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Abstract. This essay presents results about a deviation from indepen-
dence measure called focused correlation. This measure explicates the for-
mal relationship between probabilistic dependence of an evidence set and
the incremental confirmation of a hypothesis, resolves a basic question
underlying Peter Klein and Ted Warfield’s ‘truth-conduciveness’ prob-
lem for Bayesian coherentism, and provides a qualified rebuttal to Erik
Olsson’s claim that there is no informative link between correlation and
confirmation. The generality of the result is compared to recent programs
in Bayesian epistemology that attempt to link correlation and confirma-
tion by utilizing a conditional evidential independence condition. Several
properties of focused correlation are also highlighted.

Keywords: Bayesian epistemology, coherence measures, confirmation
theory, measures of deviation from independence.

1 Introduction

Recent results in Bayesian epistemology have reinvigorated debate over the co-
herence theory of justification, particularly the version outlined by Laurence
BonJour (Bonjour 1985). One issue receiving attention is whether the idea be-
hind coherentist justification is tenable, which is understood in this literature
as whether an increase of coherence among a collection of beliefs is matched by
an increase in the likelihood of those or related beliefs being true. Here critics
pounce.

Peter Klein and Ted Warfield, for instance, have argued on measure-theoretic
grounds that it is impossible for coherence to increase the likelihood of truth
(1994, 1996). They maintain that coherence is not ‘truth conducive’ in the way
the coherence theory requires because there isn’t the right sort of ‘truth con-
nection’ between coherent beliefs and true beliefs. Erik Olsson also doubts that
there is an informative link between a measure of coherence and increase in the
likelihood of truth (Olsson 2005, 135). The preconditions for Olsson’s result—
constructed in terms of a ‘testimonial system’ in which witness reports are as-
sociated with a credibility measure and are independent from one another—are
restrictive. But he thinks they are charitable to coherence theorists, arguing that



‘it is less plausible or even impossible that there could be an interesting mea-
sure of coherence that is truth conducive’ under circumstances in which these
conditions are not met (Olsson 2005, 135).

What Bayesians coherence theorists and critics alike are doing is devising
various types of deviation from independence (dfi) measures for sets of binary
variables, or proposing methods for inducing a partial ordering on sets of vari-
ables, and then evaluating the prospects for such constructions to explain the
relationship between coherence and incremental confirmation. The reduction of
coherentist justification to dfi-measures is not direct, however, because coheren-
tist justification is a diachronic notion and all Bayesian coherence measures to
date, along with the so-called impossibility results, concern a synchronic notion
of coherence.! Although it is widely assumed in this literature that positive and
negative results about synchronic coherence are relevant to a theory of diachronic
coherence, the relationship between these two notions of coherence is still to be
worked out.

Nevertheless, the relationship between dfi-measures and confirmation is worth
exploring quite apart from Bayesian coherentism and its critics. The relation-
ship between dfi and confirmation is the basic issue behind Klein and Warfield’s
counter-example, and also behind Olsson’s impossibility result. In so far as these
two arguments suggest that there is no informative relationship between dfi-
measures and confirmation, the results of this essay are a rebuttal.

The paper presents a measure called focused correlation that resolves a gen-
eral formal question behind truth-conduciveness objections. Focused correlation
is the ratio of the degree of correlation among a pair of variables conditioned on a
hypothesis to the degree of correlation of the evidence simpliciter. The measure
may be used as an indicator function for when combining pieces of evidence for a
hypothesis improves or degrades the incremental confirmation that the evidence
provides separately for that hypothesis, and the measure may be extended to
an n-variable conditional dfi-measure without loss of generality. Thus this mea-
sure specifies the conditions under which combining probabilistically dependent
evidence increases the incremental confirmation of a hypothesis.

Focused correlation is a poor candidate for explicating coherentist justifica-
tion, however. In addition to worries about the relationship between synchronic
coherence and diachronic coherence, there are features of correlation measures in
general that raise concerns about their unqualified use in Bayesian epistemology.
Thus we begin the paper with a discussion of the relationship between correlation
and coherence in section 2 and highlight some limitations of the Wayne-Shogenji
measure advocated by Tomoji Shogenji as a coherence measure in (Shogenji
1999). Then in section 3 we present focused correlation, which is based upon
a conditionalized form of the Wayne-Shogenji measure that was introduced by
Wayne Myrvold (Myrvold 1996).

! Bonjour repeatedly stresses that coherentist justification is a dynamic concept, not
a static one. See pages 144, 153, and 169 of (Bonjour 1985), for instance.



2 Correlation Measures

Correlation is one type of relationship that can hold among a pair of variables,
and the Wayne-Shogenji similarity measure is a species of correlation measure.
In this section four points are discussed. First the relationship between the
Wayne-Shogenji measure and Pearson’s product moment correlation coefficient
is addressed. Then the Wayne-Shogenji measure and a conditional form of the
measure are extended to m-variable dfi-measures. Next, four examples are in-
troduced that demonstrate there is no direct dependence between the direction
of the Wayne-Shogenji measure and the direction of incremental confirmation.
Finally, a popular strategy for exploring indirect relationships between corre-
lation and confirmation via conditional evidential independence assumptions is
considered and criticized. These four points are addressed in the following four
subsections.

2.1 Standard Covariance and Correlation Measures

There are a variety of relationships that can hold among variables, but one of
the most basic is covariance. The covariance of two random variables = and y is
the average of  minus its mean, multiplied by the average of y minus its mean,
1 n
Cov(z,y) = - Z(ml —Z)(y; — Y)-

i=1

In other words, Cov(z,y) is a measure for how variables vary together.
We may also measure the strength of the linear relationship between z and
y as the covariance of x and y divided by the product of standard deviations of
the two variables,
Cov(z,y)

re.y) = Var(x)Var(y) '

where r(z,y) is Pearson’s product moment correlation coefficient for z and y,
which takes values between —1 and 1.

