
	  
 
Explaining The Limits of Olssonʼs Impossibility Result 
Gregory Wheeler 
 
Draft of August 14, 2011 
 
 
 
Abstract 
In his groundbreaking book, "Against Coherence," Erik Olsson presents an ingenious 
impossibility theorem which appears to show that there is no informative relationship 
between probabilistic measures of coherence and higher likelihood of truth. Although 
Olsson's result provides an important insight into probabilistic models of epistemological 
coherence, the scope of his negative result is more limited than generally appreciated. 
The key issue is the role conditional independence conditions play within the witness 
testimony model Olsson uses to establish his result. Olsson maintains that his witness 
model yields charitable ceteris paribus conditions for any theory of probabilistic 
coherence. Not so. In fact pick, Olssonʼs model, like Bayesian witness models in 
general, selects a peculiar class of models that are in no way representative of the range 
of options available to coherence theorists. Recent positive results suggest that there is 
a way to develop a formal theory of coherence after all. Whatʼs more, although Bayesian 
witness models are not conducive to the truth, they are conducive to reliability.  
 
Keywords: Bayesian epistemology, focused correlation, reliability conduciveness.  
 
 
1. Introduction 

One tenet of the coherence theory of justification is that more coherence entails a 

higher likelihood of truth, all things considered.  Yet, formulating a theory of 

coherence to satisfy this principle is a notoriously difficult problem.  Recent 

attempts within Bayesian epistemology to investigate the relationship between 

measures of probabilistic association and measures of incremental confirmation 

have appeared to be undermined by a series of impossibility results due to Luc 

Bovens and Stephan Hartmann (2003, 2005) and Erik Olsson (2005). This essay 

explores the limits of Olssonʼs result, but several of the observations made about 

Olssonʼs theorem carry over to Bovens and Hartmannʼs results as well. 
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Olssonʼs theorem is the strongest of the group in the sense that he views his 

main result to demonstrate that there is no possibility for a probabilistic measure 

of coherence to be ʻtruth-conduciveʼ in the manner presumed by many coherence 

theorists. Although his result is designed to hold within a particular class of 

models, which we will describe in the next section, Olsson thinks this class is 

based on assumptions that are charitable to coherentism.  For this reason, he 

views the negative results in this class of models to be indicative of any 

reasonable model of coherence:  

First of all, the standard situations in which the addition of an agreeing 
testimony has a positive effect on the likelihood of truth are such that the 
reports satisfy the further conditions of being collectively independent and 
individually to some degree credible. And, what is more, even under such 
favourable circumstances, the effect of adding one more agreeing testimony 
on the likelihood of truth need not be very impressive, since the latter 
depends on the prior probability of what is being reported and also on the 
exact degree of credibility each witness has taken singly. So, far from 
guaranteeing a high likelihood of truth by itself, testimonial agreement can 
apparently do so only if the circumstances are favourable as regards 
independence, prior probability, and individual credibility (Olsson 2005, p.2). 

 

Yet, Olssonʼs model is neither charatable to the coherence theorist nor is it 

representative.  The result does tell us something very important about modeling 

coherence, however. Our aim in this essay is to highlight those points. 

 

This paper is organized as follows. In section 2 we briefly discuss some reasons 

to doubt that probabilistic models of coherence are addressing the concerns of 

traditional coherence theories.  In section 3 we review Olssonʼs model of witness 

testimony and review his impossibility theorem.  In section 4 we discuss a new 

framework for studying the relationships between confirmation and correlation 

through causal structure (Wheeler and Scheines, forthcoming). This framework 

yields a number of strong possibility results, and those results help demarcate 

the limits of Olssonʼs theorem. Finally, in section 5, we return to the problem of 
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independent witness reports and introduce a reliability conducive model which 

offers a way around Olssonʼs impossibility theorem.  

 

2.  Coherentism and Bayesian Epistemology 
 

One might challenge Bayesian epistemology in general, and Olssonʼs assault in 

particular, on the grounds that the Bayesian theory of coherence does not 

address the concerns of traditional coherence theories of justification.  For 

instance, the Bayesian truth conduciveness problem, as Iʼve discussed 

elsewhere (Wheeler 2009), is not the same thing as the truth connection problem 

that plagues traditional coherence theories (BonJour 2002).  Bayesian truth 

conduciveness is solely a property of (a set of) probability functions, which may 

either be interpreted as degrees of belief or, less plausibly, as objective chances.  

