
A Simple Automation of a Peircean Decision Procedure
Richard B. White

Transactions of the Charles S. Peirce Society: A Quarterly Journal in
American Philosophy, Volume 42, Number 1, Winter 2006, pp. 117-131
(Article)

Published by Indiana University Press
DOI:

For additional information about this article

https://doi.org/10.1353/csp.2006.0016

https://muse.jhu.edu/article/200099

[18.117.196.52] Project MUSE (2024-04-20 04:54 GMT)

eirce’s graphical sentential logic, the
system of alpha graphs, is much more

than an historical curiosity. Although a large
alpha graph is difficult to manipulate “by
hand,” the alpha graphs are admirably suited
to automation. In particular, a simple decision
procedure for the alpha graphs is tailor-made
for the programming language LISP. This
decision procedure is described in section I
below and is implemented by a LISP program
CSProve in section II. Section III gives exam-
ples of CSProve as it ran on a desktop com-
puter and indicates how the program is easily
adapted to parallel processing.

The decision procedure differs from
tableau methods and the widely used Robinson
resolution method in at least two interesting
ways: unlike resolution it does not require that
a formula be put into a normal form before the
method can be applied, and unlike both tableau
methods and resolution it does not require any
branching tree constructions. If the method
were formulated as a proof procedure in the
usual notation it would have only four one-
premise inference rules of the form:

A1 ^ . . . ^ Am, m,n ≥1.
B1 ^ . . . ^ Bn

Don D. Roberts discovered that by 1903
Peirce had a decision procedure for the alpha
graphs.1 Peirce’s method is surprisingly com-
plex in comparison with the method of this
paper, a method that now seems almost obvi-
ous; perhaps, to use Peirce’s own words, this
“is a curious example of how late a develop-
ment simplicity is.”2

The reader is assumed to be familiar with
the alpha graphs but not with LISP. A brief
exposition of the little fragment of LISP
needed for CSProve is given in section II.
Readers familiar with LISP may skip that and
go directly to the program, which I hope they
can improve.

117

A Simple
Automation of a
Peircean Decision
Procedure
Richard B. White

TRANSACTIONS OF THE CHARLES S. PEIRCE SOCIETY
Vol. 42, No. 1 ©2006

P

[1
8.

11
7.

19
6.

52
]

 P
ro

je
ct

 M
U

S
E

 (
20

24
-0

4-
20

 0
4:

54
 G

M
T

)

I
Alpha graphs will be written with parentheses in place of the closed curves
Peirce used for “cuts.” (Peirce himself sometimes made this replacement.3)
This has two advantages: it is typographically convenient, in fact necessary
for a complicated graph, but more importantly it turns an alpha graph
immediately into a LISP list. (The name LISP was given to this language to
suggest “list processing.”)

The decision procedure uses four operations for transforming graphs on
the sheet of assertion:

O1. A graph (- - - (g1 . . . gn) - - -) may be erased if graphs of type g1, . . .,
gn occur, in any order, on the area indicated by the dashes. For exam-
ple, the graph ((A) (B (A) C) C (A) B) may be erased from the sheet.
Any graph erased by O1 could be returned to the sheet by using
Peirce’s rules. For instance, the graph of the example could be writ-
ten on the sheet by first writing (()), then ((A) () C (A) B) by inser-
tion on an odd area, and then ((A) (B (A) C) C (A) B) by iteration
into an even area. Therefore O1 is an equivalence transformation; the
content of the sheet after an application of O1 is logically equiva-
lent to the content of the sheet before that application. The other
three rules also are equivalence transformations in that sense.

O2. If O1 is not applicable and a graph ((g)) is on the sheet, then it is
replaced with g.

O3. If neither O1 nor O2 is applicable and there is a graph (- - - ((g))
- - -) on the sheet, then that graph is replaced with (- - - g - - -).

O4. If none of O1, O2, O3 is applicable and there is a graph (- - - (g1
. . . gn) - - -) on the sheet, n ≥ 2, replace that graph with (- - - (g1)
- - -) (- - - (g2 . . . gn) - - -). Again this is an equivalence transfor-
mation. Given (- - - (g1 . . . gn) - - -), it may be repeated to get
(- - - (g1 . . . gn) - - -) (- - - (g1 . . . gn) - - -), and then (- - - (g1)
- - -)(- - -(g2 . . . gn) - - -) by erasures on an even area. On the other
hand, from (- - - (g1) - - -)(- - - (g2 . . . gn) - - -) one gets (- - -(g1
(- - - (g2 . . . gn) - - -)) - - -) by iteration into an even area and era-
sure on the sheet. From this follows (- - - (g1((g2 . . . gn))) - - -) by
deiteration from an odd area of graphs on the area indicated by the
dashes. Then (- - -(g1 . . . gn) - - -) by removal of a double cut.

To decide whether or not the graph on the sheet is valid, i.e. tautologous,
apply O1–O4 until either the sheet is emptied, in which case the graph with
which the procedure was begun is valid, or else at some point at least one
graph on the sheet will either be atomic or of the form (g1 . . . gn), n ≥ 1,
to which O1 is not applicable and with each gm either atomic or of the form
(B) for atomic B. From this graph one can read off a valuation that falsifies
the original graph on the sheet. Two examples illustrate the method.

Let the sheet contain only the graph ([(A [B]) (A)] [A]). (Here, as else-
where, brackets may be substituted for some parentheses to improve read-
ability.) Only O4 is applicable. Applying it replaces the graph with ([(A [B]

T
R

A
N

S
A

C
T

IO
N

S

118

)] [A]) ([(A)] [A]). By O1 the right-hand graph is erased to leave ([(A [B]
)] [A]). Then an application of O3 replaces that graph with (A [B] [A])
which is erased by O1. The sheet has been emptied, showing that the initial
graph is a tautology.

