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The study of social networks—where people are located, geographically, and how they might be connected to one another—is a
current hot topic of interest, because of its immediate relevance to important applications, from devising efficient immunization
techniques for the arrest of epidemics to the design of better transportation and city planning paradigms to the understanding
of how rumors and opinions spread and take shape over time. We develop a Spatial Social Complex Network (SSCN) model that
captures not only essential connectivity features of real-life social networks, including a heavy-tailed degree distribution and high
clustering, but also the spatial location of individuals, reproducing Zipf ’s law for the distribution of city populations as well as
other observed hallmarks. We then simulate Milgram’s Small-World experiment on our SSCN model, obtaining good qualitative
agreement with the known results and shedding light on the role played by various network attributes and the strategies used by the
players in the game. This demonstrates the potential of the SSCN model for the simulation and study of the many social processes
mentioned above, where both connectivity and geography play a role in the dynamics.

1. Introduction

Much research has focused in recent years on a wide class of
dynamical processes that take place in large human popula-
tions, at the scale of cities, whole countries, and even world-
wide. Examples include epidemics spreading and strategies to
arrest their spread [1–3], the evolution of the electoral map
during elections [4], the spreading of rumors [5], memes
[6, 7], and opinions [8], the migration patterns of banknotes
[9] and human populations [10], and the effects of cities
and infrastructure layouts on commerce and productivity
[11, 12]. Many of these questions require specific knowledge
of individuals’ geographical location as well as their social
contacts (many infections propagate by direct contact, or
physical proximity; we discuss and influence the opinions of
mostly those close to us, etc.).

In Milgram’s Small-World experiment [13], for example,
participants were asked to pass a message (a postcard) to a
person in a disclosed address, but only through a chain of
social acquaintances: each participant was allowed to pass the
message only to a person they know on a first-name basis. Of
160 messages started in Omaha, Nebraska, 44, or about 28%,
reached the target in Boston, Massachusetts, with an average
path length of about 5.4 links. How does the message find its
way, let alone in such a short numbers of steps!?

Kleinberg’s seminal work [14, 15], for nodes in a square
lattice with random long-range connections, provided a first
clue. This was later extended to fractal [16] and anisotropic
[17] lattices—still a far cry, however, from the geographical
spread and network of connections typical of human society.
Rybski et al. recently developed a spatial growth model for
cities, but such a model (and similar ones in other related
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studies) does not capture the social network of interactions
[18]. Dodds et al. conducted a large-scale online experiment
that resembles Milgram’s original study, highlighting the role
of information beyond just network structure [19]. Liben-
Nowell et al. [20] proposed a spatial social network model
with connections derived from an online bloggers com-
munity and studied greedy routing on that model. Similar
studies were conducted for online social networks [21] and
community structures from mobile phone records [22, 23]
(see [24, 25] for a more comprehensive review). Information
on people’s location, along with their social contacts, is
generally hard to come by and often relies on indirect
proxies.

In [26]we introduced a stochastic prototype Spatial Social
Complex Network (SSCN), relying on just two controllable
parameters, that simulates large populations, including the
locations and the complex network of contacts between
agents. This “baseline model” was designed with modest
goals in mind: (a) The population density resembles the light
density observed in satellite pictures of earth at night, (b) the
population of “cities” (defined by percolation clusters [27])
and their rankings follow Zipf ’s law [28–30], (c) the social
network of contacts exhibits a scale-free distribution, and (d)
highly connected nodes tend to be located in denser and
larger population areas. In addition to meeting these basic
goals the SSCN baseline model also yielded good qualitative
agreement with census data for the population density as a
function of city size, and for the weak super-linear depen-
dence of the cumulative degree of nodes in a city on its total
population, as suggested from cell-phone data [12]. Finally, it
allowed us to shed some light on the weak deviations [27]
from Gibrat’s law (that the rate of growth of a city and its
fluctuations are proportional to its population size).

Despite these initial successes, the SSCN baseline model
fails to mimic real SSCNs in some crucial ways: (i) The com-
plex network of social contacts, while displaying a realistic
scale-free degree distribution, is actually a tree, in contrast
with the high degree of clustering observed in social nets
and their proxies. (ii)The network of contacts is built through
a redirection mechanism [31–33], which is an adequate
description of how individuals might join a social network,
but fails to account for the effect of relocations: every so often
a person relocates to a far-away destination, for study, job,
or other reasons. This creates particular correlations in the
network of social contacts that are absent in the baseline
SSCN.

In this paper we resolve the baseline SSCN deficiencies
with some simple adjustments. Connections to spatially
closest neighbors are added to mimic the clustering effect in
real social networks, and relocations turn out to be crucial in
reducing the average path length between nodes. Simulations
of Milgram’s Small-World experiment on the revised SSCN
model achieve a good qualitative fit with the empirical find-
ings. This demonstrates the suitability of the model as a sub-
strate for simulations of other dynamic social processes that
depend on both the contacts and the geographical locations
of the agents.

2. Materials and Methods

2.1. The Baseline SSCN Model. We now review the original
or “baseline” SSCN model, established in our previous work
[26]. The model produces a spatially embedded network 𝐺 =
(𝑉; 𝐸;𝑋) where 𝑉 = {1, 2, . . . , 𝑁} is a set of nodes and 𝐸 ⊂
𝑉 × 𝑉 is a set of undirected edges. The spatial embedding of
the network is encoded in the set of coordinates 𝑋 =
{x(1), . . . , x(𝑁)}, where for 2D spatial networks (such as in our
case) x(𝑖) ∈ R2. A unique feature of the model is that it not
only produces the requisite scale-free degree distribution for
the edges but also captures essential spatial features, such as a
Zipf distribution of the populations emerging from the nodes
clustering into “cities” [26].

