. P(λ f ) = λP( f ) (non-negative homogeneity)

Lower previsions are simply lower expectations. LP1 states that the lower expectation of
a gamble should never be less than the minimum of that gamble, when it is a bounded
gamble, or the infimum of the gamble in general. LP2 says that lower previsions are
super-additive, that is, that the lower expectation of the sum of two gambles should be
never less than the sum of the lower expectations. LP3 says that if there is a non-negative
constant within a lower expectation, that constant may be moved freely outside the scope
of the lower expectation operator. In other words, the lower prevision of a gamble multi-
plied by a non-negative factor λ is the same as the lower prevision of that gamble scaled
by λ . When the domain of P is restricted to only {0,1}-gambles, P is a lower probability.

Here it may be a useful to see de Finetti’s coherent linear previsions expressed in
these terms, namely when the domain of the prevision operator is assumed to be a linear
space.14 If P is a linear prevision on a linear space G of bounded gambles, then P is co-
herent if and only if the following two conditions are satisfied (Walley 1991, Thm. 2.8.4):

P1. P( f )≥ inf f (bounds)

P2. P( f +g) = P( f )+P(g) (additivity)

The homogeneity condition, LP3 for lower previsions, follows as a consequence of P1
and P2 for linear previsions.15

The interpretation of lower previsions is an extension of the Smith-Williams notion of
a one-sided bet, outlined in Section 2, extended to cover all (bounded) gambles and not
only {0,1}-gambles. We remarked in Section 4 about the outsized role that propositions
and the language of events play in some presentations of subjective probability theory.
The key notion that turns lower previsions into a model of your uncertainty is the accept-
ability of a gamble, which, just as with the theory of linear previsions, is grounded in
your willingness to have your fortune change in accordance with an uncertain outcome.
Intuitively, the acceptability of a gamble indicates your disposition to accept it. Owing to
the constructive nature of the theory, your disposition to accept might be an initial proba-
bility judgment, which may or may not be consistent, or, if consistent, may or may not be
coherent. In later sections we will focus on how to check a set of initial probability judg-
ments for consistency and how to construct a coherent model from consistent probability
judgments. For now, we shall focus on the mathematical nuts and bolts of the theory and
how the axioms of lower previsions are related to a coherent set of acceptable gambles.

13That is, G is closed under finite vector addition and scalar multiplication.
14Compare (de Finetti 1974, §3.5.1).
15For a proof, see (Troffaes and de Cooman 2014, p. 58) along with the observation that, for unbounded

random variables, a homogeneity condition must be included as an axiom for (conditional) linear previsions
as well.
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Suppose the set D⊆G(X) denotes the (non-empty) set of gambles that are acceptable
to you with respect to the set of all possible gambles, G, over the possibility space X.
Then, for any gamble f ∈G and real number µ , the lower prevision operator P(·) is

P( f ) := sup{µ ∈ R : f −µ ∈ D} (3)

which is read as the supremum price µ you are willing to pay for the gamble f . Alter-
natively, we say that the lower prevision of f , P( f ), is the supremum acceptable buying
price for f associated with the set of gambles D that you find acceptable. Naturally, if
P is a coherent lower prevision, your announced prices are coherent. This definition of-
fers no guidance for assessing whether your lower previsions are coherent, however. The
question of assessment will be addressed in Section 7, where coherence axioms for sets
of acceptable gambles are introduced. Nevertheless, if D is a coherent set of acceptable
gambles, LP1-LP3 are derivable from Equation 3, allowing us to move between coherent
lower previsions and coherent sets of acceptable gambles.16

The upper prevision operator P(·) is defined by

P( f ) := inf{µ ∈ R : µ− f ∈ D} (4)

which is read as the infimum selling price µ for f that is acceptable to you with respect
to D. Just as with lower and upper probabilities, the functionals P(·) and P(·) satisfy a
conjugacy condition, namely, for all possible bounded gambles G,

P( f ) :=−P(− f ) for all f ∈G (5)

which allows us to take lower previsions as primitive. Equation 5 asserts that selling
the gamble f for a price µ is equivalent to buying − f for −µ . The reason that the lower
prevision operator is typically taken as primitive is that surrendering a sure reward of µ in
exchange for an uncertain reward f is regarded as more fundamental than pricing gambles
to sell. For instance, the following transformations all express gambles acceptable to you
as a consequence of endorsing the lower prevision P(− f ):

P(− f ) = sup{µ ∈ R :− f −µ ∈ D}
=− inf{−µ ∈ R :− f −µ ∈ D}
=− inf{µ ∈ R :− f +µ ∈ D}
=−P( f )

There are important exceptions, such as in finance (Shafer and Vovk 2019), that treat the
upper prevision operator as primitive.17

The language of gambles affords you a larger vocabulary to express probability judg-
ments than the language of events, even when your judgments only concern events. Let
the set D denote to a set of gambles that are acceptable to you, and E and F be events.
The following table displays some probability judgments and their translations into ac-
ceptable gambles and lower previsions.