Suppose now that = and y are binary variables, where x is 1 if A, 0if = A, and
yis 1if B, 0 if =B. Suppose too that there is a joint probability distribution over
these variables such that Pr(AN B),Pr(AN—-B),Pr(-ANB), and Pr(-AN-DB)
are defined. If the probability model over the data for x and y satisfies both
the mean assumption and the normal error assumption,> and takes values in
the open interval (0,1), then we may define a correlation measure on events,
Cor(A, B), in terms of the correlation coefficient r:

Pr(An B) — Pr(A) x Pr(B)

Cor(A,B) =ray = V/Pr(A) x Pr(=A4) x Pr(B) x Pr(=B)

2 The mean assumption: the conditional mean of y given x is an unknown linear
function of z; the error assumption: (i) errors are normally distributed with mean 0
and a known variance o2, and (ii) errors for each observation are independent.



This textbook result says the following about the probabilistic relationship be-
tween events over which Pr is defined: if and only if two events A and B are
independent, i.e., Pr(AN B) = Pr(A4) x Pr(B), then Cor(A, B) = 0; if and only
if there is a positive correlation between A and B, i.e., Pr(A|B) > Pr(A), then
Cor(A, B) > 0, where Cor(A, A) = 1 is stipulated to be the positive limit; if and
only if there is a negative correlation between A and B, i.e., Pr(A4|B) < Pr(A),
then Cor(A, B) < 0, where Cor(A,—A) = —1 is stipulated to be the negative
limit.

2.2 The Wayne-Shogenji Measure

Rather than express degree of probabilistic independence among events A and
B directly in terms of a linear correlation coefficient, Cor(A, B), we may instead
express correlation as a weight function on probabilistic independence,

Pr(A|B) = Pr(A) x S(A, B), (1)

where A and B are independent if and only if S(A, B) = 1, A and B are positively
correlated if and only if S(A, B) > 1, and A and B are negatively correlated if
and only if S(A, B) < 1. The measure S(A, B) is a non-linear measure of the
degree of probabilistic dependence between A and B.

Andrew Wayne (1995) proposed to interpret S as a ‘similarity measure’ and
noted that (1) is equivalent to

Pr(A|B) _ Pr(B|4) _ Pr(AnB) (2)
Pr(A) Pr(B) Pr(A) x PT(B).

This measure was also proposed by Tomoji Shogenji (1999) as a measure of
coherence. Whereas Shogenji keeps the restriction on values of variables to the
open unit interval, Wayne relaxes this restriction by stipulating that if either
Pr(A) or Pr(B) is zero, then S(A, B) = 1. On either account the measure S(A, B)
takes 0 as a negative limit but is without an upper limit: instead, the degree of
positive similarity among variables is a function of the size and prior distribution
of the data set.

Both Wayne Myrvold (1996, 662) and Shogenji (1999) extend (2) to bodies

of evidence consisting of three or more variables,

S(A, B) =

_ PI‘(Al n...N An)
~ Pr(A;) x...x Pr(4,)’ ®)

S(A1,..., Ay)

and Myrvold also defines a conditionalized form,

Pr(A1N...N An|B)

S(Ay, -+, An|B) = Pr(A;1|B) x ... x Pr(A,|B)’ @

Despite the non-linearity of S, the quantity measured in (2) is degree of correla-
tion among pairs of random variables. Table 1 displays the relationships between
S, Cor, and direction of correlation (4, —, or independent) for two variables.



Table 1. Correlation measures

| (—) Correlation | Independence | (+) Correlation |
Pr(A|B) < Pr(A) | Pr(A|B) = Pr(A) | Pr(A|B) > Pr(A)
Cor(A,B) <0 Cor(A,B) =0 Cor(A,B) >0
S(A,B) <1 S(A,B)=1 S(A,B)>1

Strictly speaking, (3) and (4) are not correlation measures because correlation
is a binary relation: it is well known that sets of 3 or more evidence variables
may indicate a high degree of dependence whereas pairs of those variables may
fail to be correlated. Yet (3) and (4) are dfi-measures. I will sometimes speak
informally of correlation measures to include their 3- or more evidence variable
counterparts.

2.3 Interpreting Correlation Measures

In order to evaluate a correlation measure it is necessary to know the signifi-
cance of the correlation and the strength of the dependency between variables.
Significance is a measure of reliability of the correlation of z and y. Tests for sig-
nificance are typically based upon the assumption that error, i.e., the deviation
of data from the ‘true’ linear function, is normally distributed. For Pearson’s
coefficient r strength is the square of the correlation coefficient, which measures
the proportion of common variation in z and y. Thus, correlation measures are
sensitive to outlying data: since regression minimizes the sum of the squares of
distances of data from a line plotted through that data, a single outlying data
point can significantly alter the slope of the plotted regression line. Further-
more, variables may be non-linearly correlated. Thus, applying the measure r
may correctly indicate that there is no linear correlation, but may falsely in-
dicate that there is only a weak degree of dependency among the variables. It
is therefore critical to examine the data underpinning a correlation measure to
check against error, since bare correlation measures alone tell you little about
the actual dependency between variables.

The interpretations of the Wayne-Shogenji measure given by Bayesian epis-
temologsts fail to address either the significance or the strength of correlated
beliefs. Instead, they typically assume that a probability distribution is repre-
sentative of the evidence, or representative of a rational agent’s assessment of
likelihoods. But this assumption is suspect given the many qualifications that
accompany the interpretation of correlation measures in statistics. In so far as
evidence is taken to be either representative of a state of affairs or an assess-
ment of likelihood bound by objective criteria rather than simply a measure
of an agent’s credence, critically assessing strength and significance is unavoid-
able. Furthermore, once we take account of the objective basis for probability
assessment, then the interpretation of probability becomes a central concern to
correlation-based theories in formal epistemology.



