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Resolution of a Classical Gravitational
Second–Law Paradox

John C. Wheeler∗
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Sheehan and coworkers have claimed [D. P. Sheehan e. al. Found Phys. 30,
1227 (2000); 32, 441 (2002); D. P. Sheehan in Quantum imits to the Second
Law, AIP Conference Proceedings 643 (American Institue of Physics, Melville,
NY, 2002, p. 391] that a dilute gas trapped between an external shell and
a gravitator can support a steady state in which energy flux by particles in
one direction is balanced by energy flux by radiation in the opposite direc-
tion, and in which work can be extracted from an isothermal heat reservoir,
thereby violating the second law of thermodynamics. In this paper, we iden-
tify a fundamental error in their simulation and analysis of their model system
that vitiates their conclusions. We analyze a simpler, exactly soluble, three-
dimensional model of a very dilute gas in a gravitational field between two
thermal reservoirs, and show that their conclusions are not supported for the
simple model. We show that their method of simulation, when applied to ei-
ther the simple model or their more complex model under simpler conditions
where the answers are known, leads to unphysical results. We also show that,
when appropriate sampling is done, their model gives results in accord with the
second law and detailed balance.

KEY WORDS: thermodynamics; second law; gravitation; paradox; resolution; ki-
netic theory.

1 INTRODUCTION

Recently Sheehan and coworkers have claimed(1–3) that a dilute gas trapped between
an external shell and a gravitator will support a steady state in which the shell and
gravitator are at essentially the same temperature, but in which the gas transports
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energy in one direction while the black–body radiation field transports energy in the
opposite direction, maintaining essentially equal temperatures of the walls. They as-
sert, in addition, that this steady state results in a net force on the gravitator that can
be used to extract work isothermally from the heat in the outer reservoir. This asser-
tion conflicts with one of the most trusted principles of physics, namely, the second
law of thermodynamics. There is a widespread and understandable response among
scientists to dismiss such results simply as “therefore clearly in error” and ignore
them. However, as pointed out in Ref. 1, systems with gravitational fields require
extra care in thermodynamics and can lead to surprising results. More generally,
there is an obligation on the part of the scientific community to demonstrate where
the error occurs in claims of violation of physical laws so that it will be apparent that
the claims are rejected on the basis of scientific argument and not mere prejudice. It
is therefore of interest to identify the errors, if any, in their analysis.

In this paper, we identify a fundamental error in both the simulation and analysis
presented in Refs. 1–3 that renders their conclusions inapplicable to any system of
physical interest. We analyze a simpler three–dimensional model of a very dilute gas
in a uniform gravitational field, trapped between two plates at altitudes 0 and H that
serve as thermal reservoirs at temperatures T0 and TH , respectively, under conditions
where the mean free path of the particles is much greater than H. This model is
simpler, and in some ways, perhaps, less realistic than that considered in Refs. 1–3,
but it has the virtue of being exactly soluble, given the underlying assumptions, and
therefore easily allows one to consider various limits not considered by those authors.
Treated properly, this model exhibits none of the anomalous behavior seen in Refs.
1–3. However, if their method of simulation and analysis is applied to this simpler
model, the same unphysical results observed in Refs. 1–3 are obtained. Moreover,
their method of simulation leads to unphysical results when applied to either model
in the absence of gravity, where the answers are known. If their model is treated
appropriately, it gives results in accord with the second law and with detailed balance.

In the remainder of this section, we briefly describe their model and their method
of simulation, and identify the fundamental error in their simulation and analysis
that invalidates their conclusions. In Sec. 2, we describe the simpler model and
give its solution under steady–state conditions. We show that if T0 6= Th, then
energy transport by the gas takes place from the higher to the lower temperature,
i.e., in the direction tending to remove the temperature difference, in accordance
with second–law expectations. We also show that when T0 = Th, no flow of energy
takes place in either direction between the reservoirs, and the gas density is described
by an equilibrium Maxwell–Boltzmann distribution of velocities, with densities and
pressures that vary with height according to the barometric law, again, in accordance
with second–law expectations. In Sec. 3, we justify in detail our identification of the
error made by Sheehan et al. and show how it is responsible for the unphysical results
they obtain. We show that if their method is applied to the simpler model in Sec.
2, then that model, too, exhibits the same pathologies as they find for their model.
We show that if either model is treated by their method in the absence of gravity,
an unphysical distribution of velocities is obtained for the density of particles in the
container. We also show there that if their model is treated correctly, it is consistent
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with second law expectations. A discussion of the results appears in Sec. 4.
The model described in Refs. 1–3 consists of a large spherical cavity of radius rc,

the outer wall of which is clamped at temperature T by an infinite heat reservoir.
The cavity contains a planet–sized spherical gravitator of radius rG and mass mG

and a very dilute gas. The gravitator is coated on two opposite hemispheres with
materials of different trapping probability for the gas particles. Gas particles striking
the outer wall of the cavity are absorbed and re-emitted thermally. Gas particles
striking the gravitator are either reflected specularly or absorbed with a probability
that depends upon the coating material and the particle velocity, in which case they
are re-emitted with a velocity distribution characteristic of the temperature of the
gravitator surface. The gas particles are taken to be structureless, with mass mA and
radius rA, and with particle density, ncav, sufficiently low that their mean free path
in the cavity is large compared with the cavity diameter, so that particle–particle
collisions are rare compared with particle–wall and particle–gravitator encounters. In
addition, the gas is taken to be sufficiently dilute that black–body radiation maintains
the temperature of the gravitator essentially uniform and equal to that of the cavity
wall, regardless of what the particles may do. Particles leaving the outer wall of
the cavity are attracted to the gravitator by the universal gravitational force, and so
arrive at the gravitator with greater kinetic energy than that with which they left
the wall. The authors argue that the detailed dynamics of the particles, coupled with
the thermalization at the outer wall and at the gravitator, leads to a steady state in
which there is a net force on the gravitator and a flux of energy from the gravitator
to the cavity wall carried by the particles that is balanced by a net flux from the wall
to the gravitator carried by the black–body radiation. The authors make reference
to a “standard gravitator” with the parameters mA = 4 amu, mG = 2 × 1023 kg,
rA = 10−10 m, rG = 1.6×106 m, rc = 3.21×106 m, T = 2000 K, ncav = 5×1010 m−3.
[Additional parameters are also specified, having to do with details of the trapping
probabilities, but they will not be needed here.]

Although the “standard gravitator” described by the authors contains about 6×
1030 gas particles at an average density of about 5×1010m−3, the authors’ simulation
involves only a single particle, which the authors follow over many excursions through
the cavity between the cavity wall and the gravitator. There is, in principle, nothing
wrong with such a procedure, provided that the simulation of the dynamics is carried
out correctly, that averages are taken correctly, and that the sampling of the velocities
of particles emitted from the cavity wall and gravitator is appropriate to the property
being simulated. As a practical matter, there are some troubling difficulties with this
procedure. Because they find that some trajectories leaving the gravitator or cavity
wall result in near–orbiting trajectories, in which the particle orbits nearly indefinitely
at some intermediate altitude, the authors invoke rare collisions between the particles
to eliminate these. Because there is no ensemble of such particles in the simulation,
the authors simply thermally randomize the velocity of the particles on an infrequent
basis. This fails to satisfy conservation of momentum, so that Newton’s equations of
motion are not strictly being followed. This fact was not mentioned in Refs. 1–3,
and we became aware of it only through discussions with Sheehan [D. P. Sheehan,
private commun.] Sheehan acknowledges that this is a weakness of the procedure but
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argues that the authors tested the model extensively and found that the results were
insensitive to the details of this randomization in the range of conditions in which the
unusual phenomena occurred. This may well be so, and in any case, that weakness
in their method is not the error that we suggest is responsible for their unphysical
results.

Even the presence of these orbiting trajectories is troublesome, because the tra-
jectories of the particle in the cavity are Keplerian orbits,(4) following conic sections,
each of which should result in collision with either the gravitator or the cavity wall
within a relatively short time. Sheehan speculates [D. P. Sheehan, private commun.]
that they may arise from roundoff errors in the simulation. In any case, this also is
not the problem responsible for the unphysical results they obtain.

The fundamental error committed by the authors of Refs. 1–3 that is responsible
for the unphysical results they obtain is that they did not sample the velocities of the
particles emitted from the cavity wall and gravitator from a distribution appropriate
to the property being simulated. This error resulted because they did not make a
clear distinction — either for themselves or for the reader — between the distribution
over velocities of the particle density, on the one hand, and of the particle flux, or rate
of production of particles by a reservoir, on the other. As a result, they sample from
a velocity distribution appropriate for a particle density when, in fact, the property
for which they are sampling plays the role of a particle flux. We justify this assertion
in detail in Sec. 3.

