

Reducing Enterprise Product Line Architecture Deployment and
Testing Costs via Model-Driven Deployment, Configuration, and Testing

Jules White, Brian Dougherty, and Douglas C. Schmidt

Vanderbilt University, Department of Electrical Engineering and Computer
Science, Nashville, TN, 37212, USA

{jules, briand, schmidt}@dre.vanderbilt.edu

Abstract. Product-line architectures (PLAs) are a paradigm for
developing software families by customizing and composing re-
usable artifacts, rather than handcrafting software from scratch.
Extensive testing is required to develop reliable PLAs, which
may have scores of valid variants that can be constructed from
the architecture’s components. It is crucial that each variant be
tested thoroughly to assure the quality of these applications on
multiple platforms and hardware configurations. It is tedious and
error-prone, however, to setup numerous distributed test envi-
ronments manually and ensure they are deployed and configured
correctly. To simplify and automate this process, we present a
model-driven architecture (MDA) technique that can be used to
(1) model a PLA’s configuration space, (2) automatically derive
configurations to test, and (3) automate the packaging, deploy-
ment, and testing of configurations. To validate this MDA proc-
ess, we use a distributed constraint optimization system case
study to quantify the cost savings of using an MDA approach for
the deployment and testing of PLAs.

1 Introduction

Emerging trends and challenges. Product-line architectures (PLAs) ena-
ble the development of a group of software packages that can be retargeted for
different requirement sets by leveraging common capabilities, patterns, and
architectural styles [1]. The design of a PLA is typically guided by scope,
commonality, and variability (SCV) analysis [2]. SCV captures key characte-
ristics of software product-lines, including their (1) scope, which defines the
domains and context of the PLA, (2) commonalities, which describe the at-
tributes that recur across all members of the family of products, and (3) va-
riabilities, which describe the attributes unique to the different members of
the family of products.

Although PLAs simplify the development of new applications by reusing
existing software components, they require significant testing to ensure that
valid variants function properly. Not all variants that obey the compositional
rules of PLA function properly, which motivates the need for powerful testing
methods and tools. For example, connecting two components with compatible
interfaces can produce a non-functional variant due to assumptions made by
one component, such as boundary conditions, that do not hold for the compo-
nent to which it is connected [3].

The numerous points of variability in PLAs also yield variant configuration
spaces with hundreds, thousands, or more possible variants. It is therefore
crucial that PLAs undergo intelligent testing of the variant configuration
space to reduce the number of configurations that must be tested. A key chal-
lenge in performing intelligent testing of the solution space is determining
which variants will yield the most valuable testing results, such as perfor-
mance data.

Solution approach → Model-driven testing and domain analysis of
product-line architectures. Model-driven Architectures (MDA) are a devel-
opment paradigm that employs models of critical system functionality, model
analysis, and code generation to reduce the cost of implementing complex
systems. MDA models capture design information, such as software compo-
nent response-time, that are not present in third-generation programming lan-
guages, such as Java and C++. Capturing these critical design properties in a
structured model allows developers to perform analyses, such as queuing
analyses of a product-line architecture, to catch design flaws early in the de-
velopment cycle when they are less costly to correct.

A further benefit of MDA is that code generators and model interpreters
can be used to traverse the model and automatically generate portions of the
implementation or automate repetitive tasks. For example, Unified Modeling
Language (UML) models of a system can be transformed via code generation
into class skeletons or marshalling code to persist objects as XML. Model in-
terpreters can be used to automatically execute tests of code using frame-
works, such as Another Neat Tool (ANT) and JUnit.

MDA offers a potential solution to the challenges faced in testing large-
scale PLAs. MDA can be used to model the complex configuration rules of a
PLA, analyze the models to determine effective test strategies, and then au-
tomate test orchestration. Effectively leveraging MDA to improve test plan-
ning and execution, however, requires determining precisely what PLA design
properties to model, how to analyze the models, and how best to leverage the
results of these analyses.

This chapter focuses on techniques and tools for modeling, analyzing, and
testing PLAs. First, we introduce the reader to feature modeling [19,20,24],
which is a widely used modeling methodology for capturing PLA variability
information. Second, we describe approaches for annotating feature models

with probabilistic data obtained from application testing that help predict po-
tentially flawed configurations. Next, we present numerical domain analysis
techniques that can be used to help guide the production of PLA test plans.
Finally, we present the structure and functionality of a FireAnt, which is an
open-source Eclipse plug-in for modeling PLAs, performing PLA domain
analysis to derive test plans, and automating and orchestrating PLA testing for
Java applications

Paper organization. The remainder of this paper is organized as follows:
Section 2 provides a motivating case study used throughout the chapter; Sec-
tion 3 presents an overview of PLA modeling and testing challenges; Section
4 presents an MDA approach to PLA deployment and testing; Section 5 eva-
luates the MDA PLA testing approach in the context of the case study; and
Section 6 presents concluding remarks.

2 Motivating Case Study Example

To explore the characteristics of testing PLAs, we have developed an En-
terprise Java Beans (EJB)-based Constraints Optimization System (CONST)
that schedules pickup requests to vehicles. As shown in Figure 1, CONST
manages a list of items that must be scheduled for pickup, a list of times that
the items must arrive by, and a list of vehicles and drivers that are available to
perform the pickup. CONST uses a constraint-optimization engine to find a
cost effective assignment of drivers and trucks to pickups.

