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ABSTRACT. The generalized Bayes’ rule (GBR) can be used to conduct
‘quasi-Bayesian’ analyses when prior beliefs are represented by imprecise
probability models. We describe a procedure for deriving coherent imprecise
probability models when the event space consists of a finite set of mutually
exclusive and exhaustive events. The procedure is based on Walley’s theory
of upper and lower prevision and employs simple linear programming
models. We then describe how these models can be updated using Cozman’s
linear programming formulation of the GBR. Examples are provided to
demonstrate how the GBR can be applied in practice. These examples also
illustrate the effects of prior imprecision and prior-data conflict on the
precision of the posterior probability distribution.
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1. INTRODUCTION

A requirement of any normative Bayesian procedure is that the
assessed prior probability distribution is precise, or additive.
This constraint can be problematic if an expert assessor does
not believe that he has enough information to justify precise
probability assessments or if multiple expert assessors are used.
In either case it may be preferable to employ imprecise prob-
ability expressions such as interval-valued probabilities,
second-order probability distributions, or belief functions
(Beyth-Marom, 1982). Imprecise probability expressions
reflect both first-order uncertainty—uncertainty about the
occurrence or non-occurrence of events, and second-order
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uncertainty—uncertainty about the event probabilities them-
selves (Goldsmith and Sahlin, 1982).

Although normative Bayesian theory maintains that second-
order uncertainty is irrelevant to decision making processes (cf.
Savage, 1954), numerous experimental studies in behavioral
decision theory have demonstrated that second-order
uncertainty can affect a decision maker’s preferences for deci-
sion alternatives (Becker and Brownson, 1964; Boiney, 1993;
Curley and Yates, 1985; Einhorn and Hogarth, 1985; Ellsberg,
1961; Goldsmith and Sahlin, 1982; Yates and Zukowski, 1976).
Repressing second-order uncertainty can give decision makers a
false sense of control in a probabilistic sense, which can translate
to overconfidence in decisions (Feagans and Biller, 1981).

While imprecise probability expressions better inform deci-
sion makers and may ultimately improve decision quality, they
are incompatible with standard decision technologies. Imprecise
probabilities require axiom systems more complex than for
precise probability. The increased computational and cognitive
demands required to implement these axiom systems have no
doubt discouraged decision analysts from incorporating
imprecise probability expressions into decision making processes.

In this paper, we describe and demonstrate a decision ana-
lytic procedure for incorporating second-order uncertainty into
a Bayesian, or quasi-Bayesian, analysis. The procedure is based
on Walley’s theory of upper and lower prevision,1 which pro-
vides a general framework for reasoning with imprecise prob-
abilities (Walley, 1991).

The imprecise probability models examined in this study are
special cases covered by the general theory of upper and lower
prevision. In particular, we consider cases for which the event
space consists of a finite set of mutually exclusive and
exhaustive events. We demonstrate howWalley’s closely related
principles of avoiding sure loss, coherence, and natural exten-
sion are applied to assess and to derive coherent (internally
consistent) imprecise probabilities for the special models con-
sidered in this paper.
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The GBR, an inference rule derived from the principles of
coherence and natural extension, is used to update coherent
imprecise probabilities using a linear programming formulation
of the GBR detailed in Cozman (1999). The procedure
described in this paper provides decision analysts with a prag-
matic approach for incorporating second-order uncertainty
into an analysis. In fact, the linear programming models used to
derive the imprecise prior probability models and to oper-
ationalize the GBR can be implemented using the optimization
facilities available with common spreadsheet packages.

The remainder of this paper is organized as follows: Section
2 describes a linear programming model for deriving coherent
imprecise probability models from two forms of imprecise
probability expression—upper and lower probabilities and
imprecise probability ratios. Section 3 discusses the generalized
Bayes’ rule and delineates a procedure for implementing the
GBR using a linear programming model developed by White
(1986), Snow (1991), and Cozman (1999). Section 4 describes
potential applications of the GBR in reliability analysis,
environmental impact assessment, and evaluation of medical
trials. Section 5 discusses some issues that should be addressed
before imprecise probability models are widely used by decision
analysts.

2. CONSTRUCTING IMPRECISE PRIOR PROBABILITY MODELS

Alternatives to additive (precise) probability theory often
employ probability intervals or convex sets of probability dis-
tributions to represent uncertainty (Fine, 1988; Gardenfors and
Sahlin, 1982; Koopman, 1940; Levi, 1980; Smith, 1961). Interval
probabilities and convex sets of probability distributions are
closely related representations of uncertainty. A brief and non-
technical discussion of these probability models and their
interrelationship can be found in Cozman (1997). Walley’s fra-
mework for imprecise probability requires that uncertainty be
represented by a convex set of probability distributions. Oneway
to define this convex set is to provide a set of linear constraints on
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event probabilities. Walley provides a general methodology for
eliciting such constraints (Walley, 1991, chap. 4). A key feature
of Walley’s elicitation methodology is that an assessor need only
provide imprecise probability assessments that collectively meet
the relatively minimal requirement of ‘‘avoiding sure loss’’
(ASL). Coherent imprecise probability assessments can then be
derived using ‘‘natural extension’’. The three interrelated prin-
ciples—ASL, coherence, and natural extension—are briefly de-
scribed below. A full description and justification for these
principles is provided in Walley (1991).

