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Abstract

In this essay we advance the view that analytical epistemology and ar-
tificial intelligence are complementary disciplines. Both fields study epis-
temic relations, but whereas artificial intelligence approaches this subject
from the perspective of understanding formal and computational proper-
ties of frameworks purporting to model some epistemic relation or other,
traditional epistemology approaches the subject from the perspective of
understanding the properties of epistemic relations in terms of their con-
ceptual properties. We argue that these two practices should not be con-
ducted in isolation. We illustrate this point by discussing how to represent
a class of inference forms found in standard inferential statistics. This class
of inference forms is interesting because its members share two properties
that are common to epistemic relations, namely defeasibility and para-
consistency. Our modeling of standard inferential statistical arguments
exploits results from both logical artificial intelligence and analytical epis-
temology. We remark how our approach to this modeling problem may
be generalized to an interdisciplinary approach to the study of epistemic
relations.

[Keywords: statistical default logic; non-monotonic reasoning; epis-
temic closure; logic programming; uncertainty; knowledge representation.]

1 Introduction

Traditional epistemology occupies itself primarily with two sorts of problems.
The first concerns the analysis of fundamental epistemic notions, such as justifi-
cation, evidence and perhaps also belief, along with the analysis of key epistemic
relations that appear to involve these concepts, like is warranted by, supports,
and is reasonable to infer. In assembling these accounts into a theory, the aim of
this project is to give an analysis of knowledge—what it is to know a proposition,
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like when each of us says ‘I know I have two hands’.1

The other chief concern is the challenge posed by skeptical arguments to
the possibility of having knowledge. While there are varieties of philosophical
skepticism, a historically significant version concerns the possibility of empirical
knowledge about the external world, such as our respective claims of knowing to
have two hands. Knowledge claims such as these are justified by our experience,
yet it is conceivable that we haven’t hands at all. Perhaps instead we each are a
brain in a vat, electrochemically deceived into believing in his two-handedness.
The serious problem raised by the problem of skepticism is whether in giving an
account of knowledge that is refined enough to distinguish wholesale deception
from genuine knowledge claims we in fact filter out entire classes of claims from
ever being classified as knowledge, such as empirical claims about the world.2

While there remain disputes, both over proposals that analyze knowledge
on the one hand and various strategies for refuting skepticism on the other,
one broad consensus seems to hold among contemporary epistemologists: al-
most everyone agrees that Cartesian foundationalism is not a viable option.
Cartesian foundationalism is a particular version of foundationalism, one that
holds that knowledge of one’s two handedness, say, is derived from basic state-
ments about his own sensations, of which knowledge is supposed indubitable.
However, no one thinks that sensations provide infallible reports from the ex-
ternal world since no formulation of the basic sense-statement idea seems to
escape skeptical challenge. More importantly, it is no longer believed that epis-
temic notions behave like truth does in valid derivation—a position that has
significant ramifications for the study of epistemic relations, particularly infer-
ence relations. Justification is conferrable by induction, which is necessarily not
truth preserving. Furthermore, justification is not necessarily conferred to the
logical consequences of our beliefs nor does it, when conferred to a true belief
by derivation, necessarily guarantee knowledge of that derived belief.

The dimensions of this last point—how fundamentally different justification
propagation is from truth preservation—did not begin to become apparent until
the 1960’s. It was during this decade that several epistemic paradoxes were
articulated, including the paradox of the knower [Kaplan and Montague 1960;
Cross 2000; Uzquiano 2004] and the paradoxes of rational acceptance, namely
the lottery [Kyburg 1961, 1997] and the preface [Makison 1965; Pollock 1986;
Conee 1987]. Each paradox shows that very plausible minimal conditions—on
the behavior of a knowledge predicate and those thought necessary for rational
acceptance—lead to contradiction. While it is still disputed which conditions
should be dropped to resolve each paradox, the lesson we draw from these
paradoxes is that closure operations on languages modeling epistemic notions
are not isomorphic to any closure operations of classical first-order logic.

Conceptual studies such as Edmund Gettier’s famously short “Is Justified
True Belief Knowledge?” [Gettier 1963] suggest another reason for thinking that
epistemic notions are propagated unlike truth under logical consequence. Get-

1For a brief overview of the current state of traditional epistemology, see Jim Pryor’s [Prior
2001], which also contains an excellent bibliography.

2For a recent collection of papers on skepticism, see [DeRose and Warfield, 1999].
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tier’s essay brought attention to cases where a justified but false belief may
confer justification, by simple derivation, to statements believed but true by
chance.3 So in addition to the problem of skepticism, Gettier cases present
another obstacle within epistemology—one that affects theories of justification.
Since Gettier, the trick has been to formulate a theory of justification that is
strict enough to avoid counting Gettier-style counter examples as cases of knowl-
edge while at once flexible enough to ensure correct classification of common
empirical knowledge claims as being justified.

Now, epistemologists are right to stress the differences between logical con-
sequence and inference. All of us are creatures adept at drawing defeasible
inferences from information introduced to us by our senses: it is a restricted
case when we deduce a conclusion from an explicitly held belief whose contents
are an experience.4 But it is a mistake to think logic plays no role in mod-
eling inference relations [cf. Harman 2001]. Even though there are notable
exceptions, most current philosophical theories of knowledge are advanced as
though logic offered little analytical insight into the structure of the relations
mentioned in each theory, including inference relations. It is standard method-
ological practice for philosophers to offer theories of justification assembled from

3One of Gettier’s two counter-examples runs as follows. Suppose Smith has very strong
evidence for the proposition A, Jones owns a Ford. Smith’s evidence might include that Jones
has always owned a car in the past, it has always been a Ford, and that Smith has just accepted
an offer of a ride from Jones who is driving a Ford. We are then asked to imagine another
friend of Smith, Brown, whose whereabouts are completely unknown to Smith. Smith selects
a place at random and entertains the following proposition B, Jones owns a Ford or Brown is
in Barcelona. Since A entails B and let us suppose that Smith grasps this entailment, Smith
is justified to believe B. But now imagine that in fact Jones does not own a Ford; the present
car he is driving is a rented car. Furthermore, by chance, suppose Brown is in Barcelona.
So, B is true. However, it no longer appears that Smith knows B. It should be noted that
Gettier-style counter examples do not depend upon the justification-conferring belief being
false [Feldman 1974].

4More on defeasible inference to follow. And we acknowledge the psychological ability
we all share to draw reasonable inferences without the slightest awareness of the explicit
grounds we have for doing so. However, there are cases where we do evaluate the explicit
grounds available for drawing an inference, namely when we consider arguments. Our focus
is this class of restricted cases. Finally, the conceptual distinction between beliefs and their
contents may be illustrated by considering the difference between having a headache and
believing that one’s head aches. The content of the belief that one’s head aches is having a
headache. Notice that having a headache is good grounds for believing one’s head aches, but
that it is peculiar to cite the belief that one’s head aches for grounds to infer that one has a
headache. An epistemic relation (and perhaps also a causal relation) holds between (from) a
non-propositional experience, a pain in the head, and (to) a doxastic state, a belief that one’s
head hurts, whose content is the experience of pain in the head.