Let the graph ([([A (C)])([(C) B])] [(A) (B)] [C]) be the only
graph on the sheet. Only O4 is applicable. It can be applied in two ways.
Applying it via the left-most subgraph in virtue of which O4 is applicable
replaces the graph with:

([([A (C)])] [(A) (B)] [C]) ([([(C) B])] [(A) (B)] [C]).

Applying O3 to this gives ([A (C)] [(A) (B)] [C]) g, where g is the right-
hand graph in the preceding.

Another application of O4 yields ([A] [(A) (B)] [C]) ([(C)] [(A)
(B)] [C]) g. O1 then results in ([A] [(A) (B)] [C]) g. O4 replaces this
with ([A] [(A)] [C]) ([A] [(B)] [C]) g. O1 then gives ([A] [(B)] [C]) g.
By O3 this is replaced by ([A] B [C]) g. But no rule can erase ([A] B [C]
), so the procedure halts and we can read off a counterexample to the orig-
inal graph: make A false, B true, and C false. It is easily verified that this val-
uation falsifies the graph with which the procedure began, which is
equivalent in meaning to: ((A ∨ B) ^ ¬C) → ((A → C) ^ (B → C)).

The decision method given by O1-O4 is evidently sound and complete.
The procedure starts with a graph g1 . . .gn, n ≥ 1. O1, O2, and O3 replace
a graph with a simpler graph. O4 replaces a graph h1 . . . hm with a longer
graph, e. g. h11h12h2 . . . hm, but the graphs h11 and h12 are simpler than the
graph h1 which they replace. Therefore the procedure must eventually ter-
minate. If a graph j1 . . . jm is reached with a jk that is either atomic or of the
form (f1 . . . fp) where each fi is either atomic or (B) for some atomic B and
O1 cannot erase jk, then jk can obviously be falsified, thereby falsifying j1 . . .
jm and the initial graph g1 . . .gn to which j1 . . . jm is logically equivalent.

Although O1–O4 are sufficient to decide any alpha graph, for an effi-
cient automation of the decision procedure it is desirable to modify O4 and
to add a rule of contraction which is a special case of Peirce’s deiteration
rule. An example will illustrate how O4 may be refined. Suppose a graph (1)
(A [B C] E [B D] F) is on the sheet. This graph is equivalent to (2) (A [B]
E F) (A [C] E [D] F). For (1) is transformable to (A [B] E [B] F) (A [C] E
[D] F) by repeating (1) and erasing on even areas, and that graph is equiva-
lent to (2). On the other hand, from (2) follows (A [(A [B] E F) C] E [(A
[B] E F) D] F) by iterating (A [B] E F) onto even areas. Then deiteration of
A, E and F from odd areas transforms this to (A [([B]) C] E [([B]) D], and
(1) follows from this by removing double cuts. Generalizing from this
example, the modified O4 becomes O4*: a graph (X (g1 . . . gn)Y), n ≥ 2,
with not both areas X and Y empty, is replaced with (X1 (g1) Y1)(X2 (g2 . . .
gn) Y2) in which X1 and Y1 are the results of removing all graphs (W g1 Z),
for any W and Z, from X and Y, and X2 and Y2 are the results of replacing

A
 Sim

ple A
utom

ation of
a Peircean D

ecision Procedure
•

R
ich

ard B
. W

h
ite

119

[1
8.

11
7.

19
6.

52
]

 P
ro

je
ct

 M
U

S
E

 (
20

24
-0

4-
20

 0
4:

54
 G

M
T

)

each graph (W g1 Z) in X or Y with (W Z). An application of O4* will be
called an expansion of the sheet via (g1 . . . gn).

The contraction operation (Con) is a special case of Peirce’s deiteration:
a graph (X) on the sheet, X not empty, is replaced with (X1), in which X1
results from X by removing from any graph (g1 . . . gn) in X all gm’s that are
also in X. For example. Con replaces the graph ([A] [B (A)] C [C D]) on
the sheet with ([A] [B] C [D]). This accomplishes in one step what O1–O4
would do in four:

([A] [B (A)] C [C D])
([A] [B] C [C D]) ([A] [(A)] C [C D]) by O4
([A] [B] C [C D]) by O1
([A] [B] C [C])([A] [B] C [D]) by O4
([A] [B] C [D]) by O1

O1–O4*, Con are designed to minimize the size of the graph on the
sheet during the decision process; as LISP programs the simpler O1–O4
generally require the execution of fewer instructions than O1–O4*, Con.

A graph is prime if it is either atomic or of the form (g) for atomic g. A
graph is irreducible if it is prime or of the form (g1 . . . gn), n ≥ 2, with each
gm prime. The O1–O4, Con decision procedure may now be presented in a
form that is straightforwardly convertible to a LISP program. A line of the
form Q? m; n means “if the answer to question Q is affirmative, then go to
step m; otherwise go to step n.”

1. Is the sheet empty? 2; 3
2. Output “valid” and halt.
3. Is O1 applicable? 4; 5
4. Apply O1 and go to 1.
5. Is there an irreducible graph on the sheet? 6; 7
6. Output an irreducible graph from the sheet and halt.
7. Is O2 applicable? 8; 9
8. Apply O2 and go to 1.
9. Is O3 applicable? 10; 11

10. Apply O3 and go to 1.
11. Is Con applicable? 12; 13
12. Apply Con and go to 1.
13. O4* must be applicable. Apply O4* and go to 1.

