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Abstract. One goal of normative multi-agent system theory is to for-
mulate principles for normative system change that maintain the rule-
like structure of norms and preserve links between norms and individual
agent obligations. A central question raised by this problem is whether
there is a framework for norm change that is at once specific enough to
capture this rule-like behavior of norms, yet general enough to support
a full battery of norm and obligation change operators. In this paper
we propose an answer to this question by developing a bimodal logic for
norms and obligations called NO. A key to our approach is that norms
are treated as propositional formulas, and we provide some independent
reasons for adopting this stance. Then we define norm change operations
for a wide class of modal systems, including the class of NO systems,
by constructing a class of modal revision operators that satisfy all the
AGM postulates for revision, and constructing a class of modal contrac-
tion operators that satisfy all the AGM postulates for contraction. More
generally, our approach yields an easily extendable framework within
which to work out principles for a theory of normative system change.

1 Introduction

One goal of normative multi-agent systems theory is to formulate principles for
normative system change that maintain the structure of system norms and the
links between norms and agent obligations.

In simplest terms, a norm may be viewed as a rule intended to promote or
inhibit agent actions within some context, whereas an obligation is a morally
necessary requirement for an agent to take, or refrain from taking, some course
of action. Typically, at least within this literature, a collection of norms are
conceived as a set of “conditionals”, each responsible for imposing an obligation
on an agent given some context, and norm change is understood as the one-shot
subtraction or addition of a conditional norm [3,28,10].

Even so, there is disagreement over the proper structure of norms and the cor-
rect principles for governing norm change. One approach represents conditional
norms as pairs of formulas, where each coordinate of the pair is instantiated in
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propositional logic and the pair itself is interpreted within an input/output logic
[19]. The problem of norm change then is reduced to the problem of adapting
some of the AGM postulates [1] to an input/output logic setting. Although in-
put/output logics capture the conditional structure of norms, defining change
operators for this class of logics is problematic. To date the characterization re-
sults for contraction [3] are limited to the first six AGM contraction postulates,
and even less is established for revision. These limitations are also reflected in
[28], where “derogation” is defined as the norm-theoretic analogue of contraction
and serves as a basis for a theory of permission.

One reason for the paucity of results on this approach is that the conditional
behavior of norms within input/output logic is treated as a metalinguistic rela-
tion, on analogy with provability, rather than as “conditional” formulas within
some object language [17]. Makinson and van der Torre [21] argue that this
feature of input/output logics captures the correct structure of norms, so the
difficultly input/output logic has in accommodating robust change operators is
thought to be some reflection of the problem of norm change rather than an ar-
tifact of the choice in modeling language. Even so, we are not persuaded. There
is little to recommend input/output logic for modeling norms in general, and
much to recommend against adopting the framework for modeling norm change
in particular. We return to discuss why we take this position in section 2.

Another approach to modeling norm change [10] treats norms as rules within
a defeasible logic [22]. Governatori and Rotolo are interested in two types of
change operations that occur within legal reasoning, namely “abrogation”, which
is the introduction of an exception to a general rule, and “annulment”, which
is the complete repeal of a rule. Their approach faces a number of technical
challenges as well, primarily to do with adapting AGM postulates to a logic
featuring a non-monotonic consequence operator, and also a requirement to deal
with sequences of state changes rather than a one-shot operation to handle a
single change. Governatori and Rotolo report a number of very interesting results
about their logic, but there are similar questions to those raised before about
whether the structure of norms and norm change is driving the selection of
the logical framework. In particular, we question whether their commitment to
the Recovery Postulate is warranted given their adoption of Defeasible Logic as
the base logic for building their contraction operator. We discuss this worry in
section 3.

To summarize our view from the start, we are skeptical of the claim that norm
change presents a new set of theoretical problems that fall outside the scope of
known techniques for representing belief change. This is to say that we see the
problem of norm change to be primarily a philosophical in nature—what is a
norm, and what are the principles governing how they may change—which we
think can be handled by off the shelf results given an expressive enough language.
But to consider whether norm change represents a new theoretical problem or
no problem at all, it is helpful to have a flexible and general framework within
which to represent various proposals about norms and the operators imagined
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to regulate how they may change. Providing such a framework is one of the
objectives of this paper.

Here we view norms in terms of a modal logic, called NO, based on a standard
Kripke semantics but outfitted with two distinct types of unary modal operators,
a standard deontic box operator for each agent’s obligations, and a global box
operator to express norms of the system. We then construct both revision and
contraction operators for this class of logics by proving characterization results
for full AGM revision and contraction operators with respect to a general class of
modal systems that includes NO. What will become clear is that the methodology
behind our modalization of the standard AGM operators lends itself to importing
a wide range of the known operators for belief change. Thus, our system NO
may be viewed as both a concrete normative system and a template for how to
investigate the theory of normative system change. We maintain that this class
of modal systems is rich enough to handle the theoretical problem of specifying
a normative system which supports change operators. The upshot is that, even
if you take issue with our NO solution to norm change, you might in the end
agree with us that the problem of norm change presents no new problem after
all.

Since we achieve our results largely because of the additional expressive ca-
pabilities of a bi-modal language, we begin in section 2 by providing some moti-
vations for wanting a framework that represents norms as normative assertions.
In section 3 we provide the semantics for our general framework, provide an ax-
iomatization that is strongly complete with respect to the class of all standard
Kripke frames, specify the bisimulation-invariant first-order correspondent to our
modal language, and construct modal AGM revision and contraction operators
by translating each canonical system into its corresponding first-order fragment,
perform the norm change on this first-order correspondent, then translate back
to the original modal space. In section 4 we define our modal logic for norma-
tive systems, where we explain what we mean by NO, define NO AGM revision,
NO AGM contraction, and NO Levi/Harper identities. We also illustrate the
benefits of our NO class of systems by giving NO examples.

2 Conditional Norms and Obligations

Informally, a standard deontic logic interprets the modal formula Oiϕ as “agent
i is obligated to satisfy ϕ,” where a model of the agent’s obligations will contain
an accessibility relation R which associates every state of the world all morally
acceptable variant states in which the agent satisfies ϕ.

There are refinements to this scheme to consider, but notice first that stan-
dard deontic logics can express conditional obligations but not conditional norms.
A conditional obligation Oi(p → q) is satisfied at a state w just when, for all
w′ accessible from w, either p is false or q is true. A conditional norm, p → q,
by contrast, asserts that whenever p is satisfied then so too is q. A conditional
norm interpreted within the standard model corresponds to a set of satisfiability
problems—namely for all states w in model M, M, w 
 (p→ q). So, similar to
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input/output logic, a conditional norm within standard deontic logic is construed
as a metatheoretic notion.