Analogous to precise probability assessment, an assessor’s
imprecise probabilities avoid sure loss if they do not imply that
he can be induced to accept a series of bets certain to result in a
net loss in utility. It is relatively easy for an assessor to provide
assessments that avoid sure loss. However, compliance with the
ASL principle does not guarantee that the collection of
imprecise probability assessments are mutually consistent, or
coherent. Coherence is violated when probability assessments
for some events imply a probability for some other event which
differs from its assessed probability. Such inconsistency usually
occurs, not because of any fundamental irrationality on the
assessor’s part, but because the assessor is not fully cognizant of
the implications of his adjudged probabilities.

Coherence violations can be corrected using the principle of
natural extension, assuming that the collection of probability
assessments avoid sure loss. The principle of natural extension
is fundamental to Walley’s theory and is informally explained
as follows: given a number of bounds on probabilities, there are
any number of sets of probability measures that could attain
these bounds, any such set is an ‘‘extension’’; the ‘‘natural
extension’’ is always the largest set of probability measures that
satisfies the given probability constraints and is coherent. Any
other such set incorporates additional information not implied
by the initial constraints.

A significant advantage of Walley’s approach is that the
assessor is relieved of the cognitive burden of conforming to the
complex coherency requirements for imprecise probability.
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Empirical studies of imprecise probability assessment have
demonstrated that individuals, while able to provide imprecise
probability assessments that avoid sure loss, are often unable to
provide assessments that satisfy coherency constraints (Benson
and Whitcomb, 1993; Walley, 1991). In this section, we describe
and demonstrate procedures for constructing imprecise prob-
ability models following Walley’s approach.

Twomodes of imprecise probability expression were adopted:
(1) interval-valued event probabilities, and; (2) imprecise prob-
ability ratios. These expressions were chosen for two reasons.
First, neither expression requires the assessor to have a sophis-
ticated knowledge of probability theory in order to conform to
the constraints for avoiding sure loss. Second, both form linear
constraints on event probabilities and therefore are compatible
with the linear programming formulations used to apply the
principle of natural extension and to operationalize the GBR.

Section 2.1 describes the procedure for deriving coherent
imprecise probability models from lower and upper event
probabilities. The procedure for deriving imprecise probability
models from imprecise probability ratios is described in Section
2.2.

2.1. Imprecise probability models derived from interval-valued
probabilities

Consider an event space consisting of n states of nature,
E1,. . .,En. Lower and upper probabilities for the event space,
pðEjÞ and �pðEjÞ, respectively, avoid sure loss assuming that the
following constraints are satisfied (Walley, 1991, p. 198):

0O pðEjÞO �pðEjÞO1 for j ¼ 1; . . . ; n

and

Xn

j¼1
pðEjÞO1O

Xn

j¼1
�pðEjÞ:

Previous studies in imprecise probability assessment revealed
that assessors were almost always able to provide assessments
that avoided sure loss. However, these same studies found

QUASI-BAYESIAN ANALYSIS USING IMPRECISE PROBABILITY 213



that assessors were not always able to provide lower and
upper probabilities that conformed to the following
constraint for coherency (Walley, 1991, p. 198; Whitcomb, 1989,
(unpublished)).

�pðEjÞ þ
X

i 6¼j
pðEiÞO1O pðEjÞ þ

X

i 6¼j
�pðEiÞ for j ¼ 1; . . . ; n:

In order to obtain coherent lower and upper probabilities, the
principle of natural extension can be applied to imprecise
probability assessments that avoid sure loss. The following
simple linear programming model can be used to implement the
principle of natural extension:

For k ¼ 1; . . . ; n min/max pðEkÞ;
s.t. LðEjÞO pðEjÞOUðEjÞ;

pðEjÞ � 0 for j ¼ 1; . . . ; n andX

j

pðEjÞ ¼ 1:0;

where
L(Ej) is the lower probability assessment for Ej,
U(Ej) is the upper probability assessment for Ej.
As a simple example, suppose that an event space is comprised
of just three mutually exclusive events E1, E2, and E3. Further
suppose that an assessor provides the following lower and
upper probability bounds:

0:3OpðE1ÞO0:5;

0:1OpðE2ÞO0:4;

0:4OpðE3ÞO0:7:

It is easy to verify that these probability assessments avoid sure

loss. However, since �pðE2Þ þ
P

j 6¼2 pðEjÞ ¼ 1:1 and �pðE3ÞþP
j 6¼3 pðEjÞ ¼ 1:1; there are two coherency violations.

For example, the second violation indicates that p(E3) can-
not be as high as 0.7 since p(not-E3) is constrained to be greater
than or equal to 0.4—the constraints on event probabilities are
inconsistent. The principle of natural extension can be
implemented to derive coherent bounds on the three event
probabilities by using the assessor’s lower and upper bounds on

KATHLEEN M. WHITCOMB214



p(Ej) for the L(Ej) and U(Ej) in the above linear programming
model. The following corrected (coherent) lower and upper
probability bounds were computed:

pðE1Þ ¼ ½0:3; 0:5�; pðE2Þ ¼ ½0:1; 0:3�; and; pðE3Þ ¼ ½0:4; 0:6�:

2.2. Imprecise probability models derived from imprecise
probability ratios

Probability judgments of the form Ej is at least l and no more
than u times as probable at Ei can be formulated as an im-
precise probability ratio as follows:

lO
pðEjÞ
pðEiÞ

Ou:

In order to facilitate the assessment process, Walley suggests
using one of the events, Ei ¼ E0, as a reference event (Walley,
1991, p.199). Then the assessments avoid sure loss provided
that ljOuj for all j.