16However, analogous to the many-to-one relationship between lower previsions and lower probability,
there is also a many-to-one relationship between coherent sets of acceptable gambles and lower previsions.
We discuss this in Section 8.

17See (de Cooman and Hermans 2008) for a Walley-style framework within which to embed Shafer and
Vok’s game-theoretic approach to probability.
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Probability Judgment Acceptable Gamble Lower Prevision
E is probable E− 1

2 ∈ D P(E)≥ 1
2

E is at least as probable as F E−F ∈ D P(E−F)≥ 0 *

E is twice as probable as F E−2F ∈ D P(E−2F)≥ 0 *

Conditional on G, E is at
G(E−F) ∈ D P(G(E−F)≥ 0 *

least as probable as F

The odds against E are at least 3 to 1 Ec−3E ∈ D P(E)≤ 1
4

E without F is improbable 1
2 −E +F ∈ D P(E−F)≤ 1

2 *

Your degree of belief that E is 1
3

E− 1
3 ∈ D and P(E) = 1

3 and
1
3 −E ∈ D P(E) = 1

3

Table 1: Some probability judgments and their corresponding representations in terms of ac-
ceptable gambles and lower previsions. Even though all of the gambles are {0,1}-gambles, the
comparative probability judgments marked by * cannot be modeled by lower probabilities.

As should be clear, degrees of belief are expressible and their corresponding (coherent)
linear previsions are expressible in this language as well. Specifically, your degree of
belief that E is recoverable when the lower prevision that E is identical to the upper
prevision that E. Naturally, all events under consideration would need to be determi-
nate valued to recover the properties of a linear prevision P(·). Some commentators run
into trouble with examples involving some, but not all, determinate valued gambles by
applying reasoning that is valid for linear previsions but invalid for lower previsions.18
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Figure 4: (a): The upper prevision P(I{s} − I{t}) = 0.45 with respect to P1; (b): The upper
prevision P(I{s}− I{t}) = 0.35 with respect to P2.

Return now to the soup can experiment. Figure 4(a) displays the credal set P1 and
18For example, (White 2010, §5) and (Elga 2010, §4-5). See the discussions in (Pedersen and Wheeler

2014) and (Chandler 2014), respectively.
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Figure 4(b) displays the credal set P2. Both credal sets induce the same lower and upper
probabilities on X but two different upper previsions for the gamble Is− It . The upper
prevision P(I{s}− I{t}) = 0.35 with respect to P2 expresses that the gamble 0.35− I{s}+
I{t} is acceptable, which is not an acceptable gamble with respect to the upper prevision
of P(I{s}− I{t}) = 0.45 defined on P1. Expressed in terms of probability mass functions,
P(I{s}− I{t}) ≤ µ asserts that every probability distribution p satisfying the inequality
µ ≥ p(s)− p(t) is acceptable, an assertion that clearly does not correspond to an event
within the algebra A of (X,A ,P,p) but instead expresses a constraint on probability
mass functions whereby p3 is admissible to the set P1 but inadmissible to the set P2.

7 Acceptable Gambles and Partial Preference Orders

An acceptable gamble is one you prefer to the existing state of affairs, where the existing
state of affairs is represented by a constant gamble that returns to you zero. The compar-
ison of gambles underlying such judgments can be expressed in terms of a strict partial
preference order

f � g iff f −g� 0 iff f −d ∈ D. (6)

which expresses that you strictly prefer f to g and therefore would readily exchange g
for f . Alternatively, you my compare gambles under a non-strict partial preference order

f � g iff f −g� 0 iff f −d ∈ D. (7)

to express that you are not opposed to exchanging g for f . The structure of the set of
gambles D in Equations 6 and 7 are different, owing to whether the preference ordering
is irreflexive or reflexive, respectively. The main difference is whether the zero gamble
is included among the gambles you find acceptable: under strict partial preference the
zero gamble is not included in D, under non-strict partial preference it is. The reason the
rightmost equivalence in Equations 6 and 7 are the same, and do not reflect this difference,
is that the expressive capacity of lower previsions cannot account for this difference and
views all partial preference as non-strict partial preference. This point is discussed further
in Section 8.

