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ABSTRACT. Empirical studies have demonstrated that uncertainty about event 
probabilities, also known as ambiguity or second-order uncertainty, can affect 
decision makers' choice preferences. Despite the importance of second-order 
uncertainty in decision making, almost no effort has been directed towards the 
development of methods that evaluate the accuracy of second-order probabilities. 
In this paper, we describe conditions under which strictly proper scoring rules 
can be used to assess the accuracy of second-order probability judgments. We 
investigate the effectiveness of using a particular strictly proper scoring rule - 
the ranked probability score - to discourage biased assessments of second-order 
uncertainty. 
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1. INTRODUCTION 

Subjective expected utility theory (SEUT) maintains that all the 
uncertainty relevant for decision making is adequately represented 
by precise (first-order) probabilities (Goldsmith and Sahlin, 1982). 
Within this framework, uncertainty about event probabilities or 
ambiguity is at best regarded as a useful fiction for deriving pre- 
cise probability judgments.1 

This view has been disputed in a number of empirical studies 
that have investigated the effects of ambiguity on decision makers' 
preferences for decision alternatives. Operationalizing ambiguity as 
a second-order probability density on probability, f(p), these studies 
demonsl~ated that subjects' choice preferences were systematically 
impacted not only by the mean of f(p), as implied by SEUT, but by 
the variance of f(p) as well (Ellsberg, 1961; Becker and Brownson, 
1964; Yates and Zukowski, 1976; Goldsmith and Sahlin, 1982; Cur- 
ley and Yates, 1985; Einhorn and Hogarth, 1985; Kahn and Sarin, 
1987) 2. More recently, Boiney (1993) reported experimental results 
indicating that the skewness of f(p) also affects choice. 
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If second-order probability judgments are to be accepted and rou- 
tinely used by decision makers, methods for evaluating and encour- 
aging their accuracy must be developed. Strictly proper scoring rules 
are used extensively for these purposes in the assessment of precise 
probabilities. No comparable measures have been constructed for 
evaluating second-order probability judgments. In fact, we know of 
only one study that has even attempted to evaluate second-order 
probability judgments (Benson and Whitcomb, 1993). In the current 
study, we examine whether strictly proper scoring rules - measures 
that are based on the expected utility criterion - can be used to effec- 
tively evaluate the external correspondence of second-order proba- 
bilities. We investigate the effectiveness of using a particular strictly 
proper scoring rule - the ranked probability score - to discourage 
biased assessments of second-order uncertainty. 

The paper is organized as follows: Section 2 provides a brief dis- 
cussion of strictly proper scoring rules, with emphasis on the ranked 
probability score. Section 3 describes a method for applying proper 
scoring rules to second-order probability functions, and explores the 
sensitivity of the ranked probability score to biased assessments of 
second-order uncertainty. The results are discussed in Section 4. 

2. PROPER SCORING RULES 

Scoring rules are measures of the correspondence between an indi- 
vidual's reported probabilities and the relevant observations. Under a 
strictly proper scoring rule (PSR), an assessor optimizes her expect- 
ed score by reporting her true probability judgments, i.e., those that 
reflect her beliefs. Any other assessment strategy results in a sub- 
optimal expected score. The logarithmic, spherical, and quadratic 
scoring rules are the most frequently used forms of strictly proper 
scoring rules (cf. Winkler, 1967). 

While clearly preferred to other scoring rules, PSRs do have a 
drawback: all are relatively insensitive to departures from the optimal 
strategy of reporting one's true (first-order) probability judgments 
(Edwards and van Winterfeldt, 1986, pp. 421-426). While some 
PSRs are more sensitive than others, none yield a sharp rewarding 
scheme (Murphy and Winkler, 1970). The issue of sensitivity is of 
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particular concern when evaluating second-order probabilities. We 
will return to this point in Section 3. 

In conducting the sensitivity analysis reported later in the paper, 
we restricted our attention to a variant of the quadratic scoring rule 
known as the ranked probability score. This scoring rule takes rank 
order relationships into account, and is the most appropriate for the 
evaluation of probability judgments of ordinal predictands (Murphy, 
1970), such as those considered in this study. 