But these models may not entertain both interpretations at once.  Yet, the truth 

connection problem is concerned with the relationship between an agentʼs 

coherent beliefs, however one wishes to model them, and the world outside the 

agentʼs head.  Since Bayesian epistemology is committed to purely probabilistic 

methods (Bovens and Hartmann 2003, 12), this means that a single 

interpretation of its probability measures will exclude either credences or 

objective chances even though the truth connection problem calls for a 

probabilistic theory to juggle both.  

 

Second, Bayesian epistemology has treated coherence as a property of a set of 

propositions— it is the propositional contents of an agentʼs beliefs or the 

propositional contents of eyewitness reports which are coherent, not the beliefs 

or witness reports themselves.  But there are doubts whether this is the central 

notion of coherence. For as BonJour has remarked, albeit after he renounced the 

coherence theory,  

The fact that a belief was caused in this way rather than some other can 
play a crucial role in a special kind of coherentist justification. The idea is 



	   4	  

that the justification of these perceptual or observational beliefs, rather 
than merely appealing to the coherence of their propositional contents with 
the contents of other beliefs (so that the way that the belief was produced 
would be justificationally irrelevant), appeals instead to a general belief 
that beliefs caused in this special way (and perhaps satisfying further 
conditions as well) are generally true (BonJour 2002, 206-7). 

 

BonJour is discussing how the coherence theory can explain the justification of 

observational beliefs, which is precisely the notion of justification that Bayesian 

epistemology has attempted to address. Whatʼs more, Bayesian models of 

witness testimony initially intended to model BonJourʼs theory of ʻcognitively 

spontaneous beliefsʼ (BonJour 1985), which was his earlier proposal for 

coherentist justification of observational beliefs.  Indeed, Richard Scheines and I 

have argued that accounting for the cause of coherence is crucial to modeling  

coherence (Wheeler and Schienes, forthcoming).  

 

This said, the history of the coherence theory of justification is long on appeals to 

coherence justification but short on providing details for a theory of coherence.  

So, despite reservations one may have about the details of the Bayesian project, 

the attempt to give a probabilistic model of coherentist justification is 

nevertheless is the most serious effort yet to supply coherentism with a sound 

theory, or to uncover a good explanation for why one is not likely to materialize.  

  

Although there are differences between Boven and Hartmannʼs model for witness 

testimony (Bovens and Hartmann 2003) and Olssonʼs testimonial systems, there 

is an underlying structure that warrants viewing them as each of the same kind.  

What binds Olssonʼs and Bovens and Hartmannʼs models together, and what 

drives the impossibility results, is the use of conditional independence conditions 

to regulate the relationships between witness reports and the content of those 

reports (Wheeler 2009, Wheeler and Scheines, forthcoming).  Seeing the 

impossibility results as telling us primarily about Bayesian witness models, rather 

than about the general relationship between (informative) measures of coherence 
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and truth conduciveness is an crucial insight, regardless of oneʼs stake in 

coherentism. 

 

Regarding the impossibility results, it is not the mathematics that are in dispute, 

but rather the philosophical license they are thought to provide.  Understanding 

the limits of the impossibility results is an exercise worth undertaking 

independently of the fit between traditional coherentism and Bayesian 

coherentism. In the case Bovens and Hartmannʼs model and Olssonʼs Lewisian 

model for testimonial system, both pick out a specific class of probability models 

which simultaneously overconstrain the truth conduciveness problem, by 

assuming that witness testimonies are conditionally independent from one 

another (Wheeler 2009), and underconstrain the problem by assuming that 

probability alone will suffice (Wheeler and Scheines, 2011).   

 

To illustrate, imagine I tell you that the world supply of scandium is running out 

and, after I tell you this, in an effort to provide additional evidence for this claim,   

I tell you that I read the news about dwindling scandium supplies in three 

newspapers. Now, there are several things that will influence whether my 

testimony will sway your opinion, but surely your position on scandium supply 

after my first report would not strengthen after my claim of having read the three 

newspaper reports if you were to learn that I read those reports from identical 

copies of the same edition of the same newspaper.  Although all three reports are 

highly coherent, the coherence of the three accounts—such as it is—offers no 

additional reason for you to believe that the world is running out of scandium.  