Coherence conditions for a set of acceptable gambles, D, may be formulated directly
in terms of axioms for partial preference. Following (Quaeghebeur 2014), we recite
the axioms for coherent acceptable gambles induced by non-strict partial preference, ex-
pressed in terms of gambles f ,g,h and 0 < µ ≤ 1:

1. f � f (Reflexivity)

2. If f � g and g� h, then f � h (Transitivity)

3. f � g iff µ f +(1−µ)h� µg+(1−µ)h (Mixture Independence)

4. If f > g, then f � g and g 6� f (Monotonicity)

The coherence axioms for strict partial preference are identical to the axioms for non-
strict partial preference, substituting � for �, once reflexivity is replaced by 1′:

1′. f 6� f (Irreflexivity)
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From the axioms for non-strict preference, you can express that you are indifferent be-
tween f and g just in case both f � g and g� f , just as you would under weak preference
(von Neumann and Morgenstern 1944). However, in addition, you may also express that
f and g are incomparable if and only if both f 6� g and g 6� f .

A remark about terminology. You will increasingly find the terms ‘acceptable gam-
ble’ and ‘desirable gamble’ used interchangeably in the literature, although Peter Walley
distinguishes between three variants of desirable bounded gambles, and Teddy Seidenfeld
refers to acceptable gambles as favorable gambles (Seidenfeld, Schervish, and Kadane
1990). The main issue criss-crossing this terminology is whether or not the zero gam-
ble is included among the set of acceptable gambles, which corresponds here to whether
the partial preference ordering is non-strict or strict. Following Troffaes and de Cooman
(2014), we use ‘acceptable’ and ‘desirable’ interchangeably as an umbrella term, and let
the specific mathematical properties specify which variety of acceptability is on order as
the need arises.

8 Coherent Acceptable Gambles

Consider again the lower prevision model, (X,G,P). The key structural condition im-
posed on the set of bounded gambles G(X) is that it be a linear space, which a closed
convex set of probability mass functions realizes in two ways. First, the convex hull of
a credal set is simply the collection of all finite linear combinations of the probability
mass functions in the credal set. Second, each mass function within a credal set works
as a linear constraint on the lower prevision functional, P(·)—a fact we used to show,
with Figures 3 and 4, that credal sets contain more information than can be expressed
by the lower and upper probabilities they support. The key information that a lower
prevision uses from a credal set is the boundary of the convex hull, that is, the linear
spans between the extremal points of the credal set. Lower previsions do not depend
upon the probability mass functions as such. On the contrary, probability mass functions
carry additional mathematical baggage that are a burden to imprecise probability mod-
els (Wheeler 2021b), especially when conditioning and updating events with probability
zero (De Bock and de Cooman 2015a; Wheeler and Cozman 2021).

Credal sets also carry too little structure, a point we alluded to in Section 7. An equiv-
alence may be drawn between non-strict partial preference of gambles,≤, and lower pre-
visions of the same domain of gambles, P(·): exactly the same information about your
beliefs provided by one representation is provided by the other. However, strict partial
preference cannot be recovered from a lower prevision. The issue concerns which gam-
bles on the boundary should be included as acceptable and which should not, a distinction
that is not supported by lower previsions (Walley 1991, §3.8.6). This additional infor-
mation is nevertheless important when conditioning and updating events with probability
zero. For principally this reason, and consequences that follow from it, sets of accept-
able gambles are taken as theoretically primitive, which is why contemporary textbooks
(Augustin, Coolen, de Cooman, and Troffaes 2014; Troffaes and de Cooman 2014) start
with gambles and axioms for acceptability.