The expressions, ljO pðEjÞ=pðE0Þ
� �

Ouj; are incorporated as
linear constraints on the p(Ej) in a linear program as follows:

For k ¼ 1; . . . ; n min/max pðEkÞ
s.t. ljpðE0ÞO pðEjÞOujpðE0Þ

pðEjÞP0 for j ¼ 1; . . . ; n and
X

j

pðEjÞ ¼ 1:0:

To demonstrate, suppose again that an event space is com-
prised of just three outcomes E1, E2, and E3 and that the fol-
lowing assessments have been made with respect the reference
event, E1 ¼ E0:

0:5 pðE1ÞOpðE2ÞO2pðE1Þ;
2 pðE1ÞOpðE3ÞO3pðE1Þ:

The corresponding coherent lower and upper event prob-
abilities derived from the linear programming model are: 0:1667
O pðE1ÞO0:2857; 0:1111O pðE2ÞO0:4 and, 0:4O pðE3ÞO0:6667.

It is not necessary to restrict the assessment procedure to a
single mode of imprecise probability expression. In fact, upper
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and lower probabilities are often inadequate models of un-
certainty and information may be lost when used alone to
model uncertainty. This is especially true when upper and lower
probabilities are used to define a set of prior probability dis-
tributions in a quasi-Bayesian analysis. But it can be difficult to
verify that a set of assessments comprised of different types of
probability expressions avoids sure loss without using computer
software written specifically for this purpose.

3. LINEAR PROGRAMMING FORMULATION FOR THE
DISCRETIZED GBR

The generalized Bayes’ rule is used to obtain minimum and
maximum values for linear functions of posterior event prob-
abilities. When the outcome space is finite and the prior is ex-
pressed in terms of linear constraints on event probabilities,
linear programming methods can be used to operationalize the
GBR. In this paper, a modified version of the White–Snow
linear programming solution for the GBR was adopted. This
model is described and demonstrated in this section. Additional
background and details on the development of this model can
be found in White (1986), Snow (1991), and Cozman (1999).

Suppose that prior uncertainty regarding events
E ¼ E1; . . . ;En is represented by a convex set of precise prob-
ability distributions formed by a set of linear constraints on
event probabilities and that observational data, x, is obtained
that generates a precise likelihood function C ¼ cðxjEÞ for
which cðxjEiÞ > 0 for i ¼ 1; . . . ; n: The linear programming
formulation of the GBR is stated initially as

For k¼1; . . . ; n min/max qðEkjxÞ¼
pðEkÞ � cðxjEkÞPn
j¼1 pðEjÞ � cðxjEjÞ

;

s.t. ApO0;
pðEjÞP0 for j ¼ 1; . . . ; n andX

pðEjÞ ¼ 1:0;

where
q(Ej|x) is the posterior probability for event j given

observation x;
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p(Ej) is the prior probability for event j;
c(x|Ej) is the probability of observation x given event j;
A is an m · n constraint matrix whose coefficients are de-

noted aij, and;
p is an n-dimensional vector whose elements are pðEjÞ

for j ¼ 1; . . . ; n.
Bounding Ap by the zero vector is necessary for the methods
used to solve the GBR, and results in no loss of generality
(Snow, 1991). To clarify this point, note that

P
p(Ej) ¼ 1.0 and

let ri denote a positive constant corresponding to the right hand
side of constraint ‘‘i’’. Then the constraint

Xn

j¼1
aijpðEjÞOri

can be rewritten as

Xn

j¼1
aij � ri
� �

pðEjÞO0:

And a constraint of the form

Xn

j¼1
aijpðEjÞPri

can be rewritten as

�
Xn

j¼1
aij � ri
� �

pðEjÞO0:

Equality constraints can be similarly expressed by a pair of
zero-bounded inequalities.

In order to linearize the objective function, a change of
variables must be performed. Cozman (1999) suggested the
following change of variables:

cðEkÞ ¼
pðEkÞPn

j¼1 cðxjEjÞ � pðEjÞ
:

Incorporating this transformation into the previous formula-
tion results in the following linear programming model:
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For k¼ 1; . . . ;n min/max qðEkjxÞ ¼ cðxjEkÞ � cðEkÞ ð3:1Þ
s.t. AcO0;

cðEjÞP0;

Xn

j¼1
cðxjEjÞ � cðEjÞ ¼ 1:0 for j¼ 1; . . . ;n:

The generalized Bayes’ rule follows from the principles of nat-
ural extension and coherence. The qðEk xÞj and qðEk xÞj obtained
by minimizing and maximizing Equation (3.1) for each event,
Ek, subject to linear constraints on the prior and coherency
constraints are the minimal coherent lower and upper posterior
probabilities. Other coherent lower and upper probabilities,

q0ðEkjxÞ and q0ðEkjxÞ, may exist that satisfy these constraints.