This has the consequence that, with the distribution of velocities from which
Sheehan et al. have sampled, neither the cavity wall nor the gravitator is capable
of attaining equilibrium with a gas that is itself in internal equilibrium at the same
temperature, even in the absence of any gravitational field. It is not surprising, there-
fore, that this sampling also leads to an inability of the system to reach equilibrium
when a gravitational field is present. This last observation is important because the
inability of the particles to reach equilibrium by themselves — or even to attain a
steady state with equal temperatures of the cavity wall and gravitator without the
dominating influence of black–body radiation — was a feature of their results almost
as puzzling and counterintuitive as the violation of the second law itself. Both are
explained by the identification of the error in sampling, and both are corrected by
correction of the sampling procedure. These points are developed in more detail in
Secs. 3 and 4.

The authors of Ref. 1 stress the point that the behavior they report is “emergent,”
and “in no way ‘programmed’ into the following numerical simulations.” While we
do not question the honesty of their intentions, their selection of a distribution from
which to sample the velocities of the particles emitted by the cavity wall and gravitator
does constitute a choice by those investigators that was, quite literally, programmed
into the simulations. That choice requires scientific judgment to ensure that the
results are consistent with known physical behavior. In particular, a choice that
prohibits equilibrium with detailed balance between an equilibrium gas and the cavity
wall or gravitator in the absence of gravitational forces can be expected to lead to
unphysical behavior of the model more generally.

That Sheehan et al. have sampled from a distribution inappropriate for the prop-
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erty being sampled does not prove that their device obeys the second law when
appropriate sampling is done. It does, however, vitiate any conclusions from their
results about their device under physically relevant conditions. In the next section,
we examine a simpler model and show explicitly that it obeys the second law when
treated properly. In Sec. 3, we show that it exhibits the same pathologies as the more
complicated model when sampled in the manner corresponding to that employed by
Refs. 1–3, that both models exhibit pathologies in the absence of any gravitational
field when this sampling is used, and that their model is consistent with the second
law when treated appropriately.

2 SIMPLE MODEL AND SOLUTION

We consider a sample of a fixed number of monatomic gas particles in a three–
dimensional cubic box of edge length H, with floor and ceiling at height z = 0 and
z = H in a uniform gravitational field with acceleration g downward along the z axis.
The vertical walls may be taken as either perfectly reflecting or following periodic
boundary conditions. The upper wall is perfectly absorbing and serves as a thermal
bath at temperature TH . That is, any particle striking the upper wall is absorbed
and re-emitted with a distribution of velocities characterized by the temperature TH .
The lower wall reflects specularly with probability α, and absorbs with probability
1− α, re–emitting with a velocity distribution characterized by the temperature T0.
We take the reflection probability α to be independent of the particle velocity. This
is not essential; the problem can be formulated with α as a function of the component
of the velocity normal to the surface, as in Refs. 1–3. The only consequence is that
certain integrals can no longer be computed in closed form. We assume that the gas
is so dilute that collisions between gas particles can be neglected: a particle emitted
from the upper wall inevitably strikes the lower wall; a particle emitted from the lower
wall either strikes the upper wall, if it leaves the lower wall with z component of its
velocity satisfying vz > +(2gH)1/2, or else rises until the gravitational acceleration
brings it to a halt and then falls back to strike the bottom wall with the same kinetic
energy with which it left. The model is fully three–dimensional although much of
the analysis is essentially one–dimensional, and the model is easily reduced to a
two– or one–dimensional version. The vector position and velocity of a particle are
r = (x, y, z) and v = (vx, vy, vz). We will indicate throughout the development the
way in which results differ in one and three dimensions.

This is a much simpler model than the one studied in Refs. 1–3, but the one–
dimensional version is essentially identical to that in the one–dimensional argument
presented there to justify their results. It retains the essential feature that it is
possible to compare the forces exerted on partially reflecting surfaces with different
trapping probabilities. Sheehan confirms [D. P. Sheehan, private commun.] that, on
the basis of his arguments, he expects nonzero energy flux by the particles in this
model in a steady state with T0 = TH , and a force on the “gravitator” (i.e., the lower
wall) that depends upon α. We show here that, for a physically reasonable choice
of particle flux from the upper and lower walls, this is not the case. Rather, under
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conditions of steady state with respect to particle flux, the energy flux when TH 6= T0

is in the direction tending to equalize the temperatures of the reservoirs, and when
TH = T0 there is no energy flux, and the force on the lower wall is independent of α.
In the following section, we show that, if an unphysical choice for the flux is made,
corresponding to the sampling choice made in Refs. 1–3, then the same unphysical
consequences observed there follow.

Let n(r,v)dτv be the (spatial) number density of particles at location r in the
velocity volume element dτv centered at velocity v. In three dimensions, this is the
number of particles per unit volume in the velocity volume element dτv = dvxdvydvz.
In one dimension, it is the number of particles per unit length in dτv = dvz. In a
similar manner, let j(r,v)dτv be the number flux of particles in the upward direction
through the horizontal surface at height h = z at location r in the velocity volume
element dτv. This flux is a number per unit time per unit area in three dimensions,
and a number per unit time in one dimension.

It will turn out that the steady–state solutions for n(r,v) and j(r,v) are indepen-
dent of x and y, and so it is convenient to have an alternative notation that reflects
this. Accordingly, we will use nh(v)dτv for the number density in the specified veloc-
ity range at height z = h and jh(v)dτv for the upward flux in the indicated velocity
range through the horizontal plane at height z = h. We will adopt the convention that
n0(v) ≡ limh↘0 nh(v) is the density just above height 0 and nH(v) ≡ limh↗H nh(v)
is the density just below height H. We adopt the corresponding conventions for the
meaning of j0(v) and jH(v). The particle density and particle flux are related by the
continuity equation,(5, 6)

j(r,v) = vzn(r,v) , (1)

in both the three– and one–dimensional versions of the problem.
Following Refs. 1 and 3, we start with the particles just below height H with

vz < 0 and with velocities in the range dτv. These necessarily come from the reservoir
with T = TH , and so are described by a distribution characterized by temperature
TH . The fundamental assumption of our treatment is that the particle flux from the
reservoir with T = TH in the velocity volume element dτv about v is the same as that
in the gas at h = H and is given by

jH,res(v)dτv = jH(v)dτv = j(x, y, z = H,v)dτv

= Bvz exp

(
−

1
2
mv2

kTH

)
dτv (vz < 0) , (2)

where m is the mass of the particles, TH is the Kelvin temperature of the upper wall
and k is Boltzmann’s constant; where v2 = |v|2 = v2

x+v2
y +v2

z in three dimensions and
v2 = v2

z in one dimension; and where B is a normalization constant having to do with
the total particle density at H that remains to be determined. The corresponding
density in the gas is then given, via Eq. (1), as

nH(v)dτv = B exp

(
−

1
2
mv2

kTH

)
dτv (vz < 0) . (3)
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Note that the flux is independent of the horizontal coordinates, x and y, and inde-
pendent of the azimuthal angle of the velocity around the z axis. As a consequence,
the density is also independent of horizontal position and is isotropic in v apart from
the requirement that, for the moment, we are considering only particles with vz < 0.

Our choice for the flux in Eq. (2) plays the same role in this model that the choice
for the distribution of velocities of particles leaving the cavity wall plays in Refs. 1–3.
In each model, a choice must be made for the way in which statistics is used to avoid
describing the detailed dynamics of the absorption and emission process from the
wall. There are compelling arguments for accepting a form like (2) as reasonable for
the flux emanating from a thermal reservoir that is in internal equilibrium. We will
develop those further in Secs. 3 and 4. We note here, however, that if the reservoir is
ever to be in equilibrium with a gas that is itself in internal equilibrium at the same
temperature, then the flux from the reservoir under those conditions must be of the
form in Eq. (2). This is because the density of the gas will be of the form in Eq. (3)
for all v, and so its flux will be of the form (2) for all v. The choice we have made
guarantees that the the upper reservoir is capable of establishing equilibrium, with
detailed balance at every velocity, with a gas that is itself in internal equilibrium at
the same temperature. This seems to us to be a reasonable requirement to place upon
the choice of statistics of particles emanating from the upper wall. The choice made
by Sheehan, et.al. does not satisfy this requirement, as we show in Sec. 3.