To bring norms down into the object language, we view the subjects of norms
to be conditional formulae of a particular form, namely those in which the an-
tecedent (p) is a proposition specifying a context or factual precondition and
the consequent (Oiq) is some agent i’s obligation to satisfy q. The modal box
operator � then says that a conditional formula within its scope is a norm of the
system. Thus, a norm expressing that “agent i is obligated to q if precondition
p” is represented by:

�(p→ Oiq). (1)

Equation 1 is satisfied in a model just when, for every state w in the model,
either p is false or Oiq is true. Our main focus in this paper is the relationship
between norms and obligations in general, and we will return in section 4 to
specify our language for normative multi-agent systems in greater detail. But
for now let us focus on the basic idea.

A conditional norm is a rule which promotes or inhibits agent actions by im-
posing an obligation on an agent that requires him to take or refrain from taking
some course of action. To illustrate, imagine that Billy the Boy Scout comes upon
an old woman at a crosswalk and recognizes at once his obligation to help the
woman across the street. The norm here is that Boy Scouts should help old
women across the street—provided that they are willing and able to cross. The
norm is not that Billy should help old people across the street. However, having
signed up for the Boy Scouts and, let us assume, being a Scout in good standing,
Billy is aware of the norm and recognizes that membership imposes on him an
obligation to help the woman across the street. Similarly, whereas Billy is obli-
gated to help this old woman, The World Organization of the Scout Movement,
Inc., has no obligation to help anyone across the road; their obligations are to
remain solvent, hire and fire staff, and maintain or change Scout norms.

Here only Scouts, Inc., may change a norm, but in general either norms or
obligations may change. Billy might quit the scouts and thus be absolved of his
Scouting obligations. Likewise, the Scouts may decide to get out of the business
of helping old people across the road, which would likewise absolve Billy of this
obligation—just as it would for every other Boy Scout.

This scenario allows us to imagine several types of normative claims that we
might wish to reason with or change.

1. When outdoors, a Scout should be careful with fire.

2. If currently outdoors, Billy should be careful with fire.

3. Billy is obligated to be obligated to be careful with fire whenever he is
outdoors.

4. Be prepared!

5. Under no circumstances is a Scout obligated to help if he is threatened.

6. A Scout is permitted to ignore his obligation to help if he is threatened by
an old person.
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Sentence 1 expresses a paradigmatic conditional norm, whereas sentence 2 ex-
presses a contingent obligation of a single agent, Billy, given that he is outdoors.
In contrast to sentence 1, sentence 3 expresses a specific agent’s conditional obli-
gation. This point is an awkward one to express in natural language without
a context, but sentence 3 expresses the fact that Billy has adopted the general
conditional norm expressed by sentence 1. Sentence 4 is the unconditional Scout
motto. Sentence 5 is a norm expressing a categorical exemption from an obli-
gation to help others, whereas sentence 6 expresses a norm that recognizes a
permissible exception. We may represent these six claims by the corresponding
formulas:

1′. �(outdoors → Oi(careful)), for all i Boy Scouts.
2′. outdoors → Ob(careful).
3′. Ob(outdoors → Ob(careful)).
4′. �(> → Oi(prepared)), for all i Boy Scouts.
5′. �(threat → ¬Oi(help)), for all i Boy Scouts.
6′. �¬� ((elderly ∧ threat)→ Oi(help)), for any i Boy Scouts.

Sentence 6 and formula 6′ raise a question about negated norms, which are
of the general form:

7′. ¬� (p→ Oq).

The primary reason for including negated norms in our modal language is to
facilitate norm revision, but there is a natural reading of 7′ which asserts there
is at least one state in the model where the precondition p is satisfied but the
agent is not obligated to satisfy q. In other words, negated norms express that,
somewhere in the model, there is a true formula which is a concrete counter-
example to the conditional norm.

Our discussion of conditional norms is far from exhaustive; instead, our in-
tention is to give some independent motivations for viewing norms as a type of
formula rather than a metatheoretic relation. Resistance to viewing norms as
a statement is understandable. Norms, unlike statements, may be respected or
flouted, and they may be judged from the standpoint of other norms but are not
typically evaluated as “true” or “false”. This difference is what motivates some
to adopt input/output logic [19,20].

Input/output logic represents a norm as an ordered pair of formulas, and a
normative system is a set G of such pairs. The task for an input/output logic is
to prepare information to be passed into G, and to unpack the consequences from
doing so. Abstractly, the set G is a transformation device for information, and
we may characterize an “output” operator “Out” by logical properties typical of
consequence operators. A formula x is a “simple-minded output” of G in context
a, written x ∈ Out(G, a), if there is a set of norms (a1, x1), . . . , (an, xn) ∈ G such
that each ai ∈ Cn(a) and x ∈ Cn(x1 ∧ . . . ∧ xn), where Cn(a) = {ai | a |= ai}
is the classical semantic consequence set of a that is a set of all contexts ai such
that every model of a is also a model of ai [19].

Out(G, a) satisfies three rules: writing (a, x) for x ∈ Out(G, a), they are
strengthening input (SI), conjoining output (AND), and weakening output (WO):
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– (SI): From (a, x) to (b, x), whenever a ∈ Cn(b).
– (AND): From (a, x), (a, y) to (a, x ∧ y).
– (WO) From (a, x) to (a, y), whenever y ∈ Cn(x).

Strengthening input means that if context a leads to output x, then a stronger
context b also leads to x. Similarly, weakening output means that if context a
leads to output x, then context a also leads to a weaker output y, x |= y, that
is y ∈ Cn(x).

Here the idea is that, while classical logic may be used to “process” the input
and also to “unpack” the output, the operator Out itself does not have either an
associated language or a proof theory. Even so, Out may enjoy structural prop-
erties commonly attributed to consequence operators. Simple-minded output is
the most general characterization of Out, but stronger input/output operators
have been studied [19], including a characterization of Poole’s default system
[24] and a system similar to Reiter’s default logic [25].