Figure 1. Highway Freight Shipment Scheduling Architecture

CONST’s optimization engine can be used to schedule a wide variety of

shipment types. In one configuration, for example, the system could schedule
limousines to customers requiring a ride, whereas in another configuration the
system could dispatch trucks to highway freight shipments. CONST’s optimi-
zation engine must therefore be customizable at design-time to handle these
various domains effectively.

CONST must also be customizable at run-time to adapt to changing oper-
ating conditions. During peak traffic times, for instance, its optimization en-

gine may need to use traffic-aware routing algorithms, whereas during off-
peak times, it may switch to faster traffic-unaware algorithms. Depending on
the target domain, CONST also needs to handle failures differently. For ex-
ample, when scheduling limousines to pickups a degradation of the time re-
quired to schedule a reservation below a threshold may require CONST’s
constraint engine to adapt to improve performance. When scheduling highway
freight shipments, however, the threshold may be higher since pickup and
drop-off windows are more flexible.

To support the degree of customization described above, we developed
CONST as a PLA using SCV analysis, as follows:
• The scope is the constraint optimization system architecture and the asso-

ciated components that address the domain of scheduling shipments to
vehicles, e.g., computing route times between vehicles and shipments,
maintaining a list of waiting shipments, and calculating the cost of as-
signing a vehicle to a shipment.

• The commonality is the set of components and their interactions that are
present in all configurations of CONST, which include the scheduler up-
dating the schedule, the route time module answering requests from the
schedule, and the dispatcher sending routing orders to vehicles.

• The variability includes how the list of waiting shipments is prioritized,
how the system calculates the cost of assigning each vehicle/driver com-
bination to pickups, how late pickups and dropoffs are handled, and how
the system handles response time degradation.

By applying the SCV analysis to CONST we designed a PLA that enables
the customization of its optimization engine for various domains.

CONST variants are composed of two main assemblies of components: the
PickupList and the Optimizer. The PickupList may be implemented as either
(1) a prioritized list for domains, such as freight shipments, where some car-
gos have higher priorities, or (2) a FIFO list for other domains, such as taxi
scheduling. The Optimizer is composed of a ConstraintsOptimizationModule,
RouteTimeModule, GeoDatabaseModule, and DispatchingModule, each of
which has different valid configurations. The DispatchModule has two valid
implementations for different system to driver communication models. The
RouteTimeModule has three different implementations. The ConstraintsOpti-
mizationModule can be configured with three different algorithms. Finally,
the GeoDatabase can use two different vendor implementations. These com-
position options support a total of 72 valid variants to construct from the PLA.

3 PLA Modeling, Domain Analysis, and Testing Challenges

Although PLAs can increase software reuse and amortize development
costs, PLA configuration spaces are hard to analyze and test manually. Dep-
loying, configuring, and testing a PLA in numerous configurations without

intelligent modeling, domain analysis, and automation is expensive and/or
infeasible. Large-scale product variants may consist of thousands of compo-
nent types and instances [4] that must be tested. This large solution space pre-
sents the following key challenges to developing a PLA:
• Challenge 1: Manually managing a PLA’s configurations and con-

straints. Traditional processes of identifying valid PLA variants involve
software developers determining manually the software components that
must be in a variant, the components that must be configured, and how
the components must be composed. Such manual approaches are tedious
and error-prone and are a significant source of system downtime [5]. Ma-
nual approaches also do not scale well and become impractical with the
large configuration spaces typical of PLAs. In CONST, for example, there
may be thousands of variations on freight types, licensing requirements,
freight handling procedures, and local laws applying to transportation that
require the PLA to have a substantial amount of variability.

• Challenge 2: Determining what PLA configurations to test through
domain analysis. With hundreds or thousands of potential configurations,
testing each possible configuration may not be feasible or cost effective.
Developers must determine which PLA configurations will yield the most
valuable information about the capabilities of different regions of the PLA
configuration space. Determining how to perform this domain analysis is
hard. For example, it may not be clear which freight routing algorithms in
CONST yield poor performance when used together in a configuration.

• Challenge 3: Managing the complexity of configuring, launching, and
testing hundreds of valid configuration and deployment. Ad hoc tech-
niques often employ build and configuration tools, such as Make and An-
other Neat Tool (ANT) [6], but application developers still must manage
the large number of scripts required to perform the component instal-
lations, launch tests, and report results. Developing these scripts can in-
volve significant effort and require in-depth understanding of compo-
nents. Understanding these intricacies and properly configuring applica-
tions is crucial to their providing proper functionality and quality of ser-
vice (QoS) requirements [7]. Incorrect system configuration due to oper-
ator error has also been shown to be a significant contributor to down-
time and recovery [5]. Developing custom deployment and configuration
scripts for each variant leads to a significant amount of reinvention and
rediscovery of common deployment and configuration processes. As the
number of valid variants increases, there is a corresponding rise in the
complexity of developing and maintaining each variant’s deployment,
configuration, and testing infrastructure. Automated techniques can be
used to manage this complexity [8,9,10].