Each particle at height z = H and with vz = vz,H < 0 will reach the bottom
reservoir, at height z = 0, with a larger negative z component of its velocity, vz,0,
determined by conservation of energy,

1

2
mv2

z,0 =
1

2
mv2

z,H + mgH , (4)

and with the x and y components of the kinetic energy unchanged, so that

1

2
mv2

0 =
1

2
mv2

H + mgH . (5)

We observe that n(r,v) is essentially (within a factor of m3) the density in phase
space of the particles. [Because we employ Cartesian coordinates for position and
velocity, the components of the momentum vector are just m times the corresponding
components of the velocity.] We may therefore invoke Liouville’s theorem(7)

n(r,v, t) = n(r ′,v ′, t′) , (6)

where r ′ and v ′ are obtained from r and v via the equations of motion over the time
interval t′ − t, during which the trajectory remains entirely between the upper and
lower walls. Strictly, this relates the densities at two different times. For a steady
state, however, the densities are independent of time, so the equation also applies to
the two locations in phase space at the same time. We may then conclude that, in a
steady state, particles starting at height h = H with density nh(v) given by Eq. (3)
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will arrive at height 0 at with with density given by

n0(v0) = nH(vH) (7)

= B exp

(
−

1
2
mv2

H

kTH

)
(8)

= B exp

(
−

1
2
mv2

0 −mgH

kTH

) (
v0,z < −(2gH)1/2

)
. (9)

This implies that

n0(v) = B exp

(
mgH

kTH

)
exp

(
−

1
2
mv2

kTH

) (
vz < −(2gH)1/2

)
. (10)

The independence of nH(v) from x, y and azimuthal angle implies the same for n0(v)
when vz < −(2gH)1/2. This point is actually slightly subtler than it might seem
at first. At any point on the surface z = 0, and for any incoming velocity v with
vz < −(2gH)1/2, one can trace back the trajectory to find a unique point on the
surface z = H from which it came. However, given the location, r, of the arriving
particle, the magnitude of its velocity, v, and the vertical component vz, there are still
many possible azimuthal angles at which it may arrive. Each of these will trace back
to a different initial spot on the surface z = H and to a different initial azimuthal
angle there. However, all these initial conditions will have the same initial vz and v.
Because of the independence of the density at z = H on location in the plane and
azimuthal angle, the resulting density at z = 0 is also independent of position in the
plane and azimuthal angle.

We may now use the continuity equation (Eq. (1)) to find the corresponding flux
at h = 0:

j0(v) = Bvz exp

(
mgH

kTH

)
exp

(
−

1
2
mv2

kTH

) (
vz < −(2gH)1/2

)
. (11)

We have thus begun to make the connection between the distributions in the imme-
diate vicinity of the two reservoirs.

Of the particles arriving at height z = 0 with vz < −(2gH)1/2, a fraction α will
reflect specularly, and thus contribute to the density n0(v) for vz > +(2Hg)1/2. The
remaining fraction 1−α is absorbed by the reservoir and re-emitted with a distribution
characterized by the temperature T0. For particles just above height z = 0 with
v2

z < 2gH, we can say with certainty that they emanated, either directly or indirectly
via specular reflections, from the reservoir at T0. Of the particles in this velocity
range with negative vz, a fraction α will reflect specularly at the lower wall, and so
a fraction α of the particles with positive vz are actually reflected particles. Only
fraction (1 − α) of the flux consists of particles emitted directly from the reservoir.
We therefore assume that the particle flux emitted from the reservoir is given by

j0,res(v)dτv = A(1− α)vz exp

(
−

1
2
mv2

kT0

)
dτv (vz > 0) , (12)
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where A is another normalization constant, yet to be determined. This is a second
fundamental assumption of our treatment, parallel to the sampling assumption by
Sheehan, et al. concerning the velocities of particles leaving from their gravitator.
Again, note the independence of the flux from x and y and from the azimuthal angle
of v. This choice allows the reservoir at h = 0 to achieve equilibrium with a dilute
gas that is itself in internal equilibrium at the same temperature.

It then follows from Liouville’s theorem, applied to particles with v2
z < 2gH, that

the total flux just above h = 0, both specularly reflected and from the reservoir, in
the range −(2gH)1/2 < vz < +(2gH)1/2, is given by

j0(v)dτv = Avz exp

(
−

1
2
mv2

kT0

)
dτv (v2

z < 2gH) . (13)

For velocities with vz > (2gH)1/2, there is no reflected component from the reservoir
at T0, but there is a reflected component from the reservoir at TH . Therefore, the
flux just above h = 0 in this range of vz is given by

j0(v)dτv = (1− α)vzA exp

(
−

1
2
mv2

kT0

)
dτv +

αBvz exp

(
−

1
2
mv2 −mgH

kTH

)
dτv (vz > +(2gH)1/2) . (14)

The particle densities corresponding to Eqs. (13) and (14) are

n0(v)dτv = A exp

(
−

1
2
mv2

kT0

)
dτv (v2

z < 2gH) (15)

and

n0(v)dτv = (1− α)A exp

(
−

1
2
mv2

kT0

)
dτv +

αB exp

(
−

1
2
mv2 −mgH

kTH

)
dτv (vz > +(2gH)1/2) . (16)

All of the particles with vz > +(2gH)1/2 will reach the ceiling at h = H, so we may
now use Liouville’s theorem once again to follow this last density upward to h = H.
This gives

nH(v) = (1− α)A exp

(
−

1
2
mv2 + mgH

kT0

)
+

αB exp

(
−

1
2
mv2

kTH

)
(vz > 0) . (17)
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The corresponding flux is then given by

jH(v) = (1− α)vzA exp

(
−

1
2
mv2 + mgH

kT0

)
+

αBvz exp

(
−

1
2
mv2

kTH

)
(vz > 0) . (18)

We now have n0(v), nH(v), j0(v) and jH(v) over the entire range of velocities
in terms of the two as–yet–unspecified constants A and B, and the presumed known
parameters of the system, m, H, T0 and TH . Moreover, they are expressed in terms
of the local velocities. We are therefore now in a position to calculate the net fluxes
of particles, energy and momentum through the planes at heights 0 and H. Before
doing this, however, we note that the same idea could be used to obtain the velocity
distribution of the particle density, and thereby of the particle flux, at any altitude
h between 0 and H using the energy conservation relation v2

z,0 = v2
z,h + 2gh between

v0 and vh, along with the corresponding energy conservation relation v2
z,h = v2

z,H +
2g(H −h) between vh and vH . We quote the results here, both for completeness and
to provide a compact presentation of the results for h = 0 and h = H.

nh(v) = B exp

(
−

1
2
mv2 −mg(H − h)

kTH

) (
vz < − (2g(H − h))1/2

)
(19)

= A exp

(
−

1
2
mv2 + mgh

kT0

) (
v2

z ≤ 2g(H − h)
)

(20)

= αB exp

(
−

1
2
mv2 −mg(H − h)

kTh

)
+

(1− α)A exp

(
−

1
2
mv2 + mgh

kT0

) (
vz > (2g(H − h))1/2

)
. (21)

In all of these formulas, v2 = v2
x + v2

y + v2
z for the three–dimensional model, with the

range−∞ < vx, vy < ∞. For the one–dimensional model, v2 = v2
z . The corresponding

flux distribution is obtained, in either one or three dimensions, by simply multiplying
the density distribution by vz.

We now turn to evaluating the total particle and energy flux at height h. The
total particle flux at height h is obtained by integrating jh(v) = vznh(v) over all
velocity components from −∞ to ∞ using Eqs. (19)-(21). The integral of vz over the
range v2

z < 2gH cancels to zero by symmetry, and the integral of vz over the range
(−∞,−(2gH)1/2) is equal to minus the integral of the same integrand over the range
(+(2gH)1/2, +∞). The result is

Jh =

∫
jh(v)dτv (22)

= (1− α)(2π)
d−1
2

[
Ae

−mgH
kT0

(
kT0

m

) d+1
2

−B

(
kTH

m

) d+1
2

]
, (23)
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where d = 1, 2, 3 is the spatial dimensionality of the model. Note that the result is
independent of h, as required for a steady state.