But, any such q0ðEkjxÞ must dominate qðEk xÞj in that

q0ðEkjxÞPqðEj xÞj for all Ek and q0ðEkjxÞmust dominate qðEk xÞj
in that q0ðEkjxÞOqðEk xÞj for all Ek.

Accordingly, q0ðEkjxÞ and q0ðEkjxÞ incorporate additional
information not implied by the initial constraints and thus are
not the minimal coherent solution (Walley, 1996, p. 16).

To demonstrate the LP formulation of the GBR, we return
to the example presented in Section 2.1. The prior constraints
are: 0:3OpðE1ÞO0:5; 0:1OpðE2ÞO0:4; and; 0:4OpðE3ÞO0:7:
Suppose that relevant data is observed and that the normalized
likelihoods are: cðxjE1Þ ¼ 0:1; cðxjE2Þ ¼ 0:7; and cðxjE3Þ ¼ 0:2:
The linear program is then

For k¼ 1;2;3 min=maxqðEkjxÞ ¼ cðxjEkÞ � cðEkÞ;
s.t. �0:7cðE1Þ þ0:3cðE2Þ þ0:3cðE3Þ O0;

þ0:5cðE1Þ �0:5cðE2Þ �0:5cðE3Þ O0;

þ0:1cðE1Þ �0:9cðE2Þ þ0:1cðE3Þ O0;

�0:4cðE1Þ þ0:6cðE2Þ �0:4cðE3Þ O0;

�0:7cðE1Þ �0:7cðE2Þ þ0:3cðE3Þ O0;

þ0:4cðE1Þ þ0:4cðE2Þ �0:6cðE3Þ O0;

þ0:1cðE1Þ þ0:7cðE2Þ þ0:2cðE3Þ ¼ 1

and cðE1Þ;cðE2Þ;cðE3ÞP0:

KATHLEEN M. WHITCOMB218



Solution of the linear program yields the following lower and
upper posterior event probabilities: qðE1jxÞ ¼ ½0:094; 0:250�;
qðE2jxÞ ¼ ½0:318; 0:656�; and qðE3jxÞ ¼ ½0:250; 0:545�.
If the event-space is comprised of ordered events, the analyst
may want to calculate upper and lower bounds on cumulative
event probabilities. This can easily be accomplished by mod-
ifying the objective function to

For k ¼ 1; 2; 3 min=max
Xk

k¼1
qðEkjxÞ

¼
Xk

k¼1
cðxjEkÞ � cðEkÞ:

For the current example, the upper and lower bounds
on cumulative event probabilities are calculated to
be: qðE1jxÞ ¼ ½0:094; 0:250�; qðE1 [ E2jxÞ ¼ ½0:455; 0:750�; and
qðE1 [ E2 [ E3jxÞ ¼ ½1:00; 1:00�:
The objective function can be expressed more generally in terms
of upper and lower expectations, also called upper and lower
previsions. For a bounded function, f(E), the objective function
can be expressed as

min=max
Xn

k¼1
fðEkÞqðEkjxÞ ¼

Xn

k¼1
fðEkÞcðxjEkÞ � cðEkÞ:

By appropriate selection of f(Ek), any linear function of the
posterior event probabilities can be optimized. Such functions
include upper and lower event probabilities, cumulative event
probabilities, and expected losses. To illustrate computation of
upper and lower expected losses, suppose that for the current
example losses associated with the occurrence E1, E2, and E3 are
500, 100, and 200, respectively. The objective function is

min=max500 � 0:1 � cðE1Þþ 100 � 0:7 � cðE2Þþ 200 � 0:2 � cðE3Þ:
Lower and upper expected losses generated by minimizing and
maximizing this function subject to the previously specified
constraints are 162.50 and 240.00, respectively.

The approach for solving the GBR described in this section is
quite inclusive. Although the formulation is only appropriate
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when the outcome space is discrete, any outcome space, if not
inherently discrete, can be discretized. The LP formulation for
solving the GBR can be extended to include cases where the
likelihoods are interval-valued, provided that the lower bounds
of the likelihoods are non-zero (Cozman, 1999). Algorithms that
accomodate zero-valued likelihoods are available, but compu-
tationally more complex. These algorithms employ either se-
quences of linear programs (Coletti, 1994; Coletti and
Scozzafava, 1999; Walley et al., 1999) or a sequence of pivoting
operations (Cozman, 2002) to solve the GBR.

4. ILLUSTRATIVE EXAMPLES OF THE GENERALIZED
BAYES’ RULE

In this section we provide examples to illustrate how the gen-
eralized Bayes’ rule could be used in practical problems. The first
case is set in reliability engineering and assumes that a single
expert assessor provides probability constraints that can be used
to derive an imprecise prior. The second and third examples are
derived from an ecological impact study and a medical trials
study. In both cases, the original analysis used multiple precise
priors to capture the divergent beliefs of experts. We demon-
strate how a quasi- Bayesian analysis of the data could have been
conducted instead.