Before turning to this axiom system, there is another insight we may pull from credal
sets. We remarked that the extremal points together with the linear span between those
points is the necessary mathematical structure to determine a lower prevision. We never-
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theless can separate these two conditions when turning to the question of how to secure
such a structure. Namely, we might elicit from you a handful of judgments that in effect
would yield extremal points, then construct the convex hull of those judgments through a
closure operation. While far more tractable than imagining a continuum of credal judge-
ments that one must come up with ex ante, as some commentators mistakenly presume,19

there is nevertheless no straightforward means to elicit the specific probability mass func-
tions which realize the extremal points of a credal set.20

The following four axioms are a distillation of axioms for coherent acceptable gam-
bles proposed by (Williams 1975; Walley 2000) from (Troffaes and de Cooman 2014,
§3.4). First, there are two simple rationality axioms governing gambles you should al-
ways avoid and gambles you should always accept.

A1. If f < 0, then f 6∈ D (Avoid partial loss)

A2. If f ≥ 0, then f ∈ D (Accept partial gain)

Axiom A1 says that you should not accept any bounded gamble that will only yield you
a negative reward, whereas axiom A2 says that you should accept any bounded gamble
that will never yield you a negative reward.

The next pair of axioms construct the linearity properties that were stipulated to hold
for G(X) of (X,G,P) above.

A3. If f ∈ D, then λ f ∈ D (∀λ ∈ R.λ > 0) (Positive Scale Invariance)

A4. If f ∈ D and g ∈ D, then f +g ∈ D (Combination)

Axioms A3 and A4 encode that we are adopting a linear utility scale to express bounded
gambles. Axiom A3 says that your disposition to regard a gamble as acceptable is not
changed by the introduction of a positive scale. Axiom A4 states that if you are disposed
to accept f and to accept g, then you should be disposed to accept their sum. Alterna-
tively, axioms A3 and A4 may be viewed as logical closure operations: A3 constructs a
ray from the origin that passes through each gamble you accept, whereas A4 constructs
a convex cone that combines all rays.

These four axioms entail a monotonicity property that underwrites dominance rea-
soning, namely

A5. If f ∈ D and g≥ f , then g ∈ D (Monotonicity)

A5, which follows from A2 and A4, says that any bounded gamble g that dominates an
acceptable gamble f is an acceptable gamble, too.

The four axioms, A1, A2, A3, and A4, are deceptively simple, but the normative
standard they encode should be familiar to any student of rational choice theory. If you

19See for example (Joyce 2011) and (Moss 2015), who reify the elements of credal sets and speak
as if probability judgments that exercise the resources of an imprecise probability model must invoke a
continuum of subjective probability judgements.

20Two important exceptions are group decision making, were each point is a Bayes agent (Walley 1982;
Elkin and Wheeler 2018) and credal networks (Cozman 2000), although credal networks involve structural
independence judgments on sets of probabilities (Cozman 2012; De Bock and de Cooman 2015b; Wheeler
and Cozman 2021).
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are disposed to accept a gamble that will impart to you a sure loss, you should not accept
it. If you admit a collection of gambles that, on their own do not incur a sure loss but in
combination do, you should not accept that combination of gambles. If a gamble cannot
lose, you should accept it. Lastly, your judgments of acceptability are presumed to be
invariant to positive scaling. In other words, the model presumes a linear utility scale.21

Any set of accepted bounded gambles that satisfies A1 to A4 is called coherent.
The axiom system for coherent sets of acceptable gambles may also be used as a

prescriptive model for rational belief and not only a normative standard for rational belief
(Wheeler 2018). That is, axioms A2, A3, and A4 can be viewed as production rules
that take as input a small collection of gambles you have considered and are disposed
to accept. These axioms then reveal to you the rational consequences, in terms of A1-
A4, that follow from holding such commitments. Hence, to speak of the acceptability
of gambles and the disposition to accept a gamble, rather than of accepted gambles tout
court, is to acknowledge the constructive nature of the theory. The axioms are designed to
offer a prescriptive guide to better ex ante decision making, not some normative standard
for meting out ex post justice. The process of evaluating a collection of your probability
judgments for their suitability to construct a coherent model with which you are capable
of making inferences should be familiar to students of statistical decision theory, even if
the language of (bounded) gambles is perhaps unfamiliar.