 

What goes wrong in this example?  According to Olsson and Bovens and 

Hartmann, the problem is that the newspaper reports fail to be independent from 

one another. If I had succeeded in finding three news outlets which had 

independently sourced the story, then the coherence among the accounts would 

appear to give additional evidence for the claim that the scandium supply is 
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running low. (More on this later.)  Bayesian witness models are specifically 

designed to rule out collusion, so Olsson, Bovens, and Hartman would handle 

this newspaper example by simply excluding it out of hand.  Whatʼs more, 

although Olsson acknowledges that it is “implausible to require full independence 

for coherence to have the desirable effect” (Olsson 2002, p. 259), he 

nevertheless claims that Bayesian witness models in general, and his model in 

particular, specifies the most favorable circumstances.   

 

An alternative explanation for what goes wrong does not rely upon a failure of 

independence, but rather pins the blame on an irrelevant cause of the coherence 

(Wheeler and Scheines 2011).  The coherence of the newspaper reports is 

explained by facts to do with how newspapers are printed and distributed, and 

those facts have nothing to do with the veracity of what is printed on the page.  

One should not confuse a particular mechanism for constraining the possible 

sources of coherence—such as the conditional independence conditions of 

Bayesian witness models—for the general point that accounting for the source of 

coherence is a necessary condition for determining whether coherent evidence is 

a help or hindrance to epistemic justification. Indeed, if we altered the newspaper 

example by replacing the claim about scandium shortages with another claim 

about the newspaperʼs printing press, then those three papers could easily 

provide ampliative evidence after all.  

 

3. Olssonʼs Result 

Suppose that H is a binary variable representing a hypothesis, where (H = 1) 

codes for the proposition ʻthe hypothesis is true,ʼ written H for short, and (H  = 0) 

codes for the proposition ʻthe hypothesis is false,ʼ written ¬H for short.  We will 

use this convention to present a generic version of the Bayesian model for 

witness testimony in section 4, but first consider the particulars of Olssonʼs model 

and his main result. 
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 A Lewis testimonial system, S = {(E1, A1), …, (En, An)}, is a set of pairs of 

propositions representing n witness testimonies.  Each pair in the set, (Ei, Ai), 

encodes an individual iʼs witness report, where the proposition Ei is the report 

that proposition Ai is true (Olsson 2005, p. 97).  A basic Lewis scenario, (S,P), is 

a two-witness, single hypothesis Lewis testimonial system, S = {(E1,H), (E2,H)}, 

and a set P of probability distributions defined with respect to an algebra defined 

on the propositions encoded by this testimonial system, E1, E2, and H, together 

with propositions regulating the witnessesʼ reliability, R1, R2, U1, U2, such that P is 

in P iff the following eleven conditions are satisfied: 

 

1. P(Ri)+ P(Ui) = 1, for i = 1,2; 

2. 0 < P(H) < 1; 

3. P(E1 | H, R1) = 1 = P(E2 | H, R2); 

4. P(E1 | ¬H, R1) = 0 = P(E2 | ¬H, R2); 

5. P(E1 | H, U1) = P(H) = P(E2 | H, U2); 

6. P(E1 | ¬H, U1) = P(H) = P(E2 | ¬H, U2); 

7. P(Ri | H) = P(Ri) = P(Ri | ¬H), for i = 1, 2; 

8. P(Ui | H) = P(Ui) = P(Ui | ¬H), for i = 1, 2; 

9. P(E1 | H) = P(E1 | H, E2); 

10. P(E1 | ¬H) = P(E1 | ¬H, E2); 

11. P(R1) = P(R2) > 0. 

 

Since the reliability of each of the witnesses is assumed to be identical, P(R1) = 

P(R2), in the remainder we drop the indices and simply write P(R).  Basic Lewis 

scenarios have the following properties. 

 

(P1)  P(H | E1, E2) = h* = (P(H) + P(R) P(¬H)) / (P(H) + P(R)2 P(¬H)). 

(P2)  Define P(H) = h. Then h* as a function of h has a unique global minimum  

in (0,1) at hmin = P(R) / (1 + P(R)).  