4.1. Application to Bayesian reliability analysis

Reliability analysis is concerned with the ability of a system to
successfully perform its intended function for a given time
under a specific set of conditions (Martz and Waller, 1982).
Often, data for estimating reliability parameters is limited and
Bayesian methods are used in order to augment the data with
expert opinion in the form of a subjective probability
distribution for the parameter. Previous studies have applied
Walley’s theory of imprecise probability to reliability
engineering. Coolen (1993) and Coolen and Newby (1994)
demonstrated the use of lower and upper conjugate density
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families to model prior beliefs about reliability parameters.
Utkin and Kozine (2001) and Utkin and Gurov (2002) encode
partial information about reliability parameters using linear
constraints. Revised previsions for the parameter are com-
puted using a linear programming formulation of natural
extension. Their results can used for discrete and continuous
lifetime distributions. Kozine and Krymsky (2003) describe a
technique for obtaining more precise previsions for continuous
reliability parameters by eliciting judgments on a function
that dominates the probability density function of the
parameter.

We present a basic example in which an expert provides im-
precise probability ratios to characterize his beliefs about the
mean time to failure, h, for a machine component. Hypothetical
sample results are used to update the prior using the LP for-
mulation of the GBR described in Section 3. The data sets were
chosen to reflect varying weights of evidence and degrees of
prior-data conflict.

For simplicity, we assume that the mean time to failure
(MTTF) of the component takes on the following values:
h ¼ {0.5,1.0, 2.0, 3.0, 4.0, 5.0, 10.0} as measured in thousands
of hours.2 Let h4 be the designated reference event and suppose
that the engineer assesses the imprecise probability ratios as

TABLE I
Upper and lower probability, ratios and event probabilities, for

prior probability model

hj lj uj pðhjÞ pðhjÞ

h1 = 0.5 1/100 1/10 0.0025 0.0469

h2 = 1.0 1/3 5/4 0.1030 0.4222

h3 = 2.0 2/5 1 0.2410 0.4895

h4 = 3.0 1 1 0.1127 0.3783

h5 = 4.0 1/10 2/5 0.0260 0.1701

h6 = 5.0 1/10 1/5 0.0247 0.0933

h7 =10.0 1/10 1/5 0.0247 0.0933

D = 1.1590
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shown in columns (2) and (3) of Table I. Coherent lower and
upper probabilities derived from these assessments using the
principle of natural extension are shown in columns (4) and (5). A

summary measure of imprecision, D ¼
Pn

j¼1 pðhjÞ �
Pn

j¼1 pðhjÞ,
was calculated and appears beneath columns (4) and (5) in Table I
(Good, 1965).

Suppose that a life testing experiment is performed in which
a certain number of new components are tested until they all
fail. This is referred to as ‘‘Type II/item-censored testing
without replacement’’ (Martz and Waller, 1982, pp. 118–121).
In this situation it is common to use an exponential probability
distribution to represent the distribution of failure times. The
likelihood function for exponentially distributed failure times is

Lðhjs; tÞ ¼ 1

hsj
e�t=h;

where
s is a fixed number of failures; and
t is a random variable denoting the sum of the failure times

for s units, measured in thousands of hours.
Normalized likelihoods were calculated for six different

combinations of s and t. Three combinations of s and t were
chosen to represent increasing amounts of data in general
agreement with the prior: (s, t) =(2, 2.4); (6, 7.2); and (10, 12.0).
Three combinations were chosen to represent increasing
amounts of data in conflict with the prior: (s, t) = (2, 0.25);
(6, 0.75); and (10, 1.2).

The LP formulation of the GBR was then used to update the
engineer’s prior beliefs using the hypothetical life testing results.
The constraint set for the formulation consists of the prob-
ability ratio bounds shown in columns (2) and (3) of Table I
and the requisite non-negativity and additivity constraints.
Each of the six sets of normalized likelihoods, f(s, t|hj), was
used in turn for the c(x|hj).

Table II contains the normalized likelihoods and lower and
upper posterior probability bounds for the life testing results in
general agreement with the prior. The summary measure of
imprecision, D, declines as the amount of evidence increases.
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Table III contains the normalized likelihoods and lower and
upper posterior probability bounds corresponding to the data
that contradict the prior. For these cases, D actually increases
until the weight of evidence overwhelms both first- and second-
order uncertainty. Greater imprecision in the posterior versus
prior probability distribution has been termed dilation
(Siedenfeld and Wasserman, 1993). It is a significant and not
uncommon drawback associated with the GBR. In practice,
dilation often indicates that the prior constraints should be
revisited and, if possible, assessed more precisely and/or aug-
mented with additional constraints (Fortin et al., 2001).

In the current case, dilation is partially attributable to prior/
data conflict. Figure 1, which contains graphs for the imprecise
prior and the posterior distribution for s = 6 and t = 750 h,
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illustrates this point. The likelihood of the data is allocated
almost entirely to h1 = 0.5, a parameter value assigned a low
(first-order) prior probability. The remaining likelihood is
allocated to h2 = 1.0, which has a relatively high (first-order)
prior probability. The imprecise posterior probability
distribution reveals that the only two plausible events after the
data are observed are h1 = 0.5 and h2 = 1.0 but that there is a
great uncertainty as to how first-order uncertainty should be
divided among them.

4.2. Analyzing the effects of rain forest logging

In environmental and ecological studies, statistical analyses are
often used to make and justify controversial decisions (Wolfson
et al., 1996). The example described in this section was derived
from a study undertaken to assess the impact of rain forest
logging on indigenous birds and small mammals in tropical
Queensland, Australia (Crome et al., 1996). As in other areas
involving rare, complex, or poorly understood processes, prior
information about the effects of rain forest canopy reduction on
indigenous species was based mainly on the opinions of various
experts.