That non-propositional items may stand in epistemic relations to beliefs we may have is a
non-trivial point for knowledge representation. In some dynamic circumstances we appear to
draw inferences from graphical or geometric representations of information much better than
when that information is represented in propositional form. Meteorologists reach conclusions
from weather maps that they are unable to draw from an array of meteorological data repre-
sented in propositional form [Hoffman 1991] and air traffic controllers at the busiest airports
still rely upon slips of paper, each denoting an aircraft and moved around a controller’s field
of vision to represent traffic in his sector, from which he may draw inferences about the flow
of traffic, degree or distribution of congestion, and ranking of conflicts to resolve [Sellen and
Harper 2001].
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a conceptual analysis of both epistemic concepts and epistemic relations, where
the behavior of epistemic relations—including inference relations—is described
rather than formally defined.

That contemporary epistemology has neglected logic as an analytical re-
search tool may be illustrated by considering the main methodological dispute
to exercise the field over the last three decades. Since the publication of W. V.
O. Quine’s “Epistemology Naturalized” [Quine 1969], epistemologists have been
arguing whether their proper home is in psychology departments rather than
philosophy departments. Methodological naturalism (in epistemology) is the
view that the results and methods of the cognitive sciences are relevant to doing
traditional epistemology. What is interesting about this dispute for our purposes
is to notice the relatively narrow scope of the disagreement between ‘naturalists’
and ‘anti-naturalists’. Consider for example Roderick Chisholm’s version of ev-
identialism, which is a paradigmatic anti-naturalistic position. Chisholm’s view
is that epistemic properties and epistemic relations are irreducible, meaning that
they are of a kind that simply cannot be defined by a complex of psychological
or familiar logical operations [Chisholm 1967]. If one looks at the dispute be-
tween methdological naturalists and Chisholmians one can see that what they
have been arguing over is the place of cognitive psychology in epistemology—
specifically whether a detailed causal account of human belief formation is a
relevant matter to weigh in advancing a theory of justification. The point to
notice is that this dispute has been conducted with a tacit agreement within
the field that Chisholm was at least right about logic offering traditional episte-
mologists little theoretical advantage in the analysis of epistemic concepts and,
more importantly, epistemic relations.

It is precisely this Chisholmian view that logic plays only a minimal analyti-
cal role in epistemology that should be abandoned. While ready-made solutions
to the Gettier problem are not to be found in the journals of artificial intelligence
and non-trivial conceptual and methodological issues remain in identifying and
representing relata, we nevertheless see a role for logical AI in the very heart of
traditional analytic epistemology: to analyze and model epistemic relations.

One of our interests is to see epistemologists incorporate definitions of epis-
temic relations, particularly inference relations, into their theories of knowl-
edge.5 We think that adopting this practice would yield better theories of
knowledge, which is of intrinsic interest. But adopting this practice would also
be of interest to the field of knowledge representation and reasoning. For there
is an emerging area of research encompassing epistemology and logical AI [Ford

5Although our discussion so far has been in terms of traditional epistemology, we should
stress that our view that logical AI is relevant to the study of epistemic relations only depends
upon a theory discussing some epistemic property, like justification, and that its means of
propagation behave sufficiently different than closure under logical consequence. Thus our
thesis is quite independent of various approaches within traditional epistemology. Our thesis
is also compatible with the recent proposal [Williamson 2000] to reverse the direction of
explanation within epistemology, by denying that notions like ‘belief’ and ‘justification’ are
conceptually more basic than knowledge and instead treat the concept of knowledge itself as
basic and thus a necessary constituent of an analysis of justification.
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et. al. 1995; Ello 2002, Pereira 2002], one that is created by shared interests
between these two fields—shared in so far as an aim of theoretical AI is the
study of the class of possible epistemic relations, the primary aim of epistemol-
ogy is the specification of those properties and relations necessary to assemble
a comprehensive account of knowledge, and an aim of practical AI is engineer-
ing artificial intelligence technologies that perform increasingly sophisticated
inference operations on data structures.

To motivate philosophers to take a closer look at the tools available in log-
ical AI and also to motivate computer scientists to take a closer look at what
problems contemporary epistemologists are working on, we will discuss in this
essay how to represent a class of inference forms found in standard inferential
statistics. The reason that we will concentrate on this modeling problem is that
it features two key properties that are important to understand when modeling
epistemic relations, defeasibility and paraconsistency. Standard statistical in-
ference has proved stubbornly resistant to logical analysis, much like defeasible
closure conditions in epistemology. Also, constructing an inference relation with
this property forces us to think more carefully about consistency and coherence
conditions. Once we have this representation scheme we will then discuss how
to test the behavior of these relations within logic programming and then dis-
cuss the prospect of transforming mechanized epistemic relations into epistemic
tools. What follows then may be thought of as an exercise in the study of
epistemic relations.6

2 Defeasibility and Non-monotonic Inference

The notion of defeasibility figures in the discussion of epistemic relations and
also in logical artificial intelligence. An inference to a proposition A is defeasible
if additional information added to the premises undermines that inference. The
limiting case is learning that A is in fact false, which would signal that some-
thing is amiss with making an inference to A based upon this set of premises.
More interesting cases of defeasibility arise when an inference to a claim is un-
dermined by additional, non-contradictory information. For instance, the mean
height of a sample of high school students drawn at random is typically rea-
sonable grounds for concluding that the mean height of the sample is a close
estimate of the mean height of the school’s student body. Standard statistical
inferences such as this one are defeasible precisely because we may learn new,
non-contradictory information that undermines the support for thinking that
the sample is representative. For instance, if we were to learn that the random
sample drawn is in fact composed exclusively of the members of the varsity
basketball team, then we would no longer consider the sample as likely being a
close estimate of the mean height of the student body.

6It is important to note that one may accept our call to formally define epistemic relations
without accepting either a computational view of mind or the view that logic provides “the
rules of thought.” Such descriptive views about mind and rationality are independent of what
we advance in this essay.
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One way to represent this type of defeasibility is in terms of a logic that
has a genuinely non-monotonic consequence relation—one whereby premises
may increase in number while the number of conclusions may decrease.7 What
we propose to do in this section is to present the structure of this statistical
inference in terms of a particular kind of non-monotonic inference rule, called a
statistical default, which is used within statistical default logic [Wheeler 2004] to
represent a variety of argument forms common in standard inferential statistics.

Let us return to the high school example. Statistical default logic suggests
both an analysis of the logical structure of individual statistical inferences—
such as that involved in estimating a high school class’s mean height—and
also provides a scheme for representing arguments composed of a sequence of
statistical and deductive inference steps. Statistical default logic is a variation
of Ray Reiter’s default logic [Reiter 1980]. Default logic is a non-monotonic logic
formed by augmenting first-order classical logic with non-monotonic inference
rules, called defaults, that appear in the object language. Let α, γ and βi’s be
wffs in the first-order language. Defaults are inference rules of the form

α : β1, ..., βn

γ
, (1)

interpreted roughly to mean that given α and the absence of any negated βi’s,
conclude γ by default. The βi’s in (1) correspond to conditions the absence of
which, when α holds, allows γ to be inferred. The non-monotonic behavior of
defaults rests in the possibility that one of the default justifications that permits
the rule to be applied may be triggered by new information, thus blocking the
applicability of that rule.8

It turns out there is a structural similarity between the workings of default
rules and a class of standard statistical inference forms, of which estimating the
mean height of a student body is an instance. In making a statistical inference
the aim is to select a sample that represents the population with respect to
some specified parameter. Often this is achieved by a series of tests designed
to detect bias in the sample. It was first noticed in [Kyburg and Teng 1999]
that in making a statistical inference, some conditions are satisfied explicitly,
like premises, while others behave like default justifications. Typically a sample
is regarded representative of a population when a few explicit conditions hold
(like that the sample be drawn from the target population and the distribution
of error is normal) and when it is not known that the sample is biased, which

7Contrast this with probability functions, which qua mathematical functions are mono-
tonic: A ⊆ B ⇒ Pr(A) ≤ Pr(B). If A is a smaller part of the sample space than B, then A
must be less than or equal to the probability of B. Note that the same holds for conditional
probability functions in their first position, but of course not in their second: the probabil-
ity of A may remain constant, increase or decrease when conditioned on a smaller part of
the sample space. Nevertheless, probability is inferentially monotonic: probability premises
yield probability conclusions and a superset of those premises yields the same conclusions or
a superset of them [Kyburg 2001].