Consider first the creation of nodes and edges in the
baseline model, defining 𝑉 and 𝐸. The starting point is an
initial “seed” network, which in the baseline model consists
typically of a single node. Nodes are added to the network
one at a time, each contributing to a new edge, according to a
variant of the Krapivsky-Redner (KR) model [31–33] with a
single parameter 𝑟 ∈ [0, 1]—the redirection probability. Each
time a newnode 𝑖 joins the network, one of the existing nodes,
𝑗, is chosen uniformly at random and 𝑖 is connected to 𝑗
directly with probability 1 − 𝑟 (creating a new edge 𝑖 ↔ 𝑗);
otherwise, with probability 𝑟, the connection is redirected to a
randomly selected neighbor 𝑗 of 𝑗 (edge 𝑖 ↔ 𝑗). For large𝑁,
this leads to a scale-free degree distribution (in the original
KRmodel connections are redirected to the ancestor of 𝑗—the
node 𝑗 connected to upon joining the network; our variant
yields 𝛾 ≳ 𝛾KR = 1 + 1/𝑟; we find that using the original KR
recipe results in a poorer resemblance with satellite pictures
of earth at night; furthermore, the variant employed in our
model is somewhat simpler, as there is no need to track
ancestors).

𝑃 (𝑘) ∝ 𝑘−𝛾, with 𝛾 ≈ 1 + 1
𝑟 . (1)

Consider next the placement of the nodes in space,
specifying 𝑋. For a network of 𝑁 nodes, the baseline model
places them within a square box of sides 𝐿 = √𝑁 (with peri-
odic boundary conditions). The initial seed node is placed
at the origin, x1 = 0, and the location of subsequent nodes
𝑖 depends on whether it connects to node 𝑗 directly or to a
neighbor 𝑗, by redirection. If 𝑖 joins directly, it is placed at
(𝑠, 𝜃) from 𝑗 (using polar coordinates), where the angle 0 <
𝜃 ≤ 2𝜋 is chosen randomly from the uniform distribution,
and 𝑠 is picked randomly from the distribution

𝑝 (𝑠) =
{
{
{

1
ln (𝑠max)

𝑠−1, 1 < 𝑠 < 𝑠max;
0, otherwise,

(2)

where 𝑠max = √2𝐿 is themaximumpossible distance between
any two points within the bounding square. In the case of
redirection, when node 𝑖 joins to 𝑗, then we simply place 𝑖 at
distance 1 from 𝑗 at a random angle 𝜃.The growth algorithm
is illustrated in Figure 1(a). Note that the choice of exponent
−1 in (2) is equivalent to 𝑝(s) ∼ |s|−2, which is in line with
Kleinberg’s “magic” formula for optimal navigability.
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Figure 1: Growth rules for the baseline (a) and the revised SSCNmodel (b & c). (a) A new node 𝑖 joins the network and connects directly to a
randomly selected node 𝑗, with probability 1−𝑟, settling away from 𝑗 according to the rule of (2) (left panel).With probability 𝑟 the connection
is redirected to a random neighbor 𝑗 of 𝑗 and 𝑖 settles at distance 1 from 𝑗 (right panel). (b) Befriending 𝑞 closest neighbors (shown for 𝑞 = 2).
Left panel: Node 𝑖 needs to add a connection to the nearby node on its left, in order to fulfill the requirement of connections to at least 𝑞 nearest
neighbors. The new link and 𝑖’s 2 nearest friends are highlighted in green. Right: The process is repeated for all nodes in the network until all
fulfill the minimum-𝑞 requirement. The new links added to the baseline model are highlighted in green. (c) Relocation of node 𝑖 happens in
two stages. Left: In the first stage 𝑖 is translated to within distance 1 from a randomly selected node 𝑗. All of 𝑖’s old contacts (broken orange
lines) are retained (orange lines). Right: In the second stage links are added to ensure connection to at least 𝑞 new closest neighbors of 𝑖 (shown
for 𝑞 = 2). A new link and the 2 closest neighbors are highlighted in green. Note that relocation does not alter the connectivity pattern in step
1, but the relocating node 𝑖may acquire up to 𝑞 new links in step 2.

While the above growth rules were ultimately selected to
best achieve the baseline model’s goals, they do make some
intuitive sense as well.The redirectionmechanism introduces
a “rich-get-richer” bias in that redirection favors the random
selection of nodes 𝑗 of a higher degree. This accounts for the
emergence of the scale-free degree distribution. In addition,
the connection and placement rules capture some basic
ways of life: a person 𝑖 joins an existing social net when
they are born. There is no choice in this matter and the
social connection(s) established in this case is random (direct
connection to node 𝑗). Eventually 𝑖 leaves home and settles
at some distant location. The distribution of the distance to
𝑖’s new home, inversely proportional to the distance 𝑠, is
motivated by Kleinberg’s “magical” condition for navigability
[14, 15].The other possibility is that 𝑖’s mostmeaningful social
connection happens through redirection (𝑖 is referred to a
workplace or school, etc.) and in that case it makes sense to
settle nearby to the new contact (at distance 1—the minimal
distance in our distance distribution).