• Challenge 4: Evolving deployment, configuration, and testing proc-
esses as a PLA evolves. A viable PLA must evolve as the domain

changes, which presents significant challenges to the maintenance of con-
figuration, deployment, and testing processes. Small modifications to
composition rules can ripple through the PLA, causing widespread
changes in the deployment, configuration, and testing scripts. Maintaining
and validating the large configuration and deployment infrastructure is
hard. Moreover, as PLA components evolve, it is essential that intelligent
regression testing be performed on PLA variants to identify those that
may become non-functional due to unforeseen side effects. For example,
a change in a CONST component for assigning costs to shipments may
have wide ranging affects on numerous configurations of the optimization
engine. With a large variant solution space, it becomes even more diffi-
cult to rapidly evolve and validate the PLA.
The next section describes how we resolve these challenges via model-

driven PLA testing and domain analysis techniques.

4 Model-driven Testing and Domain Analysis Techniques for Product-
line Architectures

This section introduces modeling techniques for capturing PLA configura-
tion rules and then describes how these models can be annotated with results
from testing. It also presents constraint-based optimization techniques that can
be used to analyze the model to derive configurations to test.

4.1 Feature Modeling
To address Challenge 1 from Section 3, a modeling methodology is needed

to capture the SCV of the application and reason about correct and incorrect
configurations of the PLA. A widely used technique for formally representing
the variability in a PLA is feature modeling [19,20,24]. Feature modeling de-
scribes the SCV of a PLA using a tree-like structure where each node in the
tree represents a software feature. Features are an abstraction for an increment
of functionality or a point of variability in the software architecture. For ex-
ample, Figure 2 shows a partial feature model of CONST. The feature Priori-
tized represents whether or not the configuration of CONST is designed to
handle prioritized shipments.

Figure 2. Segment of CONST Feature Model

Each unique configuration of a PLA is represented as a selection of fea-
tures from the feature model. A unique feature selection is called a variant.
The goal of PLA configuration with feature models is to find a variant that
adheres to all of the configuration rules of the PLA and simultaneously meets
the functional and non-functional requirements of the project.

As shown in Figure 2, the configuration rules of a PLA are encoded into
the parent-child relationships in the feature model tree. The most basic feature
modeling rule is that a feature can be selected if and only if its parent is also
selected. The root feature must always be selected. In Figure 2, the Prioritized
feature can only be selected if the parent PickupList feature is also selected.

Points of variability in the PLA and their constraints on configuration are
specified as special types of parent-child relationships. The children of a fea-
ture can be combined into an XOR group where exactly one of the child fea-
tures can be selected at a time. The children can also form a cardinality group,
where the selection of the child features must conform to a cardinality expres-
sion. For example, a feature can specify that between 1…3 of its children can
be selected.

Figure 3. Feature Model Notation

4.2 Mapping Test Result Data to Feature Model Quality Attributes
Addressing Challenge 2 from Section 3 requires developing an under-

standing of how test results map to points of variability in the PLA. For ex-
ample, if all tests that include the features HazMat and TankerMonitoring fail,
developers should be able to map this information to the feature model in or-
der to further investigate the failure or add additional constraints to mark the
feature set as invalid. To tackle this challenge, a combination of statistical
analysis and feature modeling techniques can be used.

Quality Attributes [24] are an extension of feature modeling whereby at-
tribute information is stored along with each feature. Cost information, for
example, can be stored as an attribute on each feature to provide guidance on
the overall configuration cost of a PLA variant. In terms of testing, a powerful

approach to mapping test information to feature models is to use probabilistic
data for quality attributes.

Probabilistic quality attributes are used to understand the probability that a
set of feature selections will reach a desired goal. For example, given the cur-
rent selection of features, what further set of features are most commonly se-
lected to complete the feature selection. In terms of testing, probabilistic data
can be used to understand the probability that the feature selection will fail
one or more tests if a given set of additional features is added. If TankerMo-
nitoring is selected, adding the HazMat feature will guarantee failure and thus
its quality attribute will be set to 100%.

 Values for the quality attributes are derived by evaluating the historical re-
sults of past tests. If two features have been tested together in three different
variants and failed in one of them, the probability of failure for selecting both
features would be 33%. Initially, no historical test data may be available, in
which case, all values are set to 0%.

4.3 Feature Models and Constraint Satisfaction Programming
To help address Challenge 2, a method is needed to aid developers in deriv-

ing configurations to tests. Given a set of probabilistic quality attribute values,
it may not be straightforward to understand which combination of features
will yield the largest information gain for testing. The problem is that select-
ing a set of features to maximize a function of the features is an NP-Hard
problem. To address this issue, automated methods can be used to automati-
cally derive the set of features that will yield the best information gain.

Constraint Satisfaction Problems (CSPs) [26] are mathematical models that
specify a set of variables and a set of constraints governing the values that
those variables may be assigned. There are numerous automated tools, called
constraint solvers, for automatically deriving solutions to CSPs that adhere to
the CSP constraints and maximize or minimize a function of the variables.
Feature models can be translated into CSPs where the solution to the CSP
yields a valid selection of features. Moreover, the CSP can be solved using a
constraint solver for a selection of features that maximizes or minimizes a
function of the feature model features, which can help developers automati-
cally derive configurations to test and address Challenge 2.

4.3.1 Mapping Feature Models to CSPs
A CSP is a problem defined by a set of variables for which values must be

derived that meet a set of constraints. For example, Y > 0, X + Y < 10, X !=
Y, is a simple CSP over the integer variables X and Y. A valid solution, called
a labeling of the variables, to the CSP is X = 2, Y = 1.