An irreducible graph may be erasable by O1, but such a graph will never
be an output resulting from step 6 because it will be erased at step 4.

An example illustrates the program: Let the sheet contain only ([A B
(C)] [A (B) D] [A (B) (C) (D)] [(A) D] [(A) (C) (D)] [C]). Given this, the
program will reach step 11 and find that the graph is contractible. Applying
Con gives ([A B] [A (B) D] [A (B) (D)] [(A) D] [(A) (D)] [C]). With this
graph the program will reach step 13. Applying O4* via [A B] (which is

T
R

A
N

S
A

C
T

IO
N

S

120

what the LISP version will do) yields ([A] [(A) D] [(A)(D)] [C]) ([B] [(B)
D] [(B) (D)] [(A) (D)] [C]). From this by Con comes ([A] [D] [(D)] [C])
([B] [D] [(D)] [(A) (D)] [C]), and then the program will apply O1 twice to
empty the sheet and give the output “valid.”

II
LISP was invented in the late 1950’s and has steadily evolved into a very
powerful general-purpose programming language. However, for the pro-
gram CSProve only a very small fragment of LISP is needed.

For our purposes a LISP expression is either an atom or a list. Typical
atoms are A, B, C, AB, a, aB, and numerals (not numbers) 1, 2, 3, etc. A list
is a sequence of LISP expressions enclosed in parentheses. For example, (C
(A B) ((D) A)) is a list with three members: the atom C, the list (A B) whose
members are the atoms A and B, and the list ((D) A) whose members are the
one-membered list (D) and the atom A. One must take care to separate
atoms in a list by spaces. For example, the two-membered list (A B) contains
the atoms A and B, but (AB) has just one member, the atom AB. A list may
be empty. The empty list is NIL or (). NIL does double duty in LISP; it is
the empty list but it also serves as the truth-value “false.”

In LISP a function f of n inputs is applied to e1, . . ., en by executing the
expression (f e1 . . . en). For example, executing (+ 2 3) will return 5, or
briefly (+ 2 3) is 5. The program CSProve uses several basic functions that
are built in to LISP, along with some functions that will be defined in terms
of these functions. The following functions are available in any current
dialect of LISP.

first. First applied to a list L returns the first, i.e. the leftmost, member of
L. For example, (first ‘((A B) C ((D) A))) is (A B). The apostrophe
before the list input to first, as to other functions that operate on lists,
is crucial. It tells LISP to regard what follows the apostrophe simply as
a list of expressions, not as a function to be evaluated. For instance,
(first ‘(+ 2 2)) will return +, but (first (+ 2 2)) will return an error
message such as “Error. Invalid list 4.”This is because given (first (+ 2
2)) LISP first evaluates (+ 2 2) by adding 2 to 2 and then tries to take
the first member of the result 4, which is nonsensical.

rest.4 Rest applied to a list x returns x minus its first member. For exam-
ple, (rest ‘((AB) C (D))) is (C (D)). (rest NIL) is NIL.

second. Second applied to a list x is the second member of x, if there is
such; otherwise it is NIL (second ‘(A (B C) D) is (B C).

third. Third given a list x returns the third member of x, if there is such;
otherwise it is NIL. (third ‘(A B (C)(D E))) is (C).

The above functions can of course be composed. For example, (first (rest
‘(A B C))) is B, and (third (second (second ‘(A (B (C D E)))))) is E.

The functions cons, list, and append are used to form lists.

A
 Sim

ple A
utom

ation of
a Peircean D

ecision Procedure
•

R
ich

ard B
. W

h
ite

121

[1
8.

11
7.

19
6.

52
]

 P
ro

je
ct

 M
U

S
E

 (
20

24
-0

4-
20

 0
4:

54
 G

M
T

)

cons. Given an expression e and a list x, (cons e x) gives the list whose first
member is e and whose rest is x. (cons ‘(A B) ‘(C D)) is ((A B) C D).
(Cons ‘A NIL) is (A).

list. Given expressions e1, . . ., en, n ≥ 1, list forms the list whose members
are e1,en . (list ‘(A) ‘C ‘D) is ((A) C D).

append. Append unites two lists by appending the second to the first.
(append ‘(A B) ‘(C (D))) is (A B C (D)). (append ‘(A B) NIL) is (A
B).

mapcar. Given a function f and a list x, (mapcar #’f x) gives the list which
results from x by replacing each member e of x with (f e). (mapcar
#’list ‘(A B C) is ((A) (B) (C)). (mapcar #’first ‘((A B) (C D) (E F
G))) is (A C E).

A LISP predicate is a function that outputs either t (“true”) or NIL
(“false”). Traditionally the names given to predicates end with p, but there
are exceptions to this, as in atom, null, and equal.

atom. (atom x) is t if x is an atom, NIL if x is not an atom. (atom ‘(A B))
is NIL. (atom ‘A) is t.

listp. (listp x) is t if x is a list, NIL if x is not a list. (listp ‘(A B C)) is t.
(listp ‘A) is NIL. (Listp NIL) is t.

null. (null x) is t if x is the empty list; otherwise it is NIL. (null ‘()) is t.
(null ‘(A B)) and (null ‘A) are NIL.

equal. (equal x y) is t if x and y are the same LISP expression; it is NIL
otherwise. (equal ‘a ‘A) is t. (LISP does not distinguish between upper
and lower cases.)

every. For a predicate P and a list x, (every #’P x) is t if every member of
x satisfies P; otherwise it is NIL. (every #’atom ‘(A Aa B)) is t. (every
#’listp ‘((A) B)) is NIL.