The growth rules of the baseline SSCN model seem how-
ever too simplistic in that they account for a bare minimum
of social connections: the connections to one’s birth place are
represented by a single link, as are also the connections to
people in a referred (redirected) situation. While the sparsity
of connections can be justified on the grounds that the model
is a scaled-down version of real life (fewer nodes, or people, so
fewer contacts per person), there is no getting around the fact
that the baseline model network of connections is a tree, in
contrast with real-life social nets, where clustering is large

(your friends have a higher than average probability to be
friends among themselves). Another important effect is that
of relocations: occasionally people move to a different place,
sometimes more than once, over the course of their lives.
When people relocate they maintain friendship with some
acquaintances in their place of origin and form friendships
with their new neighbors. Thus relocations have a profound
effect on the network of social contacts. In the next section,
we describe a new version of the baseline SSCN that fixes
these shortcomings.

2.2. A Revised SSCN Model. For the present simulations
we use a redirection probability 𝑟 = 0.8, same as for the
baseline model. This leads to a degree exponent 𝛾 ≈ 2.3
which is typical of large-scale social networks [34, 35]. In
addition to the significant changes that we made to the
model’s connectivity, we made some minor changes to the
boundary conditions and to the initial seed, and we describe
these first.

Free Boundary Condition. In the baseline model we used
a bounding box of side 𝐿 = √𝑁 and periodic boundary
conditions. For the present work we adopt a boundary-free
approach. Simply, the first node is placed at the origin and
each subsequent node is placed in the same fashion as for the
baselinemodel, but without regard to the bounding box.That
is, the nodes are allowed to spread as far as the simulation
takes them. Our simulations show that even with this free
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Figure 2: (a) Effect of𝑁0 on the distribution of city sizes by rank, on a log-log scale. The inset highlights the case of𝑁0 = 25 that we use for
our simulations. The fitted straight line has slope ≈ −1.32. (b) Spatial layout of a network of𝑁 = 51200 nodes generated with𝑁0 = 25. For
visual clarity, we divide the spatial domain into 200-by-200 equal-size square boxes (cells) and show only the nodes in populated cells, which
are those with a population exceeding the average (per nonempty box). The three largest “cities” are color-coded in red (pop. 15,072), blue
(pop. 5,567), and green (pop. 3,743). As noted in the main text, the cities were identified by the spatial City Clustering Algorithm as developed
in [27], where the populated cells (boxes) are defined as above.

boundary condition the radius of gyration scales quite accu-
rately as √𝑁, so that the average population density per unit
area remains constant even as the model is scaled up.

Initial Seed. Startingwith a single-node seed, as in the baseline
model, tends to produce a few “megacities”—cities that are
disproportionately larger than predicted by the Zipf distribu-
tion [28, 29]. In our analysis, the cities are identified using
the spatial City Clustering Algorithm, which was introduced
in [25] and used in our baseline SSCN model [24]. The
main idea and steps of the City Clustering Algorithm can be
summarized as follows. First, the spatial domain is divided
into a grid (typically equal-sized squares), where a cell is
determined to be “populated” if the number of nodes in that
cell exceeds a given threshold. Then, a cell-to-cell graph is
constructed, where the nodes are the populated cells, and an
edge exists between two nodes if the two corresponding cells
are spatially adjacent; that is, they share a border (diagonal
neighbors do not count). Finally, the cities are defined and
computed as the connected components of the cell-to-cell
graph; that is, for any pair of (populated) cells of a city there
exists a path that connects them; on the other hand, no such
path exists between two cells that belong to two different
cities. Due to its objective formulation, the algorithm enables
identification of cities directly from spatial population data.

In [26] we showed how the problem of megacities might
be overcome by starting with seeds consisting of several
nodes. Here we employ a single-node seed but let the

redirection probability varywith the number of nodes 𝑖 added
thereafter:

𝑟𝑖 = (1 − 𝑒−(𝑖−1)/𝑁0) 𝑟∞. (3)

The probability 𝑟𝑖 converges rapidly to 𝑟∞ (we pick 𝑟∞ = 0.8),
and the parameter 𝑁0 controls the pace of the convergence.
Thus, for𝑁0 ≪ 𝑁 the varying 𝑟𝑖 affects mainly the first ∼N0
nodes, but not the large-scale structure of the network. On
the other hand, the fact that 𝑟𝑖 ≈ 0 for the first few nodes
reduces their capacity to attract further connections, thereby
alleviating the problem of megacities. It is worth noting that
the choice of the particular form of 𝑟𝑖 as in (3) is not crucial:
any (slowly) increasing function that saturates for large 𝑖 can
in principle be used to achieve the effect of reducing the
occurrence and size of megacities. The effect of 𝑁0 on the
distribution of city sizes is shown in Figure 2(a). In Figure 2(b)
we show the spatial layout of a typical network produced
with 𝑁0 = 25, highlighting in color the first three largest
cities. This very same configuration is used for the studies
of connectivity and for the simulations of Milgram’s Small-
World experiment reported below.