For example, suppose after deliberation you form a set of probability assessments,
A, that in your judgment are acceptable gambles. The set A is not a model per se, but
simply a collection of assessments. The first step in evaluating the suitability of A for
constructing a coherent model is to determine whether it is possible to extend A to a
coherent set of acceptable gambles. In other words, the first step is to determine whether
A is consistent, that is—whether your disposition to accept the gambles in A would,
if accepted, avoid partial loss. Clearly, a set A of accepted gambles is consistent if it
is a subset of some coherent set of acceptable gambles. But that fact does not offer
much guidance. Fortunately, one can check the consistency of A directly by verifying
there is no (non-negative) linear combination of gambles in A that yields a partial loss
(Troffaes and de Cooman 2014, §3.4.2), namely that the following consistency condition
is satisfied:

n

∑
j=1

α j f j 6< 0, for bounded gambles { f1, f2, . . . , fn} and non-negative αi ∈ R (Con)

where f < 0 denotes that f is nowhere positive and not zero. Given a set of assessments
A that is consistent, a closure operation constructed from axioms A2, A3, and A4 can be
applied to A to produce the smallest set of coherent acceptable bounded gambles, which
is called the natural extension of A. This inference mechanism is fundamental to the
theory. As an aside, the construction of natural extensions via axioms A1-A4 subsumes
classical propositional logic as a special case (de Cooman 2005, §5).

Return to the soup can experiment with outcomes X= {h,s, t}. The positive orthant
in Figure 5(a), the green zone whose borders are three hyperplanes, represents those
gambles within the set G(X) of possible gambles that are nowhere negative. For each of

21This linear utility condition can be relaxed with a discounted utility that targets A3, the positive scale
invariance condition for desirability (Wheeler 2021a)
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Figure 5: Coherent sets of acceptable gambles for outcomes heads, side, and tails. (a)
The vacuous belief model with two assessments, Aa = { j,k}, that are individually con-
sistent but when combined are inconsistent. (b) A non-vacuous coherent set of acceptable
gambles D, whose boundaries are drawn in green, constructed from three assessments,
Ab = {e, f ,g}.

these gambles you cannot lose, so they all are included in any coherent set of acceptable
gambles with respect to X by A2. The red zone in Figure 5(a), by contrast, the nega-
tive orthant, represents all gambles that you cannot win, so must be excluded from any
coherent set of acceptable gambles by A1.

Suppose you are disposed to accept the set of gambles Aa = { j,k} depicted in Fig-
ure 5(a). Each gamble in Aa is consistent, since each is somewhere positive: specifically,
j(h) > 0 and k(t) > 0. But combinations of j and k are inconsistent, by A3 and A4.
Therefore, Aa violates (Con). See Figure 5(a): although j and k are individually consis-
tent, the linear span between these gambles includes gambles that are nowhere positive.
Thus, Aa cannot be a subset of any coherent set of acceptable gambles. Yet, absent your
assessments Aa, that leaves the gambles in the green zone as your coherent set of ac-
ceptable gambles. This is the least committal yet coherent set of acceptable gambles on
X, a model that represents your disposition to refrain from having your fortune change
from a toss of this can. So, the coherent set of acceptable gambles in Figure 5(a) induces
a lower probability of zero for each outcome, heads, side, or tails. Lastly, notice the
constructive nature of this example. We described a process in which you first offer an
assessment, Aa, discover from applying the axioms of the theory there is no possibility to
construct a coherent model from Aa with which to reason, so, in light of this discovery,
withdraw the assessment Aa and settle instead, at least for the moment, for the vacuous
coherent model. Naturally, you may offer another assessment. But you are not rationally
compelled to do so to construct a coherent model, nor are you prohibited, technically or
otherwise, from updating a vacuous model in light of a new observation.

Figure 5(b) represents a non-vacuous coherent model generated by the assessment
Ab = {e, f ,g}:
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Ab heads side tails
f f (h) = 1.3 f (s) =−0.5 f (t) =−0.25
e e(h) =−0.5 e(s) = 1.5 e(t) = 1
g g(h) = 0 g(s) =−0.5 g(t) = 1

Similar to Aa, each gamble in Ab is consistent since each is somewhere positive. Un-
like Aa, Ab satisfies (Con). So, Ab is a consistent assessment. Hence A2, A3, and A4
may be applied to Ab to construct a coherent set of acceptable gambles, called its natural
extension. The green hyperplanes in Figure 5(b) depict the positive hull of the natural
extension of Ab, the border of the convex cone of gambles you are, rationally, disposed
to accept. As an aside, since the points in any convex cone on G(X) are gambles, not
probability mass functions, this model affords much more flexibility to introduce differ-
ent border structures for the positive hull than credal sets offer, as the infimum is defined
whether a coherent set of acceptable gambles is an open or closed set. For principally this
reason, coherent sets of acceptable gambles can represent the difference between strict
and non-strict partial preference, by adjusting axioms A1 and A2 to instead compare the
infimum of gambles to zero, even if the lower prevision induced by a coherent set of
acceptable gambles will not encode this difference.