Experts were chosen to represent three groups of stake-
holders: proponents of the logging industry; full-time con-
servationists, and; interested members of the public. The
divergent beliefs of the stakeholders were reflected by con-
structing three separate priors—one each for the most extreme
(optimistic) logger, the most extreme (pessimistic) conserva-
tionist, and the average (impartial) layperson. Each prior was
derived by eliciting fractiles for the effect size, d (the ratio of
post- to pre-logging counts of a species in the logged area), and
fitting a log-normal mixture distribution to the fractiles.

In our approach, an imprecise prior models the initial beliefs
of the three groups of stakeholders. To construct an imprecise
prior using the methods described in this paper, each stake-
holder group’s prior must be discretized. Ten values of d were
used and are listed in Table IV, column (1). The p(di) for each
precise prior were estimated from its fitted lognormal mixture
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distribution. For each dj, its associated probability interval was
the narrowest interval that included all three values of p(dj).
That is, pðdjÞ ¼ minfpkðdjÞg for k ¼ 1; 2; 3 and pðdjÞ ¼ max
fpkðdjÞg for k ¼ 1; 2; 3. This combination method is known as
the ‘unanimity rule’ (Coolen, 1992; Walley, 1991, p.188). The
coherent probability intervals derived from the three dicretized
precise priors using the unanimity rule are shown in Table IV,
columns (2) and (3).

In collecting observational data, Crome et al. employed a
standard design for ecological studies known as the ‘BACIP’
design (Hurlbert, 1984). In this design, count data for a particular
species is obtained in a logged area and in a comparable unlogged
area for several time periods before and after logging takes place.
The data is analyzed using an analysis of variance model that
includes time, area, and time · area effects. The logging effect, d,
is captured by the last (interaction) term. Details of the study
design, samplingmodel, and associated likelihood function can be
found in Crome et al. (1996, pp. 1107–1108).

Since actual data was not published, we computed like-
lihoods for data generated using the likelihood function refer-
enced above and hypothetical values for the effect sizes.

TABLE IV
Rain forest logging example*

dj pðdjÞ pðdjÞ f (x|dj) pðdjjxÞ pðdjjxÞ

0.2 0.0000 0.1020 0.0000 0.0000 0.0000

0.4 0.0606 0.5102 0.0253 0.0069 0.1155

0.6 0.1212 0.2206 0.4199 0.2778 0.6296

0.8 0.1020 0.2353 0.4010 0.2394 0.5994

1.0 0.0510 0.2121 0.1265 0.0315 0.2170

1.2 0.0408 0.1667 0.0236 0.0043 0.0367

1.4 0.0204 0.1212 0.0034 0.0003 0.0038

1.6 0.0102 0.0758 0.0004 0.0000 0.0003

1.8 0.0051 0.0303 0.0000 0.0000 0.0000

2.0 0.0051 0.0303 0.0000 0.0000 0.0000

D = 1.2881 D = 1.0421

*Values less than 0.00005 are rounded to zero.
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Specifically, we generated count data for twenty periods (10
pre- and 10 post-logging) assuming a Poisson distribution with
a mean of 30 for the unlogged area (pre- and post-logging), 28
for the logged area pre-logging, and 21 for the logged area post-
logging. This corresponds to a 25% reduction (d = 0.75) in
species count that can be attributed to logging. Normalized
likelihoods for our hypothetical data are shown in column (4)
of Table IV.

In the original analysis, derivation of the three precise pos-
terior distributions was straightforward since the prior prob-
ability distributions were natural conjugates for the likelihood
function. In the re-analysis, the imprecise posterior probability
intervals are obtained using the prior probability intervals as
constraints, the normalized likelihoods, and the linear pro-
gramming formulation of the GBR. The posterior probability
intervals for each dj appear in columns (5) and (6) of Table IV.

Examination of Table IV reveals that there are fewer plau-
sible events indicated by the imprecise posterior than by the
imprecise prior. Also, there is less imprecision associated with
the posterior (D = 1.0421) compared to the prior
(D = 1.2881). Accordingly, for this example both first- and
second-order uncertainty have been reduced after updating
with the GBR.

4.3. Evaluating the efficacy of medical trials

In the medical field, prior distributions are constructed using
information from clinical databases, expert opinion, medical
literature, and other sources (Spiegelhalter et al., 1993). As in
the previous example, selection of an appropriate prior prob-
ability distribution can be controversial. This is especially true
when evaluating the efficacy of new medical therapies. Walley
et al. (1996) used an imprecise beta distribution (Walley, 1991,
section 5.3) to model prior beliefs for the difference in survival
probabilities for standard and new therapies. We present a
simple application in which the percentage improvement in
survival rates for a new versus standard therapy is modeled in
terms of upper and lower event probabilities. Our example is
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derived from a statistical analysis of the CHART (continuous
hyperfractionated accelerated radiotherapy) trials.