8Reiter’s original paper [Reiter 1980] offers a comprehensive introduction to default logic.
A good textbook treatment of default logic is [Marek and Truszczyński 1991]. We will set
forth a semantics for default logic in section 4.
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translates to the absence of information that would suggest a biased sample.
These latter conditions express weaker assumptions than explicitly holding that
the sample is representative, for if we could help ourselves to making that explicit
assumption we wouldn’t need inferential statistics. The underlying point is that
we don’t need to accept that the sample is unbiased but rather have no reason,
given what we already accept, to infer that the sample is biased.

But defaults provide only half of the structure of a statistical inference since
there isn’t a means within the logic to distinguish between rules that rigorously
probe for error and rules that let nearly any sample skate by. This is just
to say that another important feature of standard statistical inference is its
emphasis on the control of error. In making statistical inferences one accepts a
conclusion along with a warning that there is a small, preassigned chance that
the conclusion is false. A statistical inference controls error to the extent that
its advertised frequency of error corresponds in fact to the chance one faces in
making that inference and its conclusion being false. What is problematic about
representing inferential statistical forms in terms of defaults is that there is no
means to represent the error-probabilities of each statistical inference.

S-defaults differ from defaults by explicitly representing the upper limit of
the s-default’s probability of error.9 Call a default in the form of

α : β1, ..., βn

γ
ε, (2)

an ε-bounded statistical default and the upper limit on the probability of error-
parameter ε an ε-bound for short, where α:β1,...,βn

γ is a Reiter default and 0 ≤
ε ≤ 1. The schema (2) is interpreted to say that provided α and no negated
βi’s, the probability that γ is false is no more than ε. (A Reiter default is a
limiting case of a statistical default, namely when ε = 0). A statistical default
is sound just when the upper limit of the probability of error is in fact ε. An
s-default is a good inference rule if it is sound and ε is relatively small, typically
less than 0.05.

A statistical default theory is analogous to a default theory10, except that
the pair consists of a set of bounded sentences, rather than a set of closed first-
order formulae, and a countable set of s-defaults, rather than a countable set of
defaults.

Definition 1. A statistical default theory ∆s is an ordered pair 〈W,S〉, where
W is a set of bounded sentences, and S a set of statistical defaults.

A bounded sentence is a sentence-real number pair, 〈φ, ε〉 or (φ)ε for short,
where φ is a wff from a first-order language L and ε ≥ 0. We stipulate that
(φ)ε ≡ φ when ε = 0 and will make use of a function, Crop(X), that takes

9A trivial corollary of the probability of error α̂ for a statistical inference is the upper limit
of the probability of error, denoted by ε. So, if α̂ = 0.05 is understood to mean that the
probability of committing a Type I error is 0.05, then ε = 0.05 is understood to mean that
the probability of committing a Type I error is no more than 0.05.

10A default theory is a pair 〈D, W 〉 where D is a (countable) set of defaults and W is a set
of closed first-order formulae.
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as arguments a set X of bounded sentences and returns the set of first-order
formulae that appears in the first position of every pair in X.

The error-bound parameter ε is a guarantee that the frequency of error does
not exceed ε. This condition complicates the two kinds of closure operations
that appear in statistical default logic, since and inference to φ that is bounded
by ε and another inference to ψ that is bounded by ε is no guarantee that φ∧ψ
is bounded by ε. The next three theorems show that a conclusion appears as
a statistical conclusion only if it is the result of a chain of statistical default
inferences that is within the designated error bound (theorem 1), the result of
a chain of deductive inference steps that is within the designated error bound
(theorem 2) or if it appears within a statistical extension (definition 2), which is
constructed only from inference chains of mixed type whose results are bounded
by the designated error bound (theorem 3). For details and proofs, the reader
is referred to [Wheeler, forthcoming].

Theorem 1 (Wheeler 2004) Let S be a set of statistical defaults, Π a set
of bounded sentences, (γ)εγ a bounded sentence and Snε(Π) be the s-default
closure of Π under S within ε. Define a statistical default inference chain on Π
within ε as a sequence of bounded sentences, 〈(φ1)εφ1

, ..., (φn)εφn
〉, such that

(φi)εφi
is an ε-bounded conclusion from Π∪ {(φ1)εφ1

, ..., (φi−1)εφi−1
} , where

1 ≤ i ≤ n . If (γ)εγ ∈ Snε(Π), then there is an s-default inference chain
〈(φ1)εφ1

, ..., (φn)εφn
, (γ)εγ 〉 on Π that yields (γ)εγ as an ε-bounded conclusion.

Theorem 2 (Wheeler 2004) Let Π be a set of bounded sentences, (γ)εγ a
bounded sentence and Cnε(Π) be the ε-bound closure of Π. Define a deductive
inference chain as a sequence of ε-bounded sentences, 〈(ψ1)εψ1

, ..., (ψn)εψn
〉 such

that (ψi)εψi
is an ε-bounded consequence of Π ∪ {(ψ1)εψ1

, ..., (ψi−1)εψi−1
},

where 1 ≤ i ≤ n. If (γ)εγ ∈ Cnε(Π), then there is a deductive inference chain
〈(φ1)εφ1

, ..., (φn)εφn
, (γ)εγ 〉 of deductions on Π that yields (γ)εγ as an ε-bounded

conclusion.

Definition 2. Where ∆s = 〈W,S〉 at ε is a statistical default theory and Π
is some set of bounded sentences, let E∆S

(Π) be a minimal set satisfying three
conditions:

[SD1.] W ⊆ E∆S
(Π).

[SD2.] Cnε(E∆S
(Π)) = E∆S

(Π).
[SD3.] E∆S

(Π) is closed under S within ε, i.e. for all (α)εα :(β1)ε1 ,...,(βn)εn
γ εs ∈

S, (α)εα ∈ E∆S
(Π), ¬β1, ...,¬βn /∈ Crop(Π), εα+εs = εγ and εγ ≤ ε.

A set of bounded sentences Π is a statistical extension for ∆s at ε iff E∆S
(Π) =

Π.
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Theorem 3 (Wheeler 2004) Let Π be a set of bounded sentences, let (α)ε1 , (β)ε2 , (γ)ε3 , (φ)ε4 ,
and (ψ)ε5 be εi-bounded counterparts to sentences α, β, γ, φ,and ψ in L, and let
∆S = 〈W,S〉 at ε be a closed statistical default theory. Define

• For all (φi)εφi
∈W, εφi = 0.