For the sake of the argument here, assume there is a means to evaluate sig-
nificance and strength of correlated beliefs. Then an open problem for Bayesian
accounts of confirmation, testimony, and coherence is to specify what impact,
if any at all, combining coherent evidence has upon confirmation. This is the
problem that Klein and Warfeld’s counter-example and Olsson’s results address,
which has (misleadingly) been referred to as the ‘truth-connection’ problem.

Concerning the measure S, intuitions are divided. Wayne proposed, but did
not endorse, interpreting S to represent the diversity of evidence thesis (Howson
and Urbach 1989, 114). This thesis holds that the less similar pieces of evidence
for some hypothesis are to one another then the stronger the support this com-
bined set of evidence would give to that hypothesis. On this view S(A,B) =1
represents that evidence A and B are maximally diverse, and maximally diverse
evidence offers more support for an hypothesis than ‘narrow’ evidence, i.e., when
A and B are either positively or negatively correlated.

Shogenji proposed S as an account of epistemic coherence, which holds that
the more similar evidence is to each other, the greater the support it offers
to an hypothesis. On Shogenji’s interpretation S(A, B) = 1 represents neutral
evidence, negatively correlated evidence represents incoherent evidence, and pos-
itively correlated evidence represents coherent evidence.

As these clashing intuitions about S might suggest, correlation and confir-
mation may vary independently. Contra Klein and Warfield and the diversity
of evidence thesis, combining correlated confirming evidence may increase con-
firmation of a conditioning hypothesis. Contra Shogenji, ‘incoherent’ evidence
may increase confirmation of a conditioning hypothesis. Furthermore, both pos-
itively correlated evidence and negatively correlated evidence may each decrease
incremental confirmation of a conditioning hypothesis. Each possibility is demon-
strated in four examples.

But first, some terminology will be helpful for discussing these examples.
Following L. Jonathan Cohen (1977) we say that evidence A and B converge upon
h if Pr(h|AN B) > Pr(h|A). Furthermore, we say that the ratio of Pr(h|AN B)
to Pr(h|A) is a measure of incremental convergence from A to {A, B} on h, and
that this incremental convergence is positive if and only if Pr(h|AN B)/Pr(h|A)
is greater than 1, negative iff less than 1, and neutral iff 1. Finally, billiard
balls numbered 1 through 8 are classified as ‘solids’, 9 through 15 as ‘stripes’,
and the cue ball is neither numbered, striped, nor solid.? See the Appendix for
calculations.

3 All examples are constructed from the feature categories parity, color, and number.
Some examples form mutually exclusive classes by treating values of each of these
categories as features, e.g., the classes ‘odd’ and ‘even’. Although redefining values
of a feature as distinct features is not a sound practice in general, this classification
scheme does not affect the point under discussion but is adopted both to simplify
the examples and to illustrate the power of focused correlation to correctly classify
the relationship between correlation and confirmation even when there are logical
relationships that hold among the categories.



Ezample 1. An urn contains the balls numbered 1, 2, 3, 14, and 15. Consider
the hypothesis h1 and two pieces of evidence, A; and As:

h1: The drawn ball is the 2 ball.
A;: The drawn ball is solid.
As: The drawn ball is even.

Note the following values: Pr(h;) = 0.2, Pr(4;) = 0.6, Pr(As) = 0.4, Pr(hy|A;) =
£+, Pr(hi|Az) = 0.5, and S(A;, Ay) ~ 0.833. So, the evidence set {A;, 4>} is neg-
atively correlated. However, the incremental convergence from A; to {41, A}
is positive, so it is not the case that the evidence set { A1, A2} offers less confir-
mation than each piece of evidence alone. Note that

PI‘(h1|A1) Pr(h1|A2)
— > x= 1667, ————= =25
Pr(hq) © Pr(hy) '
but
PI‘(h1|A1 n AQ) _ 3
Pr(h1|A1) ’
yet
Pr(h1|A1 n AQ) o 2

Pr(h1 |A2)

Hence, a negatively correlated evidence set {A;1, A2} can increase the confirma-
tion of hy. a

Ezxample 2. An urn contains the billiard balls numbered 1, 2, 14, 15, and the
cue ball. Consider the hypothesis ho and two pieces of evidence, Az and Ay:

ho: The drawn ball is striped.
As: The drawn ball is odd.
Ay: The drawn ball is either an even solid or an odd striped.

Note the following values: Pr(hg) = 0.4, Pr(A43) = 0.4, Pr(A4) = 0.4, Pr(hs|A3) =
0.5, Pr(he|Az) = 0.5, and S(A3, Ag) = 1.25. So, the evidence set { A3, Ay} is pos-
itively correlated. And on this example the incremental convergence from both
Az and Ay to {As, A4} is positive; the evidence set {As, A4} confirms he more
than A3 and A4 individually, i.e.,

PI‘(h2|A3) —1.95 = PI‘(hQ‘A4)
Pr(hz) o o Pr(hg) ’
and
Pf(h2|A3 N A4) —9— Pf(h2|A3 N A4)
PI‘(h2|A3) PI‘(h2|A4)

Hence, a positively correlated evidence set {As, A4} can increase the confirma-
tion of hs. O



Ezample 3. An urn contains the billiard balls numbered 1, 2, 14, 15, and the
cue ball. Consider the hypothesis hg and two pieces of evidence, A5 and Ag:

h3: The drawn ball is solid.
As: The drawn ball is odd.
Ag: The drawn ball is even.

Note the following values: Pr(hz) = 0.4, Pr(A45) = 0.4, Pr(A4g) = 0.4, Pr(hs|A5) =
0.5, Pr(hs|4s) = 0.5, and S(As, Ag) = 0. So, the evidence set {As, Ag} is neg-
atively correlated. And on this example the incremental convergence from both
As and Ag to {As, Ag} is negative; the evidence set {As, Ag} together does not
confirm hg more than As and Ag individually, i.e.,

Pl“(h3|A5) —1.95 — Pl“(hg‘AG)
Pr(hs) ' Pr(hs) ’
and
Pl‘(h3|A5 N Ag) —0= PI‘(h3|A5 N A6)
Pr(hs|4s) Pr(hs|As)
Hence, a negatively correlated evidence set {As, Ag} can fail to increase the
confirmation of hs. m]

Ezxample 4. An urn contains the billiard balls numbered 2, 4, 13, 15, and the
cue ball. Consider the hypothesis hy and two pieces of evidence, A7 and Ag:

h4: The drawn ball is even.
Ar: The drawn ball is the 2 ball.
Ag: The drawn ball is solid.