While we agree that norms should not be thought of as extensional state-
ments, we do not find compelling the case for treating conditional norms as a
metalinguistic relation, as advocates for input/output have suggested. For one
thing, norms can be negated, and the recursive structure of the language al-
lows for nested norms, i.e., normative statements which have as a precondition
or a consequence another normative statement. It appears to us an artificial
constraint to preclude these options from consideration. Moreover, and more
importantly, there are considerable advantages to constructing norm change op-
erators for an intensional logic that is able to treat conditional norms as object
language statements. Indeed, given the problem at hand—formulating a theory
of norm change—the selection of a modeling language should be flexible enough
to handle the known constraints, while avoiding imposing artificial constraints
on the problem from the logic. Otherwise limitations of the modeling language
may be confused for real features of the problem.

The general point is that a modeling language is a tool, and which tool you
select depends on the problem you wish to solve. Whereas an important issue
is the apparent non-truth-functional character of norms, this feature alone tells
us little about the type of representation language we should use to model a
norm. An input/output logic does it by treating the conditional as a metalin-
guistic operator. Our modal logic treats the conditional as a statement within an
expressive modal language. Both approaches manage to respect the intensional
character of conditional norms, such as it is. But, input/output logic places se-
vere restrictions on the structure of norms, whereas the expressive capacity of
our approach does not unduly constrain the structure of norms yet provides
greater leverage for constructing well-defined change operators.

Finally, another reason for treating norms as metalinguistic relations rather
than object language statements is a wish to distinguish the dual role that
norms can play, one as a speech act and the other as a declarative statement.
Jorgensen’s dilemma [15,21] turns on a distinction between “norms as proposi-
tions” and “norms as acts” that create a normative imperative—or which create
an obligation, to use our terms. To illustrate the difference between normative
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propositions and normative speech acts, the sentence “Scouts are obligated to
help others” is ambiguous between an assertion of the fact that Scouts are obli-
gated to help, and an assertion made by an authority in the act of creating that
obligation. We can imagine Billy asserting the sentence “Scouts are obligated to
help others” to express the fact that he is obliged to help, whereas at some point
in the history of the Scouting Movement someone in authority asserted “Scouts
are obligated to help others” to create that obligation for all Boy Scouts. By
viewing norms and obligations as formulas, does our approach run afoul of this
basic distinction, thereby failing to make room for norms as performative acts?

No. The norm change operators—the operations of adding and subtracting
norms from a normative system—should be thought of as the effect of an au-
thority’s speech act creating, changing, or eliminating a norm, whereas the body
of norms, and their consequences, represent properties of the norms qua proposi-
tions. Thus, rather than conflate the distinction animating Jorgensen’s dilemma,
our approach treats the distinction between normative propositions and the act
of “norming” as fundamental.

3 Framework

We now turn to developing a general framework for norms and obligations called
GO. Although conditional norms are fully expressible in the language of GO, nei-
ther the full language of GO nor many of the GO classes of models are suitable
for representing norms and obligations. The main problem is that the general
language for GO places no restriction on the logical form of the sub-formula ϕ
that may appear in �ϕ. This means that, in addition to conditional norms, the
language of GO also includes formulas that do not admit a plausible interpreta-
tion as norms. In section 4 we address how to restrict admissible subformulas ϕ
within �ϕ to represent conditional norms—our NO class solution. But in this
section we focus on developing a generic norm revision machinery that applies
to the whole range of canonical GO logics, including NO logic.

3.1 Modal Logic for Norms and Obligations

Let Φ be a countable set of propositional atoms and � and O be unary modal box
operators. Then a formula in language LGO(Φ) is defined recursively as follows:

– if p ∈ Φ, then p is a LGO(Φ) formula;
– if φ and ψ are LGO(Φ) formulæ, then ¬φ, φ → ψ, Oφ, and �φ are LGO(Φ)

formulæ.1

Definition 1 (Satisfaction). Suppose LGO(Φ) is defined as above and let w be
a state in a standard Kripke model M = (W,R, V ). We define when a formula
φ is satisfied (or true) in M at w as follows:

1 Although a full theory of normative systems should be developed for languages
containing n Oi operators, one for each 1 ≤ i ≤ n agents in the normative system,
we focus in this paper on the basic case where n = 1 and thus omit the subscript in
the remainder.
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M, w 
 p iff w ∈ V (p), where p ∈ Φ,
M, w 6
 ⊥,
M, w 
 ¬φ iff M, w 6
 φ,
M, w 
 φ→ ψ iff M, w 6
 φ or M, w 
 ψ,
M, w 
 Oφ iff for all w∗ ∈W , if Rww∗ then M, w∗ 
 φ.
M, w 
 �φ iff for all w∗ ∈W , M, w∗ 
 φ.

Discussion: Although LGO(Φ) is a polymodal grammar, both of the language’s
monadic modal “necessity” box operators (�,O) are defined here in terms of a
standard Kripke model. O is a standard box operator, where Oϕ is interpreted
to express that “agent i is obligated to (satisfy) ϕ.” � is a universal box opera-
tor with a fixed interpretation across all worlds w ∈ M, and �ϕ is interpreted
to express the generic norm ϕ. That said, we could have instead held the stan-
dard satisfiability conditions fixed to define both O and � and interpreted each
modality through its own accessibility relation within a bimodal Kripke struc-
ture, M′ = (W,R,R′, V ), where R′ is (trivially) W ×W and the interpretation
of � formulas above is replaced byM′, w 
 �φ iff for all w∗ ∈W , if R′ww∗ then
M′, w∗ 
 φ. Having this variant in mind will help in understanding the axiom-
atization of GO, and we will put it to use in proving our AGM characterization
result in Theorem 6.

Let .♦ abbreviate ¬� ¬. Now consider the following three aixioms:

�ϕ→ ϕ. (T·)
.♦ ϕ→ � .♦ ϕ (5·)
�ϕ→ Oϕ. (inclusion)

(T·) is valid with respect to the class of reflexive frames, and expresses that ϕ
is a norm only if ϕ is true; (5·) is valid respect to the class of euclidean frames,
and expresses that if it is permissible that ϕ is satisfied at a world then there
is a global guarantee (a norm) that no norm mandates ¬ϕ; finally, (inclusion)
expresses that if there is a norm that ϕ, then the agent has an obligation to
satisfy ϕ. So, given the conditional norm schema �(p → Oq) of Equation 1,
(inclusion) says that it is the particular agent i’s obligation to observe the
norm, Oi(p → Oiq), in addition to observing that whenever c holds then i is
obligated to p. The (inclusion) axiom would ensure that (3′) follows from (1′).