• Π0 = W, and for i ≥ 0,

• Πi+1 = Cnε(Πi) ∪ {γ|
(α)εα :(β1)ε1 ,...,(βn)εn

γ εs) ∈ S, where (α)εα ∈ Πi and
¬β1, ...,¬βn /∈ Crop(Π) and εα + εs ≤ ε}.

Then Π is a statistical extension for ∆S at ε iff Π =
⋃

0≤i≤∞ Πi

Turning our attention to the mean height of the high school class, let ‘h’
denote a sample of high school students drawn from ‘H’, the entire high school
class. We may think of this inference in terms of a s-default by making the
following substitutions:

α : The measured mean height of h is 195cm, written m(h) =
195cm, and measurement errors are distributed normally with mean
zero and variance σ2, written ((µ−X) is N(0, σ2)).

γ : The mean height of H in cm is within two standard deviations
of 195, written (m(h) = 195 − 1.96σ ≤ µ ≤ m(h) = 195 + 1.96σ),
where ‘µ’ is the mean height of H and ‘1.96σ’ replaces ‘X’.

β1 : m(h) is the only measured value we have for estimating the
value of µ.

β2 : There is no prior statistical knowledge of the distribution
of height in a class of cases that H belongs to that would lead to a
conflicting inference.

β3 : The tape measure is calibrated.
β4 : The tape measure is applied correctly to the sample.
β5 : There is no information concerning the condition of the

sample that preëmpts the information provided by the measurement.
ε = 0.05: The probability of error of this inference form does not

exceed 5%.

Notice that we could collect additional measurements of the height of the stu-
dents from the class, thus triggering justification β1 and undermining the con-
clusion drawn from this rule. Surely if we have two measurements, we should
use a distribution for the average of the two values (in most cases) and that uses
a smaller variance. Notice that whether this, or one of the other justifications
β1, ..., β5 is triggered does not undermine the prerequisite. It remains the case
that the measured length of h is 195cm and that the distribution of errors for
that tape measure is normal, with a mean of zero and its characteristic vari-
ance. It is the consequent, the conclusion that claims that the mean height of
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the student body is 195cm ±2σ, that is blocked. Notice, too, that it is blocked
when we have additional information about the sample.

Justification β2 says that if there is prior statistical information regarding
the mean height of the entire class, then that information should take precedence
over any conclusion drawn from the sample mean. As a special case we may have
the height of all students available, in which case the mean of those values should
take precedence over any conclusion drawn from the mean of the sample. This
point may be clearer if we reflect on what we would do if we measured a known
height (e.g., a standard): we would not infer that the measurement recorded by
the tape measure of the standard supersedes the value given by the standard
length. When these two values disagree, our interest is to calibrate the tape
measure, not infer the ‘true’ height of the standard. Likewise, if we already
have knowledge of the height of the sample being measured, this knowledge
should block the application of this particular s-default rule.

Justification β3 could be considered as positive knowledge, rather than a
default justification. But, in practice, we often don’t know that our instruments
are calibrated. Either we use them straight out of the box, taking the manufac-
turer’s word for its variance properties, or schedule the equipment for periodic
calibration. It is perhaps more faithful to actual practice to consider instru-
ments calibrated in these circumstances until evidence suggests otherwise; if
we’re collecting strange data in the laboratory that is skewed, a valid metrology
sticker isn’t sufficient grounds to question the calibration of the instrument. In
fact, the instrument’s calibration is one of the first things called into question
given unusual results. It is important once again to notice that such happenings
do not affect the theory of error that appears in the prerequisite, nor do they
mitigate the corrected measurement appearing in the prerequisite..

Justification β4 concerns the relationship between the measurement report
of the sample’s mean and the goal of measurement, the mean height of H. We
could cite a list of things that make up ‘appropriate application’: making sure
that the end of the tape is flush against the floor; assuring that the tape is
straight and taunt; and reading the take straight on rather than at an angle.
Again, these conditions need not be exhaustive nor do we need to know that in
fact all of the conditions were satisfied—that is, we do not need to know that
in the tape was applied correctly in every measurement, and so on. Rather,
we look for reasons to think these conditions false. Note also that we could
represent these conditions as β4, β4′ , and β4′′ ; but that is a bookkeeping issue.
The result is the same: the distribution of error that is appropriate for making
the default inference go through is not at issue when we misuse the instrument.

The last default, β5, concerns general conditions that should be in place to
get good measurement readings of height. When measured, students should
stand flat-footed, not slouch, remove shoes and the like.

The error bound parameter ε says of this inference form that when applied
it exposes you to no more than a 5% chance of the conclusion γ being false.

Making the appropriate substitutions for the terms in (α : β1, ..., β5/εγ), the
0.95 confidence level non-monotonic inference rule may be expressed as:
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m(h) = 195cm ∧ ((µ−X) is N(0, σ2)) : β1, ..., β5

m(h)− 1.96σ ≤ µ ≤ m(h)− 1.96σ
0.05

where m(h) = 195 is the mean of the measurement height of the sample, in
centimeters; ((µ−X) is N(0, σ2)) is that the distribution of errors of the tape
measure is normal, with a mean of 0 for corrected readings and a variance of
σ2; β1, ..., β5 are the list of justifications that allow the rule to be applied with a
probability of error not to exceed 5% so long as no negated βi’s may be inferred
by derivation or applicable s-default relative to an s-default theory (and within
a pre-assigned error-bound); and m(h)− 1.96σ ≤ µ ≤ m(h)+1.96σ is the claim
that the true mean height of H, µ, lies in the interval drawn around m(h).

3 Tolerating Inconsistency

In the last section we considered an estimation example and proposed represent-
ing this inference within statistical default logic. We noted that each statistical
inference form is bounded in error by ε. So we might ask what happens when
we apply a sound s-default rule but are unlucky and commit an error?

Committing an error simply amounts to accepting a false statement. A false
s-default consequent is just an accepted statement that proposes an interval (on
the basis of a collection of evidence reports generated by a reliable measurement
procedure) that in fact fails to contain the true value of µ.11 It is important to
notice that while erroneous, an accepted but false statement is warranted. The
statement is introduced by the correct application of an statistical default rule:
no such statements are introduced to the theory by mistake.

A reader troubled by the uncertainty introduced by s-defaults might rec-
ommend that to decrease the chances of falling into error, simply increase the
distance in the interval around µ. Increasing the interval around µ increases
the margin of error and thus reduces the frequency of accepted false evidence
statements over the long run. Although mathematically sound, this would be
bad advice to follow. Remember that the final goal isn’t error elimination but
finding the mean height of the class. If our interest is to hit bulls-eye, we are
hardly helped by increasing our target to the barn its pinned on. Our interest
in the true mean value and access only to finite trials presses us to accept a
minimal interval around µ whose associated probability of error is known and
small enough to ensure confidence, not certainty. Error is but one parameter
in this optimization problem and is eliminated completely only at the price of
triviality.12

11Another kind of error arises by failing to accept that the value of µ is within the acceptance
interval when the true value is in fact within that interval.