2.1. The Ranked Probability Score 

The ranked probability score is the squared difference between an 
assessor's cumulative vector of reported probability judgments and 
the cumulative outcome vector. Consider an event E consisting of 
N mutually exclusive and exhaustive outcomes E l , . . . ,  EN, where 
a rank ordering of the alternative outcomes is a given or inherent fea- 
ture of the decision problem. Thus, El , . . . ,  EN represents an ordered 
listing. For an individual making a probability judgment for such an 
event, let Pi and r~ denote the assessor's true and reported probability 
assessments for Ei, respectively, where N N ~i=lPi = ~i=l ri = 1.0. 
Then Ri i = ~k=~ rk is the cumulative probability assessment corre- 
sponding to Ei. Further, let Di denote an element of the cumulative 
outcome vector and the subscript j refer to the outcome that obtains. 
Define Di = 0 i f i  < j ,  and D i = 1.0 if /  _> j .  The ranked probability 
score can then be defined as follows: 

N 

R P s  = Z(R - 
i=1 

RPS is negatively oriented (smaller scores are better) and ranges over 
the interval [0, N -  1 ]. Letting j = 1 , . . . ,  N,  the assessor's expected 
ranked probability score can be expressed as: 

N 

E(RPS)  = ~-~pjRPSj, 
j = l  

where pj refers to the assessor's true probability for the outcome 
that obtains (outcome j) ,  and RPSj is the ranked probability score, 
conditioned on the j th  outcome obtaining. It has been shown that 
the assessor can optimize E(RPS)  only by setting ( r l , . . . ,  rN) = 
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(Pl,. . . ,  PN), and, hence, that RPS is a strictly proper scoring rule 
(Murphy, 1969). 

The following example demonstrates how the conventions des- 
cribed above are used and how the scores are computed. 

Imagine that an investor is interested in two financial stocks, Stock 
A and Stock B. In particular, he is interested in the outcomes that 
neither, exactly one, or both stocks will increase in value by 10% 
or more in the next year. Denote these outcomes as E~, E2, and E3, 
respectively. Suppose that a stock broker reports to the investor that 
she believes that the probabilities corresponding to El,  E2, and E3 
are 0.1, 0.2, and 0.7. Suppose further that, not wanting to appear too 
pessimistic, the stock broker biased her reported probabilities and, 
in truth, believes that the probabilities corresponding to El ,  E2, and 
E3 are 0.3, 0.4, and 0.3. Accordingly, (rl, r2, r3) = (0.1, 0.2, 0.7); 
(Rl,  R2, R3) = (0.1, 0.3, 1.0); and (Pl,P2,P3) = (0.3, 0.4, 0.3). 

If it happens that E~ obtains, the cumulative outcome vector 
becomes (Dl,  D 2 ,  D 3 )  = (1,1,1) and R P S  = (0.1 - 1) 2 + ( 0 . 3  - -  1) 2 

+ ( 1 . 0  - -  1) 2 = 1.30. Similarly, if E2 obtains, then (DI,Dz, D3) = 
(0,1,1) and R P S  = (0.1 - 0) z + (0.3 - 1) 2 + ( 1 . 0  - -  1) 2 = 0.50. If E3 
obtains, (Dl,  D2, D3) = (0,0,1), and R P S  = (0.1 - 0) z + (0.3 - 0) z 
+ ( 1 . 0  - -  1) 2 0.10. The stock broker's expected ranked probability 
score is then computed as: E(RPS)  = 0.3 (1.30) + 0.4 (0.50) + 0.3 
(0.10) = 0.62. The reader may verify that had the broker reported her 
true probabilities her E(RPS;) would be 0.42, which is lower and 
better. 

3. A P P L Y I N G  STRICTLY P R O P E R  SCOR ING RULES TO 
S E C O N D - O R D E R  P R O B A B I L I T Y  J U D G M E N T S  

Now consider an expert asked to judge the probability that a trial 
of a new drug therapy will have a successful outcome. Since the 
therapy is still experimental, the assessor may not believe that he has 
enough information to justify the assignment of a precise probability, 
but instead may prefer to express his probability vaguely. Suppose 
he characterizes p as a uniform random variable over the interval 
[0.6,0.8], so that his uncertainty is expressed in terms of a second- 
order probability density on p, f(p) = 1/(0.8-0.6) for 0.6 _< p < 
0.8. Can SEUT-based measures such as the ranked probability score 
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be used to evaluate and encourage unbiased assessment of second- 
order probability expressions such as this? That is the question that 
motivated our research. The following well-known theorem due to 
de Finetti (1937) facilitates an answer to the question: 