Constraint solvers offer the ability to automatically derive solutions to a
CSP that maximize or minimize a given function. For example, a CSP could

be asked to derive a solution to the CSP that maximizes the value of X – Y.
The optimal solution in this case would be X = 8, Y = 1.

A feature model can be transformed into a CSP such that deriving a valid
solution to the CSP produces a valid selection of features in the feature model.
The transformation is achieved by:

 A preorder traversal of the feature model is performed starting from the root
feature

 As the ith feature is traversed, a variable fi is added to the CSP
a. The variable fi has the domain [0,1]
b. After solving the CSP, a value of 1 for fi indicates that the feature is

selected
3. As the ith feature is traversed, for each quality attribute, k, of the feature,

a variable aik is added to the CSP. The value of aik is set to the numerical
value of that quality attribute for the ith feature.

4. The constraint, f0 = 1, is added to ensure that the root feature is selected in
any derived configuration

5. A second preorder traversal of the feature model is performed and at each
feature, constraints encoding the parent/child relationships in the feature
model are encoded as follows
 if fk is a mandatory child of fi, the constraint fk = 1 fi = 1
 if fi has children fk and fp in an XOR relationship, the constraint fi =

1 (fk = 1 ⊕ fp = 1)
 if fi has an optional child fk, fk = 1 fi = 1

Using this transformation process, a CSP is produced for which a correct
labeling of the variables, fi ∈ F, yields a feature selection that adheres to the
feature model roles. For each feature, fi, if fi = 1, then the corresponding fea-
ture in the feature model is selected in the configuration. Similarly, if fi = 0,
the corresponding feature is not selected in the configuration.

Once the feature model is translated into a CSP, a constraint solver can be
used to derive configurations that maximize or minimize functions of the fea-
tures and quality attributes. For example, assume that the kth quality attribute
of each feature is the cost of selecting it. The solver can be asked to derive a
minimal cost configuration by asking the solver to derive a solution that
minimizes the function: Cost(F) = Σ fiaik

For each feature, fi, if the feature is selected, its value is set to 1. In the
function provided to the solver, this will cause the sum for Cost(F) to incur
the cost of the ith feature aik. If fi, is not selected, is set to 0, which causes its
cost to be zeroed out and not included in the sum.

 4.3.2 Deriving Test Plans that Maximize Information Gain
As discussed in Section 4.2.2, statistical information from test results can

be encoded into a feature model’s quality attributes. Automatic configuration

using a CSP can be used to both help plan test processes to maximize the in-
take rate of statistical test data. Furthermore, a CSP-based configuration deri-
vation process can find configurations that have the greatest or least probabil-
ity of functioning correctly based on current statistical data gleaned from test
results.

 For example, assume that based on previous tests and statistical analysis, a
failure quality attribute, ai, has been constructed. Each quality attribute, ai,
specifies the probability that the configuration will fail one or more tests if it
the feature fi is selected. Using this failure probability attribute, configurations
of the feature model can be derived that have the greatest probability of fail-
ure based on the provided feature model and failure statistics.

In the CSP, we can encode the probability of a configuration failing as
Fail(F) = Max(f0a0, f1a1, ... fnan), where n is the number of features. Determining
a configuration that maximizes the probability of failure simply requires ask-
ing the constraint solver to derive a configuration that maximizes Fail(F).
Moreover, configurations with low probabilities of failures can be generated
by requesting that the solver minimize the value of Fail(F).

As Challenge 4 from Section 3 pointed out, the test plans must be evolved
as the PLA evolves and new test results are obtained. Using a CSP-based con-
figuration derivation process, new configurations to test can automatically be
derived as the PLA changes. Moreover, the test plans can also be updated as
each test results sheds more light on the PLA configuration space.

4.4 Test Automation from Feature Models.

To address Challenge 3, which is the complexity of deploying, configuring,
and testing a PLA, we have developed FireAnt. FireAnt is an MDA tool that
allows application developers to describe the components that form the com-
mon building blocks of their PLA and to construct feature models specifying
how the blocks can be composed to form valid variants. FireAnt significantly
reduces the cost of testing a PLA in the following key ways:

 Test, Deployment, and Configuration Infrastructure Generation. FireAnt
allows developers to describe the target hardware where variants will be de-
ployed. Using a target hardware definition and the artifact mapping, FireAnt
can automatically package all the archive files required to deploy each vari-
ant, as well as generate the required configuration scripts. These scripts may
be in implemented in a variety of languages. Currently, FireAnt provides
bindings for generating Another Neat Tool (ANT) build files.

 Test Automation. FireAnt can use CSP configuration derivation techniques
to generate a global configuration script that remotely deploys, configures,
and tests variants automatically on each possible hardware target.

FireAnt was developed using the Generic Eclipse Modeling System
(GEMS) [17], which is an open-source MDA environment built as an Eclipse

plug-in. A GEMS-based metamodel describing the domain of PLA deploy-
ment, configuration, and testing was constructed and interpreted to create the
FireAnt domain-specific modeling language (DSML) for PLAs. FireAnt’s
modeling environment uses GEM’s support for multiple views to capture the
feature model, deployment, configuration, and testing requirements of a PLA.
The remainder of this section discusses how each of these views can be used
to manage the complexity of testing a PLA and how the view addresses each
of the challenges described in Section 3.