Theorem 1. The set of valid LGO formulas with respect to M is axiomatized
by a minimal normal bimodal logic in O and � plus (T·), (5·), and (inclusion).
Call this system GO.

Theorem 2. GO is strongly complete with respect to the class of all frames.

Theorem 3. Suppose that S is a set of LO(Φ) formulas—the basic modal lan-
guage without �. Let F = (W,R) be the class of Kripke frames that define S. If
logic O.S admits a canonical model, then logic GO .S is strongly complete with
respect to F .
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Theorem 4. The � operator is a S5 box modality.

Discussion: Close analogues of Theorem 1, Theorem 2 and Theorem 3 are proved
for the two-diamond logic Kg with an alternative (but equivalent) axiomatiza-
tion [2, Chapter 7]. Theorem 3 generalizes strong completeness for any canonical
normal logic we might extend by �, which underpins our generality claim about
GO. For example, if O.D corresponds to the class of normal KD systems, then
O.D admits a canonical model and so too does GO.D. Theorem 4 follows since
a normal modal logic is an S5-system iff it is a KT5 system, and every in-
stance of those schemata involving � are theorems of GO. Finally, a remark
on (inclusion). Recall our alternative model M′ = (W,R,R′, V ). Observe that
R ⊆ R′, so all instances of Pϕ → .♦ ϕ are valid with respect to M when Pϕ iff
¬O¬ϕ. But this valid schema is simply the contrapositive of (inclusion).

3.2 Correspondence Languages

With these results in place we turn to the business of building revision op-
erations. We follow the strategy laid out in [7], which has been extended for
polymodal frames in [30]. The basic idea is that, since the AGM postulates for
revision are defined for propositional languages but we are dealing with a bi-
modal propositional language, we effect revision by first translating our modal
revision problems into first-order logic, solve them within a simulated modal the-
ory running inside of first-order logic, then translate the solution back into the
original modal logic. This approach stands in contrast to Dynamic Epistemic
Logic [29], since here we show how the operators satisfy the AGM postulates
rather than stipulate operators which satisfy the postulates.

This strategy depends upon having a first-order axiomatization of the seman-
tics of the target logic. Applied to our case, that means that the satisfiability
conditions of formulas in the modal language LGO must be managed by first-
order definable frames. We ensure this by focusing on canonical GO systems,
which are based on first-order definable classes of frames that are definable in
the language LGO by an analogue of the Goldblatt-Thomason theorem [9].

A first-order correspondence language L1(Φ) is generated from first-order
variables x, y, z, . . ., unary predicates P0, P1, . . . for each propositional atom
p0, p1, . . . ∈ Φ, and binary relation symbol R. The set of propositional atoms
is constant, so we omit reference to Φ in the remainder.

First-order correspondence languages vary by the conditions imposed on the
binary relations, and those conditions are determined by the interpretation sup-
plied to O and � in LNO by a standard, canonical Kripke frame. Otherwise,
the translation operations are homomorphic for non-modal formulas. Define a
Kripke frame F = (W,R). We define a first-order correspondent for LGO and

9
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L1 characterized by t:

LGO ⇔ L1

(⊥)t(w) = x 6= x

(p)t(w) = P (w)

(¬ϕ)t(w) = ¬(ϕt(w))

(ϕ ∨ ψ)t(w) = ϕt(w) ∨ ψt(w)

(Oϕ)t(w) = ∀x(R(wx)→ ϕt(x)).

(�ϕ)t(w) = ∀w,ϕt(w).

where R(ab) abbreviates (a, b) ∈ R.
For the correspondence between LGO and L1, the local translation function t

is defined in terms of the unary predicates Pi ∈ L1, which are interpreted by their
corresponding propositional variables pi ∈ Φ as follows. 
Mw pt = P (w) expresses
that p is satisfied at world w in model M, and this assertion is translated into
first-order logic by P (w). pt(w) abbreviates 
Mw pt = P (w); ¬(pt(w)) abbreviates
6
Mw pt. Hence, the expression (ϕ)t(w) translates the assertion that ϕ is satisfied
at world w within a model. To translate that ϕ is valid with respect to a class of
models, a global translation function T translates the assertion that ϕ is satisfied
at all worlds with respect to that class of models. Finally, the translation of a
modal theory Σ is just the set of translations of its sentences,

Σt(w) = {ϕt(w) | ϕ ∈ Σ}.

Derivability within the logic GO is as one expects, but the theorems of
the logic need to be clearly marked to ensure the revision operators work cor-
rectly. For instance, all instances of the axiom characterizing the class of reflexive
frames, �ϕ→ ϕ, are theorems of the logic, but their translation is not a theorem
of first-order logic. In fact, the (T·) schema is a theorem because of the prop-
erties of GO frames. So, if we provide a sound and complete axiomatization of
GO expressed by a set AGO of L1 formulas, then we can ensure correspondence
between the modal derivability and its simulation in first-order logic.

Theorem 5 (Correspondence). Let Σ be a modal GO theory, ϕ ∈ LGO, and
AGO be the first-order sound and complete axiomatization of modal logic GO.
Then,

Σ `GO ϕ iff AGO ∪Σt(w) ` ϕt(w).

Discussion: Theorem 5 says that the function t identifies the first-order modal
correspondent for GO, which is proved by showing that t characterizes the bisim-
ulation invariant fragment of first-order logic.

We next turn to the task of defining modal revision and iterated modal
revision operators for GO systems.

10
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3.3 AGM Revision

The AGM postulates [1] are widely viewed to offer minimal conditions for revi-
sion operators, rather than sufficient conditions for rational belief change. To be
sure, there are controversies about whether the AGM postulates are too strong.
For instances, the Recovery Postulate states that removing a target belief from
a belief set and then adding that very same belief back by expansion returns you
directly to the same belief set. Although Recovery is presumed to not lose infor-
mation, it appears that some applications of Recovery would lose information
since some evidential relationships between beliefs are not deductive.

To illustrate, consider the plight of our poor colleague who lives in an old
house that is infested with wood worms. He has hired a well-regarded extermi-
nator, Carlos, to treat the house in order to kill the worms, and a subsequent
test has reported that the house is free of wood worms. However, although the
wood-worm test is very reliable, it is not fool-proof: sometimes a test yields a
false negative, in which case Carlos is obliged to drive back to the house and start
again with another treatment. If our colleague were to contract his belief set by
“Carlos treats the house”, the replacement belief set would omit “Carlos treats
the house” along with the belief that the house tested negative for wood-worms,
since it is Carlos’s treatment that is the reason for believing the test’s negative
outcome. However, restoring the judgment that Carlos treated the house would
not return the belief that the house tested negative since this is not a logical con-
sequence of Carlos’s treatment. Hence, in this case expansion after contraction
does not result in the same set of beliefs.