Closest Neighbors and Clustering. We now come to the more
serious revisions of the baseline SSCN model. A big issue is
that the baseline model’s network of social contacts is a tree.
This means that the probability for two of your friends to
be friends among themselves is zero, while in real life that
probability is in fact much higher than the average density
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−0.2. Inset: Clustering coefficient 𝐶(𝑘) as a function of node degree
𝑘 for networks of size𝑁 = 51,200, with 𝑞 = 5 and 𝑞 = 10. The fitted
straight lines have slope ≈ −0.75. Each data point in the figures is the
result of an average over 20 independent network generations.

of links, possibly due to the nature of human social activities
and interactions [36]. Such an effect is best captured by the
concept of clustering [37, 38], which, for a given node 𝑖 in a
network, is defined as 𝐶𝑖 = 2𝑓𝑖/[𝑘𝑖(𝑘𝑖 − 1)], where 𝑘𝑖 is the
degree of node 𝑖 and 𝑓𝑖 is the number of links among the
neighbors of 𝑖 (𝐶𝑖 = 0 if 𝑘𝑖 ≤ 1). Then, the clustering coef-
ficient of the entire network is simply the average clustering
coefficient of all nodes, ⟨𝐶⟩ = (1/𝑁)∑𝑁𝑖=1 𝐶𝑖.

To fix the problem of (low) clustering in the baseline
model, we now require that each node be connected to at
least 𝑞 of its geographically closest neighbors, mimicking the
fact that one indeed tends to befriend “next-door” neighbors.
New edges are added in at the end of the growth process. The
addition of new edges is illustrated in Figure 1(b). Note that
the baseline model corresponds to the special case of 𝑞 = 0.

In Figure 3 we plot the clustering coefficient of the
network, ⟨𝐶⟩, as a function of 𝑞. We see that ⟨𝐶⟩ is quite
large, and in line with real-life networks, already for 𝑞 = 1.
⟨𝐶⟩ grows with 𝑞 (and decreases with the network size 𝑁)
according to the empirical relation 1−⟨𝐶⟩ ∝ log(𝑁)𝑞−0.2.The
inset of the figure shows the dependence of the clustering
coefficient of individual nodes upon their degree 𝑘. The
emergent relation 𝐶(𝑘) ∼ 𝑘−𝑥 (𝑥 ≈ 0.75) is also typical of
many real-life networks [38].

Relocations.Thegrowth rules of the baselinemodel, evenwith
the added rule for connecting 𝑞 closest neighbors, still fail
to account for the very important effect of relocations. Every
so often a person relocates to a new place, changing jobs or
pursuing education, following marriage, and so on. When a
person relocates they retain many of their friendships at

their place of origin and form new friendships at their new
location.This has a profound effect on the connectivity of the
social network, as we shall see below. For now, however, we
just describe the way to incorporate relocations in the revised
SSCN model.

To relocate a single node 𝑖 we first pick two nodes 𝑖 and 𝑗
at random and move node 𝑖 to within distance 𝑠 = 1 from
node 𝑗, and at a random angle 𝜃 from 𝑗, while retaining
all of 𝑖’s connections. In the second stage, we examine the
new environs of node 𝑖 and add the necessary connections to
enforce the minimum 𝑞 closest neighbors rule. Note that the
first stage entails merely changing x(𝑖), but not its contacts.
The second stage ensures that agent 𝑖 not only keeps its
old social connections, but also makes new acquaintances
in the new place. The process of relocation is illustrated in
Figure 1(c).

The random choice of the relocating node 𝑖 and the target
node (or location) 𝑗 is motivated by the “gravity model” for
human mobility [39]. It basically assumes that any individual
𝑖 is as likely to relocate as any other and that relocating to
any particular place (near x(𝑗)) is more probable the more
populated that place is.

In the following section, we study the effect of migrating
a fraction 𝜀 of the𝑁 nodes in the system. A single relocation
affects the degree of the relocating node 𝑖 in the same way as
adding 𝑞 closest neighbors. (But note that 𝑖 undergoes two
such updates.) Thus, the combined effect of connecting 𝑞
closest neighbors and migrating a fraction 𝜀 on the degree
distribution is similar to that of connecting 𝑞 = 𝑞(1 + 𝜀)
neighbors without migration. On the other hand, relocations
have a dramatic effect on the pattern of connections and on
navigation of the social network and they should not be
neglected.

3. Results: Connectivity and Milgram’s
Small-World Experiment

We now turn to the main question of how well the social net-
work is connected and what we can learn from simulations of
Milgram’s Small-World experiment. For concreteness, we
study the typical SSCN configuration shown in Figure 2(b)
and focus on the connectivity between individuals in the
largest and second-largest cities in the figure (populations
15,072 and 5,567, respectively). The two cities happen to be
about 190 units of length away from one another, which
compares nicely with 𝑠max = √𝑁 ≈ 226 and with the actual
span of the “country.”

3.1. Shortest Paths. Consider first the shortest paths in the
network. Shortest paths can be found very efficiently, for
example, by the Breadth-First Search (BFS) algorithm. The
problem is that efficient algorithms such as the BFS require
global knowledge of the whole network of contacts (or the
full adjacency matrix). This type of information is clearly
not available to any one person, so the mere existence of
shortest paths cannot explain the results in Milgram’s Small-
World experiment. Nevertheless, shortest paths constitute a
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useful “benchmark” to which one can compare various
decentralized algorithms.

Since the SSCN network of social contacts consists of
only one connected component (even in the baseline model)
there exists a shortest path of links between any two nodes.
We explore first how shortest paths evolve as one adds
connectivity to the baseline model, first by connecting 𝑞 = 5
closest neighbors and then by migrating increasing fractions
𝜀 = 0.05, 0.1, and 0.2 of the nodes.