(P3) 0 < h* < 1. 
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(P4) h* → 1 as h → 0. 

(P5) hmin → 0 as P(R) → 0. 

(P6) hmin → ½ as P(R) → 1.1 

 

Turning to the definition of coherence measures, Olssonʼs model defines 

coherence within the hypothesis space, rather than in the witness report (or 

evidence) space.2  For Olsson, a coherence measure C is informative within a 

basic Lewis scenario (S,P) just in case there exist measures P and Pʼ in the set P 

such that the coherence measure C(S) defined with respect to P is not identical 

to the coherence measure C(S) defined with respect to Pʼ, written CP(S) ≠ CPʼ(S).  

Finally, C is truth conducive in a basic Lewis scenario (S,P) just in case: if CP(S) 

> CPʼ(S), then P(S) > Pʼ(S), for all P, Pʼ in P such that P(R) = Pʼ(R).  

 

Olssonʼs main result is that there are no informative coherence measures that 

are truth conducive, ceteris paribus, in a basic Lewis scenario (Olsson 2005, 

Appendix B). 

 

 

4. Mediating Coherence and Truth Through Causal Structure 

It turns out that conditions (9) and (10) of a basic Lewis scenario do the bulk of 

the work in Olssonʼs impossibility result. More generally, implicit assumptions 

about how witness reports and the contents of reports are related within Olssonʼs 

model can be made explicitly by a causal Bayesian network (Spirtes et. al. 2000) 

of a particular kind: a single-factor common cause model.  
 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Properties P1 and P2 are due to (Bovens et. al. 2002), and P3-P6 are from (Olsson 
2005). 
2 Huemer (2011) refers to this as ‘content determinism’. It should be noted that the 
Wheeler-Scheines approach does not endorse content determinism.   
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Figure 1: Single-Factor Common Cause Model 

 

This model says that the truth of the hypothesis is a direct cause of each witness  

reporting as they do. Here the truth of H is the one and only cause for each 

witness (Ei) to report that H is true. All Bayesian witness models assume that 

witnesses are partially reliable. On Olssonʼs model, when the unreliability of 

witnesses is not extreme, i.e., 0 < P(U) < 1, then P(H | Ei) > P(H), for i = 1,2.3  

This means that each witness report (Ei ) is positively correlated with the content 

(H) of the report.  

 

Probabilistic measures of coherence are taken to be some measure of 

probabilistic association.  But, if we suppose that coherence is modeled by 
Pearsonʼs correlation coefficient, ρ, then the correlation between any pair of 

evidence variables Ei, Ej in a single factor common cause model is simply 

determined by the product of the correlation between H and Ei and the correlation 

between H and Ej.4  Although we are discussing coherence in the evidence 

space rather than the hypothesis space, the point to realize is that within 

common cause models the correlation of the evidence is determined by the 

relationships between the hypothesis and the evidence, once the prior 

probabilities of H and the Eʼs are fixed (Wheeler and Scheines, forthcoming). 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 This is Observation 3.3 in (Olsson 2005). The condition P(H | Ei) > P(H), for i = 1,2 is 
labeled (A1) in Wheeler and Scheines, forthcoming, and conditional independence is 
(A3). 
4 This result follows from the Danks and Glymour trek rule (2001). See proposition 4 in 
Wheeler and Scheines, forthcoming, which is a simplification and generalization of the 
Bayesian impossibility results.  

H	  

E1	   E2	   …..	   En	  
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There is no way for correlation to vary within this class of models. Whatʼs more, 

as we see below in Figure 2, a generalization of the Bayesian witness model 

which represents Bovens and Hartmannʼs model, their content variables stand in 

the place of our evidence variables.   

 

So, single factor common cause models are a natural interpretation of Bayesian 

witness models.  Furthermore, in the special case of two evidence variables and 

one hypothesis variable, the causal structure of the causal Bayes net entails that 

conditions (9) and (10) are satisfied.  Whatʼs more, unless you wiggle P(E1) or 

P(E2), there is simply no room within the model for the correlation between E1 

and E2 , i.e., ρE1,E2, to vary. Compare this observation to Olssonʼs remarks about 

the ceteris paribus conditions behind his witness testimony model:  

We are trying to isolate one property, namely coherence, from other 
properties that may have an influence on the joint probability of a set of beliefs 
or testimonies…. Holding the degree of reliability or independence fixed is in 
perfect compliance with the requirement of independent variation. Fixing 
these aspects of scenarios does not mean imposing any constraints on what 
degree of coherence can be consistently attributed.  (Olsson 2005, p. 118) 

 

The point is that the class of single-factor common cause models does not allow 

as much flexibility in varying coherence and individual credibility as one might 

think.  