subsetp. Given two lists x and y, (subsetp x y :test ‘equal) is t if every
member of x is also a member of y. (subsetp ‘(A (B C) A) ‘((D) (BC)
A)) :test ‘equal) is t. (subsetp ‘(A B (C)) ‘(B (C)) :test ‘equal) is NIL.
(subsetp ‘() ‘(A B C) :test ‘equal) is t. (The empty list is a subset of
every list.) The part “:test ‘equal” in subsetp tells LISP to test x and y
to see if every member of x is equal to some member of y. It is neces-
sary because there are identity predicates other than equal in LISP. (For
example, = is equality between numbers.)

member. (member x y :test ‘equal) is t if and only if y is a list of which x
is a member. (member ‘(A) ‘(B (A) C (A)) :test ‘equal) is t. (member
‘(A) ‘(B D)) :test ‘equal) is NIL.

<. The predicate < applies to numbers. (< m n) is t if m is less than n;
otherwise it is NIL. (< 2 3) is t; (< 3 2) and (< 2 2) are NIL.

CSProve uses one function whose value is a number when it is applied to
a list.

length. Given a list L, (length ‘L) is the number of members of L. (length
‘(A (B C) D)) is 3. (length ‘()) is 0.

T
R

A
N

S
A

C
T

IO
N

S

122

The next four functions perform useful operations on lists. Two of
them, like member and subsetp, use equality as a test.

find-if. For any predicate P and list x, (find-if #’P x) is the first member
of x to which P applies; if there is no such member then (find-if #’P
x) is NIL. (find-if #’listp ‘(A (BC) D (E F))) is (B C). (find-if #’listp
‘(A B C)) is NIL.

remove. Given x and a list y, (remove x y :test ‘equal) is the result of
removing all occurrences of x from y. If x is not a member of y then
(remove x y :test ‘equal) is y’ (remove ‘(A) ‘(B (A) ((A) C) D (A))) :test
‘equal) is (B ((A) C) D). (remove ‘A ‘(B C) :test ‘equal) is (B C).

remove-if. For a predicate P and a list x, (remove-if #’P x) is the list that
results from x by removing all members that have P. If P applies to no
member of x then (remove-if #’P x) is x. (remove-if #’atom ‘(A (B C)
D (E)) is ((B C) (E)). (remove-if #’listp ‘(A B C)) is (A B C).

remove-duplicates. This function removes repetitions of items in lists.
(remove-duplicates ‘(A (B C) D (B C) A A) :test ‘equal) is (A (B C) D).
(remove-duplicates ‘(A (B) C)) :test ‘equal) is (A (B) C).

There are several conditionals in LISP. CSProve uses only one:

cond. A cond instruction takes the form

(cond (T1 R1)
(T2 R2)

.

.

.
(Tn Rn))

Cond works by running through the Ti’s until it finds the first Tm that is not
NIL. Then it gives the output Rm . If every Ti is NIL, cond outputs NIL.
For example,

(cond ((not(listp x)) x)
((listp x) (first x)))

defines a function that is x if x is not a list and is the first member of x if x
is a list. A convenient way of insuring that cond gives a non-NIL result Rn
is to make the last clause have the form (t Rn). This has the effect of saying
“if none of the above, then Rn”, since t is not NIL. In a cond definition n
must be at least 2.

The usual truth functions are built into LISP.
not. (not x) is NIL if x is not NIL and t if x is NIL. (not (atom ‘A)) is

NIL. (not (listp ‘A)) is t.
or. (or x1 . . . xn), n ≥ 2, gives the first non-nil xi if at least one of x1 . . . xn

is not NIL; otherwise it is NIL. (or (atom ‘A) (listp ‘A)) is t. (or ‘(A B)
(listp ‘A)) is (A B). (or (atom ‘(A B)) (listp ‘A)) is NIL.

A
 Sim

ple A
utom

ation of
a Peircean D

ecision Procedure
•

R
ich

ard B
. W

h
ite

123

[1
8.

11
7.

19
6.

52
]

 P
ro

je
ct

 M
U

S
E

 (
20

24
-0

4-
20

 0
4:

54
 G

M
T

)

and. (and x1 . . . xn) is xn if all the xi’s are non-NIL; it is NIL if at least
one xi is NIL. (and (atom ‘A) ‘(A B)) is (A B). (and (listp ‘A) (atom ‘B))
is NIL.

If the inputs to and, or, and not are restricted to NIL and t, then these
functions are just the usual two-valued truth functions.

format. The format function is used to print expressions in LISP. For exam-
ple, executing (format t “valid”) causes “valid” to appear on the com-
puter monitor’s screen, hence the “t” (for computer terminal) in the
format instruction. A more elaborate version of the format function
uses a place-marker ~a inside the quotation and accepts an input. For
example, (format t “~a is a Deke” (second x)) when x is assigned a list
as its value will print the quoted expression with the second member of
the list in place of ~a. (format t “~a is a Deke”(second ‘(George W
Bush)) prints “W is a Deke.”

defun. The function defun (“define a function”) can be used to define the
functions that make up a program. For example, (defun atomfirstp (x)
(and (listp x)(atom (first x)))) may be read, “define a function, to be
called “atomfirstp,” of one input x as follows: its value for input x is
(and(listp x)(atom(first x)))).”Thus atomfirstp is a predicate which is
t if its input is a list whose first member is an atom and NIL otherwise.