Because particles are conserved, a steady state requires zero net particle flux at
every height h. Requiring that the net particle flux be zero imposes one condition
between A, B, TH and T0, fixing A in terms of B and the two T ’s:

A =

(
TH

T0

) d+1
2

B exp

(
mgH

kT0

)
. (24)

The energy flux at altitude h is obtained by putting an extra factor of 1
2
mv2 inside

the integral in Eq. (22). The computation is slightly more involved, owing to the
necessity to integrate by parts from a finite limit and to the presence of three terms
in the integrand, but one finds without too much difficulty that

JE,h =

∫
1
2
mv2jh(v)dτv (25)

= (1− α)(2π)
d−1
2 m×{[

A

(
kT0

m

) d+3
2

e
−mgH

kTH

(
mg(H − h)

kT0

+ 1

)
−B

(
kTH

m

) d+3
2

(
mg(H − h)

kTH

+ 1

)]
+

d− 1

2

[
Ae

−mgH
kTH

(
kT0

m

) d+3
2

−B

(
kTH

m

) d+3
2

]}
. (26)

The first term in square brackets arises from the “diagonal” term in which 1
2
mv2

z

multiplies jh(v) = vznh(v). The second term in square brackets results from the “off–
diagonal” terms in the kinetic energy with v2

x or v2
y multiplying vznh(v). Substituting

the requirement Eq. (24) for zero net particle flux into Eq. (26), this becomes

JE,h =

[
(1− α)B

kTH

m

(
2πkTH

m

) d−1
2

] [(
d + 1

2

)
(kT0 − kTH)

]
. (27)

Again, the result is independent of h.
Eq. (27) has an interesting physical interpretation. The first factor in square

brackets is just the total upward flux of particles arriving at h = H that were emitted
from the reservoir at h = 0. This is equal to the total downward flux of particles
at h = H from the reservoir at H that will be absorbed by the reservoir at h = 0.
The downward moving particles just below h = H have an average kinetic energy
(averaged using the particle density) of (d/2)kTH , while those just below h = H
that arrived from the reservoir at T0 have an average kinetic energy (again, averaged
using the particle density) of (d/2)kT0. [This may be seen by calculating the average
energy using suitable parts of the density given in Eqs. (19)–(21).] The second factor
in square brackets is (d+1)/d times the difference in average kinetic energy per particle
between these arriving and leaving particles. The reason for the factor of (d + 1)/d
is that the energy and the rate of transport are coupled: particles with large vz both
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transport more energy per particle and transport that energy faster. This coupling
arises from the fact that we integrate over v3

z times the density rather than taking
the product of integrals over vz times the density and v2

z times the density divided
by the integral of the density. This amplification occurs only for the z component;
the terms in the kinetic energy involving v2

x and v2
y are not amplified in this way.

The factor (d + 1)/2 can be written as (d− 1)/2 + 1. The terms involving the x and
y components of the velocity contribute just their average kinetic energy times the
particle flux rate. The term involving the z component contributes twice this amount.
This enhancement of the energy flux for the component parallel to the direction of
flux is quite general. For example, a gas effusing through a pinhole from a container
into a vacuum has higher average kinetic energy per particle than does the gas from
which it effuses by exactly the same factor of (d+1)/d in d dimensions. Similarly, the
energy flux in either direction through a plane in an equilibrium gas is [(d + 1)/2]kT
times the particle flux in the same direction through that plane, a result we shall use
in Sec. 3.

Regardless of dimensionality, Eq. (27) shows that if T0 = TH , the energy flux is
zero at every altitude, including h = 0 and h = H. There is, therefore, no tendency
for the temperatures of the reservoirs to change if they have finite heat capacity. If
T0 < TH , then the (upward) energy flux is negative, so energy flows from the higher
temperature, at height H, to the lower temperature, at 0. If T0 > TH , then the energy
flux is positive, so again, the energy flows from higher to lower temperature. That
is, whenever T0 6= TH , energy flows in the direction that would tend to equalize the
temperatures of the two reservoirs if the thermal capacity of either were finite.

The total number density, nh, and the total vertical momentum flux, Jp,h, at any
altitude may be evaluated by integration over nh(v) in (19) – (21) to give

nh =

∫
nh(v)dτv (28)

and

Jp,h =

∫
mv2

znh(v)dτv/, . (29)

When TH 6= T0, these give fairly complicated and uninformative expressions that de-
pend upon α as well as on both TH and T0. However, regardless of the dimensionality
of the problem, the energy flux is zero if TH = T0 and the direction of energy flow is
always such as to tend to equalize the temperatures. If either reservoir has finite heat
capacity — the case envisioned by Refs. 1–3, with a gravitator of finite mass — then
the temperatures of the reservoirs will approach each other with time, and the final
steady state will be one with TH = T0. We shall therefore restrict ourselves to this
final steady state condition in the following discussion. In this case, the expressions
for the number density and momentum flux become particularly simple and elegant.
Under these circumstances, Eq. (24) reduces to

A = Be
mgH
kT (TH = T0 = T ) . (30)
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Substituting this into (19) – (21), we find that

nh(v) = Ae−
mgh
kT exp

(
−mv2

2kT

)
(−∞ < v < +∞) . (31)

That is, the distribution at each altitude is a simple Maxwellian distribution over
the entire velocity range, and so may be taken as if at equilibrium. Moreover, the
constant A may now be expressed in terms of the total particle density at height 0
as simply

A =
( m

2πkT

)d/2

n0 , (32)

where d is the dimensionality of the model. Also, the total density at z = h is related
to that at z = 0 by

nh = n0 exp

(
−mgh

kT

)
, (33)

which is simply the barometric law for densities.
The momentum flux through a horizontal plane at height h in the case T0 = TH =

T is also very simple and elegant. It is simply given by

Jp,h =

∫
mv2

znh(v)dτv = nhkT . (34)

The momentum flux is a force in one dimension and a force per unit area, i.e., a
pressure, in three dimensions. The quoted result, together with Eq. (33), amounts to
the barometric law for pressure. It is interesting to note that, because the result for
the momentum transfer through a horizontal plane is just the usual result for a gas
at density n and temperature T , this would also be the answer for the momentum
flux through a vertical plane. That is, the horizontal pressures against the vertical
walls will be the same at heights 0 and H as on the floor and ceiling, respectively,
and the pressure is independent of direction at every altitude. Thus, the gas behaves
exactly as would a gas in which the mean free path was very small compared with
the distance between the walls.

Also notable is the fact that the momentum transfer to the floor (the “gravitator”
in analogy to Refs. 1–3) is independent of α. That is, there is no differential force
exerted on two floors of different reflectivity. Changing α affects the rate at which
energy is transferred in the case where TH 6= T0 [cf. Eq. (27),] but does not affect
the properties of the distribution or the pressure exerted by the gas once the limit
TH = T0 is reached.

In summary, under steady state conditions and the flux assumptions from the
reservoirs we have made, the exact solution to the simple model considered here, has
the property that the energy flux by the particles is nonzero when TH 6= T0 and in
the direction that tends to equalize the temperatures, and is zero when TH = T0.
The force on the floor of the container is independent of the trapping probability of
the floor for the particles when T0 = TH . We emphasize that these conclusions hold
for the full three–dimensional version of the model as well as for the one–dimensional

13



case. The steady state in the case of either the ceiling or the floor having finite heat
capacity is one of a uniform temperature throughout, with an equilibrium Maxwell–
Boltzmann distribution of velocities for the particles, with the density and pressure
of the particles satisfying the barometric law. This is the case even though the gas is
so dilute that collisions in the gas phase can be completely neglected. The particles
approach thermal equilibrium by themselves and do not require a separate mechanism
such as black–body radiation in order to arrive at even a steady state, much less a
state of equilibrium. This is in stark contrast with the consequences of the method of
simulation used in Refs. 1–3. Moreover, the system exhibits no tendency to violate
the second law by allowing the extraction of work from an isothermal reservoir —
again, unlike the results of that simulation method.

3 RESOLUTION OF THE PARADOX

None of the results obtained in Sec. 2 is particularly surprising. Each is precisely
what would be expected from a second law point of view. They are, however, in
serious disagreement with the findings of Sheehan, et al.(1–3)

As stated in the introduction, this is because Sheehan, et al. have made a serious
conceptual error in both the simulation and analysis of their model. They sample for
the distribution of velocities of particles leaving the cavity and gravitator walls from
a distribution appropriate to a particle density, when, in fact, these particles play the
role of a particle flux in the model. We now justify that assertion.

Sheehan, et al. select the velocities of the particles leaving the outer wall of the
cavity and the gravitator surface from a three–dimensional half–Maxwell–Boltzmann
distribution in the form of a product of three one-dimensional Gaussian distributions
f(vk) ∼ exp(−mAv2

k/2kT ) (k = x, y, z), with exclusion of resulting velocities that
do not enter the cavity. [This is not entirely obvious from the description supplied in
Refs. 1,2, but it is clear from examination of their code, which is publicly available,(1, 2)

and has been independently confirmed [D. P. Sheehan, private commun.] by one of
the authors.] This choice might seem plausible at first thought, but is, in fact, a
serious error.

The distributions fi that the authors sample for and measure are the velocity
distributions of particles leaving from and arriving at the cavity wall and gravitator
surface. The first of two crucial observations is that the particles leaving from and
arriving at these surfaces play the role of particle fluxes in this model, not particle
densities. This may be seen by asking how one would calculate from the simulation,
on the one hand, the particle flux, j(r,v)dτv, through a surface just inside the cavity
from the outer wall or gravitator surface in a specified velocity volume element, dτv,
and, on the other hand, the particle density, n(r,v)dτv, in the same velocity volume
element just inside the cavity from these surfaces. For the flux, one could simply
take the number of particles leaving an element of the surface in the small but finite
velocity volume element δτv = δvxδvyδvz over some time during which the system was
in a steady state, and divide by the area of the surface element and the time interval
to obtain an estimator for the particle flux in that velocity volume element. [We use
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δvx, etc. to emphasize that these are small but non-infinitesimal velocity ranges, as
is required in a simulation.] This, normalized, is precisely what the authors quote as
their fi. Indeed, in Ref. 2, where they attempt to determine the velocity distribution
in the interior of the cavity, they explicitly state that they do so by counting the
number of particles in a specified velocity range passing through a surface element
in the form of a spherical cap and normalizing by, among other things, the time
the particle spends in the cavity and the area of the cap. In other words, they are
determining the distribution over velocities of a particle flux through the cap.