Parmar et al. (1994) demonstrated the use of Bayesian
methods to evaluate a new therapy called ‘CHART’. Nine
clinicians who were to participate in the trials assessed prob-
abilities for selected values of x, the change in the proportion of
patients who were disease free after two years using CHART
versus standard therapies. Despite large differences in clin-
icians’ prior probability distributions for x, simple averaging
across priors was employed to derive a precise prior. A normal
probability distribution was then fit to the average prior after
transforming x to a log hazard ratio, ln(h), scale.3 Because this
distribution had a mean survival rate equivalent to a 12%
improvement in the two-year survival rate using CHART (ln(h)
~ N(0.351, 0.0625)) it was termed an ‘enthusiastic’ prior. A
‘skeptical’ prior was then constructed by shifting the en-
thusiastic prior downward so that the mean survival rate
translated to a 0% improvement in survival rate (ln(h) ~ N(0.0,
0.0625)).

An imprecise prior for the nine clinicians could have been
constructed using the unanimity rule. However, since the clin-
icians’ priors varied greatly, the unanimity rule resulted in a
highly imprecise prior (D = 2.803). This level of imprecision
often results in posterior probabilities so imprecise that they
have no practical value. Consequently, we decided to employ a
less conservative combination rule. This rule is detailed in
Moral and Selgado (2001) and is as follows:

For k = 1,. . .,m probability distributions and a constant, c,
between 0 and 1, inclusive:

(1) calculate p ¼ ð1=mÞ
Pm

k¼1 pk; the ‘average’ probability dis-
tribution;

(2) calculate pck ¼ cpþ ð1� cÞ � pk for k ¼ 1; . . . ;m;
(3) use the convex set determined by points pck to derive upper

and lower bounds, pðdjÞ and pðdjÞ; for j ¼ 1; . . . ; n.

For c = 0, the above rule coincides with the unanimity rule.
For c = 1.0, it is equivalent to simple averaging. We com-

QUASI-BAYESIAN ANALYSIS USING IMPRECISE PROBABILITY 229



promised by choosing c = 0.5. This value avoids the problems
associated with a prohibitively imprecise prior and still reflects
disagreement in expert opinion. The ln(h) values and lower and
upper probabilities derived from the clinicians’ precise priors
using c = 0.5 appears in columns (2)–(4) of Table V. Column
(1) lists x values equivalent to the ln(h) values in column (2).

Parmar et al. (1994) used hypothetical interim results to
demonstrate how a Bayesian analysis could be conducted for
the CHART trials. They supposed that of the 492 patients
entered in the trials an equal number had been assigned to
either therapy, that 37 events had been observed for CHART
and 33 for the standard therapy, and that the estimated log
hazard ratio, ln(hd), was )0.114. Again assuming that the log
hazard ratio follows a normal distribution, the observed data is
normal with mean ln(hd) and variance 4/Nd. Nd is the sum of
the events (recurrences of illness) for the standard and new
therapies. The derived enthusiastic and skeptical posterior
probability distributions are then ln(he) ~ N(.108, .0299) and
ln(hs) ~ N()0.0597, 0.0299), respectively. Additional details
regarding the construction of the prior, data, and posterior
probability distributions for the log hazard ratio can be found
in Fayers et al. (1997).

TABLE V
Clinical trials example

X ln(h) pðhÞ pðhÞ fðhdjhÞ pðhjhdÞ pðhjhdÞ

)0.0750 )0.2057 0.0125 0.0625 0.2471 0.0195 0.1816

)0.0250 )0.0691 0.0250 0.1729 0.2499 0.0425 0.4110

0.0250 0.0701 0.0969 0.3469 0.2007 0.1369 0.6125

0.0750 0.2145 0.0969 0.2969 0.1369 0.0825 0.4363

0.1250 0.3667 0.1094 0.4094 0.0830 0.0555 0.3948

0.1750 0.5300 0.0969 0.3469 0.0460 0.0273 0.2077

0.2250 0.7088 0.0500 0.2000 0.0243 0.0074 0.0631

0.2750 0.9094 0.0125 0.0625 0.0120 0.0009 0.0098

D = 1.3979 D = 1.9443
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As in the previous example, derivation of the precise posterior
probability distributions was easy since the priors were natural
conjugate densities for the likelihood function. To update our
imprecise prior, it was again necessary to explicitly calculate
likelihoods. The likelihood function for the observed log hazard
ratio is expressed as follows (Fayers et al., 1997)

LðhjhdÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8p=Nd

p e�ð1=2Þ lnðhdÞ�lnðhÞð Þ 4=Ndð Þ�0:5½ �2 ;

where
ln(h) is the expected (mean) log hazard ratio;
ln(hd) the observed log hazard ratio, and
4/Nd the variance of the observed log hazard ratio.
The normalized likelihoods for the data and imprecise pos-

terior probability distribution are shown in Table V, columns
(5)–(7). In this case, the posterior probability distribution is
more imprecise than the prior (D = 1.9443 versus D = 1.3979).
For this example, dilation can be attributed to high imprecision
of the prior and a relatively diffuse likelihood function.

In examples 4.2 and 4.3, the original analysis used multiple
precise priors to bound the range of expert opinion. In effect,
these priors defined a convex set of priors. However, the
multiple precise posterior distributions derived using Bayes’
rule do not define the largest set of probability measures
consistent with the convex set of priors and the data. In our
reanalysis, we employed the GBR to update bounds on the
prior. Consequently, the resultant posterior bounds were
minimally coherent. But, because we defined the prior
bounds solely in terms of upper and lower event prob-
abilities, our imprecise posterior distributions tended to be
excessively wide. In practice, additional constraints on the
prior should be elicited to avoid unnecessary imprecision.