The vacuous coherent model of Figure 5(a) is one extreme, representing the least
committal yet coherent stance you can take on the outcome of this can-toss experi-
ment. A maximally committed stance would be one in which, for every possible gamble
f ∈ G(X), you are either disposed to accept f , disposed to accept its negation − f , or
disposed to accept both f and − f , in which case your supremum buying price for f
and infimum selling price for f is identical. In other words, a maximally coherent set
of desirable gambles is a special type of convex cone of gambles, namely a halfspace,
whose border is a hyperplane. Since the possibility space for our gambles about the can
toss are in R3, a maximal coherent set of acceptable gambles will be a half space whose
surface is a two-dimensional plane that must pass through the origin and not bisect either
the negative orthant or the positive orthant in accordance with A1 and A2, respectively.
Figure 6 represents just such a maximal coherent set of desirable gambles. This hyper-
plane of gambles is your expectation, that is, your linear prevision over X. With respect
to this expectation, if the expectation of a gamble is positive you will accept it, and if the
expectation is negative you will not. Thus, the gamble j in Figure 6(b) is not accepted.
Gambles on the hyperplane are those which you assess to be fairly priced.

9 A Brief Word on Conditional Lower Previsions

Although the inference mechanism used to construct a natural extension is the most fun-
damental, it really only initializes a model for probabilistic reasoning.22 But probabilistic
reasoning includes updating, structural assessments, stochastic processes—all of which
involve conditional lower previsions. We have mostly avoided discussing conditional

22Note that, when working directly with lower previsions and conditional lower previsions, an important
alternative to natural extensions that is the slightly more restrictive inference mechanism for the regular
extension (Augustin, Coolen, de Cooman, and Troffaes 2014, p. 53), introduced by Walley to handle con-
ditioning on probability zero events. Working directly with sets of acceptable gambles removes most, if
not all, the technical reasons for relying on regular extensions to handle conditioning on probability zero
events.
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Figure 6: A maximally coherent set of acceptable gambles. With respect to the separating hy-
perplane in blue, gambles e, f ,g are acceptable and j is not acceptable.

lower previsions, but in this section we briefly sketch how conditional lower previsions
are defined with respect to a set of acceptable gambles and how updating works via a
generalization of Bayes’s rule.

Conditional probability judgments, whether precise or imprecise, concern your com-
mitments at a specific time and can be interpreted in at least one of three ways.23 First, a
conditional probability may be interpreted as a contingent probability judgment, one that
expresses your disposition to “call-off” a commitment to accept an unconditional gam-
ble f unless a contingent event G occurs. This called-off interpretation of a conditional
probability is behind the conditional probability judgment in Table 1. Since G is a {0,1}-
gamble, G = 1 if the conditioning event G occurs, so 1 · f represents that f contingent
on G is acceptable to you. Otherwise G = 0, thus 0 · f , which in effect “calls-off” the
gamble f and returns to you the status quo ante reward of zero if G does not occur.

For the remaining two interpretations, the conditioning event G is identified with sub-
sets of X rather than merely the value, 1 or 0, of the indicator function IG. Whereas a
called-off gamble contingent on G merely depends on G occurring, hypothetical condi-
tional judgments and temporal updating conditional judgments both depend on the re-
striction on the possibility space, X, that occurs in the event that IG = 1. A hypothetical
conditional judgment is like a contingent conditional judgment in expressing your cur-
rent disposition, or more generally, a disposition at a single point in time. Contingent
judgments and hypothetical conditional judgments are both synchronic probability judg-
ments. Unlike contingent conditional judgments, a hypothetical conditional judgment
expresses your disposition to accept the gamble f on the hypothetical assumption that
the event G occurs, where your judgment of acceptability for f is made with respect to
the restriction on the set of possibilities X prescribed by G. A temporal updating con-
ditional judgment, in turn, resembles a hypothetical conditional judgment in that both