Curiously, Governatori and Rotolo’s criticism of AGM is not that AGM is
too strong but rather that it is too weak. For even though they embrace de-
feasible logic as a means to handle reasoning with exceptions, and set out to
adapt the AGM postulates for DL’s non-monotonic consequence operator, they
nevertheless embrace the Recovery postulate.

This [AGM] procedure is not satisfactory unless more sophisticated
measures are added...the contraction function [they define within defeasi-
ble logic] does not offer a suitable method for modeling annulment (and,
in general, norm changes), even if it satisfies all AGM postulates.

Indeed, Governatori and Rotolo’s main criticism of AGM is that revision and
contraction operations regulate one-shot changes to a belief set rather than se-
quential or iterated changes. But this remark about AGM is not unique to norm
change, and various proposals have been made to handle iterated belief change
[27,5]. What’s more, there is a large trove of results and techniques in the lit-
erature of belief change that a theory of norm change might appeal to—Rott’s
two-dimensional approach to rational belief change [26], which distinguishes be-
tween static AGM-style revision from dynamic updating [16]; belief bases [13];
weakened contraction [23,26]; Ramsey conditionals [18]—if only there was a way
to export these operators to a language—or, better still: a class of languages—
rich enough to represent conditional norms. To this question our reply is: all
systems GO.
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To define AGM revision on our correspondence languages we adapt a strategy
for normal monomodal logic [7] that requires (i) a sound and complete axioma-
tization of each classical modal system, (ii) a classical AGM revision operator.

Recall the AGM postulates for the revision operator, ∗ [1], where K =
Cn(K), and ϕ, ψ are propositional formulas with respect to the propositional
language LPL:

(K∗1) Closure: K ∗ φ is a belief set.

(K∗2) Success: φ ∈ (K ∗ φ).

(K∗3) Inclusion: (K ∗ φ) ⊆ Cn(K ∪ {φ}).
(K∗4) Vacuity : If ¬φ 6∈ K, then Cn(K ∪ {φ}) ⊆ (K ∗ φ).

(K∗5) Consistency : (K ∗ φ) = LPL only if φ ≡ ⊥.

(K∗6) Extensionality : If φ ≡ ψ, then (K ∗ φ) ≡ (K ∗ ψ).

(K∗7) Superexpansion: K ∗ (φ ∧ ψ) ⊆ Cn((K ∗ φ) ∪ {ψ}).
(K∗8) Subexpansion: If ¬ψ 6∈ (K ∗φ), then Cn((K ∗φ)∪{ψ}) ⊆ K ∗ (φ∧ψ).

The AGM postulates hold for any consequence operation Cn defined on a classi-
cal propositional language that includes classical consequence, satisfies the Tarski
closure conditions (idempotence, inclusion, and monotony), and satisfies disjunc-
tion in the premises. Classical modal consequence is supraclassical, but obviously
is not expressed within a purely propositional language. However, since local
translations offer sufficient expressivity for revision and contraction operators,
the first-order correspondent admits a propositional representation if the set
of worlds W ∈ F is finite and we restrict ourselves to canonical systems [30].
To ensure that closure and premise disjunction holds, we work with equivalent
alternatives to (K∗3) and (K∗4), and (K*7) and (K*8).

(K∗3,4) If K ∪ {φ} is consistent, then K ∗ φ = Cn(K ∪ {φ});
(K∗7,8) Cn((K ∗ φ) ∪ {ψ}) = K ∗ (φ ∧ ψ), when ψ is consistent with K ∗ φ.

Let Σt(w) be the first-order local translation into L1 of a GO theory, φt(w)
and ψt(w) first-order local translations of LGO formulas φ and ψ, and AGO.S

the first-order characterization of a canonical GO modal system GO .S , where
S denotes a set (possibly empty) of canonical modal schemata. Then:

Σ ∗go.s ψ = {φ : Σt(w) ∗ ψt(w) ∧ AGO.S ` φt(w)}.

We now show that the revision operator for the minimal GO logic, ∗go, sat-
isfies the AGM postulates.

(Σ∗1): Σ ∗go φ is a modal theory.

Since Σt(w) ∗ (φt(w) ∧ AGO) is closed under ` by (K∗1), then Σ ∗go φ is
closed under `GO.

(Σ∗2): φ ∈ (Σ ∗go φ).

12
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(Σ∗2) states that φ ∈ (Σ ∗go φ). We first show that (Σ∗2) holds for the
revision operator for the smallest GO logic, φ ∈ (Σ ∗go φ). From (K∗2) we
have φt(w)∧AGO ∈ Σt(w) ∗ (φt(w)∧AGO . Since Σt(w) ∗ (φt(w)∧AGO) is
closed under `, by (K∗1), and ` is reflexive, then Σt(w) ∗ (φt(w) ∧ AGO) `
φt(w). So, φ ∈ (Σ ∗go φ) by (Σ∗2).

(Σ∗3, 4): If sentence φ is GO-consistent with Σ, then Σ ∗go φ is equal to the
closure of {Σ ∪ {φ}} under `GO, written Cgo(Σ ∪ {φ}).

First we make the following two observations.
Observation 1. Recall that if Σ is an GO-consistent modal theory, then
Σ 6`GO ⊥ and there exists a monotone neighborhood model for Σ.
Observation 2. If Σ ∪ {φ} is consistent with respect to classical modal
logic GO, then Σt(w) is classically consistent with respect to its translation,
φt(w) ∧ AGO . Since by hypothesis Σ ∪ {φ} has a monotone neighborhood
model, by Observation 1, there exists a classical first-order model of its
translation, Σt(w) ∪ {φt(w) ∧ AGO}.
Suppose that Θ denotes the classical provability closure of the first-order
translation from Observation 2, Σt(w)∗(φt(w) ∧ AGO). We now show that
if ψt(w) ∈ Θ, then Σ∗goφ ` ψ.
Suppose that Cgo(Σ) is Σ closed under `GO and Σt(w) is the first-order
translation of Σ. We denote the corresponding AGO -simulated closure in
classical logic of the first-order translation by Cn(Σt). There are two parts.