12At extremes one could say that the height of µ is a real number. But that tells you only
that µ is a magnitude.
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What is interesting about s-default consequents is that a collection of them
can be inconsistent [Wheeler 2002]. Such measurement statements are approx-
imations at best, which is the reason they are interval-valued. However, these
interval-valued statements are also fallible. S-defaults tell us that, over the long
run, a small ε proportion of consequents will be accepted yet false. It is im-
portant to notice that accepting a false evidence statement in this manner is
an error and not necessarily an inconsistency. But an interesting case is when
there are sufficiently many evidence statements, one million for example, that
are generated by some s-default where each statement is accepted at a 99%
confidence level. A 0.99 confidence level s-default entails that after applying
that s-default one million times we can be 99% sure that at least 500 of the
accepted statements are false. So, even though each of the 1 million statements
are accepted as true with 0.99 confidence we also accept with no less confidence
that at least 500 are false.

The idea of an inference procedure that builds in inconsistency is likely to
meet strong resistance. It might be thought, for instance, that the advice to
measure twice and record once holds at least the promise of eliminating error,
thereby avoiding the problem of accumulating inconsistent statements. Notice
that what this suggestion to measure twice–write once amounts to is simply to
run an experiment. With multiple measurement ‘trials’ we can expect to catch
the very kind of errors under discussion. Unless one is a systematic incompetent,
one could discover false reports by repeating the measurement procedure and
tossing stray values out. The hope is, then, that we can dismiss this talk of
accepted statements that may nevertheless be false. Unfortunately, while it is
true that you can reduce the occurrence of error with this approach, you can’t
eliminate it.

To see why this is so, consider another example: significance testing. Signif-
icance testing is a standard experimental practice found in sciences as disparate
as psychology, chemistry, and medicine. In each science, experiments are de-
signed to test a null ‘no-effect’ hypothesis, h0, by choosing a region of rejection
within a well-defined sample space of possible outcomes. If evidence lies in this
region of rejection, then h0 is rejected. The region is selected so that if the
appropriate experimental justifications of randomness, independence and their
kin hold, then there is only at most a small chance ε that given the supposition
that h0 is true, evidence falling in the rejection region will be collected. Another
way to put it is to say that if h0 is true, the probability of mistakenly rejecting
it is less than the specified value of ε. Often ε may be made as small as one
likes by increasing the sample size. Put in practice, we sample, check that the
experimental assumptions hold, and then, should the sample obtained fall in
the rejection region, we reject the null h0 which states that the controlled vari-
able has no effect. Note that the rejection of h0 isn’t hedged, but full-out; for
instance, we reject the hypothesis that cigarette smoking has no effect on cancer
rates in mice and men. The grounds for rejecting h0 rest on the statistical –and
ipso facto uncertain– claim that there is only a small, preassigned chance that
we shall do so mistakenly.

Notice that what we’ve spelled out is similar to the structure of measurement
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procedures. The proposal to buy certainty at the cost of taking additional mea-
surements fails because our best experimental methods are themselves fallible.
There are two points to notice about this result. First, error cannot be elim-
inated but only, even under the best of circumstances, controlled. Corrected
measurements do not eliminate the possibility of accepting a false evidence
statement. Patterns in evidence reports—how values may cluster around more
than one point, the cardinality of data points in each of these neighborhoods,
whether there are non-random trends in data through time—provides a wealth
of information about whether the pattern of error fits what we would expect
using a measurement procedure (or, more generally, an evidence gathering pro-
cedure) whose distribution of error is assumed to be normal. But these methods
do not eliminate error, no matter how rigorous our methods. The tests and a
well-designed s-default give us very good reason to be practically certain that
each of our accepted evidence statements is true. Yet, at the same time, we may
be practically certain that some relatively small proportion ε of our accepted
evidence statements are plain false. Second, controlling error is expensive. We
get the best (but not certain) results when we are keenly aware of what kind of
errors we’re liable to commit and design experiments or conduct measurements
in a manner that reduces those risks. Not knowing all the ways one can go
wrong contributes, in part, to the difficulty of identifying and correcting errors:
we’re ever discovering new ways to err. What can make this problem particu-
larly difficult is deciding whether one has stumbled upon a new way of bungling,
is dealing with a faulty instrument or an unusual sample, or is in the position
of needing to reject some part of a well-confirmed theory.

It is worth pointing out that we are not promoting inconsistency tolerant
logics for novelty’s sake, nor are we making an ontological claim that the world
itself is inconsistent, nor do we claim that mathematics would be much better
off on näıve foundations. What we claim is that there are different sources of in-
consistency when modeling operations that preserve properties like acceptance.
One kind of inconsistency arises from using the logic to represent a collection
of rules that yield a set of inconsistent formulae. Another kind of inconsistency
arises when we represent within the theory itself a property of the inference
scheme used within the logic, in this case a property of acceptance yielded by
application of s-default rules. Ideally, we would like to do without either kind of
inconsistency. But in practice it may only be practical to consider the first kind
of inconsistency a target for correction, which is the subject of belief revision,
and adopt a strategy of control for the latter. Living with the latter kind of
inconsistency is part of the bargain of accepting defeasible conclusions. What
statistical default logic does is to make this property explicit and control it with
bounded-closure conditions.

4 Mechanizing Logic

It can be a complicated matter determining the membership of a statistical
default extension, just as it can be a non-trivial matter determining the mem-
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bership of default extensions for a default theory. Fortunately there has been
considerable research in computational logic addressing this issue, both by ex-
ploring the inter-relationships between various non-monotonic formalisms and
also by exploring the computability of this class of logics. A natural link between
computability and default logics is logic programming.13 While there are recent
results establishing a correspondence between an important fragment of statis-
tical default logic and logic programming [Wheeler and Damásio, forthcoming],
we will focus here on more general correspondence results between semantics for
logic programs and semantics for default theories. Again, our interest is to give
an overview of the resources available and guide interested readers to references
in the literature.

Logic programming arose from work begun by logicians in the 1950’s with an
aim to effect logical reasoning by computation. The first developments were au-
tomated theorem provers, which formed the theoretical basis for logical artificial
intelligence14

What these papers introduced to computer science was the notion of declar-
ative, as opposed to procedural, semantics. The idea underpinning declarative
semantics is that a programmer should only concern himself with the declarative
meaning of his programs while the procedural aspects of the program’s execu-
tion are handled automatically. Logic programming [Colmerauer et. al. 1973;
Kowalski 1974, 1979; Warren and Pereira 1977], or Prolog, became a privileged
tool approximating this idea.

Work since has concentrated on development of a precise semantics for logic
programs. Of one particular interest is the definition of negation within logic
programs, since logic programs do not use classical boolean negation but rely in-
stead on a non-monotonic operator, often called “negation by failure” or “nega-
tion by default”. The non-monotonicity of this operator allows one to view logic
programs as a special class of non-monotonic theories.

Indeed, one property that both epistemic relations and causal relations share
that distinguishes both from logical implication is that the former pair are uni-
directional in the sense that there is no implicit contraposition. This direction-
ality of epistemic and causal relations is an essential feature of logic programs,
where premises must be true in order to apply an inference rule.