THEOREM. Let xj represent a binary random variable, where the 
events 'failure' and 'success' are denoted by 0 and 1, respectively. 
Assume further that a sequence of  such events is exchangeable and 
infinitely extendable. Given these assumptions, the predictive prob- 
ability for  a given sequence {Xl, . . . , xn} that yields r successes in 
n trials may be obtained by acting as if  the xjs  are independent, 
identically distributed, and as if their density were averaged over p. 
That is, 

/o' (3.1) p { x i , . . . , x n l r ,  n } =  p r ( 1 - p ) n - r d F ( p ) ,  

where F(.) is a unique distribution function. 

An equivalent expression of de Finetti 's theorem (Press, 1989, p.60) 
which is intuitively appealing and more useful for our purposes is 
the following: 

THEOREM. Let Sn denote the number of  successes in n exchange- 
able Bernoulli trials in which the probability o f  a success on a single 
trial, p, is expressed in terms o f  a (second-order) probability density 
on p, tip). Then: 

/o(:) (3.2) a. P{Sn  = r} = pr(1 - p)n-rdF(p)  

where dF(p) = t ip)  dp, and 

b. l i m , ~ S n / n  = p 

with probability one for  any distribution function, F(p). 

If F(p)  represents the distribution function for the probability of 
a success on a single trial, then for each prescribed n, Equation 
(2) yields a precise predictive probability distribution that can be 
interpreted as a mixture of binomial probability distributions, where 
F(p)  is the mixing distribution. Since this predictive distribution is, 
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in effect, specified by F(p) = f f(p)dp, any evaluation of the predic- 
tive distribution is an evaluation of f(p). Accordingly, an assessor's 
second-order probability density on p, f(p), can be evaluated by 
applying a strictly proper scoring rule to the predictive probability 
distribution derived from f(p) using Equation (2). 

To demonstrate, imagine that three clinical trials of the new drug 
are to be conducted and we would like to obtain the predictive prob- 
abilities for the number of successful outcomes ($3). Substituting the 
expert's assessment, f (p)dp -- 1/(0.8 - 0.6)dp, for dF(p) in Equa- 
tion (2), the following predictive probability distribution is obtained, 
assuming the trials to be exchangeable and infinitely extendable3: 
P{S3 = 0} = 0.03, P{S3 = 1} = 0.19, P{S3 = 2} - 0.43, 
P{S3 = 3} = 0.35. These predictive probabilities can be evaluated 
by means of strictly proper scoring rules such as the ranked probabil- 
ity score. For instance, if exactly two of the three drug therapy trials 
were successful, the cumulative outcome and cumulative probabili- 
ty vectors would be (0,0,1,1) and (0.03,0.22,0.65,1.0), respectively. 
Recalling that the ranked probability score is simply the squared 
distance between these vectors, RPS is computed as 0.1718. 

But to what extent would this evaluation strategy motivate the 
assessor to report her true second-order probability density, denoted 
as 9(p), rather than some other probability density function? Under 
an ideal scoring system, the assessor should expect to: 

(1) achieve her best score only by reporting 9(p); and 
(2) incur substantial penalties for reporting any second-order density 

other than g(p). 

We refer to the former requirement as the optimization criterion 
and the latter as the sensitivity criterion. We consider each in turn. 

3.1. The Optimization Criterion 

To determine whether the proposed evaluation strategy satisfies the 
first criterion, we need the following result: Equation (1), which 
applies to every n, is equivalent to the condition that the probability 
that every n of each prescribed set of n of the xjs takes the value 1 
is 

(3.3) f0' pndF(p)' 
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(cf. Savage, 1954, pp. 51-53; Good, 1965, p. 12). 
Equation (3) implies that, for a finite sequence of n exchangeable 

Bernoulli trials, an individual needs only to report a second-order 
probability density whose first n moments correspond to those of 
her true density in order to optimize her expected score. When n 
= 1, evaluation of second-order probability densities through corre- 
sponding predictive probability distributions generated using Equa- 
tion (1) or Equation (2) provides no incentive for the assessor to 
report second-order uncertainty. This follows since the expected 
score can be optimized by reporting any second-order probabili- 
ty density whose mean is the same as that of the assessor's true 
density. At least two trials (n>2) are necessary for the derived pre- 
dictive probabilities to reflect the higher-order moments of f(p),  and 
accordingly, the assessor's second-order uncertainty. 