1. First, for any α ∈ AGO , if the corresponding canonical modal formula
is γ and γt ∈ Cn(Σt), then γ ∈ Σ. To see this, notice that Cgo(Σ) is a
maximally GO-consistent set, so γ ∈ Cgo(Σ) iff Σ `GO γ.
Proof : Suppose that γ 6∈ Σ. Then, there is a Kripke model satisfying
Σ ∪ {¬γ} and a translation of this into first-order logic. But on the
first-order model for this translation γt 6∈ Cn(Σt), which falsifies the
hypothesis.

2. Second, for a closed classical theory Cn(Σt) s.t. AGO ⊆ Cn(Σt) and
{γ : γt ∈ Σt}, then Σ ` γ only if γt ∈ Cn(Σt).
Proof : Suppose that γt 6∈ Cn(Σt). Then there is a model ofΣt∪{¬γt}, so
there is a Kripke model satisfying Σ∪{¬γ} which falsifies the hypothesis.

This concludes the proof of (Σ∗3, 4).

(Σ∗5): Σ ∗go φ = LGO only if φ ≡ ⊥.

Since Σ is an GO-consistent modal theory, Σ 6= LGO. So Σt(w) 6= L1. So if
Σt(w) ∗ φt(w) = L1, then φt(w) = ⊥; thus φ ≡ ⊥.

(Σ∗6): If `GO φ ≡ ψ, then Σ ∗go φ ≡ Σ ∗go ψ.

If `GO φ ≡ ψ, then ` φt∧AGO) ≡ ψt∧AGO . So, by (K∗6), Σ ∗(φt∧AGO) ≡
Σ ∗ (ψt ∧ AGO). Therefore, Σ ∗go φ ≡ Σ ∗go ψ.
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(Σ∗7, 8): Σ ∗go (φ ∧ ψ) = Cgo((Σ ∗go φ) ∪ {ψ}), when ψ is GO-consistent with
Σ ∗go φ).

Now we proceed in two parts.

1. Σ ∗go (φ∧ψ) ⊆ Cgo((Σ ∗goφ)∪{ψ}): By (Σ∗1), Σ ∗go (φ∧ψ) = Cgo(Σ ∗go
(φ∧ψ)). Suppose that γ ∈ Cgo(Σ∗go(φ∧ψ)). Then by the correspondence
theorem γt ∈ Cn(Σt ∗ (φt ∧ ψt ∧AGO)). So γt ∈ Cn(Σt ∗ (φt ∧AGO) ∪
{ψt}), by (K∗7), and γ ∈ Cgo((Σ ∗go φ)∪{ψ}), by correspondence. Since
γ is an arbitrary modal formula, Σ ∗go (φ ∧ ψ) ⊆ Cgo((Σ ∗go φ) ∪ {ψ}).

2. Cgo((Σ ∗go φ) ∪ {ψ}) ⊆ Σ ∗go (φ ∧ ψ): Suppose that γ ∈ Cgo(Σ ∗go φ).
Since γ is GO-consistent with Σ ∗go φ), γ ∈ Cgo((Σ ∗go φ) ∪ {ψ}). Thus,
γt ∈ Cn(Σt ∗ (φt ∧ AGO) ∪ {ψt}), by the correspondence theorem, and
γt ∈ Cn(Σt ∗ (φt ∧ψt ∧AGO)), by (K∗8). So, γ ∈ Cgo(Σ ∗go (φ∧ψ)), by
correspondence. Since γ is an arbitrary modal formula, Cgo((Σ ∗go φ) ∪
{ψ}) ⊆ Σ ∗go (φ ∧ ψ).

This concludes the proof of (Σ∗7, 8).

This argument establishes that the operator ∗go is an AGM revision operator
for the smallest GO logic, which is the base case for a more general result about
canonical GO.S systems.

Theorem 6. For any canonical GO.S system, there is a corresponding operator
∗go.s that satisfies all 8 postulates of AGM revision.

Discussion: The main difference between the basic proof for GO and various
canonical systems GO.S is controlled by the set AGO.S , which contains the first-
order axiomatization of canonical GO.S frames. Recall the model M′ based on
the frame (W,R,R′), were R controls the interpretation of O, and R′ controls
the interpretation of �. In the basic case for GO, AGO contains the formulas
∀w ∈ W (R′ww) for the (T·) schema; ∀u, v, w ∈ W ((R′uv ∧ R′uw) → R′vw)
for (5·); and ∀v, w ∈ W (Rvw → R′vw) for (inclusion). For a canonical system
GO.S, we add the first-order frame definability condition that validates the new
schema(s) S. Note that these schemas are added to vary the interpretation of the
O operator. For example, for the class of GO.D systems, AGO.S = AGO∪{∀v∃w :
Rvw}.

3.4 AGM Contraction

The AGM postulates for contraction, .−, give the minimal conditions for regu-
lating the removal of information from a theory.

(K .−1) Closure: K .− φ is a belief set.
(K .−2) Inclusion: (K .− φ) ⊆ K.
(K

.−3) Vacuity : If φ 6∈ K, then K ⊆ K .− φ.
(K .−4) Success: If φ ∈ (K .− φ), then φ ∈ Cn(∅).
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(K .−5) Recovery : K ⊆ Cn((K .− φ) ∪ {φ}).
(K .−6) Extensionality : If φ ≡ ψ, then (K .− φ) ≡ (K .− ψ).
(K .−7) Conjunctive overlap: K .− φ ∩K .− ψ ⊆ K .− (φ ∧ ψ).
(K .−8) Conjunctive inclusion: If φ 6∈ (K .− φ), then K .− (φ ∧ ψ) ⊆ K .− φ.

These postulates are also satisfied by a class of canonical GO contraction oper-
ators; the argument is analogous to the one above for revision, but with a twist.
The trick is to block modal theorems from accidental removal when performing
contraction within the first-order language. To do this, the translation of a tar-
get sentence may be composed of two disjoint parts, φt = φtsafe ∧ φttaboo , where

φttaboo is maximal in φt with respect to AGO.2 Then define contraction for the
‘safe’ component of φt:3

Σ .−go.s ψ = {φ : (Σt(w) ∪ AGO
.− ψt

safe(w)) ` φt(w)}.

With this construction, we have the following result.

Theorem 7. For any canonical GO.S system, there is a corresponding operator
.−go.s that satisfies all 8 postulates of AGM contraction.

Discussion: Whereas the main role played by AGO.S within the construction for
revision operators is to ensure that revision within first-order logic is properly
constrained by the modal semantics for the corresponding system GO.S, the
main role played by AGO.S is to satisfy the success postulate ( .−4) holds, i.e., to
ensure that theorems of GO.S aren’t accidentally removed by a contraction.