4.4.1 FireAnt Feature Modeling

To facilitate the analysis of the variant solution space and address Chal-
lenge 1 requires a formal grammar to describe the structure of the PLA and its
valid configurations. This customization grammar can then be used to auto-
matically generate and explore the variant solution space using the CSP tech-
niques described in Section 4.3.1. In FireAnt, the Logical Composition View
is a feature model for capturing the SCV of a PLA. This view allows develop-
ers to formalize what features are available in the PLA, the hierarchical rela-
tionships between features, and the rules for selecting groups of features.

To capture a formal definition of the PLA, the components on which it is
based must be modeled. The Feature element is the basic building block in
the Logical Composition View. A Feature represents an indivisible unit of
functionality, such as an EJB or CORBA component. In the CONST applica-
tion, the various algorithm implementations for the constraints optimization
engine are represented as Features. A configuration is a valid composition of
Features that produces a complete set of application functionality. Each con-
figuration may require different source artifacts depending on the features that
it contains.

The feature model rules are specified through composition predicates.
FireAnt supports that standard feature modeling constraints for AND, Exclu-
sive OR and optional features. The children of each feature are connected
through a composition predicate to their parent to specify the rules governing
their selection. In CONST, for example, the ConstraintsOptimizationModule
is connected to the Exclusive OR predicate, which can be connected to each
algorithm packaged with the optimizer to create a variant. This composition
indicates that the ConstraintOptimizationModule is composed from one of the
three algorithms.

To specify the compositional variability in the PLA, developers build
Component, Assembly, and Predicate trees, which we call Logical Composi-
tion Trees. At the root of the tree is an Assembly representing the entire PLA.
The root Assembly, Predicate, and children specify the modules that must be
present to complete the PLA. Each level down the tree specifies the composi-
tion of smaller pieces of functionality.

In the CONST system, the root of the feature model is the CONST Assem-
bly. The CONST Assembly is connected to an AND predicate and the predi-
cate is in turn connected to the PickupList and Optimizer Assemblies, which
specifies that both a PickupList and Optimizer must be present in CONST
variants. The CONST Logical Composition tree is shown in Figure 4.

By capturing PLA compositional variability in a feature model through the
Logical Composition tree, developers can formally specify how valid variants
are composed. With a formal specification of the variant construction rules,
FireAnt can automatically explore the variant solution space to discover all
valid compositional variants of the PLA.

4.4.2 Dependency and Deployment Views

Simply capturing the configuration rules for the PLA is not sufficient to
automate deployment and testing. FireAnt must have a specification of how
the features in the feature model map down to individual source artifacts. For
example, if the ConstraintsOptimizationModule is selected, what Java jar files
need to be packaged into the final variant that is tested.

Figure 4. CONST Logical Composition Tree

To automate the packaging and configuration of variants and address Chal-

lenge 3, a dependency model must be developed to associate each feature with
physical artifacts, such as JAR files, it relies on. This mapping from physical
artifacts to PLA components can be used to automatically manage and pack-
age the artifacts and configuration scripts required for each variant.

The Dependency View manages the complexity of organizing and main-
taining all the various physical artifacts required to deploy and configure a
variant. A variant may contain hundreds of components, each with multiple
physical artifacts required for their deployment. As the number of variants
grows, it becomes hard to package all physical artifacts required to deploy a
variant. Our CONST application, for example, has 72 unique valid package

combinations that can be created for the variants. Each possible package re-
quires a unique artifact set.

Figure 5. Logical Deployment Tree for the GeoDatabase Assembly

In distributed applications, developers may need to test the deployment of

the application across different numbers and configurations of hardware.
FireAnt’s Physical Deployment View allows developers to specify rules on
how features and their associated artifacts can be mapped to a series of remote
hosts. FireAnt then takes each of these possible deployment variants and de-
termines the unique packaging combinations of artifacts that are required for
all possible valid deployments. Each unique package is called an Egg.

The Physical Composition View shows which physical artifacts are asso-
ciated with each egg. Individual zip archives can be created for each deploy-
ment package by traversing the Physical Composition View trees. This view
manages the complexity of determining what physical artifacts should be pre-
sent in for the deployment of each variant’s features to a host. FireAnt can
automatically collect and zip all of the required artifacts for a variant’s As-
semblies by traversing the Physical Composition Tree.

5 Empirically Evaluating FireAnt Generative and Analytic Capabilities

A method for estimating the point at which developing a PLA becomes
more cost effective than a traditional development approach is described in
[2]. This paper defines the average economic or time cost of developing a va-
riant manually without a PLA to be C0 and the cost of the same development
with automation to be C1. To develop N variants using a manual approach,
therefore, has a total cost of N*C0. A is defined to be the initial overhead of
performing SCV analysis and creating reusable components. C1 is assumed to
be smaller than C0. The cost of developing the same N variants with a PLA is
A + N * C1.

For small numbers of variants, the initial cost A does not make a PLA cost
effective. As the number of variants, N, grows, however, a PLA becomes
more cost effective since C1 < C0. This section expands on this formula to es-
timate the cost of testing N variants developed manually and N variants de-
veloped with a PLA. We then show how FireAnt can decrease the initial cost
A of developing a testing infrastructure for a PLA.