Our results for the shortest paths between nodes 𝑖 in City
1 and nodes 𝑗 in City 2 are summarized in Figure 4. For the
baseline model, the shortest paths between nodes in the two
cities follow a bell-shaped distribution and average to just
under 11 links. Adding connections to 5-closest neighbors
reduces the shortest paths average length to about 8.5. This
change is actually less impressive than one would expect:
The average degree of each node in the baseline model is
⟨𝑘⟩ = 2, since the network is then a tree. Adding links to 𝑞
nearest neighbors of each node increases the average degree
to ⟨𝑘⟩ = 2 + 𝑞. We can now compare the results to a random
network undergoing a similar change. Since the shortest
path in a random network is ∼log⟨𝑘⟩𝑁, the paths would
have shortened by a factor of log2+𝑞𝑁/log2𝑁 ≈ 2.81 after
adding 𝑞 = 5 neighbors. Instead, the average path length has
reduced only by a disappointing 11/8.5 ≈ 1.29. The reason

is of course that the added connections in our case are far
from random, and—while important in accounting for the
common phenomenon of “next-door” friends—they do not
create efficient shortcuts. The situation is quite opposite for
relocations: Migrating a mere 0.05 fraction of the nodes
results in an additional shortening of the average path lengths
to about 7, a dramatic change for the tiny increase in ⟨𝑘⟩, from
7 to 7.25. Increasing the migration rate results in further
reduction of the average path lengths, but the most dramatic
change is that seen between no relocations at all and a tiny
fraction of relocations. In that respect relocations seem to
play a similar role to that of random long-range connections
in theWatts and Strogatz Small-World networks [37]. Finally,
the insets in the figure show the distribution of path lengths
for each successive change. The narrowing of these distri-
butions can be traced to the homogenization of the degree
distribution as more links are added in.

3.2. Greedy Paths. Consider now Milgram’s Small-World
experiment [13]. Participants in the experiment have access
only to local information: You knowwho your friends are and
where they live, and so on, but have little information about
their friends down the line. The puzzle is how the message
finds its way, under these circumstances, let alone in a short
number of steps. Local or decentralized algorithms for passing
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Figure 5: Statistics of greedy path length obtained by randomly sampling 5 × 105 node pairs (𝑖, 𝑗) where 𝑖 and 𝑗 belong to the cities 1 and
2, see Figure 2(b). In the baseline model there are very few short, greedy paths. Connecting to closest neighbors increases the success rate
significantly, but the paths found are quite longer. Even a tiny percentage of relocations not only further increases the success rate, but also
reduces the greedy path length significantly.

the message may be quite involved and we shall test a few
scenarios. For now, however, we stick to the simplest greedy
algorithm:

Pass the message to the contact that is geographi-
cally closest to the target (provided that it is closer
than yourself).

Kleinberg [14, 15] had shown that, for his Small-World lattice,
no other decentralized algorithm can obtain paths that scale
more favorably with the population 𝑁 than the greedy
algorithm. In other words, greedy paths give us a good idea
of how well any other decentralized method might perform
(at least functionally in𝑁).

The proviso that each subsequent node is closer to the tar-
get is important: On the one hand it guarantees convergence;
on the other hand, it means that the message might get stuck,
when there is not a single contact that is closer to the target
than oneself. In such a case there is no greedy path between
the source and the target. When a greedy path exists, we say
that the source and target are greedily connected. Greedy con-
nectivity was explored for some benchmark networks (but
not for SSCN models) in [40]. Some of the more important
properties of greedy connectivity are as follows:

(i) Nodes that are connected in the usual sensemight not
be greedily connected (but not the other way around).

(ii) Greedy paths are never shorter than shortest paths.
(iii) Greedy connectivity is not transitive: If 𝑢 is greedily

connected to V and V is greedily connected to 𝑤, it is
not necessarily the case that 𝑢 is greedily connected to
𝑤.

(iv) Greedy connectivity is not symmetric: there might be
a greedy path from 𝑢 to V but no greedy path from V
to 𝑢.

We have selected 500,000 random pairs of nodes (𝑖, 𝑗),
with 𝑖 ∈ City 1 and 𝑗 ∈ City 2, and then searched for greedy
paths from 𝑖 to 𝑗, and from 𝑗 to 𝑖. The results are summarized
in Figure 5.

The average greedy path length for the baseline model,
of about 7 links, is pleasingly short; however, only 0.12%
of the pairs are greedily connected. Adding connections to
𝑞 = 5 closest neighbors dramatically increases the greedy
connectivity, to about 25% of the pairs, but the average
greedy path lengthens to about 39 links. These results can be
understood as follows. In the baseline model the network of
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contacts is a tree and there is a unique path between any pair
of nodes. (This path is also the shortest path.) Since the spatial
connections are lain at a random angle 𝜃, the probability that
an ℓ-links path from 𝑖 to 𝑗 is also a greedy path is (1/2)ℓ.
Thus the typical shortest paths, of average length ⟨ℓ⟩ = 11,
are greedy paths with probability (1/2)11 ≈ 0.05%, in general
agreement with the observed result. Connecting 𝑞 closest
neighbors makes for multiple paths between pairs of nodes.
The probability that a greedy search might have to be aban-
doned at any particular step is roughly (1/2)𝑞 (assuming that
the closest neighbors are randomly distributed, and neglect-
ing the underlying baseline tree). For 𝑞 = 5, the probability
of the typical greedy paths (of length 39) making it through is
therefore (1−(1/2)5)39 ≈ 29%, quite in line with the observed
results. Despite the dramatic increase in the success rate for
greedy searches, the typical path length is too large to explain
the observations in Milgram’s Small-World experiment.