It should be clear that revision operators can be defined in terms of a prim-
itive contraction operator and that contraction can be defined in terms of a
primitive revision operator, which is to say that both the Levi identity and the
Harper hold, respectively. We remark that, like Levi’s construction for belief
contraction, our modal Levi identity for norm change does not rely upon the
(controversial) recovery postulate, ( .−5). This illustrates that a wide variety of
techniques and constructions from the theory of belief revision may be carried
over and explored for use in the theory of norm change.

4 Our NO Class Logics

The problem with GO.S systems is that the grammar for LGO treats the univer-
sal modality � like any other box modality, so ϕ in �ϕ may take any form. But,
we are principally interested in conditional norms of the form given by Equation
1, and we also want to express negated norms and conditional norms of arbi-
trary modal depth, for each modality. The philosophical motivations for these
properties was addressed in section 2, and the technical motivations in section
3. Let us now explain why NO is the answer.

Let Φ be a countable set of propositional atoms. Then we define the language
LNO(Φ) recursively as follows:

2 A formula φt
taboo is maximal in φt (with respect to AGO) iff φt ` φt

taboo and AGO `
φt
taboo , and for all φt∗

taboo such that φt ` φt∗
taboo and AGO ` φt∗

taboo , then φt∗
taboo 6` φt

taboo .
3 Thanks here to Choh Man Teng for saving our bacon.
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– if p ∈ Φ, then p is a LNO(Φ) formula;
– if φ and ψ are LNO(Φ) formulæ, then ¬φ, φ → ψ, and Oφ are LNO(Φ)

formulæ;
– if θ = (

∧
i±pi), where ±pi is either pi or ¬pi, for pi ∈ Φ, and φ is a LNO(Φ)

formula, then θ → Oφ and θ → ¬Oφ are norm arguments
– if φ∗ and ψ∗ are norm arguments, then φ∗ → ψ∗ and �φ∗ are norm argu-

ments
– if φ∗ is a norm argument, then �φ∗ is a LNO(Φ) formula.

Discussion: The satisfiability conditions for LNO are the same as for system GO,
and all metatheoretic results we’ve shown for GO hold for NO. In essence, we
have created canonical subsystems of GO simply by a restriction on the modal
grammar: φ and ψ are arbitrary formulas, whereas φ∗ and ψ∗ are restricted for-
mulas. Notice that nested conditionals are necessary for NO to remain normal.
However, allowing the more general Oφ rather than Ojθ, for arbitrary modal
depth j, is optional. With the more general grammar, we can interpret sen-
tences that express a conditional norm which imparts an obligation to an agent
to maintain a conditional norm. Such constructions might be helpful for rep-
resenting democratic institutions which, unlike the Boy Scouts, allow member
agents to govern themselves. Much more machinery would be necessary to model
that sort of change behavior, but a more general language like LNO is a start.

As should be clear, NO normative systems have NO revision operators and
NO contraction operators:

Theorem 8. For any canonical NO.S system,

1. there is a corresponding operator ∗no.s that satisfies all 8 postulates of AGM
revision, and

2. there is a corresponding operator .−no.s that satisfies all 8 postulates of AGM
contraction.

A cherished principle for obligations is that ‘ought implies can’, which is ex-
pressed by the (D) schema, Oϕ → Pϕ. We happily acknowledge this tradition
with a NO.D, but stand behind our more general answer, NO, which we shall
exercise throughout the following example.

Posh Pensioners: Adapting an example from [3], suppose there are two commu-
nity norms: the state (s) is obligated to provide free health insurance (insurance)
to the low-income agents (poor), and the state is obligated to provide free health
insurance to pensioners (elderly). A NO system Σ for this example will include
the following two sentences,

�(elderly → Os(insurance)), (2)

�(poor → Os(insurance)). (3)
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There are several theorems of Σ, such as

�(elderly ∧ poor → Os(insurance)), (4)

and likewise there are different sorts of contingent state descriptions that may
satisfy the preconditions for a norm. For instance, an agent may be in a state
w′ where not having an income suffices to be poor, i.e., M, w′ 
 ¬income ∧
(¬income → poor). Then, it is easy to verify that Os(insurance) is satisfied at
w′, too.

Now imagine that a scandal hits the newspapers: ‘State Subsidizing Posh
Pensioners!’, which causes the community to revise its declared norms in order
to block the state from giving well-off pensioners free health insurance,

Σ ∗no �(elderly ∧ ¬poor → Os(¬insurance)). (5)

Performing the revision in (5) exposes a conflict with (2), and every rational
possibility for (5) will involve removing (2) from Σ. Of course, to yield a unique
result, we would need to impose an extra-logical structure on formulas constitut-
ing a normative system similar to techniques devised within the belief revision
literature [8,11,27]. However, as our example hints at, NO norm revision oper-
ators ensure that no norm inconsistent with the target norm of a revision will
appear in a candidate for rational norm change.

5 Closing Remarks

System NO is a normal modal logic, and there have long been doubts about
whether normal modal systems correctly model moral obligations [4]. The pri-
mary concern is the strong distribution properties of the box operator over con-
junction, which guarantee that there are no conflicting obligations: it is a theorem
of any normal deontic logic that there are no moral dilemmas, which strikes many
philosophers as too strong. That said, it is less clear whether this is a liability for
modeling institutional norms. Nevertheless, there are results which bring AGM
revision to supplemental neighborhood models [30], and the corresponding class
monotone modal logics are ideal for modeling conflicting obligations.4

The logic based solely on � is normal S5, which is decidable, and several
normal modal logics are decidable, but unfortunately a GO logic composed of
decidable components is not necessarily decidable. Even so, if a decidability
proof for a normal O.S system is established, via filtrations, which yields the
finite model property, then that logic can be lifted to a decidable GO.S system
[2, p. 418]. Similarly, whereas the complexity of the satisfiability problem in
normal modal logic O is PSPACE-complete, in GO the satisfiability problem is
EXPTIME-complete. A line for future investigations is to explore the complexity

4 Notice that, like normal modal logics but unlike classical (monotone) modal logics,
the most general input/output logic, “simple-minded output”, satisfies adjunction
as well via the AND rule.
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for the NO class of systems. One idea in particular would be to look at the effect
of restricting the S5 modality to universal modal horn clauses.