lambda. In LISP lambda abstracts may be used to name functions. For
instance, the thirteenth function in CSProve is “remifmem” which
when given x and a list y removes from y all lists of which x is a mem-
ber. Clearly one wants to use remove-if to define this function, but
remove-if requires a predicate and LISP has no predicate that applies
to the lists of which x is a member, for a variable x. But such a predi-
cate can be defined by a lambda expression: (lambda (z) (and (listp z)
(member x z :test ‘equal))), which may be read “the property of being
a z such that z is a list and x is a member of z.” (The lambda comes
from Church’s notation for functions in his lambda calculi, where for
example (λx. x(xx)) is the function such that (λx. x(xx))a = a(aa) for
any a.) The desired function remifmem is then defined by (defun
remifmem (x y) (remove-if #’(lambda (z) (and(listp z)(member x z
:test ‘equal))) y)). In a lambda expression (lambda (z) . . .z . . .) the
variable z is bound, so (lambda (w) . . .w . . .) is the same function as
(lambda (z) . . . z . . .), for any variable w that does not occur in . . . z
. . . .

The program CSProve uses nineteen functions defined by defun instruc-
tions. The first seventeen functions are enough to automate the decision
procedure, which is implemented by the function test. Following the pro-
gram are brief explanations of its functions. The first seventeen definitions
in the program are the following:

CSProve
(defun primfp (x) (or (atom x)(and (listp x) (atom (first x))(null (rest x)))))
(defun primlp (x) (and (listp x)(every #’primfp x)))

T
R

A
N

S
A

C
T

IO
N

S

124

(defun irreducp (x) (or (primfp x)(primlp x)))
(defun mlistp (x) (and (listp x)(< 1 (length x))))
(defun dnegp (x) (and (listp x)(listp (first x))(null (rest x))))
(defun erasablep (x) (and (listp x) (find-if #’(lambda (w) (equal t w))

(mapcar #’(lambda (z) (and (listp z)(subsetp z x :test ‘equal))) x))))
(defun remby (x y) (cond ((not (and (listp x)(listp y))) x)

(t (remove-if #’(lambda (z) (member z y :test ‘equal)) x))))
(defun contract (x) (mapcar #’(lambda (z) (remby z x)) x))
(defun contratiblep (x) (not (equal (contract x) x)))
(defun remdnegs (x) (cond ((not(listp x)) x)

((null x) x)
((dnegp (first x)) (append (first (first x)) (remdnegs (rest x))))
(t (cons (first x)) (remdnegs (rest x))))))

(defun remfrom (x y) (cond ((not (listp y)) y)
(t (remove x y :test ‘equal))))

(defun remfrey (x y) (mapcar #’(lambda (z) (remfrom x z)) y))
(defun remifmem (x y) (remove-if #’(lambda (z) (and (listp z) (member x z :test

‘equal))) y))
(defun firstfml (x) (first (find-if #’mlistp (first x))))
(defun expansion (x) (append (list (cons (list (firstfml x)) (remifmem (firstfml

x) (first x)))
(remfrey (firstfml x) (first x))) (rest x))))

(defun test (x) (cond ((null x) (format t “valid”))
((erasablep x) (test (rest x)))
((irreducp (first x)) (format t “~a is a counterexample” (remove-

duplicates (first x) :test ‘equal)))
((dnegp (first x)) (test (remdnegs x)))
((find-if #’dnegp (first x)) (test (cons (remdnegs (first x)) (rest x))))
((contractiblep (first x)) (test (cons (contract (first x)) (rest x))))
((find-if #’mlistp (first x)) (test (expansion x)))))

(defun decidegraph (x) (test (list x)))

The first function primfp (“— is a prime formula”) is a predicate such
that (primfp x) is t if and only if x is either an atom or a list (A) in which
A is an atom; i.e. a list whose first member is an atom and whose rest is the
empty list.

The second function primlp (“— is a prime list”) is also a predicate.
(primlp x) is t if and only if x is a list and every member of x is a prime for-
mula.

The next predicate irreducp (“— is irreducible”) is true of x if and only
if x is either a prime formula or a prime list.

The fourth function mlistp is a predicate that is true of x if and only if x
is a list with more than one member.

The fifth function, dnegp, may be read “— is a double negation.” (dnegp
x) is t if and only if x is a list of the form ((. . .)); i. e., a list whose first is
a list and whose rest is empty, hence the definition of dnegp by (and (listp
x)(listp (first x))(null (rest x))).

A
 Sim

ple A
utom

ation of
a Peircean D

ecision Procedure
•

R
ich

ard B
. W

h
ite

125

[1
8.

11
7.

19
6.

52
]

 P
ro

je
ct

 M
U

S
E

 (
20

24
-0

4-
20

 0
4:

54
 G

M
T

)

The sixth function is a predicate erasablep which, when applied to a list x,
is t if and only if x has at least one member that is a subset of x. It works as
follows. First mapcar applies the predicate (lambda (z) (and (listp z) (sub-
setp z x :test ‘equal))) (“the property of being a list that is a subset of x”)
to x. (mapcar #’(lambda (z) (and (listp z)(subsetp z x :test ‘equal))) x) is
then a list (v1 . . . vn), when x is (e1 . . . en), with each vi being t or NIL
according as ei is a subset of x or not. If at least one vi is t then (erasable x)
should be t; therefore erasablep is (find-if #’(lambda (w) (equal t w))
applied to (v1 . . . vn).

The next function remby is defined by a conditional. If x and y are not
both lists then (remby x y) is x. If x and y are lists then (remby x y) is
(remove-if #’(lambda (z) member z y :test ‘equal) x), so (remby x y) is the
result of removing from x all members that are members of y. (remby x y)
may be read “removal from x by way of y.”