 

The single-factor common cause model is but one type of causal structure, and 

we see that there is no role for a measure of coherence in determining how the 

collection of evidence supports a hypothesis in this structure. Olsson has 

encouraged us to think that his results tell us something about all possible 

models which regulate the relationship between evidence and hypothesis.  But, 

this is not true. For instance, recall the causal structure in our scandium shortage 

example from above, where the coherence of three copies of the same 

newspaper has nothing to do with whether in fact there is a scandium shortage. 
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Alternatively, if an additional report were collected from a different newspaper, we 

might think that this alternative report should provide more confirmation for the 

hypothesis than another copy of the same newspaper, all else equal, and we 

have results which confirm that this conjecture holds (Wheeler and Scheines, 

forthcoming). But here again it is the non-parametric causal structure regulating 

the relationships between the evidence and the hypothesis rather than  

probabilistic facts about measures of coherence.  

 

Interestingly, Bayesian witness models try to account for the role of causal 

structure by simply looking at one class of models, and one might think of this as 

the extreme case where the agreement between two witnesses can best be 

explained by the truth of the hypothesis they are reporting on because there is no 

interaction between the two witnesses.  While that view accords with intuitions, 

the step from a small interaction between witnesses to no interaction between 

witnesses marks a world of difference. 

 

The main point is this: one cannot isolate coherence from the causal structure 

regulating the relationships among the variables designated to cohere (our Eʼs) 

and the variable(s) designated for a boost (our H).  On our theory, we measure 

the coherence (correlation) of evidence in order to determine what, if any, boost 

this evidence provides to a particular hypothesis. This structure leaves open how 

to interpret those variables, just as it leaves open what interpretation of 

probability to adopt and how to view the causal structure.  For example, a 

traditional coherence theorist, concerned to preserve the internalist nature of 

coherence justification, may opt for a subjective interpretation of the model, 

pairing a subjective interpretation of probability with an interpretation of causal 

structure as that agentʼs judgment about which causal relationships constrain his 

degrees of belief. On the other hand, a mathematical psychologist interested in 

fitting models for human decision making to experimental data might start with 

correlation tables generated from experimental subjects and adopt an objective 
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interpretation of the model.  I donʼt wish to dismiss the importance of working 

through the issues that arise form how to interpret the model, but I do wish to 

stress that these are secondary concerns.  At this early stage, we first need to 

understand the fundamentals of how measures of probabilistic association, 

causal structure, and incremental confirmation can fit together before we dive into 

these details.  Arguably, it was by leaping straight into the philosophical details of 

modeling BonJourʼs theory of cognitively spontaneous beliefs which has lead to 

mistaking a narrow result about a class of models for an impossibility result about 

the very idea of using probability to model coherentist justification.   

 

As an aside, by adding causal structure to the model we are taking a step in the 

direction of the traditional truth connection problem.  Since the ampliative effect of 

coherence depends on how the evidence and hypothesis variables are causally 

related to one another, including causal structure in the model may be thought of 

as a proxy for beliefs about how the environment is arranged. There is a truth to 

the matter of how things are causally related, and an agent may harbor causal 

beliefs which are mistaken. Analogously, Herb Simonʼs theory of bounded 

rationality (1956) maintains that structural constraints imposed by the 

environment should be factored into to our notions of human rationality and 

norms.  Although mathematical psychologists have typically focused on the 

cognitive limitations of Simonʼs proposal, such as limited memory and limited 

processing time, introducing a role for causal structure, while not sufficient to 

represent all of Simonʼs ideas about ecological rationality, is nevertheless an 

advance from the common use of linear models.  