Note the following values: Pr(hy) = 0.4, Pr(A7) = 0.2, Pr(As) = 0.4, Pr(h4|A7) =
1, Pr(hy|Ag) =1, and S(A7, Ag) = 2.5. So, the evidence set { A7, As} is positively
correlated, therefore coherent. But on this example the incremental convergence
from both A7 and Ag to {A7, Ag} is neutral; the evidence set {A7, Ag} together
does not confirm hy more than A7 and Ag individually, i.e.,

Pr(ha|A7) 95— Pr(hq4|As)
Pr(hy) ’ Pr(hy)
but
Pr(h4|A7 n Ag) 1= Pr(h4|A7 n Ag)
Pr(hyg|A7) Pr(hy|Asg)
Hence, a positively correlated evidence set {A7, Ag} can fail to increase the
confirmation of hy. O

Therefore, the interpretation of S(A, B) as either a measure of coherence of
{4, B}, or a measure of this set’s diversity is mistaken: S(A, B) is a measure of
correlation of A and B, and the confirmation boost of a hypothesis conditioned
on the evidence set {A, B} is indeterminate given only the information that A
and B are correlated.



2.4 Correlation and Evidential Independence

Since correlation and confirmation are not directly related to one another it is
natural to consider whether there are indirect relationships between the two.
One way to do this is to add conditions to a correlation measure in order to find
dependencies between (positively) correlated evidence and an increase in confir-
mation of an hypothesis. A popular condition among formal coherence theorists
is a conditional independence assumption called evidential independence (Ear-
man 2000, Bovens and Hartmann 2003, Olsson 2005, Shogenji 2007), which may
be illustrated with two evidence variables, A and B, and an hypothesis variable,

h.

Evidential Independence (EI): A is evidentially independent of B with re-
spect to h if and only if Pr(A|B N h) = Pr(Alh), and Pr(A|B N h) = Pr(A|h).

Proposition 1 collects some facts about EI.
Proposition 1. Iff Pr(A|B N h) = Pr(A|h) and Pr(A|B N h) = Pr(Alh), then

(i.) Pr(A N B|h) = Pr(A|h) x Pr(Bh),

(ii.) Pr(A N B|h) = Pr(A|h) x Pr(B|h), and

(i3i.) Pr(h|AN B) = Pr(dln) Pr(BW)Pr(h)
Pr(A|h) Pr(B|h) Pr(h) + Pr(A|R) Pr(B[h) Pr(h)

EI says that pieces of evidence about h do not influence one another’s proba-
bility except through their effect on h. Coherence theorists have appealed to EI
in various guises to make plain Bonjour’s claims about cognitively spontaneous
beliefs, which are non-inferential beliefs that nevertheless bear some relationship
to one another. On Bonjour’s account, if the contents of several independent,
cognitively spontaneous beliefs ‘agree’ on a proposition p, then that collection
of beliefs generates evidence for p (Bonjour 1985, 148). The challenge for prob-
abilistic theories of coherence then is to explain what ‘independence’ means in
this context, and how a set of independent, cognitively spontaneous beliefs can
positively influence the likelihood that those beliefs are true.

Bovens and Hartmann (2003) address the challenge by adopting a witness
model whereby a witness report is distinguished from the content of that re-
port. On this account coherence occurs among the contents of reports, and EI
is a condition governing sets of report variables about the conjunction of the
contents of those reports. Olsson (2005) also proposes a witness model that dis-
tinguishes between reports and the contents of reports. According to Olsson, a
Bonjour belief system is a set of pairs, T = {(Rep(p),p)1,- .., (Rep(p'),p')n},
where a belief system 7T is coherent just in case the size n multiset O consist-
ing of the propositional contents of T is coherent.* Evidential independence on
Olsson’s account is a condition governing witness reports rather than the propo-
sitional contents of those reports, since Olsson is interested in the case where n
independent witnesses give identical reports.

4 Qlsson states that O is a tuple, rather than a multiset, but order is not important
for his proposal. Multiplicity is.



Shogenji (2007) presents a simplified witness model that removes the distinc-
tion between evidence reports and the contents of those reports, and removes the
logical restriction that identifies the confirmable hypothesis with the conjunction
of the evidence contents. EI on his account holds between the evidence contents
Ay,..., Ay, given a logically unrelated hypothesis, h.

Shogenji’s generalized EI-witness model nevertheless preserves the basic dis-
tinction between reports and the contents of those reports, which is the key idea
underpinning the witness-report strategy. By incorporating evidential indepen-
dence directly into a model of evidence, Shogenji shows that

...under the condition of evidential independence, the degree of coher-
ence is simply a function of the individual strengths of the pieces of
evidence. Thus, although there is a sense in which coherence is truth-
conducive. . . the lateral relation, such as coherence, has no independent
role to play in the confirmation of the hypothesis (Shogenji 2007, 371).

So, given that the point behind Bonjour’s cognitively spontaneous beliefs was to
generate coherentist justification without depending upon the individual strengths
of each belief, Shogenji’s result appears to be bad news for the coherence theory
of justification.