To clarify this point, we refer again to the drug therapy example. 
If only one trial is to be conducted, Equation (2) will yield the same 
predictive probability distribution, P{S~ = 0} = 0.3 and P{SI = 
1} = 0.7, whether the expert assesses f(p)  = 1/(0.8-0.6) for 0.6 < 
p _< 0.8, or reports a precise probability equal to the mean of f(p),  
0.7. (In the latter case, Equation (2) reduces to the binomial formula 
with p = 0.7.) However, when n = 2, the predictive probability 
distribution is P{S2 = 0} = 0.0933, P{S2 = 1} = 0.4133, and 
P{S~ = 2} = 0.4933 for f ( p ) =  1/(0.8-0.6), versus P{S2 = 0 }  = 
0.0900, P{S2 = 1 } = 0.4200, and P{S2 = 2} = 0.4900 for p -- 
0.7. 

The proposed evaluation strategy satisfies the first criterion for an 
ideal scoring system to the extent that the first n moments of f(p)  
capture the relevant dimensions of the decision maker's uncertainty. 

3.2. The Sensitivity Criterion 

Since proper scoring rules are somewhat insensitive to departures 
from the optimal strategy of reporting one's true first-order uncer- 
tainty, it would seem to follow that they would be even less affected 
by biased reports for second-order uncertainty. In the remainder of 
this section, we demonstrate that their effectiveness is a function of 
n, the number of trials under consideration. 

We analyzed the sensitivity of the ranked probability score to 
biased reports of second-order uncertainty. Since many biasing 
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schemes are possible, for simplicity, we focused on the situation 
where the assessor has some degree of uncertainty about an event 
probability, p, but conceals it by reporting a precise probability 
equal to the mean of her true second-order probability density, i.e., 
p = f pdF(p). In this case, the difference between the ranked prob- 
ability scores corresponding to her reported and true second-order 
probability densities measures the expected penalty for ignoring 
second-order uncertainty. This penalty, expressed relative to the opti- 
mal expected score, is: 

AE,(RPS) = Eb(RPS)-  E,(RPS) 
E,(RPS) 

where E. (RPS) represents the optimal expected score-  the expect- 
ed score when the assessor reports her true second-order probability 
density, 9(/9); Eb(RPS) represents the biased expected score. For our 
biasing scheme, Eb(RPS) is the expected score when the assessor 
reports a precise probability equal to the mean of 9(P). In comput- 
ing E. (RPS), the predictive probability distributions, ( P l , . . . ,  PN) 
and (rl,. . . ,  ru), are identical and derived by substituting 9(P) d(p) 
for dF(p)  in Equation (2). For Eb(RPS), ( r l , . . . ,  rN) differs from 
(Pl,...,PN), but is easily derived since, for our biasing scheme, 
Equation (2) reduces to the binomial formula for the probability of 
r successes in n trials, conditional on p = E(p) = f pdG(p). 

We constructed and analyzed several examples using the biasing 
strategy described above. For each of the examples, we assumed 
that g(p) could be represented by a beta density with parameters 
n ~ > r ~ > 0: 

/n'-l)~ ~,r'-~ (1 _ p) , ' - r ' - l ,  = (~,-1)!(,v-r,-i)!v for 0 < p < 1, 
(3.4) f(p) = 0 elsewhere. 

Selecting 9(P) from among the class of beta densities offers three 
advantages. First, the beta density covers a wide range of unimodal 
shapes over the closed interval [0,1 ]. Second, it requires assessment 
of only two parameters, r '  and n', which can be expressed in terms of 
the mean and variance of the beta density (cf. Raiffa and Schlaifer, 
1961). Finally, substituting f~(p I r', n')d(p) for dF(p) in Equation 
(2) the expression for the predictive distribution for the number of 
successes, r, in n trials reduces to the well-known beta-binomial 
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distribution: 
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(3.5) 

P(r I ,-'-') 
(r + r ' -  1)!(n + n ' -  r - r ' -  1)!n!(n'  - 1)! 