5. DISCUSSION

Numerous studies in behavioral decision theory have demon-
strated the importance of second-order uncertainty for decision
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making. The rapid growth of interest in imprecise probability
has led to the development of imprecise probability models
with many potential applications. The generalized Bayes’ rule,
formulated as a mathematical programming model, is an
important example. However, the GBR has scarcely been used
by decision analysts.

Several factors have impeded adoption of the GBR by
practitioners of decision analysis. Certainly, the amount of
cognitive and computational effort required to construct
imprecise versus precise probability models for prior beliefs is
an obstacle. We have addressed this issue by demonstrating
that Walley’s approach to imprecise probability elicitation can
be used in conjunction with simple linear programming models
to construct coherent imprecise prior probability models.
Conducting a Bayesian analysis with imprecise prior prob-
ability models is another impediment. Closed-form solutions to
the GBR exist for special types of imprecise probability models,
such as upper and lower natural conjugate densities (Walley,
1991, p. 205). Linear programming formulations of the GBR
are more general, but require more computational effort. In this
paper, we showed that Cozman’s linear programming for-
mulation of the GBR can be used in conjunction with imprecise
prior probability models that are specified by linear constraints
on event probabilities. This methodology is unwieldy for event
spaces with very large n, but is quite manageable for event
spaces that are not overly fine. Linear programming formula-
tions of the GBR are easily implemented using the optimization
modules available with common spreadsheet software or any
standard linear programming software.

Other issues need to be addressed before imprecise prob-
abilities are routinely used for decision making. Notably, more
attention should be devoted to the development of general
assessment strategies for imprecise probabilities. Accurate re-
presentation of the imprecise prior probability model is critical
in a quasi-Bayesian analysis, since probability expressions that
are too imprecise or highly contradictory to the data can
generate posterior probability models that are practically va-
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cuous—i.e., so vague as to be useless for decision making.
While this effect is unavoidable if the assessor’s knowledge of
the events is limited or inaccurate, it should not occur because
the assessment procedure failed to adequately assist the
assessor in capturing his beliefs. To date, most research in
imprecise probability assessment has been directed at theoretical
and computational aspects of assessment rather than the de-
velopment of practical assessment procedures. The elicitation
protocol delineated in Lins et al. (2001) is a useful example of
the latter. Interactive computer programs for checking the
consistency of probability constraints such as the one devel-
oped by Dickey (2003) and the expert systems for assessment
suggested by Walley (1996) are also critical if assessment
procedures for imprecise probability are to be successful and
widely used.

The development of efficient algorithms for propagating
imprecise probabilities in influence diagrams, or Bayesian net-
works, is also an important concern. Breese and Fertig (1991)
and Tessem (1992) describe approximative algorithms for sol-
ving such problems. Andersen and Hooker (1994) and Fagiuoli
and Zaffalon (1998) use non-linear programming methods to
formulate efficient algorithms for solving Bayesian networks
with imprecise probabilities. But a general effective solution
method for large-scale systems has yet to be formulated.

Comparing decision alternatives can also be problematic
when probabilities are imprecise. Lower and upper bounds on
expectations can be computed if event outcomes are precise.
But the ranges of expected values for different decision alter-
natives can overlap. When this occurs, the expected utility
criterion cannot be used to determine the optimal course of
action. A variety of strategies for choosing decision alternatives
have been proposed for such cases. These include: choosing the
alternative that minimizes the maximum possible expected loss
(Berger, 1985; Gardenfors and Sahlin, 1982); using secondary
measures that enforce ‘security’ (Levi, 1980); and reporting all
admissible plans, but leaving the actual choice of alternatives
unspecified (Fertig and Breese, 1990). Recently, Schervish et al.
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(2003) examine extensions of expected utility theory to convex
sets of probabilities using G-minimax (Berger, 1985), E-admis-
sibility (Levi, 1980), and maximality (Walley, 1991).

The potential for indeterminacy may discourage decision
makers from including second-order uncertainty in a decision
analysis. However, it should be remembered that indeterminacy
reflects the limits of knowledge available for making decisions.
Forcing assessors to provide precise probabilities in order to
generate a unique ordering of decision alternatives conceals but
does not eliminate second-order uncertainty and any resultant
indeterminacy. Such forced uncertainty absorption can harm
decision quality by giving decision makers a false sense of
confidence in their decisions (Feagans and Billess, 1981).

NOTES

1. In Walley’s theory, a coherent lower prevision is equal to an affinely
superadditive lower expectation. The term ‘prevision’ conveys the idea
that an expectation is a subjective guess about future events (Cozman, 1997).

2. Alternatively, a continuous parameter can be discretized by partitioning
the parameter space into a finite number of intervals. Calculation of the
likelihood function becomes more complicated in this case, since
the likelihood for each interval of parameter values is a definite integral of
the likelihood function over that interval.

3. The log hazard ratio scale is defined as follows: lnðhÞ ¼ ln lnðP1Þ= lnðP2Þð Þ � P1

is the survival rate (proportion) in group 1 and P2 is the survival rate (pro-
portion) in group 2.
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