An logic program P is a finite set of rules of the form,

C ← P1, ..., Pn,¬N1, ...,¬Nm

where in order to produce a result or conclusion C what is needed is a set of
conditions P1, ..., Pn where each Pi is true in the program along with absence or
negation of a set of negative conditions ¬N1, ...,¬Nm where each ¬Ni denotes
a condition that, if satisfied, would be sufficient to prevent concluding C with
this rule. As noted, the functor ← does not presume explicit contraposition.

13The relationship between logic programs and default theories was first explored in [Bidoit
and Froidevaux 1988], where a stable model semantics was shown equivalent to a special case
of Reiter default extensions, and has been the subject of subsequent work [Alferes et. al.
1995], [Alferes and Pereira 1996] [Alferes et. al. 1998], [Damásio et. al. 2001].

14Many of the foundational papers in AI are found in [Feigenbaum 1963].
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Rather, we view programming clauses as expressing an inference rule, one that
may be applied, procedurally from the ‘bottom-up’ to conclude C given all Pi’s
and no ¬Ni’s, or ‘top-down’ by trying to prove the body of the rule to yield C.

4.1 Logic program semantics

The semantics we will present for logic programs is the extended well-founded,
WFSX, set forth in [Alferes and Pereira 1996]. Our interest here is not to provide
a comprehensive account of the properties of this semantics, but rather present
enough of it to establish the correspondence results between logic programs and
default theories.

We begin by providing definitions of interpretation and model for programs
extended with explicit negation.

Definition 3 (Interpretation). An interpretation I of a language L is any
set T ∪ not F ,15 where T and F are disjoint subsets of objective literals over
the Herbränd base, and

if ¬l ∈ T then l ∈ F (Coherence Principle)

where l is an objective literal. The set T contains all ground objective literals
true in I, the set F contains all ground objective literals false in I. The truth
value of the remaining objective literals is undefined.

Notice how the two types of negation become linked via the Coherence Prin-
ciple: for any objective literal l, if ¬l ∈ I, then not l ∈ I. This definition
of interpretation not only guarantees that every interpretation complies with
coherence but also with noncontradiction.

Proposition 1 (Noncontradiction condition). If I = T ∪ not F is an
interpretation of a program P then there is no pair of objective literals A, ¬A
of P such that A ∈ T and ¬A ∈ T .

Proposition 2. Let H be the set of all objective literals in the language L,
V = {0, 1

2 , 1} and A ∈ H. Any interpretation I = T∪ not F may be equivalently
viewed as a function I : H → V , defined by:

I(A) = 0, if not A ∈ I; I(A) = 1, if A ∈ I; I(A) = 1
2 , otherwise.

With this function we may now define a truth valuation of formulae.

Definition 4 (Truth valuation). If I is an interpretation, the truth valuation
Î : C → V where C is the set of all formulae of the language, recursively defined
as follows:

• if l is an objective literal then Î = I(l);

• if s = not l is a default literal then Î = 1− I(l)
15Where not {a1, ..., an, ...} stands for {not a1, ..., not an, ...}.
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• if s and r are formulae then Î((s, r)) = min(Î(s), Î(r));

• if l is an objective literal and s is a formula then:

Î(l← s) = 1 if Î(s) ≤ Î(l) or Î(¬l) = 1 and Î(s) 6= 1; 0 otherwise.

Definition 5 (Model). An interpretation I is called a model of a program
P if and only if for every ground instance of a program rule H ← B we have
Î(H ← B) = 1.

Example 1. The models of the program

P= (¬b; b← a; a← not a, not c; c← not ¬c; ¬c← not c)

are:
M1 = {¬b, not b}
M2 = {¬b, not b, c, not ¬c}
M3 = {¬b, not b, c, not ¬c, not a}
M4 = {¬b, not b, not c,¬c}
M5 = {¬b, not b,¬a, not a}
M6 = {¬b, not b,¬a, not a, c, not ¬c}
M7 = {¬b, not b, not ¬a}
M8 = {¬b, not b, c, not ¬c, not ¬a}
M9 = {¬b, not b, c, not ¬c, not a, not ¬a}
M10 = {¬b, not b, not c,¬c, not ¬a}

Only M3, M6, and M9 are classical 3-valued models of P , since all of the rules
are true, while M1,M2,M4,M7,M8, and M10 are not classical models, because
in all of them the body of the rule b← a is undefined and the head is false (i.e.,
the truth value of the head is smaller than that of the body.). Finally, M5 is
not a classical model since in it the truth value of the head (false) of the rule
a← not a, not c is smaller than that of the body (undefined).

Next we need to define stability in models, which we use to define WFSX
semantics. To define the semantics, the language is expanded to include the
proposition u such that every interpretation I satisfies I(u) = 1

2 . In what fol-
lows a ‘non-negative’ program is a program whose premises are either objective
literals or u.

Definition 5 (P modulo I (P
I ) transformation). Let P be an extended

logic program and let I be an interpretation. P modulo I, P
I , is the program

obtained from P by performing in the sequence the following four operations:

1. Remove from P all rules containing a default literal l = not A such that
A ∈ I;

2. Remove from P all rules containing in the body an objective literal l such
that ¬l ∈ I;

3. Remove from all remaining rules of P their default literals l = not a such
that not A ∈ I.
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4. Replace all the remaining default literals by proposition u.

The resulting program is P
I is by definition non-negative.

Definition 6 (Least operator). Let P be a non-negative program. The
operator least(P ) is the set of literals T ∪ not F obtained by:

• Let P ′ be the non-negative program obtained by replacing in P every
non-negative objective literal ¬l by a new atomic symbol, ‘¬ l’.

• Let T ′ ∪ not F ′ be the least 3-valued model of P ′.

• T ∪ not F is obtained from T ′ ∪ not F ′ by reversing the replacements
above.

The least 3-valued model of a non-negative program can be defined as the
least fixpoint of the following generalization of the van Emden-Kowalski least
model operator Ψ for definite logic programs:

Definition 7 (Ψ∗ operator). Suppose that P is a non-negative program, I is
an interpretation of P and A and the Ai are all ground atoms. Then Ψ∗(I) is
a set of atoms defined as follows:

• Ψ∗(I)(A) = 1 if and only if there is a rule A← A1, ..., An in P such that
I(Ai) = 1 for all i ≤ n.

• Ψ∗(I)(A) = 0 if and only if for every rule A← A1, ..., An there is an i ≤ n
such that I(Ai) = 0.

• Ψ∗(I)(A) = 1
2 , otherwise.

Theorem 4 (3-valued least model) The 3-valued least model of a non-negative
program is:

Ψ∗ ↑ω(not H)

Theorem 5 least(P ) uniquely exists for every non-negative program P .

Note that least(P ) doesn’t always satisfy the conditions of non-contradiction
and coherence,

Example 2. Given the program P = (a ← ; ¬b ← ; ¬a ← ¬b; b ← u),
least(P ) = {a,¬a,¬b} but is not an interpretation. Both non-contradiction
and coherence are violated.

Example 3. Given the program P = (a ← ¬b; b ← ¬b; ¬a) and the inter-
pretation I = {a,¬a, not ¬b}, where P

I = (a ← u, b ← u),¬a). least(P
I ) =

{¬a, not ¬b}, which although noncontradictory violates coherence.

To impose coherence when contradiction is not present, we define a partial
operator that transforms any non-contradictory set of literals into an interpre-
tation.
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Definition 8. (The Coh operator). Let QI = QT ∪ not QF be a set of
literals such that QT is the interpretation T ∪ notF such that

T = QT and F = QF ∪ {¬l|l ∈ T}.