In the context of testing, we let T0 be the cost of manually developing the
infrastructure to test a variant and T1 be the cost of developing the same infra-
structure for a PLA variant. T1 should be significantly smaller than T0, since
tests for determining the correctness of individual components can be reused
for each variant. Moreover, any tests that check the correctness of a common
element among the variants can be shared. To develop the testing infrastruc-
ture for a new variant, therefore, T1 will only be comprised of the cost of de-
veloping tests for the unique components of each variant. With a manual ap-
proach, however, the variants do not share common components and tests
cannot be shared among them making T0 > T1.

 With a PLA, conversely, we incur an initial cost A of developing a flexible
process for integrating and orchestrating the tests shared between variants.
Even with the use of automation tools, such as those available for running
JUnit tests, a developer must manually specify which tests to run for each va-
riant. The total cost of testing N variants is N*T0 for the manual approach and
A+N*T1 for the PLA. The goal of developing a testing infrastructure of a PLA
is therefore to minimize A and ensure that the overhead of creating reusable
tests does not make T1 > T0.

The remainder of this section reports the results from a series of experi-
ments on our CONST case study described in Section 2. The goal of these
experiments was to evaluate the extent to which FireAnt minimizes the initial
cost A and does not require excess testing overhead that would increase T1.
Each experiment was repeated using several variations of the PLA to investi-
gate how the performance of FireAnt scaled as the solution space grew. For
testing, we used FireAnt 2.0 with a 2.2 Mhz AMD Athlon 3200 with 1 giga-
byte of RAM running Windows XP and Eclipse 3.1.0. Our test cases were
written using JUnit.

5.1 Solution Space Exploration Time

In our CONST case study, we evaluated the time required by FireAnt to dis-
cover and visualize all valid variants. Our initial implementation of CONST
contained 17 EJBs, each packaged in individual Enterprise Application Re-
source (EAR) files with separate XML deployment descriptors to facilitate
packaging. To analyze the impact of refactoring and its affect on FireAnt and
the solution space, we created a new type of PickupList that was a hybrid pri-
ority/FIFO list. A waiting request’s priority was determined by the time mul-

tiplied by the priority. Adding this PickupList implementation increased the
number of valid variants to 108.

In our second refactorying, we provided two new graph representations for
the optimization algorithm. One implementation used an in-memory graph
representation. The second implementation used a disk-based graph repre-
sentation scheme to reduce memory footprint. This refactoring increased the
number of valid variants to 144. In the final refactorying, we combined both
the PickupList and algorithm refactoring, which produced 216 valid variants.
For each PLA, we calculated the time for FireAnt to generate all of the valid
configurations (Eggs). The results of the tests are shown in Figure 5.

Figure 6. Solution Space Exploration Time

Figure 6 shows that the time required, Dv, to explore the solution space
scaled at a rate of approximately N * D1 + K, where D1 is the time to required
by FireAnt to discover a single variant and K a constant overhead. The maxi-
mum time required was less than 2 seconds. It can be seen that D1 = (DV (72) -
DV (216)) / 144 < 700 / 144 = 4.8ms. We posit that to discover the same set of
variants manually, the time required would be V(N) * N * D0 + K, where D0 >
D1, V(N) is a function of N, and V(N) > V(N-1) ≥ 1 for all N.

These results show that the discovery of a single variant is slower with a
manual process and the time to discover all variants becomes increasingly
worse as the number of variants grows, which stems from the inability of ma-
nual methods to scale as the complexity increases. Even without a V(N) ma-
nual scaling factor and optimistically assuming D0 = 1000ms, the FireAnt
aided method is roughly 200 times faster. If a PLA architecture is used with a
manual approach for assigning tests to variants, A varies in proportion to
V(N). By using FireAnt, V(N) is removed and D1 is far smaller than D0, and
thus, the cost, A, is significantly reduced for large numbers of variants.

5.2 Packaging Time

FireAnt also has the ability to collect all the resources needed to deploy a
variant and package them in separate zip files for deployment across a group
of nodes. FireAnt uses the Eggs and Dependency Tree to calculate the mini-
mum physical artifacts required for each node’s package. Along with the
package generator, we created a translator that generates ANT build scripts
for the deployment of the variant’s packages. FireAnt can support generation
of other scripting languages. We chose ANT, however, since it is platform-
independent and well supported.

For each variant/deployment configuration, FireAnt generates local ANT
scripts that are executed on each node to perform the Assembly installations.
The generated ANT scripts invoke the appropriate PreDeployment, Deploy-
ment, and PostDeployment scripts required to install each component. After
installing each component or assembly, the generated ANT scripts invoke any
tests associated with the element in the Dependency view, which enables au-
tomated testing of each variant. FireAnt also generates a global deployment
script to execute the deployment, configuration, and testing of each variant
consecutively. Developers simply provide the scripts to configure and deploy
the individual assemblies and / or components.

We used our AMD Athlon 3200 test platform to measure, Ov, which is how
long it took FireAnt to package all of the resources and generate the ANT
build scripts for each of the variants. We then measured the time required for
FireAnt to collect and zip the files for each package. The results are shown in
Figure 7.

Figure 7. FireAnt Packaging Time

The results in this figure show that using FireAnt, Ov, = N * P1, + K, where
P1 is the time taken to package and generate the configuration script for a sin-
gle variant using FireAnt and K is a constant overhead. Again, a manual ap-
proach to accomplishing the same task would require that Ov = V(N) * N * P0
+ K, where P0 is the time to manually package a variant, P0 > P1, V(N) is a
function of N, and V(N) > V(N-1) ≥ 1 for all N. As can be seen from the re-
sults, P1 < (12000 – 2000) / 144 = 69.4ms.