Migrating even a small fraction 𝜀 = 0.05 of the nodes
further increases the success rate, to about 33%, but more
importantly, it slashes the typical greedy path length by a
factor of 2. (Note that the total number of links increases
after migration, from (1 + 𝑞)𝑁 to (1 + (1 + 𝜀)𝑞)𝑁, but the
4.2% increase resulting from 𝜀 = 0.05 cannot explain these
dramatic results.)Migrating larger fractions of the population
achieves only modest improvements. Once again, the role of
relocations seems analogous to that of random long-range
connections in Watts and Strogatz Small-World networks
[37]. Nevertheless, the typical greedy path lengths, of about
15, even for 𝜀 = 0.2 migrations, still seem too long to
account for Milgram’s results. Our SSCNmodel suggests that
the difference is due largely to clever strategies adopted by
participants in the experiment—people act more cleverly
than the simple-minded greedy algorithm—and partly due to
the effect of attrition: the nonzero probability to abandon
the task at any particular step before the search is completed
effectively shortens the length of successfully completed
paths. We turn to these issues next.

3.3. Complex Strategies and Attrition. The greedy path algo-
rithm cannot by itself explain the results from Milgram’s
Small-World experiment and we are led to consider more
complex strategies. A possible strategy is to prefer friends that
live closer to the target to some extent, but give also some
weight to friends that are exceptionally well-connected (since
they might be more likely to make a better choice than
ourselves). The following algorithm captures the gist of this
idea.

Suppose that node 𝑖 currently holds the message that is
destined for the (disclosed) target 𝑡. Node 𝑖 assigns a score 𝑆𝑗
to each of his 𝑘𝑖 acquaintances (𝑗 = 1, 2, . . . , 𝑘𝑖):

𝑆𝑗 = 𝜆 𝑠𝑖𝑠𝑗
+ (1 − 𝜆)

𝑘𝑗
𝑘𝑖
. (4)

Here 𝑠𝑖 and 𝑠𝑗 are the geographical distances between 𝑖 and
𝑡 and 𝑗 and 𝑡, and 𝑘𝑖 and 𝑘𝑗 are the degrees of node 𝑖 and
of its 𝑗th contact, respectively. In other words, agent 𝑖 scores
his acquaintances relative to himself (his own score is 𝑆𝑖 = 1),
assigning higher value to friends that are closer to 𝑡 than

himself, and that are better connected than himself. The
parameter 𝜆 ∈ [0, 1] controls the relative importance of
each attribute. With the scores at hand the strategy proceeds
exactly as in the greedy algorithm, but with the aim of
maximizing 𝑆𝑗 (rather than minimizing the distance):

Pass the message to the contact that has the largest
score (provided that its score is larger than 1).

Kleinberg’s greedy algorithm corresponds to the special
case of 𝜆 = 1. For any other 0 < 𝜆 < 1 the strategy still
guarantees convergence to the target (if a path is available),
since the distance from 𝑡 to itself is zero, so that the score
of 𝑡 is infinite and overwhelms all other considerations. (The
case of 𝜆 = 0 is problematic, for the message may then fail to
reach the target, evenwhen 𝑡 is a contact of 𝑖, andwe therefore
require 𝜆 > 0.) The search for a path to 𝑡 is aborted when the
proviso that 𝑆𝑗 > 1 is not fulfilled. In addition, for 𝜆 < 1
the path may revisit a previously touched node, creating a
closed loop.The search is, of course, abandoned in such cases
as well. We note that the search strategy considered here is by
nomeans exclusive. Several other heuristic search algorithms
beyond Kleinberg’s greedy algorithm have been investigated
in previous work, such as [41], on both synthetic and real-
world spatial networks.

Figure 6 summarizes the results of this mixed strategy, as
applied to the case of 𝑞 = 5 closest neighbors and 𝜀 = 0.05
fraction of relocations. For clarity, we include only the results
for searches from City 2 to City 1 (the small differences found
for the reverse direction are discussed in the next subsection).
Panel (a) shows the fraction of pairs,𝑅(𝜆) that are successfully
connected. The overall trend, shown in the inset, is of a rapid
decay to zero as 𝜆 decreases. For 𝜆 close to 1, however, there
is first an increase, from 𝑅(1) ≈ 0.37 to a maximum of 0.45
success rate for 𝜆 ≈ 0.998. At the same time, the average path
length (Figure 6(b)) decreases from ⟨ℓ⟩ = 19.7 at 𝜆 = 1 to
⟨ℓ⟩ = 16.0 at 𝜆 = 0.998. There is in fact a whole range of
𝜆1 < 𝜆 < 1 for which the mixed strategy performs better
(higher success rate and shorter paths) than the pure greedy
algorithm of 𝜆 = 1. At 𝜆1 ≈ 0.986, for example, the success
rate is as good as for 𝜆 = 1, but the average path length is
slashed by nearly 5 links.

As 𝜆 decreases beyond 𝜆1 it becomes harder to judge the
success of the mixed strategy: On the one hand there is the
attractive effect of decreasing ⟨ℓ⟩; on the other hand fewer
and fewer pairs remain connected. One way out of this
conundrum is to select the point for which 𝑅 matches the
reported success rate of Milgram’s Small-World experiment,
of roughly 28%. This occurs for 𝜆2 ≈ 0.982, where ⟨ℓ⟩ is
reduced to nearly 13.4 links.