- - - < -  + 1 ) !  

Ten beta densities are used to represent the assessors true second- 
order probability densities, 9(P), and are depicted in Figure 1. The 
corresponding biased (precise) assessments for p are equal to the 
means of these beta densities, that is p = E(p) = f pdG(p). 

Since the distance between the predictive distributions corre- 
sponding to the true and biased assessments of p increases as the 
number of trials increases, we used a wide range of n values in 
computing the sensitivities. The following values of n were used in 
conjunction with each beta density: n = 2, 3, 5, 10, 20, 50, 100, 500, 
1000, and 5000. Increases in sensitivities were minimal beyond n = 
5000. Figure 2 displays plots of the sensitivity values, AE, (RPS), 
corresponding to each of the beta densities in Figure 1. 

As would be expected, the penalty for concealing second-order 
uncertainty, AE,(RPS), increases not only with n, but with the 
assessor's degree of second-order uncertainty. For example, when 
the assessor's second-order uncertainty is high, as is the case for 
f~(Plr'= 1 , n ' =  2) and f~(p[r' = 3, n ' =  6), AE,(RPS) may 
be large enough to encourage the assessor to report at least some 
of her second-order uncertainty for n as small as five. Conversely, 
when the assessor's degree of second-order uncertainty is fairly low, 
as for f~(p I r '  = 27, n' = 30), a much larger value of n is required 
to generate the same penalty. Thus, the proposed evaluation strategy 
produces penalties that satisfy the sensitivity criterion when n is 
large and/or second-order uncertainty is high. 

Of course, a different strictly proper scoring rule might be more or 
less sensitive to second-order uncertainty than the ranked probability 
score (Murphy and Winkler, 1970). However, of the commonly used 
PSRs, only the ranked probability score is sensitive to distance, and 
for this reason is the most relevant for evaluating discrete predic- 
tive probability distributions (Murphy, 1970; Matheson and Winkler, 
p. 1092, 1976).4 
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4. C O N C L U S I O N  

We have described a procedure for evaluating second-order proba- 
bility distributions in terms of precise predictive probabilities and 
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observable outcomes. The procedure demonstrates that it is possi- 
ble to apply SEUT-based scoring rules to second-order probability 
assessments. 

The procedure can be utilized in forecasting tasks in which de 
Finetti's Theorem applies; that is, where the events of interest can 
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be expressed in terms of finite sequences of binary trials that can 
(potentially) be extended to 'sufficiently large' and exchangeable 
sequences of trials. It can be used to discourage assessors from 
concealing second-order uncertainty, but only if the number of trials 
to be realized is relatively large. 

It is not difficult to envision decision problems where events 
of interest conform to these criteria. For example, a public health 
agency may be interested in predicting how many of a large group 
of people exposed to a carcinogen will be adversely affected by 
their exposure. Or an insurance company may want to predict the 
number of new claims that will be submitted if the company is forced 
to amend its medical coverage to include a treatment previously 
classified as experimental. However, effective evaluation of second- 
order probability judgments in more general forecasting tasks will 
undoubtedly require the application of criteria other than SEUT- 
based scoring rules. 
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6. NOTES 

I For example, Savage (1954, p.78) argues that if a first-order probability, p, is 
expressed as a distribution in terms of  secondary probabilities, one should simply 
perform the necessary summation or integration to obtain the expectation of  p, 
E(p). E(p) then serves the role of  the precise probability. 

2 Throughout this paper, f(p) is used to denote a probability density function 
of the continuous random variable, p. If an assessor believes that only a finite 
number of values for p are possible, f (p)  can be interpreted as a probability mass 
function of p. 

3 De Finetti's Theorem requires that there be an infinite or potentially infinite 
number of exchangeable trials. While de Finetti's Theorem does not hold exactly 
for a finite number of  exchangeable trials, it does hold approximately for n finite 
but sufficiently large (Diaconis, 1977; Diaconis and Freedman, 1980). 

4 A scoring rule is considered to be 'sensitive' to distance if forecasts that 

concentrate their probability near the event that occurs receive better scores than 

those that do not (Murphy, 1970). 
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