The eighth function contract is easily defined using remby. A list x is con-
tracted by removing from each list in x all members that are also members of
x, hence the definition of (contract x) by (mapcar #’(lambda (z) (remby z
x)) x).

A list is contractiblep if it differs from its contraction, so (contractiblep x)
is defined by (not (equal (contract x) x).

The tenth function remdnegs may be read “the result of removing all double
negations from —.” It is the first function in CSProve defined recursively—
remdnegs occurs in some of the clauses of the conditional defining remdnegs.
If x is not a list then the result of removing double negations from x is just x,
so the first clause in the cond is ((not (listp x)) x). If x is the empty list then
the result of removing double negations from x is again x; therefore the second
clause in the cond is((null x) x). If x is of the form (((e1 . . . en)) f1 . . . fm),
then (dnegp (first x)) is true. in this case appending (first (first x)), which is (e1
. . . en) to (- - -), the result of removing all double negations from (f1 . . . fm
), which is (rest x), will give a list (e1 . . .en - - -) that contains no double nega-
tions. Therefore the third clause in the cond is: ((dnegp (first x)) (append (first
(first x))(remdnegs (rest x)))). If x is (e - - -) with e not a double negation,
then (cons (first x) (remdegs (rest x))) is (e . . .), where (. . .) is the result of
removing all double negations from (- - -). Therefore the final clause in the
cond defining remdegs is (t (cons (first x) (remdnegs (rest x)))). Remdnegs
removes double negations only from x, not from members of x, members of
members of x, and so on. For example, (remdnegs ‘(A ((B ((C)))) ((D ((E
F)))))) is (A B ((C)) D ((E F))).

The eleventh function in the program is remfrom. (remfrom x y) is y if y
is not a list; otherwise it is (remove x y :test ‘equal), the result of removing
all occurrences of x from y.

The function remfrey uses remfrom to remove x from every member of a
list y, so it is defined by (mapcar #’(lambda (z) (remfrom x z)) y).

The thirteenth function, remifmem, is such that (remifmem x y) is the
result of removing from a list y all members of which x is a member. It was
explained above.

T
R

A
N

S
A

C
T

IO
N

S

126

The function firstfml may be read “ the first member of the first mlist in
- -.” (firstfml x) is therefore defined as (first (find-if #’mlistp x)).

The list that the decision procedure works on will be called the sheet. The
fifteenth function in CSProve, expansion, applies the operation O4* to the
sheet. An example illustrates its operation. Suppose the sheet is ((A (B C)
(D B) E) F G), and let this list be x. Expanding x via (B C) will change the
sheet to (((B) A E) (A (C) (D) E) F G). In this example (A (B C) (D B) E)
is (first x), (F G) is (rest x), B is (firstfml x), (B) is (list (firstml x)), (A E) is
(remifmem #’(firstfml x) (first x)), ((B) A E) is (cons (list (firstfml x))
(remifmem #’(firstfml x) (first x))), (A (C) (D) E) is (remfrey (firstfml x)
(first x)), (((B) A E) (A (C) (D) E)) is (list (cons (list (firstfml x))
(remifmem #’ (firstfml x) (first x))) (remfrey (firstfml x) (first x))), and
(((B) A E) (A (C) (D) E) E F) is (append (list (cons (list (firstfml x))
(remifmem #’ (firstfml x) (first x))) (remfrey (firstfml x) (first x))) (rest x)),
which is the definition of (expansion x).

Now the function test is defined recursively by a conditional with seven
clauses. If the sheet has been emptied then the decision procedure returns
“valid”, so the first clause is ((null x) (format t “valid”)). If the first member
of the sheet is erasable, then test moves on to test the rest of x. (This is equiv-
alent to erasing the first member of the sheet.) The second clause in the cond
is then ((erasablep (first x)) (test (rest x))). If the first member of the sheet
is irreducible [but not erasable if this point has been reached] then that first
member is a counterexample, so the third clause is ((irreducp (first x)) (for-
mat t “~a is a counterexample” (remove-duplicates (first x) :test ‘equal))). (It
is not necessary to remove duplicates in this case, but doing so often makes
the counterexample easier to read.) If the first member of the sheet is a dou-
ble negation, then test removes all double negations from the sheet and tests
the resulting sheet, so the fourth clause is ((dnegp (first x)) (test (remdnegs
x))). If there is a double negation in the first member of the sheet, then test
removes all double negations from the first member of the list and tests the
resulting sheet. The fifth clause is therefore ((find-if #’dnegp (first x)) (test
(cons (remdnegs (first x)) (rest x)))). If the first member of the sheet is con-
tractible, test contracts that first member and tests the resulting list; thus the
sixth clause is ((contractible (first x)) (test (cons (contract (first x)) (rest
x)))). Finally, if none of the first six clauses was applicable there must be a list
with more than one member in the first member of the sheet, so test expands
the sheet and tests the result. The last clause in the cond is therefore ((find-if
#’mlistp (first x)) (test (expansion x))).

The function decidegraph is used to decide a graph g by testing the sheet
whose only member is g: (decidegraph x) is therefore (test (list x)).

CSProve can be used at this point by decidegraph. For example, execut-
ing (decidegraph ‘((A (C)) (B (C)) ((((A) (B)) (C))))) will return “valid,”
and (decidegraph ‘((((A (C)))((B (C)))) ((((A) (B)) (C))))) will return “(B
(C) (A)) is a counterexample.”

However, in general it is not feasible to type alpha graphs directly into
CSProve. For instance, the simple formula that would usually be written (A

A
 Sim

ple A
utom

ation of
a Peircean D

ecision Procedure
•

R
ich

ard B
. W

h
ite

127

[1
8.