Perhaps. But Bonjour’s outline of the coherence theory is a rough one, and
nowhere does he explicitly endorse EI or the underlying constraints of EI-witness
models. Furthermore, it is misleading to draw a general conclusion about the
relationship between deviation from independence and confirmation on the basis
of Shogenji’s results. Shogenji’s writes that under EI ‘the conditional probability
of the hypothesis, Pr(h|A1N...A,), is a strictly increasing function of Pr(h|A;)
for each i = 1,...,n’ (Shogenji 2007, 366, my notation), which we can see from
Proposition 1. But this is not true in general, since the second position of the
conditional probability function Pr(h|4; N...N A,,) is not a strictly monotone
function on the size of n in Pr(h|A4;), for 1 <4 < n. The conditional probability
function Pr(+|-) itself is monotone, just as all probability functions are monotone:
if A C B then Pr(A]-) < Pr(BJ); If A is a smaller set of possibilities than B,
then the probability of A must be less than (or equal to) the probability of B.
But Pr(-|4;) in general is not a strictly increasing function of the size of the
set of possibilities {A4;} for 1 < ¢ < n, since if A # B then Pr(-|A) may be
greater than, less than, or equal to Pr(-]AN B). Conditioning on a smaller set of
possibilities may either increase or decrease the probability of the conditioning
event.

It is the restriction to strictly increasing conditional measures that is driving
Shogenji’s result, not evidential independence per se. So, we might think that
a clearer picture of Shogenji’s observation would be given by replacing EI by a
weaker monotonicity condition.

Monotone Evidence (ME): A and B are monotone evidence for h if and only
if Pr(A|BNh) > Pr(A|h) and Pr(A|BNh) < Pr(A4|h).

10



Adopting ME rather than IE would seem to increase the scope of Shogenji’s
result.

Even so, Bonjour nowhere endorses anything like either ME or EI. Even if
we assume that there is some static notion of coherence behind Bonjour’s claims
about cognitively spontaneous beliefs, there are a variety of ways in which those
beliefs may be understood to be independent from one another. One candi-
date is the error assumption mentioned in section 2.1. Rather than start with
a heavy-handed witness-report representation of cognitively spontaneous beliefs
that gives you independence and dubious structural constraints on the class of
models to evaluate, perhaps a better approach would be to investigate the rela-
tionship between probabilistic dependence and confirmation where much weaker
constraints are maintained, like the observational independence assumption. As-
suming observational independence leaves open how to describe the mechanism
by which the independence of each observation is generated. One is then left free
to consider whether there is an informative relationship between correlation and
confirmation after all.

3 Focused Correlation

There is no direct relationship between correlation and confirmation but there
is an indirect one: the degree of confirmation of h by both A and B combined is
determined by the product of the degree of confirmation of h by A, the degree
of confirmation of h by B, and the ratio of the correlation of the evidence set
{A, B} conditioned on h to the correlation of A and B. This point is also made
by Myrvold (Myrvold 1996, 663). The relationship between these three factors,
expressed by

Pr(h|ANB) _ Pr(h|4) Pr(hB) S(A, Blh) )
Pr(h) Pr(h) Pr(h) ~ S(A,B)’

is proved in the appendix.
Equation (5) suggests a new correlation measure, which is relativized to a
particular hypothesis of interest, called focused correlation:
S(A,B|h) Pr(h|]ANB) Pr(h) Pr(h)

Forsld B):= oy = ooy~ penA) ~ meny. )

The focused correlation of A and B relative to a hypothesis h, Fory(A, B), tells
us what impact there is on the confirmation of &, if any at all, from combining
A and B.

When we restrict ourselves to cases in which each piece of evidence confirms
h, i.e., when Pr(h|A) > Pr(h) and Pr(h|B) > Pr(h), then values of Forp (A, B)
greater than 1 tell us that the evidence set {A, B} offers more confirmation to
h than A and B alone. Likewise, when Pr(h|A) < Pr(h) and Pr(h|B) < Pr(h),
then values of Fory(A, B) less than 1 tell us that the evidence set {A, B} offers
even less confirmation to h than A and B alone.

11



When Pr(h|A) > Pr(h) and Pr(h|B) > Pr(h), then values for Fory (A, B)
less than 1 tell us that the evidence set {A, B} does not offer more confirmation
to h than A and B alone. Even so, the evidence set {A, B} may offer confirming
evidence for h. The point is that combining A and B won’t gain an advan-
tage. Similarly, when Pr(h|A) < Pr(h) and Pr(h|B) < Pr(h), then values for
Forp(A, B) greater than 1 tell us that the evidence set {A, B} does not offer
less confirmation to h than A and B alone. The evidence set {A, B} may still
offer disconfirming evidence for h, but the combination will not be a greater
disadvantage so long as Forp(A, B) # 0. What these cases illustrate is that
combining confirming (disconfirming) evidence whose focused correlation is neg-
ative (positive) will not improve (worsen) the confirmation of h, respectively.
The interpretation of these four cases is encapsulated in Figure 1.

Pr(h|-) > Pr(h)
Forp(A,B) > 1
Pr(h|-) > Pr(h)
Forp(A,B) <1

I
<t } )
1

Fory(A,B) > 1
Pr(h|-) < Pr(h)

0 Forp(A,B) <1
Pr(h|-) < Pr(h)

T when Forp(A,B) #0.

Fig. 1. Interpreting positive and negative values for Fory, on incrementally confirming
and disconfirming evidence.

The lower limit of Fory, (A, B) is 0, which means that the evidence set {A, B}
offers no information about h. We stipulate that if Fory(A4,B) = 2, then
Fory(A,B) = 0. When Forp(A, B) = 1, there is no difference in information
about h between conditioning on the information set {A, B} and conditioning
on A and B separately. Notice that there are cases in which Fory (A, B) = %
but where there is a difference in information about i between conditioning on
the evidence set versus conditioning on focal pieces of evidence. Example 3 is an

illustration.