23The literature on “conditionals” is enormous. But even restricting attention to probabilistic modeling
of seemingly basic conditional statements in the indicative mood suggests that these three interpretations
are far from exhaustive. Experimental work (Collins, Krzyżanowska, Hartmann, Wheeler, and Hahn 2020)
eliciting how people’s prior commitments change in light of receiving testimonial evidence in the form of
a simple indicative conditional shows stable and intuitive to interpret responses that nevertheless do not
admit a coherent probabilistic model.
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involve the evaluation of a gamble with respect to the subset of possibilities associated
with the conditioning event, G. But, unlike hypothetical conditional judgments, tempo-
ral updating conditional judgments express your future commitment to a gamble f upon
observing that G obtains. In other words, temporal conditional judgments are diachronic
probability judgments. Similar remarks apply to conditional value judgments and assess-
ments of admissibility.24

There are several assumptions that hypothetical and temporal updated lower previ-
sions involve, the foremost being that both forms of conditional judgments assume that
the conditioning event G is identified with subsets of X. For temporal updated previsions,
procedures for making an observation and ensuring that such an observation suffices to
establish that the true state is in G are also necessary, but exogenous to the theory of lower
previsions. Furthermore, conditional temporal conditioning assumes that the information
gathered from this observation is the only information you gather pertaining to X.

How are these three types of conditional judgments related to one another? The
short answer is they are all called-off gambles, but each imposes increasingly restrictive
conditions for connecting a risky reward to a contingent event. A contingent probability
judgment is the least restrictive because it only depends on G taking the value of 1 or
0, leaving unspecified the conditions under which G is assigned 1 or 0. Your yes-no
assessment of G is enough. Then, by simple multiplication, the contingent gamble is
called-off unless G = 1. Both hypothetical conditional judgments and temporal updating
judgments, by contrast, explicitly identify the event G with a subset of possibilities X,
namely those x ∈X identified by the indicator IG. Here the supposition that G = 1 entails
that G is an event defined with respect to a subset of x ∈ X. The act of supposing that
G or the act of observing that G circumscribe the space of possibilities X, creating a
conditioned slice, written DcG, of the acceptable gambles D ⊆ G(X) with respect to G,
For any gamble f , f is in the slice of gambles conditioned on G just in case the called off
gamble G · f is in G, that is

f ∈ DcG iff IG · f ∈ D (Conditioned Slice Condition)

where IG is the indicator of G. So, IG expresses that f is called-off unless IG = 1, and
the conditioned slice condition connects calling off f contingent on G to the indicator IG,
and membership of f in the set of acceptable gambles DcG circumscribed by IG = 1.

A conditional lower prevision may be defined with respect to a coherent set of ac-
ceptable gambles D, and may be given either a suppositional interpretation or a temporal
updating interpretation. For any gamble f , {0,1}-gamble G, real number µ , and coher-
ent set of acceptable gambles D defined with respect to the bounded gambles G(X), a
conditional lower prevision is defined with respect to D by

P( f |G) := sup{µ : G( f −µ) ∈ D} (8a)
:= sup{µ : f −µ ∈ DcG}, for all f ∈G(X) (8b)

24Related observations have been made by (Ramsey 1926; Raiffa and Schlaiffer 1961; Hacking 1967;
Kyburg 1968; Levi 1980; Walley 1991; Kadane, Seidenfeld, and Schervish 2008; Pedersen and Wheeler
2015).
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Equations 8a and 8b are equivalent, by the definition of a conditioned slice. However,
Equation 8a corresponds directly to the suppositional interpretation of the conditional
lower prevision, as the assessment of a gamble f on the supposition that G is made with
respect to D is made at a single point in time, namely when the coherent set of acceptable
gambles D was constructed. Although Equation 8b may be read synchronically as well,
Equation 8b is the basis for the temporal updating interpretation of conditional lower
previsions namely when the subset of gambles DcG is treated as the “updated” set of
gambles you are committed to adopting after observing G. So, the temporal updating
interpretation distinguishes between the conditional judgments you make now with re-
spect to D and the commitments you are prepared to make in the future after observing
G, denoted by DcG.25

The salient difference between the two interpretations of Equation 8 is that a con-
ditional lower prevision may be used either to evaluate the consequences of your con-
ditional probability judgments, or it may be used to update your probability judgments
after an observation. The theory does not mandate that you use either interpretation, nor
does it mandate temporal conditionalization as a constraint on future commitments. For
reasons why updated by Bayes rule should not be treated as mandatory and so-called
“reflection” principles deflected, see (Levi 1987; Seidenfeld 1995).