The Coh is not defined for contradictory sets of literals.

The Coh operator is not a model of the program, however, since it does not
take into account the consequences of applying the function. By generalizing
this operation, we have the last piece necessary to define Stable Models and
Well Founded Models.

Definition 9. (The Ψ operator). Let P be a logic program, I an interpre-
tation, and J = least(P

I ). If Coh(J) exists, then ΨP (I) = Coh(J). Otherwise
ΨP (I) is not defined.

Definition 10. (WFSX, PSM and WFM). An interpretation I of an ex-
tended program P is called a Partial Stable Model (PSM) of P if and only if
ΨP (I) = I. The F-least Partial Stable Model is called the Well-Founded Model
(WFM). The WFSX semantics of P is determined by the set of all PSMs of P .

4.2 Default logic semantics

Logic programming-default logic correspondence results hold for a restricted
form of Reiter default theories, namely when the first-order component of default
theories, the set W , contains only literals and the set of defaults, D, contains
only restricted defaults, defaults of standard form, α:β

γ , but where α, β and γ
are literals.

It is well known that Reiter’s default logic may have multiple extensions.
Example 4. Let ∆ = 〈D,W 〉 where D = { c:¬a

b , c:¬b
a } and W = {c}. The

default theory ∆ has two extensions:

E1 = {a,¬b, c}
E2 = {b,¬a, c}

Nevertheless, a skeptical consequence set may be defined for the default theory
∆ as the set of literals that appear in every extension on ∆.

There are two approaches that relate logic programs with default theories,
and which resolve the issue of multiple extensions. Well-founded semantics
[Baral and Subrahmanian 1991] provides a semantics for default theories with
multiple extensions.

Definition 11 (Well-founded semantics). Let ∆ = 〈D,W 〉 be a default
theory, and let E∆ be Reiter’s fixed point operator [Reiter 1980]. Since E∆ is
antitonic E2

∆ is monotonic, and thus has a least fixpoint (with respect to set
inclusion in extensions). Then

• A formula F is true in a default theory ∆ with respect to the well-founded
semantics if and only if F ∈ lfp(E2

∆);
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• F is false in ∆ w.r.t. the well-founded semantics if and only if F /∈
gfp(E2

∆);

• Otherwise F is said to be unknown or undefined.

This semantics is defined for all theories and is equivalent to the Well-Founded
Model Semantics of van Gelder, Ross and Schlipf [van Gelder et. al. 1991] of
normal logic programs.

This work has since been generalized by Przymusinska and Przumusinski
by introducing the notion of stationary default extensions [Przymusinska and
Przumusinski 1993.]

Definition 12 (Stationary extension). Given a default theory ∆, E is a
stationary default extension if and only if:

• E = E2
∆(E);

• E ⊆ E∆(E).

Definition 13 (Stationary default semantics). Let E be a stationary ex-
tension of a default theory ∆ such that:

• A formula L is true in E if and only if L ∈ E;

• A formula L is false in E if and only if L /∈ E;

• Otherwise a formula L is said to be undetermined or undefined.

We note that every default theory has at least one stationary default exten-
sion. The least stationary default extension always exists, and corresponds to
the well-founded semantics for default theories. Moreover, the least stationary
default extension can be computed by iterating the operator E2

∆.
There are some properties that a default theory semantics should have. We

turn to these next.

Uniqueness of minimal extensions: We say that a default theory has the
uniqueness of minimal extensions property if when it has an extension it has a
minimal one.

It is well known that Reiter’s default theories do not have the uniqueness of
minimal extensions property. But by obeying this property, a default semantics
eases finding iterative algorithms to compute skeptical (cautious) versions of a
default semantics.

Definition 14 (Union of Theories). The union of two default theories
∆1 = 〈D1,W1〉 and ∆2 = 〈D2,W2〉 with languages L(∆1) and L(∆2) is the

theory:
∆ = ∆1 ∪∆2 = (D1∪, D2,W1 ∪W2) with language L(∆) = L(∆1 ∪L(∆2).
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Modularity. Let ∆1 and ∆2 be two default theories with consistent extensions
such that L(∆1)∩L(∆2) = {} and let ∆ = ∆1 ∪∆2, with extensions Ei

∆1
, Ej

∆2

and Ek
∆. A semantics for default theories is modular if and only if:

∀a(∀iA ∈ Ei
∆1
⇒ ∀kA ∈ Ek

∆1
)

∀a(∀jA ∈ Ej
∆2
⇒ ∀kA ∈ Ek

∆1
)

Informally, a default theory semantics is modular if any theory resulting from the
union of two consistent theories with disjoint language contains the consequences
of each of the theories alone. We remark that Reiter’s default logic is modular
(for a proof, see [Alferes and Pereira 1996, p. 89]).

Example 5. Consider the two default theories:

∆1 =
〈{

:¬a
¬a ,

:a
a

}
, {}

〉
∆2 =

〈{
:b
b

}
, {}

〉
Classical default theory, well-founded semantics, and stationary semantics all
identify {b} as the single extension of ∆2. Since the languages of the two theo-
ries are disjoint, one would expect their union to include b in all its extensions.
However, both the well-founded semantics as well as the least stationary se-
mantics give the value undefined to b in the union theory; therefore, they are
not modular. There is a conflict in the interaction among the default rules of
both theories. Reiter’s classical default theory is modular but returns two ex-
tensions, {¬a, b} and {a, b}, and thus fails to give a unique minimal extension
to the union.

We say that a default rule d is applicable in an extension E if and only if
α ⊆ E and ¬β ∩E = , and an applicable default is applied if and only if α ∈ E.

Enforcedness. Given a theory ∆ with extension E, a default d is enforceable
in E if and only if α ∈ E and β ⊆ E. An extension is enforced if all enforceable
defaults in D are applied.

Whenever E is an extension, if a default is enforceable then it must be
applied. Note that an enforceable default is always applicable. Another way
of view enforcedness is that if the default d is an enforceable default, and E is
an extension, then the default rule d must be understood as an inference rule
α, β → γ and so γ ∈ E must hold.

Based on the notion of enforcedness, Przymusinka and Przymusinki define
the notion of saturated default theories.

Definition 15 (Saturated Default Theory). A default theory ∆ = 〈D,W 〉
is saturated if and only if for every default rule α:β1,...,βn

γ ∈ D, if α ∈ W and
βi ⊆W , for 1 ≤ i ≤ n, then γ ∈W .

For this class of default theories Przymusinka and Przymusinki prove that
both stationary and well founded default semantics comply with enforcedness.
However, considering only saturated default theories is a significant restriction:
all conclusions of the defaults are already in the W component of the theory.
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We are now close to presenting the correspondence theorem between logic
programs and default theories. In order to relate default theories to extended
logic programs, however, we must provide a modular semantics for default the-
ories. Therefore, we now present a modular and enforced semantics for a class
of default theories called Ω-default theories.

4.3 Ω-default theory

In this section we present a default theory semantics that is modular and en-
forced for every restricted default theory. Moreover, when it is defined it has a
unique minimal extension.

To link default theories to extended logic programs, we must provide a mod-
ular semantics in the case of contradictory default theories.