When Pr(h|A) = Pr(h) and Pr(h|B) = Pr(h), then Forp(A, B) may be
positive, negative, or neutral. This is to say that when both A is independent
of h, and B is independent of h, then combining A and B may increase the
confirmation of h, decrease the confirmation of h, or have no impact on h.
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Finally, we may generalize (6) to a focused dfi-measure for evidence sets of
1 < n distinct, finite variables:
S(A1,...An|R)
Forp(Ay,... Ay) = ——"———"=, 7
( )= S A (7)
Application of focused correlation to the four examples illustrates how this
measure may be interpreted as an indicator function to identify when combining
confirming pieces of evidence offers more (or less) confirmation to a hypothesis.
See the appendix for details.

Observation 1. Ezample 1 presents a case where the evidence set {A1, A}
is negatively correlated, but the degree of confirmation of hy on {A1, As} is
greater than the degree of confirmation of hi on the event Ay, and greater than
the degree of confirmation on the event As. Note, however, that As provides
more information about hy than Ay does. A consequence of this asymmetry is
that learning Ao either before or after learning Ay provides more information
about hy than learning Ay either before or after learning As. Nevertheless, the
evidence set {A1, As} offers positive confirmation for hy, more so than either
A1 or Az alone. The Fory, (A1, Ag) is (approzimately) 1.20.

Observation 2. Ezample 2 presents a case where the evidence set {Asz, A4} is
positively correlated, and the degree of confirmation of ha on {As, Ay} is greater
than the degree of confirmation of ho on each event, As and Ay, individually.
The Forp,(As, As) is 1.6.

Observation 3. Ezample 3 presents a case where the evidence set {As, Ag}
is negatively correlated, and the degree of confirmation of hg is less than the
degree of confirmation of hs on each event, As and Ag, individually. No new
information is learned from As after observing Ag, mor by Ag after observing
As. In fact, no new information can be learned since As and Ag are mutually
exclusive events. The Foryp,(As, Ag) is 0.

Observation 4. Ezample 4 presents a case where the evidence set {Ar, Ag} is
positively correlated, but the degree of confirmation of hy is less than the degree
of confirmation of hy on each event, Ay and Asg, individually. The Fory,(Az, Ag)
s 0.4.

Although not intended to be an explication of coherentist justification, fo-
cused correlation nevertheless has four attractive features worth noting. First,
focused correlation specifies a clear relationship between correlation and confir-
mation, one that does not rely upon strong conditional independence assump-
tions. Second, the measure does not place restrictions on the logical relation-
ships between the evidence and the hypothesis. Third, focused correlation in-
corporates the basic structural features necessary to link confirmation to cor-
relation/divergence from independence. Finally, although the measure is com-
mutative, i.e., For,(A, B) = Fory(B, A), focused correlation nevertheless can
reveal important asymmetries in the incremental confirmation of A on pieces of
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evidence. There is often a difference between learning A before learning B and
learning B before learning A, and focused correlation can be used to exploit such
asymmetries in information content. Let’s now examine each of these points in
some detail.

Regarding the role of independence assumptions, note that none of the first
four examples satisfies EI, yet the measure indicates when combining evidence
increases the confirmation of the hypothesis. We of course may add constraints
such as EI without affecting the behavior of focused correlation, since this is but
a restricted case of Equation (5). The next example gives an illustration.

Ezample 5. An urn contains the billiard balls numbered 1, 2, 14, 15, and the
cue ball. Consider the hypothesis hs and two pieces of evidence, Ag and Ajq:

hs: The drawn ball is an odd stripe.
Ag: The drawn ball is not solid.
A1o: The drawn ball is not even.

Note the following values: Pr(hs) = 0.2, Pr(Ag) = Pr(A419) = 0.6, Pr(hs|A49) =
Pr(hs|A10) = %7 and S(Ag, A1) ~ 1.11. So, the evidence set {Ag, A1} is pos-
itively correlated. Note also that the condition of ewvidential independence is
satisfied:

Pr(Ag N Ayglhs) = Pr(Ag|hs) x Pr(Aig|hs) = 1,

and
PI‘(AQ N A10|E5) = PI‘(A9|E5) X PI‘(A10|E5) = 0.25.

However, the set {Ag, A19} neither confirms hg more than Ag, nor more than
Alo, i.e.,
Pl"(h5|A9) ~ 1665 ~ PI‘(hf,‘Alo)7
PI‘(h5) PI‘(h5)
but
PI‘(h5|A9 N AlO) ~ 1.50 ~ PI‘(h5‘A9 n AIO)
Pr(h5|A10) ' PI‘(h5|A10)

Hence, a positively correlated evidence set {Ag, A1o} offers less confirmation for
hs than each piece of evidence alone.

This result is captured by the measure Forp, (Ag, A1g). Since S(AgNAiglhs) =
1, therefore
S(Ag N Agglhs)

Forns (A9, Aw) = =573

~ 0.901.
O

The second attractive feature of focused correlation is that it does not place
restrictions on the logical relationships between the hypothesis and the evidence
set {A, B}. On Olsson’s model and Bovens and Hartmann’s model the event h is
assumed to be equivalent to the joint event AN B. Like evidential independence,
this assumption is a strong structural constraint that is motivated by represent-
ing cognitively spontaneous beliefs in terms of an El-witness model. Focused
correlation does not place this constraint on the logical form of the hypothesis.
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The third benefit is that the structure of focused correlation builds in the
fact that the relationship between correlation and confirmation is expressed by
a specific relationship between a particular correlated evidence set and a partic-
ular hypothesis. It makes no more sense to talk about the generic impact that a
correlated evidence set has on confirmation without specifying a hypothesis than
it does to talk of between as a 2- rather than a 3-place relation. The structure
of focused correlation makes explicit the basic parameters that are necessary
to express the relationship between a correlated evidence set and the confirma-
tion of a specific hypothesis of interest: values for conditional and unconditional
forms of the measure S(-,-), a prior distribution for h, and the contribution of
confirmational strength that the combination of evidence has over each piece

of focal evidence. Note the special case when h is replaced by the evidence set
{A, B},

Pr(A) x Pr(B)

Forans(A\B) = 5 A By < Pr(BIAN B) x Pr(AN B’ ®)

which can be generalized to evidence sets of size n:

A [T, Pr(4)
T Pr(Ail AN N Ay) x Pr(Ai N N Ay)°
(9)
While the first two features of focused correlation highlight the generality of
the measure, the third feature highlights an important restriction, i.e., in order
to assess the impact of correlated evidence on the confirmation of a hypothesis it
is necessary to select a particular hypothesis. These constraints are captured by
the structure of the measure, and equations (8) and (9) simply apply the result
to instances where one is interested in the evidence set itself. This last detail
leads to our final point, which concerns the tracking of information gain as an
agent learns new evidence. For, (A, B) is commutative because it represents a
static evaluation of the factors contributing to confirmation that are embedded
in the particular distribution underlying Fory, (A, B). Nevertheless, we might be
interested in different paths through the evidence that an inquiry may follow.
And here the order in which evidence is learned may be very important.