To obtain the particle density in a given velocity volume element, one would,
instead, choose a small spatial volume element in the cavity and define a dynamical
variable N(r,v, t)δτv equal to the number of particles in the spatial volume element
that are in the velocity volume element δτv = δvxδvyδvz at time t. In their simulation,
this variable would always be either zero or one because there is only one particle
involved. A time average of this dynamical variable divided by the spatial volume of
the element would give an estimator for the particle density, n(r,v)δτv. The authors
of Refs. 1–3 make no mention of any attempt to sample for this observable.

The second crucial observation is that the half–Maxwell–Boltzmann distribution
of velocities from which the authors of Refs. 1–3 sample for particles emanating from
the cavity wall and gravitator is appropriate for the density of particles in a gas in
equilibrium, but not for a flux of particles through a surface. The flux of particles,
j(r,v)dτv, through a surface in a velocity volume element dτv centered about vector
velocity v, is related to the density, n(r,v)dτv, in the same velocity volume element
centered at the same velocity by the continuity equation,(5, 6) which in the present
case takes the form

j(r,v) = v⊥n(r,v) , (35)

where v⊥ is the component of the velocity normal to the surface in the direction of
positive flux. Thus, the appropriate distribution for a flux requires a factor of v⊥
multiplying the half–Maxwell–Boltzmann distribution. This factor of v⊥ is essential
if the reservoir is ever to be capable of existing in equilibrium with a dilute gas
of particles that is itself in internal equilibrium. This is because such a gas will
necessarily have a Maxwell–Boltzmann distribution of velocities for its particle density
and, therefore, have a particle flux at the surface with the factor v⊥ multiplying this
density. For a perfectly absorbing surface to be in detailed balance with the gas, its
flux must match that in the gas at its surface at every velocity.

In addition to this gross requirement of a factor of v⊥, there is a subtler require-
ment in connection with the gravitator. Because the trapping probability at the
gravitator surface is a function of the velocity of the particle, the flux of particles
from an equilibrium gas that is actually absorbed at the gravitator surface will con-
tain an additional factor of Ptrap(v⊥). As a consequence, for detailed balance in the
equilibrium between the gravitator and a dilute gas, the emission probability from
the gravitator must contain a factor of Ptrap(v⊥) as well as of v⊥ itself. Curiously,
Sheehan, et al. include the factor of Ptrap(v⊥) in their emission distribution from the
gravitator, but not the factor of v⊥.

As a consequence, with the distribution of velocities from which Sheehan, et al.
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have sampled, neither the cavity wall nor the gravitator is capable of attaining local
equilibrium with a gas that is itself in internal equilibrium at the same temperature
even in the absence of any gravitational field. It is not surprising, therefore, that
this sampling also leads to an inability of the system to reach equilibrium when a
gravitational field is present.

It is possible to work out the consequences for the model of Sec. 2 of assuming
the faulty flux distribution used in Refs. 1–3. If we assume that

jH(v) = −B exp

(
−

1
2
mv2

kTH

)
(vz < 0) (36)

and

j0,res(v) = A(1− α) exp

(
−

1
2
mv2

kT0

)
(vz > 0) , (37)

then the same reasoning as employed in Sec. 2 leads to the following result for the
flux density jh(v) at height z = h

jh(v) = B
vz

(v2
z − 2g[H − h])1/2

exp

(
−

1
2
mv2 −mg(H − h)

kTH

) (
vz < −[2g(H − h)]1/2

)
= A

vz

[v2
z + 2gh]1/2

exp

(
−

1
2
mv2 + mgh

kT0

) (
v2

z < 2g[H − h]
)

= αB
vz

(v2
z −mg[H − h])1/2

exp

(
−

1
2
mv2 −mg(H − h)

kTH

)
+

(1− α)A
vz

[v2
z + 2gh]1/2

exp

(
−

1
2
mv2 + mgh

kT0

) (
vz > (2g[H − h])1/2

)
, (38)

where v2 = v2
x + v2

y + v2
z in three dimensions and v2 = v2

z in one dimension. The
corresponding particle densities are obtained by dividing by vz.

The particle flux, the energy flux and the momentum flux that follow from the
faulty flux distributions in Eqs. (36), (37) and (38), corresponding to the sampling
choice of Refs. 1–3, can be calculated. With T0 set equal to Th, one finds that the
condition for a steady state with respect to particle flux gives a nonzero energy flux
and a momentum flux that depends upon both h and α. The integrals can no longer
be carried out in closed form, but rather must be expressed in terms of incomplete
error functions and related integrals. Using power series, asymptotic expansions and
numerical evaluation of the integrals, it can be shown that, over the entire physical
range of the parameter mgH

kT
, the particles carry an energy flux upward in the gravita-

tional potential, and the surface at h = 0 experiences a momentum flux that increases
with decreasing α (i.e., with increasing absorption probability). These results are in
accord with the findings of Refs. 1–3. [The details of these calculations are available
from the author upon request.] That is, use of the unphysical flux distributions from
the reservoirs used by the authors of Refs. 1–3 leads to exactly the same unphysical
consequences that they observe. This strengthens the conclusion that their unphysical
results are the consequence of their unphysical sampling for the fluxes.
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Another way to see just just how unphysical are the distributions of velocities
leaving the reservoirs used in Refs. 1–3 is to consider what would result from these if
the simple model in Sec. 2 were simulated in the absence of a gravitational field and
with TH = T0 = T and α = 0 so that both walls were perfectly absorbing. Taking
the limit g = 0 and dividing by vz, in Eq. (38), one obtains for nh(v),

nh(v) = B
1

|vz|
exp

(
−

1
2
mv2

kT

)
(vz < 0)

= A
1

|vz|
exp

(
−

1
2
mv2

kT

)
(vz > 0) . (39)

A steady state with respect to particle flux immediately requires A = B. The resulting
density is not even integrable over the velocity.

In a simulation using a single particle, one would choose the velocity of this parti-
cle, on each absorption and re-emission, from the half–Gaussian Maxwell–Boltzmann
distribution. Velocities with small vz would be selected more often than those with
large, and the particle would spend a time H/vz in transit between the horizontal
walls for a particle with z component of velocity vz. One could estimate the density
of particles in the velocity volume element δτv in any little spatial volume δV — or in
the entire volume V — by defining the dynamical variable N(v, t)δτv in analogy with
the description above of N(r,v, t), averaging over time and dividing by V . One will
find that slow particles are the most probable, and they will contribute to the average
proportionally to 1/vz, so one will obtain the very unrealistic velocity distribution in
Eq. (39) for the relative density of particles in the box with different velocities. In
addition, one will also spend an inordinate amount of the computational time simply
waiting for the very slow particles to cross the box. The mean time to pass between
floor and ceiling is infinite with this choice of fluxes.

If, instead, one uses the flux distributions j(r,v) in Eqs. (2) and (12) to generate
the velocities of the particles emanating from the walls, one will generate very few
particles with very small vz. They will take a very long time to cross, but the product
of their probability and their residence time will give a result varying smoothly with vz

and leading to a density of particles in the velocity volume element δτv in agreement
with the Maxwell–Boltzmann distribution.

Similar, but less calamitous, conclusions follow for the more complicated model
of Refs. 1–3 in the absence of the gravitator. With the gravitator absent, and the
particle density low enough that inter-particle collisions and self–gravitation of the
gas are negligible, the particles travel in straight lines, and it is possible to deduce the
density of particles in the cavity resulting from a particle flux from the cavity wall of
the form

jc(v) = −A exp

(
−

1
2
mv2

kTc

)
(v⊥ < 0) (40)

with the convention that flux and v⊥ are positive if outwardly directed. This corre-
sponds to the sampling choice in Refs. 1–3. Consider a point at a distance r from the
center of the cavity and a particle passing through that point with velocity v. This
particle left the cavity surface with the same velocity, v, from a point obtained by
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tracing back along the velocity vector to the cavity wall. The density at that point on
the cavity wall (and every other point on the cavity wall) is given, via the continuity
equation (35), by

nc(v) =
A

|v⊥|
exp

(
−

1
2
mv2

kTc

)
=

A

v cos(θc)
exp

(
−

1
2
mv2

kTc

)
(41)

, (42)

where θc is the angle the velocity vector v makes with the inwardly directed normal
to the cavity wall. Let θ be the angle that the velocity vector v makes with the
outwardly directed radius from the cavity center through the point of interest. The
law of sines relates θc and θ by r/ sin(θc) = rc/ sin(θ), where rc is the cavity radius.
As a consequence, by Liouville’s theorem(7) (Eq. (6) above) we may conclude that,
for a steady state, the particle density in the velocity volume element dτv at any point
in the container is given by

n(r,v)dτv =
A

v

[
1−

(
r
rc

)2

sin2 θ

]1/2
exp

(
−

1
2
mv2

kTc

)
dτv. (43)

This distribution is highly non-Maxwellian and very unphysical, although it is non-
integrable over velocity only at r = rc, and gives a finite residence time in the cavity.
Nevertheless, it is completely inconsistent with a gas in internal equilibrium. It
diverges proportionally to 1/v as v → 0 at every r and for every angle θ between 0
and π.