Assuming that a manual process could package all the artifacts required for
a variant in 1000ms (which is extremely optimistic), the FireAnt aided me-
thod is still ~14 times faster. The FireAnt method again removes a V(N) ma-
nual scaling factor, as well, from the cost A. FireAnt’s packaging provides the
ability to calculate and re-package all the variants automatically when new
components are added to the PLA, which reduces developer effort and en-
sures that each variant’s package footprint is always up-to-date. Thus, using
FireAnt reduces the cost of R refactorings by R * (V(N) – 1) * 14. For large
values of N, this cost savings will be significant.

5.3 Results Summary

FireAnt uses the techniques described in Section 4 to automate (1) the gen-
eration of deployment scripts for variants, (2) the packaging of artifacts for
variants, and (3) the testing of variants. These capabilities reduce the upfront
cost, A, and enable rigorous testing of PLAs. They also address each of the
four key challenges outlined in Section 3.

Due to the large number of variants it becomes costly for PLA developers
to manually find and manage all possible variants without MDA tool support.
This complexity increases the initial cost, A, of developing a PLA testing in-
frastructure since a developer must find all valid variants and determine which
tests are required to ensure the proper functioning of each. In other words, A ≥
Dv + Ov, where Dv is the time required to find each valid variant and Ov is the
time required to generate an orchestration script for each variant that will exe-
cute the proper tests.

FireAnt reduces the initial cost A by automatically exploring the solution
space and producing visualizations of valid variants for the developer. These
capabilities significantly aid developer understanding of PLA variability and
enables for the automated testing and packaging of each variant. Without
automating the identification of variants of the PLA to test, it is hard to ensure
that the PLA is tested properly, which is important in mission-critical do-
mains.

6 Concluding Remarks

Product-line architectures (PLAs) can significantly improve the reuse of
software components and decrease the cost of developing applications. The

large number of valid variations in a PLA must be tested to ensure that only
working configurations are used. Due to the large solution spaces it is infeasi-
ble or overly costly to use traditional ad hoc methods to test a PLA’s variants.

By using MDA tools to capture the compositional and deployment varia-
bility in PLAs, we showed that much of the deployment, configuration, and
testing of PLAs can be automated. This automation frees developers to focus
on implementing reusable components and deployment and configuration
scripts for known working units of functionality. Our experiments have
shown that FireAnt can significantly reduce both the initial cost, A, of devel-
oping a PLA and the testing cost T1 of each variant. FireAnt accomplishes this
cost reduction by automating tedious and error-prone manual tasks, such as
solution space exploration.

The following are our lessons learned from developing FireAnt and apply-
ing it to the EJB-based Constraints Optimization System (CONST) that sche-
dules pickup requests to vehicles:
• There is a larger up-front cost to adopt an automated test platform.

Initially, the cost of developing models for the MDA testing process in-
creases development cost. Over time, however, this startup cost is amor-
tized across variants of the SPL saving time and money.

• Choosing the right statistical analysis technique for test results is an
important concern. This chapter introduces a few statistical analyses that
can be used to populate quality attribute values from test results. There
are a wide array of other types of analyses that can be used as well.

• There may be unanticipated problems caused by the composition of
two or more features that may not be scriptable by FireAnt. For exam-
ple, complex changes in source code may be needed. More work is
needed to identify how to automate the generation of the deployment and
configuration glue of PLA variants.

• Deployment variations greatly expand the solution space since each
variant must be tested with each deployment variation. It is thus important
to only model realistic deployment scenarios to restrict this space.

In future work, we are pursuing the use of FireAnt to create self-tuning in-
stallations. Many high-performance parallel computing applications, such as
the Automatically Tuned Linear Algebra Software (ATLAS) [23], run per-
formance tests in multiple configurations as part of the installation process.
These applications can then interpret the performance results to optimize
themselves for the given hardware.

We also plan to expand on the ATLAS approach by allowing FireAnt users
to define a fitness function based on the performance metrics collected from
the individual component tests. The FireAnt test automation framework will
then be used to iteratively deploy variants in various configurations in an at-
tempt to maximize this fitness function.

Developers only need to create the tests to collect the appropriate data, such
as service rate, and then provide the logic to perform analyses on the results,
such as throughput analysis using queuing networks, to score the configura-
tions. FireAnt will use this cost function to automatically deploy, configure,
test, and score each candidate variant in each valid component to hardware
configuration. After all testing completes, FireAnt will collect the results and
install the variant/component to hardware configuration with the highest
score.

References

1. P. C. Clements and L. Northrop, Software Product Lines – Practices, and
Patterns, Addison-Wesley, 2001.

2. J. Coplien, D. Hoffman, D. Weiss, “Commonality and Variability
in Software Engineering,” IEEE Software, Volume 15, Issue 6, Nov.-Dec.
1998 Page(s):37-45.

3. E. J. Weyuker, “Testing Component-based Software: A Cautionary Tale,”
IEEE Software, September/October 1998

4. D. Sharp, “Avionics Product Line Software Architecture Flow Policies,”
Proc of the 18th IEEE/AIAA Digital Avionics Systems Conference
(DASC), Oct 1999, St. Louis, MO.