FOTAl,m...mAn (Ala s

To illustrate consider again Example 1. This example highlights an asym-
metry in the information that each focal piece of evidence reveals about h. In
addition to knowing the overall impact that the evidence set {4, A3} has on
h, we might also be interested in exploiting our knowledge that observing As
is more informative than observing A;. The advantage of this ability to rank
information impact becomes more apparent for larger evidence sets, for in such
cases we may in effect rank evidence by impact on an hypothesis, from greatest
impact to least. Furthermore, we may exploit ordered evidence as a method for
efficiently moving from a coarse to precise value for h. The measure For; alone
does not yield this information, but calculating values necessary to apply focused
correlation to a problem does yield this information.
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4 Conclusion

The measure of focused correlation explicates the relationship between corre-
lation (deviation from independence) and incremental confirmation. There are
several insights this result offers, but the main point is that it resolves a formal
question underlying ‘truth-conduciveness’ arguments found within Bayesian co-
herentism. In so far as the question raised by probabilistic theories of coherence
is whether there is an informative relationship between deviation from indepen-
dence measures and incremental confirmation, the answer is Yes. How indepen-
dence of observations is construed is crucial for EI-witness model results, and
for the results obtained here. The key to the results here is to assume that ob-
servational independence holds without specifying a particular mechanism that
generates those independencies. So, in so far as Bayesian coherence theorists
are interested in the relationship between correlation and confirmation irrespec-
tive of particular mechanisms that guarantee that observations are independent,
focused correlation provides an account.

Focused correlation is a static dfi-measure, and there are several precautions
and caveats that attend drawing inferences from correlation measures on statis-
tical data that are generally ignored by Bayesian epistemologists. Even so, there
is an interesting relationship between correlation and confirmation that, with
due care, may be exploited for informative inference.
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nologia (SFRH/BPD-13699-2003).
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5 Appendix

Proof (Equation (5)).

Show :
Pr(h/ANB) Pr(h|A) Pr(h|B) S(A,Blh)
= X X .
Pr(h) Pr(h)  Pr(h) . S(A, B)
Let :
_ S(A,Blh)
~ S(A,B)
Pr(ANB|h)
_ Pr(A[h) xPr(BR)
o Pr(AnB)
Pr(A)xPr(B)

Pr(A N B|h) Pr(A4) x Pr(B)

= Pr(4Jh) x Pr(BJh)  Pr(ANB)
(h|AN B)
= Pr(h)
_ Pr(An Blh)Pr(h) 1
T P(AnB) " Pr(h)
Pr(AN B|h)
T Pr(ANB)
Pr(h|A) Pr(h|B)
= Pe(h)  Pr(h)
Pr(Alh)  Pr(B|h)
~ Pr(A)  Pr(B)
So,

_B8

Y
Pr(An Blh) Pr(4) Pr(B)  Pr(An Blh) Pr(4) Pr(B)
Pr(ANB)  Pr(Ah)  Pr(BJh)  Pr(AnB)  Pr(Alh)  Pr(BJh)
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Example 1:

Pr(4; N A,)
(A, Az) = Pr(A;) Pr(As)
02
T 0.24
~ 0.833.
Pr(A4; N Aslhy) x Pr(hy)
Pr(A; N As|hy) x Pr(hy) + Pr(A; N As|hy) x Pr(hy)
B 1x0.2
~ (1x0.2)+ (0 x 0.8)
=1

PI‘(I’Ll |A1 N AQ) =

So,
Pr(hi|A1 NAz) 1
Pr(hi|A;) 1
=3,
and
Pr(h1|4;1 N As) 1
Pr(hi|A2) 05
=2
But,
Pr(hi]Ay) i
Pr(hy) 0.2
=~ 1.667,
and
Pr(h1]42) 0.5
Pr(hy) 0.2
= 2.5.

18



Example 2:

Pr(As N Ay)
5(4s, Ao) = Pr(A;) Pr(Ay)
02
"~ 0.16
= 1.25.
Pr(As N Aglha) x Pr(hs)
Pr(As N Ay|hy) x Pr(hs) + Pr(As N Ay|hy) x Pr(hy)
_ 0.5x04
(0.5 x0.4) + (0 x 0.6)
=1

Pr(h2|A3 n A4) =

So,
Pr(h2|A3 n A4) 1
~ Pr(hafds) 05
_9_ Pr(ha]Asz N Ay)
Pr(hq|Ay)
But,
Pr(h2|A3) 0.5
Pr(hs) 0.4
= 1.25,
and
Pr(h2|A4) 0.5
Pr(hs) 0.4
=1.25.
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Example 3:

PI"(A5 N AG)
S(4s, 4s) = Pr(As) Pr(Ag)
0
T 0.16
=0.
Pr(h3|A5 N A6) =0
Pr(h3|A5 N Aﬁ) 0

Pr(hs|As) .5
—0— PI(h3|A5 N A@)
Pr(hs|Ag)
But,
Pr(hs|As) 0.5
Pr(hs) T 04
=1.25,
and
Pr(hs|46) 0.5
Pr(hs) 0.4
= 1.25.
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Example 4:

PI‘(A7 N Ag)
(A7, As) = Pr(A7) Pr(As)
0.2
"~ 0.08
= 2.5.