An important conclusion is that geographical proximity
is the largest factor in finding decentralized paths, as evident
from the large values of 𝜆 that are optimal in our mixed
strategy.This understanding is also in linewith the findings of
Liben-Nowell et al. [20]. Our mixed strategy shows that one
can do better than geography alone (the case of 𝜆 = 1), yet not
as well as reported by Milgram. The reason is that our mixed
strategy fails to incorporate much of the intuition and social
cleverness that are second-nature to people. In Milgram’s
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Figure 6: Decentralized paths found with the mixed greedy strategy. (a) Fraction of completed searches 𝑅(𝜆) in the range 0.9 ≤ 𝜆 ≤ 1. The
mixed strategy beats the pure greedy algorithm in the pink-shaded region, 𝜆1 < 𝜆 < 1. At 𝜆 = 𝜆2 the success rate of the mixed strategy
matches the 28% rate reported in Milgram’s work [13]. Inset: 𝑅(𝜆) for the whole range of 0 ≤ 𝜆 ≤ 1. (b) Average path length from points in
City 2 to City 1 (top, purple curve) and average number of links to reach City 1 (bottom, orange curve) in the range 0.9 ≤ 𝜆 ≤ 1. Inset: Same,
for the full range of 0 ≤ 𝜆 ≤ 1. (c) The effect of incidental attrition: Shown is the distribution of path lengths, 𝑃(ℓ) for 𝜆 = 0.998 (solid line)
along with (0.9)ℓ𝑃(ℓ), accounting for 0.1 probability of incidental dropout (broken line). The overall success rate reduces from 45% to 11%
and the conditional average path length ⟨ℓ⟩ decreases from 16 to 11.7. (Both curves are normalized in the figure, to highlight the change in
shape that results from incidental attrition.)

experiment, for example, the target’s occupation (stockbro-
ker) was disclosed in addition to name and address. The
name holds clues to the target’s gender and ethnicity, and the
address might hint at social status. None of this information
is accounted for in our naive approach.

Amore realistic approachwould probably still relymostly
on geography, at least until the message reaches the target’s
city. Once inside the city the additional clues of occupation,
gender, ethnicity, social status, and so on provide effective
means for finding shorter paths (e.g., the stockbrokers in
Boston tend to know one another). Indeed, subject reports in
Milgram-like experiments strongly support this idea [19].The

average path to the target’s city in our simulations is signif-
icantly shorter than the total path (Figure 6(b)). At 𝜆2 =
0.982 (wherewe reproduceMilgram’s success rate of 28%), for
example, the average path length is ⟨ℓ⟩ = 13.4, but only 4 of
those links are needed to reach City 1. At this stage, Milgram’s
results seem quite within reach.

So far we have considered attrition only due to the strat-
egy, or strategical attrition: the search is dropped when the
algorithm fails to find a next valid step. In real life, however,
there are other reasons for defecting besides the unavailability
of an attractive option: Participants may drop out from the
experiment because of busyness, laziness, lack of motivation,



10 Complexity

and so on.We refer to this effect as incidental attrition.We can
lump both types of attrition into a single probability 𝑝 that an
individual drops out of the experiment—this means a path
of length ℓ has (1 − 𝑝)ℓ chance of being completed. From
Milgram’s second study [42], for example, it can be estimated
that 𝑝 ≈ 0.38. To illustrate the effect of incidental attrition,
in Figure 6(c) we plot the probability distribution for paths of
length ℓ,𝑃(ℓ), for the case of 𝜆 = 0.998 (solid line), alongwith
the distribution (0.9)ℓ𝑃(ℓ) that results from an incidental
dropout probability of 0.1 (broken line). As onewould expect,
the overall success rate drops, from 45% to 11%, but the
(conditional) average path length is reduced by 4.3 links. The
two types of attrition are a significant factor in the selection
of shorter paths.

3.4. Asymmetry. Consider finally the asymmetry of greedy,
or decentralized paths: paths from 𝑖 in City 1 to 𝑗 in City
2 are not necessarily the same as paths from 𝑗 to 𝑖. We see
this effect quite clearly in Figure 5, where the average path
length for City 1 → 2 is systematically shorter than for
City 2 → 1, through all stages of the model’s buildup. The
success rates, too, are systematically smaller for paths from
City 1 to 2 than the reverse (the differences are small and in
the figure we put, for simplicity, only the average of the two
rates).

A simple explanation to this asymmetry is that purely
greedy paths from City 1 to City 2 can go through City 3,
but those from City 2 to City 1 cannot (City 3 is farther
away from the target); see Figure 2(b). The situation is
statistically symmetric for a “direct” commute, City 1 ↔
2, without City 3 in the picture: same expected number of
successful paths and average path lengths in either direction.
The extra 2 → 3 → 1 routes tend to be longer than the
direct commute and account both for the higher success rate
and the longer average path lengths in the City 2 → 1
direction.

We observe small similar asymmetries also with our
mixed strategy, for all values of 𝜆.The regionwhere themixed
strategy beats the pure greedy algorithm, for example, is
somewhat narrower for the City 1 → 2 direction, with
𝜆1 = 0.988 (instead of 𝜆1 = 0.986 for City 2 → 1), but
we do not have a simple explanation to account for these
findings.