Example 6. In the default theory:〈{ :
¬a

}
,
{ :
a

}
, {}

〉
its two default rules with empty prerequisites and justifications should always
be applied, which clearly enforces a contradiction. Note that this would also be
the case in the default theory 〈{}, {a,¬a}〉.

Reconsider now Example 5, which demonstrates that stationary default se-
mantics are non-modular, where D = { :¬a

¬a ,
:a
a ,

:b
b } and {} is the least station-

ary extension.
This result is obtained because E∆({}), by having ¬a and a, forces, via

the deductive closure, ¬b (and all the other literals) to belong to it. This
implies the non-applicability of the third default, :b

b , in the second iteration.
For that not to happen one should inhibit ¬b from belonging to E∆({}), which
can be done by preventing the trivialization by inconsistency generated by the
deductive closure condition of the operator E. We avoid this problem in a logic
programming context, since formulae of logic programs are just literals. We
may simply rename negative literals. We now incorporate this idea into the
definition of the fixed-point operator E

′

∆.

Definition 16 (E
′

∆(E)). Let ∆ = 〈D,W 〉 and E be an extension. Let E′ be
the smallest set of atoms which:

1. contains W ′;

2. is closed under all derivation rules of the form α:β
γ , such that

α:β
γ ∈ D, and ¬f /∈ E, for every p¬f ∈ β′q, and f /∈ E for

every pnot f ∈ β′q.

where the new W ′, α′, β′, and γ′ are obtained from the original W,α, β,
and γ by replacing every negative literal p¬ϕq in the originals by a new
atom pnot ϕq.
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E
′

∆(E) is obtained from E′ by replacing every atom of the form pnot ϕq
by p¬ϕq.

Definition 17 (Semi-normal default theories). Given a default theory ∆,
its semi-normal version ∆sem is obtained by replacing each default rule α:β1,...,βn

γ
in ∆ by the default rule:

ssem = α:β1,...,βn,γ
γ .

We now turn to defining the Ω∆ fixed-point operator, Ω-extensions, and the
Ω-default semantics.

Definition 18 (Ω∆ operator). For a theory ∆ we define:

Ω∆(E) = E
′

∆(E
′

∆sem(E)). �

Definition 19 (Ω-extension). Let ∆ be a default theory. E is an extension
if and only if

• E = Ω∆(E)

• E ⊆ E
′

∆sem(E).

Given the notion of Ω-extensions, we may now define the semantics for a
default theory.

Definition 20 (Ω-default semantics). Let ∆ be a default theory. E is an
extension on ∆, and l a literal.

• l is true w.r.t. extension E if and only if l ∈ E;

• l is false w.r.t. extension E if and only if l /∈ E
′

∆sem(E);

• Otherwise l is undefined.

The Ω-default semantics of ∆ is determined by the set of all Ω-extensions
of ∆. The skeptical (or cautious) semantics of ∆ is determined by the least Ω-
extensions of ∆, whose existence are guaranteed by the uniqueness of minimal
extensions theorem below.

But noting that a default theory ∆ is contradictory if and only if it has no
Ω-extension, we may prove that the Ω-default semantics has the three properties
mentioned above—uniqueness of minimal extensions, modularity, and enforced-
ness—as necessary to establishing correspondence between logic programs and
default logic. All three theorems and their proofs appear in [Alferes and Pereira
1996].

Theorem 6 (Uniqueness of minimal extensions) If ∆ has an extension then
there is one least extension E.

Theorem 7 (Enforcedness) If E is an Ω-extension then E is enforced.

Theorem 8 (Modularity) Let L∆1 and L∆2 be the languages of two default
theories. If L∆1 ∩L∆2 = {} then, for any corresponding extensions E1 and E2,
there always exists an extension E of ∆ = ∆1 ∪∆2 such that E = E1 ∪ E2.
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4.4 Correspondence between logic programs and default
theories

We may now state the equivalence of Ω-extensions and partial stable models
of extended logic programs as defined above. For proofs, the reader is again
referred to [Alferes and Pereira 1996].

Definition 21 (Program correspondence to a default theory). Let
∆ = 〈D, {}〉 be a default theory. We say than an extended logic program
P corresponds to ∆ if and only if:

• For every default of the form α1,...,αn:β1,...,βm
γ ∈ ∆ there exists a rule pγ ←

α1, ..., αn, not¬β1, ..., not¬βmq ∈ P , where ¬bj denotes the ¬-complement
of bj .

• no rules other than these belong to P .

Definition 22 (Interpretation corresponding to a context). An interpre-
tation I of a program P corresponds to a default context E of the corresponding
default theory T if and only if for every objective literal l of P (and literal l of
T ):

• I(l) = 1 if and only if l ∈ E and l ∈ E′∆sem(E)

• I(l) = 1
2 if and only if l /∈ E and l ∈ E′∆sem(E)

• I(l) = 0 if and only if l /∈ E and l /∈ E′∆sem(E).

We note that Reiter default theories are a generalization of restricted default
theories in the sense that whenever Reiter semantics (E-extension) assigns a
meaning to a theory (i.e., the theory has at least one E-extension), Ω-semantics
assigns one also.

Theorem 9 (Correspondence) Let ∆ = 〈D, {}〉 be a default theory correspond-
ing to program P . E is an Ω-extension of ∆ if and only if the interpretation I
corresponding to E is a partial stable model of P .

So, according to this theorem we can say that explicit negation is nothing but
classical boolean negation in (restricted) default theories, and vice-versa. What
this theorem allows us to do is to rely on the top-down procedures of logic
programming to compute default extensions—that is, this provides us with a
sound procedure for Reiter’s default logic.

5 Epistemic Tools

To recap, what we’ve done is sketch a formal representation of a class of non-
monotonic inference forms found at the heart of standard inferential statistics
using a variation of default logic, called statistical default logic. We then briefly
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discussed some semantics for default theories and logic programs, enough to
give a sketch of how the correspondence results are obtained. While we think
the example has intrinsic interest, we advanced it as being structurally analo-
gous to an important class of relations that figure in contemporary theories of
knowledge. We then presented a whirlwind tour of just some of the theoreti-
cal and computational resources available for modeling such relations, our aim
being to introduce readers to this area of research, persuade them that there
now exist enough theoretical infrastructure to support more precise definitions
of epistemic relations, and demonstrate how one might proceed.16

What we find interesting about this proposal to call upon the resources
of epistemology and artificial intelligence to study epistemic relations is the
prospect of constructing epistemic tools, by which we mean specified relations.
There are two areas where such tools can be of service. First, epistemic relations
may—in so far as they can be represented within logic programming or some
other computational logic framework—be tested. This is a non-trivial point
for epistemologists, since we know from the foundations of mathematics that
principles that appear obviously true to our intuitions may simply not be sat-
isfiable. If we have a good understanding of the relations of our theory and are
able to separate their behavior from the stated properties of epistemic notions,
this would count as a significant advance by offering theorists the advantage of
pinning down which parts of their theories to revise.

Another sense of epistemic tool arises in the event of successfully encoding
an epistemic relation. Knowledge representation and reasoning is at heart an
optimization problem, one that wishes to maximize the expressiveness of the
representational language yet also maximize the power of the inference oper-
ations. Hence, the more we learn about actual epistemic relations the better
position we all will be in to judge what is optimal.
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