PI‘(A7 N A8|h4) X PI‘(h4)

Pr(ha| A7 N Ag) = _ _
Hhaldr 0 As) = G A i)  Pr(ha) + Pr(Ay 1 Aglfia) X Pr(i)

B 0.5x 0.4
(0.5 % 0.4) + (0 x 0.6)
=1

So,
Pr(h4|A7 N Ag) 1 Pr(hg|Ar N Ag)
C Pr(hulA7) 1 Pr(halds)
But,
Pr(h4|A7) 1
Pr(hy) 04
= 2.5,
and
Pr(hy|As) 1
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Example 5:

Pr(A4g9 N Ayp)
Pr(Ag) x Pr(Ajg)
0.6 x 2

T 06x06
~ 1.111.
Pr(AN Blh
5(Ao; Avolhs) = Pr(A|h(5) x Pr|(l)3h5)
1

S(Ag, Arg) =

1
=1.
Evidential independence :
Pr(Ag N Ajglhs) = Pr(Agl|hs) x Pr(Aig|hs)

=1
Pr(Ag N Ayglhs) = Pr(Ag|hs) x Pr(Aig|hs)
1
272
=0.25.
Shogenji’s :
(Ao, Ayg) — 1 — (Pr(hs|Ag) — Pr(hs))(Pr(Pr(hg|A1g — Pr(hs))

Pr(hs)(1 — Pr(hs))
_ (3 -0.2)(3 -02)
(0.2)(0.8)
~ 0.1111.

Proof (Observation 1). From Example 1, S(A;, A3) ~ 0.833, and
PI‘(Al n A2|h1)

PI‘(Al‘hl) X PI‘(A2|h1)

1

x 1

S(Aq, Aslhy) =

1

=1

So,

S(A1, As|hy)
S(A1, Ay)

1

~0.833

~ 1.20

F’OT’}L1 (Al, AQ) =
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Proof (Observation 2). From Example 2, S(A3, A4) = 1.25, and

Pr(As N Aylhs)
Pr(As|hy) x Pr(Aglhs)
05
0.5%x0.5
=2.
So,

S(As, Aa|ho) =

S(As, Aylhs)
S(Asz, Ag)
2
125
= 1.6.

FO?"h2 (Ag, A4) =

Proof (Observation 3). From Example 3, S(As, Ag) = 0, and

PI'(A5 N A6|h3)

ﬂ%ﬂwﬁzmmmgﬂw%%)
0
- 0.5%x05
=0.
So,

S(As, Aglhs)

FO?"hB(Ag,,AG) = S(A5 AG)

0
0

= 0, by definition.
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Proof (Observation 4). From Example 4, S(A7, Ag) = 2.5, and
PI‘(A7 N A8|h4)
Az A =
S( & 8‘h4) PI‘(A7‘h4) X PI'(A8|h4)
05
05 x1
= 1.

So,

S(Az, As|ha)
S(A7, Ag)
1

2.5

=04.

FOT’h4 (A7, AS) =

Proof (Proposition 1). Show that
(i): Pr(A|BNh) =Pr(Alh) < Pr(AN B|h) = Pr(A|h) x Pr(B|h),
(i1): Pr(A|B N h) = Pr(A|h) < Pr(AN Blh) = Pr(A|h) x Pr(B|h), and
(133): Pr(A|BNh) = Pr(A|h) &
Pr(Alh) Pr(Bl|h) Pr(h)
Pr(A|h) Pr(B|h) Pr(h) + Pr(A|h) Pr(B|h) Pr(h)

Pr(h|ANB) =

(i) : Pr(A|B N h) = Pr(Ah) &
Pr(AnBnh) Pr(Anh) Pr(AnBNh) Pr(ANh)
Pr(BNh)  Pr(h) PrBNh)  Pi(h)
Pr(ANBNh) Pr(h)  Pr(Anh)

Pr(h) Pr(BNh)  Pr(h)
Pr(AnBNh)

- Pr(h) _ Pr(ANh)
Pr(ANk) Pr(h)
Pr(h)
Pr(AnBnNh) Pr(Anh) " Pr(BNh)
Pr(h) Pr(h) Pr(h)

< Pr(AN B|h) = Pr(Alh) x Pr(B|h).
(i1) : Substitute h/h in (i).

(#4i) I (i) and (i%), then
Pr(A N B|h) Pr(h)
Pr(A N B|h) Pr(h) + Pr(A N BJh) Pr(h)
B Pr(A|h) Pr(Blh) Pr(h)
 Pr(A|h) Pr(B|h) Pr(h) + Pr(A[R) Pr(B|h) Pr(h)’

Pr(h|ANB) =

O
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Proof (Equation (8)).

Show :
_ S(A,BIAnB) Pr(AnB|ANDB) Pr(A) Pr(B)

Forans(A.B) = =B = " mi(anB) PiAlANB) \ PrBIAN D)

B Pr(A) x Pr(B)

~ Pr(ANB) x Pr(A|AN B) x Pr(B|AN B)’

O
Proof (Equation (9)).
Show :

S(A1, ..., ApAL N .. .NAy)

Foran.na, (A1, ..., An) = S(Ay Ay)

Where :
S(A1,..., A JA1N...NA,) = =
(A, Anl ) [T, Pr(Ai|Ai N...NA,)
1
N H?:l Pr(AZ"A]_ n... ﬁAn)’

and :
PI‘(Al n... ﬂAn)
S(Ai,...,A,) = - .
(4 ) Hi:l Pr(4;)
Hence :

_ ! I Pr(ay
I, Pr(AiAin...nA,) © Pr(Ain...NAy)
_ [1i=, Pr(A4))

[T, Pr(AJAin...NnA,) x Pr(AiN...NA,)

O
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