Curiously, this gas is formally “in equilibrium” with the flux coming from the
walls in the sense that, provided no collisions occur between molecules in the gas,
the corresponding flux is in detailed balance with the walls at every velocity. It does
not, however, correspond to a gas in internal equilibrium. If the density of the gas
were increased to the point where particles experienced many more collisions with
other particles than with the wall [a wide range of densities gives this condition with
negligible self–gravitation of the gas], then the particles near the center of the cavity
would establish a local equilibrium through inter-particle collisions, with a velocity
distribution of particle density given by the Maxwell–Boltzmann distribution. This
distribution is not in detailed balance with that from the walls. To attain a steady
state, the total particle and energy flux in the interior of the gas must match that at
the walls. By choosing the density and temperature of the gas in the interior, this can
be achieved. However, the energy flux from the walls resulting from the distribution
of velocities chosen by Sheehan, et al. can be evaluated as (3/2)kTc times the total
particle flux from the wall, while the energy flux across any surface in the interior
of an equilibrium Maxwell–Boltzmann gas is found to be 2kT times the particle flux
across that surface, due to the coupling between v2 and v⊥ noted in Sec. 2. As
a consequence, if the particle flux is to balance between the gas in the interior of

18



the cavity and that coming from the walls, then for the energy flux to balance, the
temperature of the interior gas must be lower than that of the walls. Alternatively,
if black–body radiation were to maintain the temperature of the interior of the gas
equal to that of the walls, as occurs with the gravitator present, then there would be a
steady–state flux of energy from interior to walls carried by the particles, balanced by
a steady–state flux of energy from the walls to the interior carried by the black–body
radiation. This is precisely the behavior seen by Sheehan, et al. in the presence of
the gravitator. Thus, this unphysical feature of the model with the gravitator present
is also exhibited in the absence of the gravitator and any influence of its gravitational
field. Therefore, it seems reasonable to conclude that the reason for this unphysical
behavior is not the presence of any gravitational “Maxwell Demon,” but rather the
unphysical nature of the distribution from which Sheehan, et al. have sampled for
the velocities of the particles leaving the cavity wall.

In contrast, if the flux at the cavity wall is taken to be of the form

jc(v) = Av⊥ exp

(
−

1
2
mv2

kTc

)
(v⊥ < 0), (44)

as we suggest it should, then the density everywhere in the container is simply given
by

n(r,v) = A exp

(
−

1
2
mv2

kTc

)
, (45)

which is the Maxwell–Boltzmann distribution for a gas in internal equilibrium, inde-
pendently of the assumption that the density is so low that inter-particle collisions are
unimportant. If the density of the gas were increased in this case, no difficulty would
arise, because the dilute gas already has the distribution required for equilibrium in
the more dense case.

There are three reasons why the authors did not notice the inappropriateness of
the half–Gaussian Maxwell–Boltzmann distribution for the purpose to which they put
it. First, the presence of a gravitational field makes the resulting anomalies in the
density distribution of velocities more subtle. In the presence of such a field, there is
a maximum residence time in the cavity of 2(2H/g)1/2 for the simple model studied
in Sec. 2 and an analogous limit for the model studied in Refs. 1–3. Thus, the
extraordinarily long wait times for particles emitted with very low velocities in the
model considered in Sec. 2 are not present. As a consequence, the velocity distribution
of the particle density is singular at vz = 0 only at heights h = H and h = 0 in
the simple model, and at v = 0 only at the cavity surface and the surface of the
gravitator in the more complex model. Second, even in the absence of the gravitator,
the singular nature of the density is more subtle in their three–dimensional cavity
because of absorbing surfaces in all directions, and in any case, they apparently did
no simulations in the absence of the gravitator. Third, because those authors simulate
a single particle, they would have noticed the pile–up in density at zero velocity only
by calculating, in the manner described above, the particle density distribution over
velocity. They did no sampling for the density in their simulations.

The one-dimensional distributions shown as f1 – f4 in Fig. 2 of Refs. 1 and 3
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and described in Eqs. (1) and (2) of Ref. 3 are revealing about the nature of the
distributions calculated by Sheehan, et. al. The distributions f1 and the dashed curve
in f3 are both given (for appropriate ranges of the velocity) by the form in Eq. (1)
of Ref. 3,

f1(v) [= f3(v)] = α1/2 exp
(
−αv2

)
, (46)

where, here, α = mA/2kT . The dashed curve in distribution f4 is given by Eq. (2)
of Ref. 3

f4(v) =

[
α

v2 + β

]1/2

v exp
(
−α(v2 + β)

)
, (47)

where β = 2GmG

[
1

rG
− 1

rc

]
. These formulas, if correct, immediately rule out the

possibility that the distributions fi are distributions of density over velocity because
if they were, then Liouville’s theorem(7) (see Eq. (6) above) would require that
f4(v) = α1/2 exp (−α(v2 + β)). Sheehan [D. P. Sheehan, private commun.] justifies
his Eq. (2) with the argument that every particle that leaves the gravitator with
sufficient velocity arrives at the cavity wall, so that the distribution of velocities is
over the same set of particles. It then follows that the appropriate transformation is,
for a steady state,

f3(v)dτv = f4(v
′)dτ ′v , (48)

where v and v′ are related by the conservation of energy relation

1
2
mAv2 = 1

2
mA(v ′)2 +

mAmGG(rc − rG)

rcrG

. (49)

Applied to dv and dv′, in the one–dimensional version of his model in which particles
only move radially and the gravitator is centered in the cavity, this gives Eq. (47).
In fact, Eq. (48) is essentially a flux conservation equation for steady states:

jG(v)dτvdA = jc(v
′)dτ ′vdA ′ , (50)

where jG and jc are the flux just above the gravitator and just below the cavity
wall at the velocities v and v ′, respectively, related by Eq. (49), and where dA is
an element of area on the gravitator and dA ′ is the corresponding element of area
on the cavity wall, transformed under the equations of motion. Eq. (50) may be
derived from Liouville’s theorem by combining the theorem for the transformation
of the density in Eq. (6) with that for the conservation of volume in phase space:(7)

dτrdτv = dτ ′r dτ ′v. The latter may be written in the form

v⊥dAdτv = v ′⊥dA ′dτ ′v . (51)

Multiplying by dt, the volume in space swept out in time dt at the gravitator wall is
v⊥dAdt, and so the volume in phase space is v⊥dAdτvdt. The same reasoning holds at
the cavity wall. Combining this with Eq. (6) gives Eq. (50). [As in Sec. 2, the time
t′ differs from t by the time needed to evolve from r,v to r ′,v ′. For a steady state,
however, the properties in question are independent of time, and so the equation may
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be taken as correct for the properties at any single time.] Because the fi in Refs.
1–3 are taken as normalized probability distributions, the ratio dA′/dA = (rc/rG)2

cancels out.
Examining Eq. (38) for vz > 0 and h = H we see that it takes the form

jH(v) = (1− α)A
vz

(v2
z + 2gH)1/2

exp

(
−

1
2
mv2 + mgH

kT0

)
+

αB exp

(
−

1
2
mv2

kTH

)
(vz > 0) . (52)

The first term is of the same form as Eq. (47), while the second term is the Gaussian
arising from the particles emanating originally from the cavity wall that are reflected
back from the gravitator. This reinforces in one more way the conclusion that the
distributions fi in Refs. 1–3 are, in fact, distributions of flux, not distributions of
density, over velocities.

The relationship between the solid curves in f1, f2, and f3 of Fig. 2 of Refs. 1, 3
is in error. They give no formula for their distribution f2, but the same logic they
use to obtain f4 from f3 would lead to distributions f2 and f3 of the form

f2 =

[
α

v2 − β

]1/2

v exp
[
−α(v2 + β)

]
(v < −(β)1/2) (53)

and

f3 =

[
α

v2 − β

]1/2

v exp
[
−α(v2 + β)

]
(v > (β)1/2) (54)

for the solid curves in the graph of f2 and f3 in Fig. 2 of Refs. 1 and 3. This predicts
a strongly up–curving distribution that actually diverges as v2 ↘ β. This is quite
unlike the appearance of their f2 or the solid curve in their f3. Apparently, the failure
to produce an accurate (according to their arguments) f2 and f3 in their Fig. 2 was
simply an oversight by the authors of Refs. 1 and 3. Sheehan has acknowledged this
[D. P. Sheehan, private commun.]