 

Returning to Bayesian witness models, Figure 2 represents another witness 

model where each Ri is a binary fact variable, Repi is a binary report variable, 

and H a (latent) binary hypothesis variable.  
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Figure 2: Generic Common Cause Bayesian Witness Model 
In (Wheeler and Scheines, forthcoming), we argue that Figure 2 is the most 

plausible interpretation of Bovens and Hartmannʼs witness testimony model 

(2002).  Bovens and Hartmann, like Olsson, define coherence as a property of a 

set of propositions, which in this model is determined by assigning either Ri = 0 or 

Ri  = 1 (for i = 1,…,n),  to the set of fact variables {R1,…,Rn}.  The natural 

interpretation of Bovens and Hartmannʼs model is that the facts are the facts not 

merely because a witness says so, but because the truth of the matter (H) is a 

direct cause of those facts. Even so, for the purposes of the discussion above 

about the properties of single-factor common-cause models, Figure 2 can be 

simplified to Figure 1. For a full discussion, see (Wheeler and Scheines, 

forthcoming). 

 

Causal structure is not the whole story, of course.  Consider Figure 3. 

 

 

 

 

 

 

Figure 3: An Imperfect Witness Model 

 

H	  

E1	   E2	  

Repn	  
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H	  
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Instead of causal structure regulating the relationship between evidence and 

hypothesis, here we may ask whether the correlation (coherence) between 

evidence variables (evidence propositions) is primarily due to the truth of the 

hypothesis, or primarily due to a causal relationship between E1 and E2.  In 

models of this kind, pace Olsson, there is an informative probabilistic measure  

called focused correlation (Myrvold 1996, Wheeler 2009), which robustly tracks 

incremental confirmation (Wheeler and Scheines, forthcoming, Schlosshauer and 

Wheeler, 2011). The focused correlation of a set of evidence E = {E1,..,En) with 

respect to a hypothesis H is the ratio of the association (coherence) of the 

evidence conditional on H to the association (coherence) of the evidence 

simpliciter, which can be expressed generally as: 

 

 
 

What focused correlation measures is the difference between the association 

(coherence) in the evidence alone and the association (coherence) in the 

evidence when a hypothesis is true. When that ratio is greater than one, i.e., 

when there is greater evidential coherence given the hypothesis than evidential 

coherence alone, and evidence is positive and either of equal or of varying 

strength (within certain bounds), then we know that the occurrence of the 

hypothesis is a contributing cause to the co-occurrence of the evidence. We say 

in this case that focused correlation is inflationary. Focused correlation is 

deflationary when that ratio is less than one. If evidence is negative and of equal 

or varying strength, then in such cases the difference in this ratio indicates that 

the occurrence of the hypothesis makes the co-occurrence of the evidence less 

likely.  
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Focused correlation is applicable within imperfect witness models, which are 

models in which (9) and (10) of Olssonʼs testimonial systems do not hold.5  

Moreover, focused correlation can also be used to compare evidence sets of size 

two such that an evidence set E gives more confirmation to H than an evidence 

set Eʼ iff E has more focused correlation with respect to H than Eʼ, all things 

equal.6  

 

5. Independent Evidence and Reliability Conduciveness. 

 

The surprise is that modeling coherence within Bayesian witness models 

coherence leads to ruin, but once you drop conditional independence a world of 

possibilities opens. Although intuition suggests that Figure 1 is the ideal case for 

coherentism and Figure 2 less so, the truth is exactly the opposite.  The bounty of 

possibilities for a purely probabilistic account of coherence depends on an 

imperfect witness model.  And while things improve as the correlation between 

the evidence goes to zero, at zero we switch from an imperfect witness model to 

a Bayesian witness model satisfying conditional independence and the possible 

suddenly becomes the impossible.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5	  Because correlation is essentially a binary relation (or, in conditional form, a 
three-place relation), focused correlation in its general form is not a correlation 
measure but instead is a measure of deviation from independence. For primarily 
this reason, our basic possibility results hold for comparisons of evidence sets of 
size 2. There are ways to extend our techniques to cover larger evidence sets, 
but there is no automatic way to do this from probabilistic information alone. This 
is the main reason why we have focused on Olsson in this essay, rather than 
address Bovens and Hartmannʼs impossibility results. For while our general 
points about single-factor common cause models and the constraints this class of 
models imposes carries over to Bovens and Hartmann project as well, we need 
to have a policy for handling larger evidence sets before fully addressing their 
results. 
 