5. D. Oppenheimer, A. Ganapathi, D. Patterson, “Why do Internet Services
Fail, and What can be Done about It?,” Proc of the USENIX Symposium
on Internet Technologies and Systems, Mar 2003, Seattle, WA.

6. Apache Foundation: Apache Ant. http://ant.apache.org.
7. A. Krishna, E. Turkay, A. Gokhale, D. Schmidt, “Model-Driven Tech-

niques for Evaluating the QoS of Middleware Configurations for DRE
Systems,” I Proc of the 11th IEEE Real-Time and Embedded Technology
and Applications Symposium, Mar 2005, San Francisco, CA.

8. A. Sloane, “Modeling Deployment and Configuration of CORBA Systems
with UML,” Proc of the 22nd International Conference on Software Engi-
neering, June 2000, Limerick, Ireland.

9. G. Edwards, G. Deng, D. Schmidt, A. Gokhale, B. Natarajan, “Model-dri-
ven Configuration and Deployment of Component Middleware Pub-
lisher/Subscriber Services,” Proc of the 3rd ACM Conference on Genera-
tive Programming and Component Engineering, Oct 2004, Vancouver, CA

10. A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. Schmidt, B. Natarajan.
"Skoll: Distributed Continuous Quality Assurance," pp. 459-468, 26th In-
ternational Conference on Software Engineering, May 2004, Edinburgh,
Scotland.

11. A. Ledeczi, A. Bakay, M. Maroti, P. Volgysei, G. Nordstrom, J. Sprinkle,
G. Karsai, “Composing Domain-Specific Design Environments,” IEEE
Computer, Nov. (2001).

12. M. Harrold, D. Liang, and S. Sinha, “An Approach to Analyzing and Test-
ing Component-Based Systems,” Proc of the ICSE'99 Workshop on Test-
ing Distributed Component-Based Systems, May 1999, Los Angeles, CA.

13. N. Wang, C. Gill, D. Schmidt, and V. Subramonian, “Configuring Real-
time Aspects in Component Middleware,” Proc of the Conference on Dis-
tributed Objects and Applications, October 2004, Cyprus, Greece.

14. V. Matena and M. Hapner, “Enterprise Java Beans Specification,” Version
1.1. Sun Microsystems (1999).

15. H. Ding, L. Kihwal, L. Sha, “Dependency Algebra: A Theoretical Frame-
work for Dependency Management in Real-Time Control Systems,” Proc
of the 12th IEEE International Conference on the Engineering of Com-
puter-Based Systems, Apr 2005, Greenbelt, MD.

16. J. Hatcliff, W. Deng, M. Dwyer, G. Jung, V. Prasad, “Cadena: An Inte-
grated Development, Analysis, and Verification Environment for Compo-
nent-based Systems,” Proc of the 25th International Conference on Soft-
ware Engineering, May 2003, Portland, OR.

17. J. White, D. Schmidt, "Simplifying the Development of Product-Line Cus-
tomization Tools via MDA," Workshop: MDA for Software Product Lines,
ACM/IEEE 8th International Conference on Model Driven Engineering
Languages and Systems, October 2005, Montego Bay, Jamaica.

18. T. Mannisto, T. Soininen, R. Sulonen, “Product Configuration View to
Software Product Families,” Proc of the 10th Int. Workshop on Software
Configuration Management (SCM-10) of ICSE, May 2001, Ontario, Can-
ada.

19. K.Kang, S.G.Cohen, J.A.Hess, W.E.Novak, and S.A.Peterson, “Feature
Oriented Domain Analysis (FODA) - Feasibility Study,” Technical report
CMU/SEI-90-TR-21, Carnegie-Mellon University, 1990, Pittsburg, PA.

20. T. Asikainen, T. Männistö, and T. Soininen, “Representing Feature Models
of Software Product Families Using a Configuration Ontology,” Proc of
the ECAI 2004 , Workshop on Configuration. Aug 23rd 2004, Valencia,
Spain.

21. M. Popovic and I. Velikic, “A Generic Model-Based Test Case Genera-
tor,” Proc of the 12th IEEE International Conference on the Engineering
of Computer-Based Systems (ECBS 2005), 4-7 Apr 2005, Greenbelt, MD,
USA.

22. J. Guo, Y. Liao, J. Gray, B. Bryant, “Using connectors to integrate soft-
ware components,” Engineering of Computer-Based Systems (ECBS
2005), 4-7 Apr 2005, Greenbelt, MD, USA.

23. R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimi-
zations of software and the atlas project. Technical report, Dept. of Com-
puter Sciences, Univ. of TN, Knoxville, March 2000.

24. K. C., Kang, J. Lee, P. Donohoe, “Feature-oriented Product Line Engineer-
ing,” IEE Software, Vol. 19, Issue 4, July-Aug. 2002, Pages 58-65.

25. Z. R. Dai, “Model-driven Testing with UML 2.0,” Second European
Workshop on Model Driven Architecture (MDA), September 7th-8th
2004, Canterbury, England.

26. D. Benavides, P. Trinidad, and A. Ruiz-Cortes. Automated Reasoning on
Feature Models.17th Conference on Advanced Information Systems Engi-
neering (CAiSE 05, Proceedings), LNCS, 3520:491–503, 2005.