At h = 0, and for vz < −(2gH)1/2, Eq. (38) gives precisely the form predicted
for f2 and f3 in Eqs. (53) and (54), provided appropriate translation of parameters
between the two models is made, that allowance is made for the fact that the fi

are normalized to unity rather than to give total particle fluxes, and that Eq. (38)
includes contributions from both reservoirs.

If one interprets the distributions f1 – f4 of Refs. 1–3 as flux distributions, then
these papers are both internally and mutually consistent in their analysis (with the
exception of the error just noted). They are then, however, inapplicable to any phys-
ical system because of the unphysical choice of the flux distributions f1 and f3 from
the thermal reservoirs. On the other hand, if f1–f4 are interpreted as distributions
of the density of particles over velocity, then these papers contain both internal er-
rors and mutual inconsistencies that render their conclusions invalid, even though
the distributions f1 and f3 would then be physically appropriate. In particular, the
transformation embodied in Eqs. 1 and 2 of Ref. 3 is then in conflict with Liouville’s
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Theorem, as noted above.
We now show that, with a physically sensible choice for the flux distribution from

the cavity walls and gravitator, Liouville’s theorem(7) (see Eq. (6) above), together
with the continuity equation and reasoning concerning flux balance at the walls, im-
plies that the model of Refs. 1–3 is consistent with the second law of thermodynamics
and with an equilibrium state in which the gas obeys Maxwell–Boltzmann statistics
throughout the container with total particle density and pressure given by the baro-
metric law and with detailed balance in the equilibrium between the gas and the
surfaces. We restrict ourselves to the case where the gravitator and cavity wall have
the same temperature: TG = Tc = T .

Consider a particle density in the velocity volume element dτv of the form

n(r,v)dτv = A exp

(
−mAmGG(r − rG)

rrGkT

)
exp

(
−

1
2
mAv2

kT

)
dτv , (55)

where r is the vector position relative to the center of the gravitator, where r = |r|
is the distance of the point of interest from the gravitator center, and, following the
notation of Refs. 1–3, where rG is the radius of the gravitator, mA is the mass of
the gas atoms, mG the mass of the gravitator, and G is the universal gravitational
constant. We emphasize that the constant A in Eq. (55) is chosen small enough
that collisions between particles in the container can be neglected; we are concerned
with the equation of motion of the particles under the gravitational influence of the
gravitator alone. For this density profile, the particle flux in the gas just above and
normal to the gravitator surface is given by

jG(r,v)dτv = Av⊥ exp

(
−

1
2
mAv2

kT

)
dτv . (56)

Of the particles with velocity directed inward, a fraction Ptrap(k, v⊥) given by Eq. (1)
of Ref. 1 are absorbed by the surface k, where k = 1, 2 indexes the two hemispheres.
[We use k here to index the hemispheres, rather than the index j used by Sheehan,
et al. to avoid confusion with the symbol for flux.] We take the flux in the velocity
volume element dτv emanating from the two hemispheres of the gravitator to be of
the form

jG,k,res.(v) = Av⊥Ptrap(k, v⊥) exp

(
−

1
2
mAv2

kTc

)
(v⊥ > 0) , (57)

This flux produces a local equilibrium, with detailed balance at every velocity, between
the rate of particles being absorbed and emitted at the gravitator surface. Because
the inward flux is independent of position and azimuthal angle on the gravitator
surface, and fraction Ptrap(k, v⊥) is absorbed, fraction (1 − Ptrap(k, v⊥) is reflected,
and the remaining fraction Ptrap(k, v⊥) is re-emitted. For exiting velocities that will
re-collide with the gravitator, they will reach the gravitator with their kinetic energy
unchanged. Whichever hemisphere they collide with, the inward flux multiplied by
the absorption probability is exactly matched by the emissive flux. It remains, then,
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to establish the appropriate flux out of the cavity wall that will just balance that
coming from the gravitator and from other points on the cavity wall.

For particles leaving the gravitator with a velocity such that they collide with the
cavity wall, the velocities at the gravitator and cavity wall are related through the
general conservation of energy equation, applying for any trajectory within the cavity
between cavity wall and gravitator,

1
2
mAv2

f = 1
2
mAv2

i −
mAmGG(rf − ri)

rfri

. (58)

Here, the initial velocity, vi, is that at the gravitator surface, vG = vi, the final
velocity, vf is the velocity at the cavity wall, vc = vf , with v2 = v2

x + v2
y + v2

z . Also,
here, ri is the initial distance from the center of the gravitator, here, rG, the radius
of the gravitator, and rf is the final distance from the center of the gravitator, here,
the distance, r, of the point on the cavity wall from the center of the gravitator. If
the gravitator is at the center of the cavity, then r = rc, the cavity radius, for all r
on the cavity surface. If the gravitator is off–center, then r varies with the vector
position r on the cavity wall. In either case, however, Liouville’s theorem(7) (see Eq.
(6) above) guarantees that the density there is given exactly by Eq. (43). Note that
this density is, apart from a prefactor setting the magnitude of the total density at
the point r, simply a Maxwell–Boltzmann distribution appropriate to a gas in internal
equilibrium. The flux into the cavity wall in the velocity volume element dτv is then
given by

jc(r,v)dτv = Av⊥ exp

(
−mAmGG(r − rG)

rrGkT

)
exp

(
−

1
2
mAv2

kT

)
dτv (v⊥ > 0) , (59)

where v is the velocity of the particle arriving at the cavity wall and where v⊥ is the
component of v perpendicular to the cavity wall, taken as positive in the outward
direction. Note that this flux is independent of azimuthal angle of the velocity vector
around the normal to the surface.

According to the assumptions of Refs. 1–3, every particle arriving at the cavity
wall is absorbed. We now take the flux from the cavity wall to be

jc,res(r,v)dτv = Av⊥ exp

(
−mAmGG(r − rG)

rrGkT

)
exp

(
−

1
2
mAv2

kT

)
dτv (v⊥ < 0) .

(60)
By the independence of azimuthal angle, this guarantees detailed balance at every
vector velocity between absorbed and emitted particles that pass between the gravi-
tator surface and the cavity wall.

The flux in Eq. (60) also guarantees detailed balance for particles passing from
one point to another on the cavity surface. This follows from the observation that Eq.
(60) is consistent with the density in Eq. (55), and that this density is consistent with
Liouville’s theorem. Given any two points on the cavity surface and a designation of
one as the initial point and the other as final, then for any initial velocity that leads
from the initial point to the final point, the final velocity will be given by the energy
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conservation equation (58) where ri and rf are the distances of the initial and final
points on the cavity wall from the center of the gravitator and where vi and vf are
the initial and final velocities. Liouville’s theorem then guarantees that the densities
at the two points are related as in Eq. (55).

As a consequence, we conclude that the proposed density in Eq. (55) is an equilib-
rium steady–state solution to the equations of motion in the cavity and the postulated
absorption probabilities and emission fluxes. On the other hand, the proposed emis-
sion fluxes are precisely those which are required in order that the gravitator and
cavity wall be in local equilibrium with a gas that is itself in internal equilibrium at
temperature T and the local density given by Eq. (55) in the absence of any gravi-
tational field. They are, thus, completely in the spirit of those proposed in Section
2.

The proposed density is an equilibrium Maxwell–Boltzmann distribution for a
gas in a spherical gravitational field, satisfying the barometric law for dependence
of density on altitude. We thus conclude that the equilibrium distribution expected
on the basis of the second law is a steady state distribution for the dynamics of this
problem, satisfying detailed balance of particle flux at every velocity. It therefore also
satisfies detailed balance of energy flux at every velocity. As a consequence, there is
no tendency for energy to flow in either direction between gravitator and cavity wall.

There will also be no net force on the gravitator from particle collisions with the
gravitator. There is, however, one consideration that was irrelevant in the model
considered in Sec. 2, but that must be considered here. In calculating the force on
the floor of the cavity in Sec 2 and on the gravitator here, we have calculated only
the force arising from momentum transfer from collisions with the particles. There is
also a gravitational force exerted on the gravitator by the particles at a distance. In
the model of Sec. 2, this was the same, independent of α because the density profiles
were the same. It gives zero net force on the gravitator in the more complicated
model considered here when the gravitator is at the center of the cavity because of
the spherical symmetry. When the gravitator is off center in the cavity, however, there
will be a force on the gravitator due to the imbalance of gravitational attraction of
atoms in the cavity. This will, however, be directed along the radius of the cavity,
attracting the gravitator to the center of the cavity. If van der Waals interactions
between the gas particles and the material making up the cavity walls were included,
there would also be a force due to these interactions, also directed along the cavity
radius, but (typically) pushing the gravitator toward the cavity wall. Neither of these
forces, however, can be harnessed to provide an ongoing source of work at the expense
of heat from the cavity wall, so they lead to no contradiction of the second law of
thermodynamics.