6 The comparison assumes, like Olsson, positive evidence and that all evidence 
is of equal relevance (Wheeler and Scheines, 2011). However, the second 
assumption can be weakened for a more general result, namely that evidence 
may vary in strength within certain bounds (Schlosshauer and Wheeler, 2011). 
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This is sudden switch is disturbing. Although we have avoided the sweeping 

conclusion of Olssonʼs impossibility result, the price seems to be a sharp 

discontinuity between imperfect witness models and Bayesian witness models.  

Call this an irascibility result.  

 

However, all is not lost.  Return to the basic witness model involving a single 

hypothesis and two evidence reports. The driving idea is that each evidence 

report on its own lends credence to the hypothesis, but integrating both sources 

of evidence offers an additional epistemic advantage. If the goal is model 

BonJourʼs original proposal for handling sensory perceptions and the 

observational beliefs based on those perceptions and to explain how integrated 

observational evidence is superior to pieces of evidence standing on their own, 

then perhaps the quantity to focus on is not the proportion of true reports per se, 

but the reliability of those perceptual inputs in forming accurate observational 

beliefs. Here we are keeping the underlying structure of Olssonʼs basic Lewis 

scenario and its signature characteristic, evidential independence.  We are also 

keeping in sight BonJourʼs notion of cognitively spontaneous beliefs, since this 

proposal is what has motivated Bayesian epistemologists to explain how multiple 

independent information sources can increase the likelihood that an 

observational belief is true. Finally, we are also addressing the traditional 

coherence theories truth connection problem of explaining the connection 

between properties of this cognitive model and the content of the observational 

report.  However, we are changing one thing. In place of Olssonʼs truth 

conduciveness property, I will substitute something I call reliability 

conduciveness. 

 

To support this substitution, we will need a richer model. So, instead of binary 

random variables, our model will be built with continuous random variables.  We 

define the probability that a continuous random variable Y takes a real value y in 
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the interval [a,b] in the standard way, by integrating the probability density 

function over the interval [a,b]:  

 

€ 

P(a < Y < b) = f (y)d
a

b
∫ y .    (1) 

 

In this model the goal of the evidential report E1 = e1 is to accurately represent an 
environmental parameter θ, which the brain does not have direct access to. So, 

we view each evidence variable to be ʻtruth plus noiseʼ, i.e., e1 = θ + ε1, where ε1 

is normally distributed error with a mean of zero and variance of 

€ 

σ1
2, and similarly 

for e2 = θ + ε2.  Thus, PE1(e1) = x  expresses that the probability that the truth, θ, 

is within the interval e1 = (µ,

€ 

σ1
2) is x.  So, the proposal is to replace truth 

conduciveness, which is concerned with boosting x, with reliability 

conduciveness, which aims to shrink the variance of error in an evidential report.  

An observational belief or hypothesis, ĥ, is understood then to be an estimate of 

θ that arises from integrating all evidence reports, e1,…, en.   

 

Let us focus on a simple model involving two reports, e1, e2, the truth parameter 
θ, and our estimate of the truth, ĥ. One benefit from assuming that individual 

evidential reports are independent is that their associated noise terms are 

assumed to be independent, too.  But given that the noise of the evidence reports 
is independent and Gausian, the estimate ĥ of θ which has the lowest variance is 

the maximum likelihood estimate (MLE) (Ernst and Bülthoff, 2004). The optimal 
estimate of θ, our best observational belief ĥ based on the evidence, is a 

weighted average of the two evidential reports, e1 and e2: 

 

€ 

ˆ h = w1e1 + w2e2,     (2) 

 

where w1+w2 = 1, and 
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€ 

w1 =
1/σ1

2

1/σ1
2 +1/σ 2

2 , and w2 =
1/σ 2

2

1/σ1
2 +1/σ 2

2 .7     (3) 

 

The inverse variance of each evidence report in equation 3 is defined as the 

reliability r of that report,  

 

€ 

ri =
1
σ i
2 , for i = 1,2.     (4) 

 

It follows that the reliability of the integrated estimate ĥ is the sum of the 

reliabilities of the individual evidence reports r1 and r2.  

 

In short, there is always a benefit from combining individual, independent 

evidence:  it increases reliability.  Constructing ĥ by the MLE method will always 
yield a more reliable estimate of the truth, θ, than either evidence report alone.  
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