Another topic for future exploration concerns implementations. An obvious
problem is: given an initial normative theory and a narrative of required modifi-
cations (contraction, revisions, expansions), find the current normative state of
the system. A possible implementation strategy would be to perform the trans-
lation of the initial normative theory and the norms to be contracted/revised
into the modal first-order correspondence language as described in Sect. 3.2. The
implementation of the actual revision step can rely on AGM revision systems for
first order theories, such as [6]. If we assume a finite number of possible worlds,
and restrict ourselves to canonical modal systems, the translated theory is propo-
sitional, possibly escaping the decidability problems faced by the aforementioned
system. The result would then be translated back into a NO theory.

Finally, it is natural to explore iterated norm revision, and we can do this
by adapting the basic translation techniques here to the DP axioms for iterated
norm change [5,14]. Here the issue of entrenchment that we alluded to in section 4
becomes a central issue and, since a corollary of the DP axioms is a representation
theorem for Spohn’s negative ranking functions [27], having an iterated change
operator for NO systems would provide a qualitative bridge to probability logics
[12], which is an additional front to explore.

Acknowledgements: This research was supported in part by award Log-
iCCC/0001/2007, project DiFoS, from the European Science Foundation. Thanks
to Erich Rast, Choh Man Teng, and three annonymous referees for very helpful
comments on earlier drafts.

References

1. Carlos Alchourrón, Peter Gärdenfors, and David C. Makinson. On the logic of
theory change: Partial meet contraction and revision functions. Journal of Symbolic
Logic, 50(2):510–530, 1985.

2. Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal logic. Cambridge
University Press, New York, 2001.

3. Guido Boella, Gabriella Pigozzi, and Leendert van der Torre. Normative frame-
work for normative system change. In Decker, Sichman, Sierra, and Castelfranchi,
editors, Proceedings of the 8th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2009), pages 169–176, 2009.

4. Brian Chellas. Modal Logic. Cambridge University Press, Cambridge, 1980.
5. Adnan Darwiche and Judea Pearl. On the logic of iterated belief revision. Artificial

Intelligence, 89:1–29, 1997.
6. Simon Dixon and Wayne Wobcke. The implementation of a first-order logic AGM

belief revision system. In Proceedings of the Fifth IEEE International Conference
on Tools in Artificial Intelligence, pages 40–47. IEEE Computer Society Press,
1993.

7. Dov Gabbay, Odinaldo Rodrigues, and Alessandra Russo. Belief revision in non-
classical logics. The Review of Symbolic Logic, 1(3):267–304, 2008.

18



D
ra
ft

F
eb
ru
ar
y
22
,
20
11

8. Peter Gärdenfors and David C. Makinson. Revisions of knowledge systems using
epistemic entrenchment. In The 2nd Conference on Theoretical Aspects of Reason-
ing about Knowledge (TARK), pages 83–96, 1988.

9. Valentin Goranko and Solomon Passy. Using the universal modality: Gains and
questions. Journal of Logic and Computation, 2:5–30, 1992.

10. Guido Governatori and Antonino Rotolo. Changing legal systems: Legal abroga-
tions and annulments in defeasible logic. Logic Journal of the IGPL, 2010.

11. Adam Grove. Two modellings for theory change. Journal of Philosophical Logic,
17:157–170, 1988.

12. Rolf Haenni, Jan-Willem Romeyn, Gregory Wheeler, and Jon Williamson. Prob-
abilistic Logic and Probabilistic Networks. Synthese Library. Springer, Dordrecht,
2010.

13. Sven Ove Hansson. A Textbook of Belief Dynamics: Theory Change and Database
Updating. Kluwer Academic Publishers, 1999.

14. Yi Jin and Michael Thielscher. Iterated belief revision, revised. Artificial Intelli-
gence, 171(1):1–18, 2007.

15. Jorgen Jorgensen. Imperatives and logic. Erkenntnis, 7:288–296, 1937.
16. Hirofumi Katsuno and Alberto Mendelzon. On the difference between updating

a knowledge base and revising it. In The 2nd International Conference on the
Principles of Knowledge Representation and Reasoning (KR 1991), pages 387–394,
1991.

17. Henry E. Kyburg, Jr., Choh Man Teng, and Gregory Wheeler. Conditionals and
consequences. Journal of Applied Logic, 5(4):638–650, 2007.

18. Isaac Levi. Mild Contraction. Clarendon Press, Oxford, 2004.
19. David C. Makinson and Leendert van der Torre. Input-output logics. Journal of

Philosophical Logic, 30(2):155–185, 2000.
20. David C. Makinson and Leendert van der Torre. Constraints for input/output

logics. Journal of Philosophical Logic, 30:155–185, 2001.
21. David C. Makinson and Leendert van der Torre. What is input/output logic? in-

put/output logic, constraints, permissions. In Guido Boella, Leendert van der
Torre, and Harko Verhagen, editors, Normative Multi-agent Systems, number
07122 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2007. Internationales
Begegnungs und Forschungszentrum für Informatik (IBFI).

22. Donald Nute. Defeasible logic. In Dov Gabbay, C. Hogger, and J. Robinson, editors,
Handbook of Logic in Artificial Intelligence and Logic Programming, volume 3.
Oxford University Press, New York, 1994.

23. Maurice Pagnucco and Hans Rott. Severe withdrawal—and recovery. Journal of
Philosophical Logic, 28:501–547, 1999. (Re-printed with corrections to publisher’s
errors in February, 2000.).

24. David Poole. A logical framework for default reasoning. Artificial Intelligence,
36:27–47, 1988.

25. Ray Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.
26. Hans Rott. Change, Choice and Inference. Oxford University Press, Oxford, 2001.
27. Wolfgang Spohn. Ordinal conditional functions: A dynamic theory of epistemic

states. In William L. Harper and Brian Skyrms, editors, Causation in Decision,
Belief Change and Statistics, volume 2, pages 105–134. Reidel, 1987.

28. Audun Stolpe. A theory of permission based on the notion of derogation. Journal
of Applied Logic, 8:97–113, 2010.

29. Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic Epistemic
Logic. Synthese Library. Springer, 2008.

19



D
ra
ft

F
eb
ru
ar
y
22
,
20
11

30. Gregory Wheeler. AGM belief revision in monotone modal logics. In Ed Clarke
and Andrei Voronkov, editors, International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR-16), Short paper proceedings, Dakar,
Senegal, 2010.

20


	NO revision and NO contraction
	Gregory Wheeler and Marco Alberti