In the argument above, we consider each of the possible kinds of trajectory: grav-
itator to gravitator (both to the same kind of surface and to the opposite kind),
gravitator to cavity wall, cavity wall to gravitator, and cavity wall cavity wall. We
find that the proposed density is in a steady state with respect to each of the pos-
sible kinds of exchange: gravitator surface to the same kind of gravitator surface
and return, gravitator surface to the opposite kind of gravitator surface and return,
gravitator surface (of either kind) to cavity wall and return, and cavity wall to cavity
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wall and return. Together, these give detailed balance at each surface element and
at every velocity between the particle flux arriving at any vector velocity and the
flux leaving at minus that vector velocity. As a consequence, we have deduced that
the proposed density is an equilibrium solution of the equations of motion and the
proposed absorption and emission probabilities.

Our analysis of the more complicated model of Refs. 1–3 is necessarily less com-
plete than that of the model in Sec. 2. We do not (and are not able to) solve the
case where TG 6= Tc, and so do not show that the equilibrium steady state obtained
is a stable steady state (although this seems very plausible). We are also unable to
consider in detail the consequences of making their faulty choice for the particle flux
at the cavity wall and gravitator. These limitations make the solution of the simpler
model considered in Sec. 2 a worthwhile investment. We have shown, however, that
with the physically sensible choice for particle fluxes from the cavity wall and grav-
itator, there is no tendency for the more complicated model of Refs. 1–3 to deviate
from the proposed density, and that this density satisfies detailed balance between
the walls and the gas at every velocity, and so is an equilibrium state. This is not the
case if the fluxes used by those authors are employed.

We conclude that the reason the authors of Refs. 1–3 obtain unphysical results in
the analysis of the gravitator is that they use an unphysical distribution over velocities
for the flux of particles leaving the reservoirs. When this flux is used in the simple
model, the same unphysical results are obtained. When the physically correct flux is
used, both the simpler model and the model considered by those authors are consistent
with the second law of thermodynamics and with detailed balance at equilibrium.

4 DISCUSSION

We have argued, we believe compellingly, that the authors of Refs. 1–3 obtain their
highly controversial results as a consequence of making a fundamental error in their
choice for the distribution over velocity of what turns out on careful examination
to be the flux of particles through a surface. We did so by examining a simpler
model, obtaining an exact solution for its steady states, and reasoning about what
the authors’ method would yield if applied to this simpler model. We do not claim
that our method of analysis gives the complete solution to the model in Refs. 1–3. It
does, however, allow us to show that the physically sensible choice for the flux from the
walls proposed here gives a steady state solution for that model that satisfies detailed
balance between the gas and the cavity wall and gravitator at every velocity, and has
a density that is the expected equilibrium density for particles in a gravitational field.

Our simpler model provides a legitimate testing ground for the methods employed
by those authors. The analytic solution to our model in three dimensions with the
reservoir fluxes we propose is in complete accord with the principle of detailed balance
and with the second law of thermodynamics. Their method, when applied to our
model, gives exactly the same unphysical results as they find in their more complicated
model. Moreover, their method leads to unphysical answers for the properties of both
their model and our model when applied in the absence of gravity, where the answers

25



are well known.
We note that throughout our treatment, both of the simpler model introduced in

Sec. 2 and of the model of Sheehan et al., we restrict the application of Liouville’s
theorem to trajectories that lie entirely between the absorbing surfaces. That is, given
the density just inside the cavity from an absorbing surface, whether the upper or
lower wall of the simpler model of Sec. 2 or the cavity wall or gravitator surface of the
model of Sheehan, et al., particles with velocities that will necessarily carry them away
from that surface are followed using Liouville’s theorem to obtain the corresponding
density just inside the cavity from the destination surface. For particles adjacent to
an absorbing surface and with velocities that will carry them into that surface, the
continuity equation is used to obtain the corresponding flux, and then the absorption
and emission probabilities are used to determine the flux balance at the wall. We
do not use Liouville’s theorem to describe the collisions of the particles with any
absorbing surface. [We do apply Liouville’s theorem to trajectories in which particles
strike the vertical, specularly reflecting side walls of the simpler model. Such collisions
are purely mechanical and conservative, preserving phase space density and volume,
so that Liouville’s theorem applies to these trajectories.] In treating the model of
Sheehan et al., Liouville’s theorem is not applied to particle–surface collisions of any
sort. Zhang and Zhang(8) have pointed out that interactions between particles and
membranes or surfaces can be devised that are purely mechanical but that do not
preserve phase–space volume. They conclude that such interactions do not occur in
nature. Sheehan et al. do not describe their particle–surface interactions in terms
of equations of motion, so that no such analysis of their particle–surface collisions
is possible. Rather, one must reason by balancing the fluxes based on the assumed
relative probabilities of absorption and emission. Their choice of relative emission
probabilities has an effect analogous to choosing a particle–surface interaction that
does not preserve phase space volume. It makes their model unphysical even in the
absence of gravity.

Quite apart from the argument based on consistency with the Maxwell–Boltzmann
distribution for particle density, there is another sound theoretical reason to choose a
velocity distribution of particle production rates proportional to v⊥ exp(− 1

2
mv2/kT ).

The particles are escaping from a potential well provided by the “trap.” According to
activated complex theory,(9) the rate of escape from such a potential well is equal to
the number of trapped particles (or the number per unit area for the flux from a two–
dimensional surface in three dimensions) times the probability that the particle has
the required energy, times the rate of passage through the transition state for such
particles. The probability that the particle has the required energy, for a particle
escaping with velocity v, will be proportional to exp(−[Vwell + 1

2
mv2]/kT ), where Vwell

is the minimum energy needed to escape the well, while the rate of passage through
the transition state may be taken as v⊥/d, where d is a length characteristic of the
transition state. This naturally leads to a rate equal to N(v⊥/d) exp(−[Vbarrier +
1
2
mv2]/kT ), which is precisely of the form j(v) = Av⊥ exp(− 1

2
mv2/kT ).

The foregoing discussion is appropriate if there is no potential barrier to particle
absorption or if that barrier is either zero or infinite with probabilities 1− α and α,
respectively. If there is a finite barrier to absorption, then the particle may “ride
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downhill” in energy from the transition state, and there may be a threshold energy
(and corresponding velocity) below which there is no flux from the surface. In addi-
tion, if there are transition–state recrossings, then activated complex theory is only
an approximation, and additional dependence on particle velocity may appear in the
rate of escape. The factor of v⊥, however, is always present.

The model of Sec. 2 is of some interest beyond the issue of resolving the paradox
presented by Refs. 1–3. The treatment applies equally well to a potential energy well
φ(h) that varies nonlinearly with height h. The essential ingredient is the change in
potential energy, there mgH. We might therefore, model the traps at the surfaces
by imagining that they consist of a potential well in which the potential drops very
rapidly just below 0 and just above H by an amount large enough that the density
increases to a value large enough that the mean free path of the molecules between
collisions with each other drops to a small value typical of a gas at 1 atm. In that
case, the gas can easily thermalize, both internally and with whatever reservoir we
choose to employ. Because the velocity distribution and particle density vary in a
manner independent of whether the mean free path is large or small, the formulas
for the density, n(r,v), and flux, j(r,v), can be expected to remain valid through
the potential change. This gives yet another argument for the form chosen for j0(v)
and jH(v). Moreover, it provides an aid in understanding why the vapor evaporating
from an adsorbed solid layer or a liquid in an equilibrium state is described by a
Maxwell–Boltzmann velocity distribution with the same temperature as the solid or
liquid.

The authors of Ref. 1 make the point that the scientific community has an obliga-
tion to keep an open mind on the validity of the second law, and to test it rigorously.
They lament that this has not been the case. While the scientific community does
have an obligation to address purported violations of the second law, scientists who
make such claims have an obligation to test their own algorithms thoroughly to ensure
that their assumptions are sound and consistent with known physics. If the authors of
Refs. 1–3 had tested their simulation on simpler models, such as the one presented in
Sec. 2, and under simpler conditions, such as in the absence of gravity, they probably
would have come to realize that there was an inconsistency between their assump-
tions and physical reality. It would seem likely that others of the “growing number”
of unresolved second law paradoxes quoted by the authors of 1 and 3 are worthy of
closer inspection.
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