Note that under either interpretation, Equation 8 is defined when P(G) = 0, and even
when P(G) = 0. Therefore, conditioning on events of probability zero is straightfor-
ward. Furthermore, each interpretation supports the generalized Bayes rule (Walley
1991, Ch. 6) for conditional lower previsions, defined by

P(G [ f −P( f |G)]) = 0 (9)

where it is assumed that both P(G)> 0 and G [ f −P( f |G)] ∈ D. Finally, Equation 9 can
be performed directly on a coherent set of acceptable gambles D:

DcG = { f ∈G(X) : G f ∈ D} (10)

where, as before, DcG may be interpreted either as the consequences from generalized
Bayes rule under the supposition that G or the updated set of desirable gambles resulting
from generalized Bayes updating.

10 Coherence as a Guide to Life

Coherent sets of acceptable gambles make updating, and reasoning that depends on up-
dating, easy. The infimum of a coherent set of acceptable gambles is always defined,
whether that set is open or closed, so conditioning and updating on events that have prob-
ability zero is no different than conditioning and updating on any other event. Eliciting
probability judgments in terms of sets of acceptable gambles is straight forward, and af-
fords a clear distinction between probability judgments provided as input to a model and
probability judgments that follow as consequences of a coherent model. The language of

25Walley (1991, Ch. 6) and De Cooman and Troffaes (2014) only distinguish between contingent con-
ditional judgments and updated conditional judgments, and De Cooman and Troffaes include additional
notation for “input” conditioning events and “output” conditional lower previsions to emphasize the tem-
poral change that updating affords.
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acceptability can also accommodate non-binary choice, provided it is extended with a no-
tion of disjunction to express that at least one of a pair of gambles is acceptable (De Bock
and de Cooman 2019b). On the other hand, for many decision problems strict partial
preference can offer a better representation than sets of acceptable gambles, and many
examples of probabilistic reasoning are best served by a traditional probability model.
But the last two remarks point to a strength of the generality of coherent sets of accept-
able gambles. In addition to being a useful theory on its own terms, sets of acceptable
gambles serve as an I/O bus for imprecise probability, allowing you to transform a prob-
lem posed in one uncertainty framework into the terms of another or, just as important,
reveal to you conditions necessary for performing such a transformation. It is hard to
fault these aims and a mathematical theory that achieves them.

Garber’s view that the Bayesian framework is principally to do with punishing in-
coherent commitments or inspiring you to refrain from having them is shortsighted. A
normative theory ought to not simply provide a normative standard by which to assess
probability judgments, but also offer prescriptive guidance for how to construct a model
from such judgments. People do not have probability judgments per se but construct
them. Ignoring the role that elicitation plays in constructing coherent models gives free
rein to speculative mathematical psychology. Contemporary disputes over the relation-
ship between probability judgments and numerical probability mirror a 19th century de-
bate over the relationship between value judgments and numerical utility (Stigler 1950).
Comparative judgments of value afford numerical representation by a cardinal utility
function, when certain conditions are met, and the elicitation of your judgment under
those conditions is what both warrants and effects locating your comparative judgments
on a numerical scale. Benthamite utility, with its presumption that pleasure and pain were
themselves quantities, was abandoned because such quantities are impossible to measure.
Similarly, one’s cognitive commitments are not generated by the possession of a “credal
function”, or the possession of a “committee” of credal functions. Human psychology
is not equipped with numerical functions. Projects to describe the “accuracy” of one’s
credences (Pettigrew 2013) invoke quantities that are similarly impossible to measure
(Mayo-Wilson and Wheeler 2015). Isomorphisms are cheap to come by. Meaningful
measurements, on the other hand, are dear.

Bishop Butler remarked that probability is the very guide to life. The ingenuity of
Bayesianism is to ground this advice in coherence, bringing to heel very hard questions
about what alethic probability could be, never mind how it could guide anyone, by bank-
ing on your wish to protect your interests to construct a means to reason about probabilis-
tic judgments you might entertain. The theory of lower previsions extends this program,
both in terms of extending the range of probability judgments that may be brought un-
der management, and also improving our understanding of how to construct a coherent
model from assessments one might offer. Mathematical probability is not the very guide
to life. Coherence is.26

26Thanks to Thomas Augustin, Seamus Bradley, Fabio Cozman, Dominik Klein, Tim Maudlin, and Eric
Schliesser for comments on earlier drafts.
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