4. Discussion and Conclusion

In summary, we have proposed improvements to the baseline
SSCN model of [26] that render it suitable for simulations
of dynamic social processes, such as Milgram’s Small-World
experiment [13, 42]. The most important revisions call for
connecting each node to a number of spatially closest nearest
neighbors, to account for “next-door” friends, and relocating
a fraction 𝜀 of the nodes, to account for relocations (due to
job change, study, marriage, etc.). These two revisions have a
minor effect on the degree distribution of the baseline model,
but a dramatic effect on the connectivity properties of the
network of social contacts: The connections to closest neigh-
borsmake for a robust clustering effect (absent in the baseline

model), and even a tiny fraction 𝜀 of relocations intro-
duces long-range connections that decrease the average path
length between pairs of nodes substantially, similarly to the
random long-range links inWatts and Strogatz’s Small-World
networks [37].

Our simulations of theMilgram Small-World experiment
show that Kleinberg’s greedy algorithm—based only on
the geographical distance between nodes—is successful in
finding decentralized paths between pairs of nodes, but the
paths are too long to explain Milgram’s results. We have
shown that more complex strategies, such as occasionally
passing the message to acquaintances that are especially
well-connected, can result in a significant reduction of
the path length. We have also confirmed the notion that
geography is the most important consideration in finding
short paths [19, 20], at least in the initial stages, until
the message reaches the target’s city. The remaining path
to the target, within the city, could be shortened con-
siderably using the additional explicit information (e.g.,
occupation) and implicit information (ethnicity, social sta-
tus) known about the target. We have also discussed the
effect of attrition (the fact that participants drop out of
the experiment for various reasons) and showed how it
helps select for shorter paths. Note that alternative mod-
els of navigable spatial networks have been recently stud-
ied, for example, based on mapping to a hypergeomet-
ric space [43] or some iterative optimization techniques
[44].

Simulations of Milgram’s experiment pose a particularly
strict test to the SSCN model, in that finding decentralized
paths relies quite sensitively both on the location of the
nodes and on their network of connections. The model’s
success makes it a promising substrate for the simulation of
other dynamical processes on social networks, where such
considerations are important (epidemics, opinion models,
etc.).

Appendix

Algorithmic Description of the Spatial Social
Complex Network (SSCN) Model

In Algorithm 1 we provide pseudocode on using the (revised)
SSCN model to generate a spatial social network. Typical
choices of the redirection parameters, as discussed in the
main text, are 𝑟∞ = 0.8 and𝑁0 = 25.
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Input: 𝑁 (number of nodes), 𝑟∞ ∈ [0, 1]
(asymptotic redirection probability),𝑁0 > 0
(additional parameter for redirection), 𝑞 ∈ N ∪ {0}
(min number of spatial nearest neighbors per node),
𝜀 ∈ [0, 1] (relocation probability)
Output: 𝐴 = [𝐴 𝑖𝑗]𝑁×𝑁 (network adjacency matrix)
and𝑋 = [x(1), . . . , x(𝑁)]2×𝑁 (nodes spatial coordinates)
(1) x(1) ← [0, 0]⊤ andN1 ← ⌀
(2) for 𝑖 = 2, 3, . . . , 𝑁 do
(3) 𝑟 ← (1 − 𝑒−(𝑖−2)/𝑁0 )𝑟∞
(4) Choose 𝑗 at random from {1, . . . , 𝑖 − 1}
(5) Choose 𝑧 at random from the interval (0, 1)
(6) Choose 𝜃 at random from the interval [0, 2𝜋)
(7) if 𝑧 < 1 − 𝑟 then
(8) N𝑖 ← {𝑗} andN𝑗 ← N𝑗 ∪ {𝑖}
(9) Choose 𝑠 ∼ 𝑝(𝑠) = (1/ log(𝑠max))𝑠−1 (1 < 𝑠 < 𝑠max)
(10) x(𝑖) ← [x(𝑗)1 + 𝑠 cos(𝜃), x(𝑗)2 + 𝑠 sin(𝜃)]⊤
(11) else
(12) Choose 𝑗 at random from the setN𝑗
(13) N𝑖 ← {𝑗} andN𝑗 ← N𝑗 ∪ {𝑖}
(14) x(𝑖) ← [x(𝑗

)
1 + cos(𝜃), x(𝑗

)
2 + sin(𝜃)]⊤

(15) end if
(16) end for
(17) if 𝑞 ≥ 1 then
(18) for 𝑖 = 1, 2, . . . , 𝑁 do
(19) Q ← {𝑞 spatially nearest neighbors of node 𝑖}
(20) N𝑖 ← N𝑖 ∪ Q

(21) end for
(22) end if
(23) Choose a random permutation 𝜋 on the set {1, . . . , 𝑁}
(24) for 𝑖 = 1, 2, . . . , 𝑁 do
(25) Choose 𝑧 at random from the interval (0, 1)
(26) if 𝑧 < 𝜀 then
(27) Choose 𝑗 at random from {1, . . . , 𝑁}/{𝜋𝑖}
(28) Choose 𝜃 at random from the interval [0, 2𝜋)
(29) x(𝜋𝑖) ← [x(𝑗)1 + cos(𝜃), x(𝑗)2 + sin(𝜃)]⊤
(30) if 𝑞 ≥ 1 then
(31) Q ← {𝑞 spatially nearest neighbors

of node𝜋𝑖}
(32) N𝜋𝑖 ← N𝜋𝑖 ∪ Q

(33) end if
(34) end if
(35) end for
(36) for 𝑖 = 1, 2, . . . , 𝑁 do
(37) for every 𝑗 ∈ N𝑖 do
(38) 𝐴 𝑖𝑗 ← 1
(39) end for
(40) end for

Algorithm 1: Network generation using the SSCN model.
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