11
7.

19
6.

52
]

 P
ro

je
ct

 M
U

S
E

 (
20

24
-0

4-
20

 0
4:

54
 G

M
T

)

↔ (B ↔ (C ↔ D))) becomes ((A ((B (C D) ((C) (D)))) ((B) (C D) ((C)
(D)))))) ((A) ((B ((C D) ((C) (D)))) (B) (((C D) ((C) (D)))))) as an alpha
graph.

Therefore it is convenient to have a connective notation (CN) that is eas-
ily typed on a computer keyboard and to add to CSProve a function that
will translate formulas from CN into Peirce’s graphical notation (PN). The
formulas of CN are defined recursively as follows. The LISP atoms A, B, . . .,
Z, 1, 2, 3 etc. are atomic CN formulas. If α and ß are CN formulas then
(not α), (α imp ß), and (α iff ß) are CN formulas. If α1, . . . αn are CN
formulas, n ≥ 2, then (or α1 . . . αn) and (& α1 . . . αn) are CN formulas.

A CN formula is translated into PN by the following algorithm, where
*α is the translation of α: *α is α if α is atomic. *(not α) is (*α). *(α imp
ß) is (*α (*ß)). *(α iff ß) is ((*α *ß) ((*α) (*ß))). *(or α1 . . . αn) is ((*α1)
. . . (*αn)). *(& α1 . . . αn) is ((*α1 . . . *αn)).5

This algorithm is easily implemented by a function trans to be added to
CSProve.

(defun trans (x) (cond ((atom x) x)
((equal ‘not (first x)) (list(trans(second x))))
((equal ‘imp (second x)) (list (trans(first x))(list(trans(third x)))))
((equal ‘or (first x)) (mapcar #’list (mapcar #’trans (rest x))))
((equal ‘& (first x)) (list(mapcar #’trans (rest x))))
((equal ‘iff (second x)) (list(list(trans(first x)) (trans(third x)))

(list(list(trans(first x))) (list(trans(third x))))))))

Finally, the nineteenth function decide applies the decision procedure to a
CN formula: (defun decide (x) (test(list(trans x)))).

III
CSProve was tested on a PC with a 1.6 gh processor and 512 mb of RAM
running common lisp in the form of CormanLisp 2.01.6 To evaluate an
argument with premises P1, .., Pn and conclusion C in CN, one executes
(decide ‘((& P1 . . . Pn) imp C)). For example, the argument

A ↔ (B ↔ C)
¬A ↔ ¬B
C → ((D ∨ E) → F)
¬(G → ¬D)
F ↔ H
H ∨ I

was found to be valid in .009 seconds by executing:
(decide ‘((& (A iff (B iff C))((not A) iff (not B))(C imp ((or D E) imp
F))(not (G imp (not D))) (F iff H)) imp (or H I))).

The argument
A → (B → ¬C)
D → B

T
R

A
N

S
A

C
T

IO
N

S

128

¬F → C
¬A → ¬E
J → ¬H
G → J
¬I → ¬H
G ↔ ¬D
B → H
¬D → H
E ↔ F

was found to be invalid by executing:
(decide ‘((& (A imp (B imp (not C))) (D imp B)((not F) imp C)((not A)

imp (not E))(J imp (not H))(G imp J)((not I) imp (not H)) (G iff (not
D))(B iff H)((not D) imp H)) imp (E iff F))) which returned “(I (J) (A) B
(G) (C) D H (E) F) is a counterexample” (“make I, B, D, H, F true and J, A,
G, C, E false”) in .008 seconds. Examples like the above show that CSProve
may be pedagogically useful, since it should decide even the most complex
sentential arguments in introductory texts within a fraction of a second.

Of course, it is easy to tax CSProve by giving it very large graphs. For
instance, 22 seconds were required for the program to announce “valid”
when (decide ‘(A iff (B iff (C iff (D iff (E iff (F iff (G iff (H iff (A iff (B
iff (C iff (D iff (E iff (F iff (G iff H)))))))))))))))) was executed. In gen-
eral, CN formulas with lots of nested biconditionals are challenging for
CSProve, as they are for the resolution method. An alpha graph for the above
CN formula is huge, as may be seen by using trans to translate it into PN.

The “pigeon-hole” tautologies are also hard for CSProve. The simplest
of these tautologies is P2: (((A) (B)) ((C) (D)) ((E)(F)) (A C) (A E) (C E)
(B D) (B F) (D F)), which decidegraph found to be valid in .0014 seconds.
P3, (((A) (B) (C)) ((D) (E) (F)) ((G) (H) (I)) ((J) (K) (L)) (A D) (A G)
(A J) (D G) (D J) (G J) (B E) (B H) (B K) (E H) (E K) (H K) (C F) (C I)
(C L) (F I) (F L) (I L)), required .022 seconds. P4 was pronounced valid in
.33 seconds and P5 in 5 seconds. But P6, which has one hundred and thirty-
three members using forty-two atoms, needed 76 seconds.7 (This is not too
surprising, because a truth-table for P6 has over four trillion rows: 242 =
4,398,046,511,104.) P7 is surely beyond the capability of the modest com-
puter used for these tests.

CSProve operates serially, but it is easy to see how it could be used for
parallel computation. Let C1, C2, . . . be a network of computers with each
Cn running CSProve. A computation begins by starting C1 with a sheet
(g1). When C1 performs an expansion of the sheet to get (g11 g12), it sends
the sheet (g11) to C2 and continues to work on (g12). Each computer works
in the same way: when Cm expands a sheet (h) to (h1 h2) it sends (h1) to
some Cn and retains (h2). This is a considerable idealization, because it
assumes that an unoccupied Cn is always available; however, even a network
of two computers would reduce the time required to decide P6 from 76
seconds to no more than 62 seconds. This is seen by executing (decide-

A
 Sim

ple A
utom

ation of
a Peircean D

ecision Procedure
•

R
ich

ard B
. W

h
ite

129

[1
8.

11
7.

19
6.

52
]

 P
ro

je
ct

 M
U

S
E

 (
20

24
-0

4-
20

 0
4:

54
 G

M
T

)

graph(first(expansion (list ‘(- - -))))) and (decidegraph(second(expansion
(list ‘(- - -))))), where (- - -) is P6. The first announced “valid” in 12
seconds, and the second reached “valid” in 62 seconds. Actually a two-
computer network would decide P6 in less than 62 seconds, because after
12 seconds C1 would be available to receive inputs from C2. Similarly, a
four-computer network could decide P6 in no more than 49 seconds,
because (decidegraph(second(expansion (list (second (expansion (list ‘(- -
-)))))))) produced “valid” in 49 seconds.

The pigeon-hole tautologies are examples of graphs in disjunctive nor-
mal form. Such a normal form is easy to describe in PN: it is a list of irre-
ducible lists. An interesting exercise would be to provide an upper bound to
the number of steps needed for the decision procedure to decide a disjunc-
tive normal form tautology in serial and parallel modes.8

Centre College
whiterob@mikrotec.com

NOTES

1. Don D. Roberts, “A Decision Method for Existential Graphs,” in Studies in the
Logic of Charles Sanders Peirce, ed. Nathan Houser, Don D. Roberts, and James Van Evra,
387–401 (Bloomington, IN: Indiana University Press, 1997)

2. Peirce, CP 4.434
3. For example, in CP 4.378.
4. “First” and “rest” are relatively new names for the functions that were originally

called “car” and “cdr” (pronounced “cudder” or “kidder”). These came from references
to a long-gone IBM computer; car stood for “contents of address register” and cdr for
“contents of decrement register.” Car and cdr are still available in LISP, along with many
combinations of them, such as caar, cadr, caadr, and caddr. These are handy abbrevia-
tions. For example, (caddr x), pronounced “Cudidder x”, is equivalent to (car(cdr(cdr
x))), or (first(rest(rest x))).

5. Since a CN formula other than an atom must be translated to a list, trans uses a
double negation ((*α1 . . . *α1)) to translate a conjunction (& α1 . . . αn) because *α1
. . . *αn is not a list.

6. CormanLisp is available on the internet at www.cormanlisp.com. It has a timer func-
tion, an efficient “garbage collector”, and is relatively inexpensive.

7. Using numerals for atoms, P6 is:
(((1) (2) (3) (4) (5) (6)) ((7) (8) (9) (10) (11) (12)) ((13) (14) (15) (16) (17)

(18)) ((19) (20) (21) (22) (23) (24)) ((25) (26) (27) (28) (29) (30)) ((31) (32)
(33) (34) (35) (36)) ((37) (38) (39) (40) (41) (42)) (1 7) (1 13) (1 19) (1 25) (1
31) (1 37) (7 13) (7 19) (7 25) (7 31) (7 37) (13 19) (13 25) (13 31) (13 37) (19
25) (19 31)(19 37) (25 31) (25 37) (31 37) (2 8) (2 14) (2 20) (2 26) (2 32) (2 38)
(8 14) (8 20) (8 26) (8 32) (8 38) (14 20) (14 26) (14 32) (14 38) (20 26) (20
32)(20 38) (26 32) (26 38) (32 38) (3 9)(3 15) (3 21)(3 27) (3 33)(3 39) (9 15)
(9 21) (9 27) (9 33) (9 39) (15 21) (15 27) (15 33) (15 39) (21 27) (21 33) (21
39) (27 33) (27 39) (33 39) (4 10) (4 16) (4 22) (4 28) (4 34) (4 40)(10 16) (10
22)(10 28) (10 34)(10 40) (16 22) (16 28) (16 34) (16 40) (22 28) (22 34) (22 40)

T
R

A
N

S
A

C
T

IO
N

S

130

(28 34) (28 40) (34 40) (5 11) (5 17) (5 23) (5 29) (5 35) (5 41) (11 17) (11 23)
(11 29) (11 35) (11 41) (17 23) (17 29) (17 35) (17 41) (23 29) (23 35) (23 41)
(29 35) (29 41) (35 41) (6 12) (6 18) (6 24) (6 30) (6 36) (6 42) (12 18) (12 24)
(12 30) (12 36) (12 42) (18 24) (18 30)(18 36)(18 42) (24 30)(24 36) (24 42) (30
36) (30 42) (36 42)).

In general, Pn has (n3 + n2)/2 + n + 1 members and n(n + 1) atoms.
8. The tests of CSProve in this section were made on an aging computer with Win-

dows Me. After this paper was written CSProve was run on a much more powerful
desktop computer, a dual-processor Power MacIntosh G5 with Digitool Corporation’s
MacIntosh Common Lisp 5.0 (MCL 5.0). On that computer CSProve decided P6 in
7.6 seconds, exactly ten times faster than the Windows computer. MCL 5.0 is an ele-
gant version of LISP for MacIntosh computers, but even with an educational discount
it is quite expensive.

A
 Sim

ple A
utom

ation of
a Peircean D

ecision Procedure
•

R
ich

ard B
. W

h
ite

131

