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Abstract

In many of the abstract geometric models which have been
used to represent concepts and their relationships, regions
possessing some cohesive property such as convexity or lin-
earity have played a significant role. When the implication or
containment relationship is used as an ordering relationship in
such models, this gives rise to logical operators for which the
disjunction of two concepts is often larger than the set union
obtained in Boolean models. This paper describes some of
the characteristic properties of such broad non-distributive
composition operations and their applications to learning al-
gorithms and classification structures.

As an example we describe a quad-tree representation which
we have used to provide a structure for indexing objects and
composition of regions in a spatial database. The quad-tree
combines logical, algebraic and geometric properties in a nat-
urally non-distributive fashion.

The lattice of subspaces of a vector space is presented as a
special example, which draws a middle-way between ‘non-
inductive’ Boolean logic and ‘overinductive’ tree-structures.
This gives rise to composition operations that are already
used as models in physics and cognitive science.

Closure conditions in geometric models
The hypothesis that concepts can be represented by points
and more general regions in spatial models has been used
by psychologists and cognitive scientists to simulate human
language learning (Landauer & Dumais 1997) and to repre-
sent sensory stimuli such as tastes and colors (Gärdenfors
2000, §1.5). Of the traditional practical applications of
such a spatial approach, the vector space model for infor-
mation retrieval (Salton & McGill 1983) is notable, and
its generalizations such as latent semantic analysis (Lan-
dauer & Dumais 1997), in which distributions of word us-
age learned from corpora become condensed into a low-
dimensional representation and used, among other things,
for discriminating between different senses of ambiguous
words (Scḧutze 1998).

Scḧutze’s (1998) paper exemplifies some of the oppor-
tunities and challenges involved in such a spatial approach
— these include learning to represent individual objects as

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Figure 1: Two non-convex sets (dark gray) and the points added
to form their convex closures (light gray)

points in a geometric space (in this case, word vectors), com-
bining these points into appropriate sentence or document
vectors (in this case, using addition of vectors), and extrapo-
lating from observed points of information to apportion the
geometric space into cohesive regions corresponding to rec-
ognizable concepts (in this case, using clustering).

The last question — how are empirical observations gath-
ered into classes described by the same word or represented
by the same concept? — is of traditional importance in
philosophy and many related disciplines. The extrapolation
from observed data to classifying previously unexperienced
situations is implemented in a variety of theoretical models
and practical applications, using smoothing and clustering,
by exploiting a natural general-to-specific ordering on the
space of observations (Mitchell 1997, Ch. 6, 7, 2), and by
using similarity or distance measures to gauge the influence
exerted by a cluster of observations upon its conceptual hin-
terland (G̈ardenfors 2000, Ch. 3,4).

Mathematically, such extrapolation techniques are related
to closure conditions, a set beingclosedif it has no tendency
to include new members. A traditional example of closure is
in the field of topology, which describes a set as being closed
if it contains the limit point of every possible sequence of
elements.

A more easily-grasped example is given by the property
of convexity. A set S is said to be convex if for any two
pointsA andB in S, the straight lineAB lies entirely within
S. Theconvex closureof S is formed by taking the initial
set and all such straight lines, this being the smallest convex
set containingS. Figure 1 shows two simple non-convex
regions and their convex closures.

One of the best developed uses of such closure methods
for obtaining stable conceptual representations is in Formal



Figure 2: The convex closure of the union of two sets.

Concept Analysis, where the closure operation is given by
the relationship between the intent and the extent of a con-
cept (Ganter & Wille 1999,§1.1). An important closure op-
eration we will consider later is the linear span of a set of
vectors, which can also be thought of as the smallest sub-
space containing those vectors.

Ordering, containment, implication and
disjunction

The link between these geometric structures and logical op-
erations arises because the ordering relationship given by
containment or inclusion can be used to model logical im-
plication, an equivalence introduced by Aristotle:

That one term be included in another as in a whole is
the same as for the other to be predicated of all the first.

(Prior Analytics, Bk 1 Ch. 1)
That is to say, suppose the setA represents those situa-

tions where the assertioñA is true, andB represents those
situations where the assertioñB is true. If A is contained
in B, then every situation in which̃A is true is also a situa-
tion in whichB̃ is true, which is equivalent to saying thatÃ
implies B̃. The similar treatment of classes of objects and
propositions about them was pioneered by Boole (1854, Ch.
4).

Containment (between two sets) and implication (be-
tween two logical statements) are bothordering relation-
ships, so both geometric regions and logical assertions have
the basic structure of anordered set(Davey & Priestley
1990, Ch. 1). The disjunction of two assertions (or their
corresponding geometric regions) is given by their least up-
per bound in this ordered set. That is to say that for two
statements̃A andB̃, their disjunctionÃ∨ B̃ is the most spe-
cific statement implied by both̃A andB̃, which corresponds
geometrically to the smallest region containing bothA and
B.

Now, suppose that concepts in our geometric model are
represented only byconvexsets. Then the least upper bound
or disjunction of two concepts will be represented by the
smallest convex set which contains them both, which is the
convex closure of their set union (Figure 2). Note the simi-
larity between Figure 2 and the convex closures in Figure 1,
the only difference being that the initial (dark gray) set is no
longer connected.

The resulting convex closure contains points which are in
neither of the two original sets, and so this disjunction oper-
ation fails to obey the Booleandistributive law.1 In this way,

1Boole’s distributive law states that for all classesx, y andz,
z(x + y) = zx + zy (Boole 1854, Ch. 2, eq. 4). In modern

the behavior of concepts under logical connectives is deter-
mined by the closure condition, used to distinguish those re-
gions which are cohesive enough to represent concepts from
those which are not. The physical and philosophical con-
sequences of relaxing the distributive law are discussed by
Putnam (1976).

In language, we often encounter sets which do not corre-
spond to any lexicalized concept. For example, there is no
word in English for the set consisting of allrabbits, pigsand
dolphins, and the most specific word which refers to all of
these creatures (mammals) also refers to many other species.
In this way, the conceptmammalcan be thought of as the
disjunction ofrabbits, pigsanddolphinsin a concept lattice,
and this disjunction does not obey the distributive law be-
cause there are manymammalswhich are notrabbits, not
pigs, and notdolphins.

We have so far demonstrated that representing concepts
using only those sets that satisfy some closure condition
leads to the use of logical operators that violate classical
Boolean assumptions such as the distributive law, and that
there are linguistic situations where this divergence from
the classical theory offers a reasonable interpretation, since
many possible sets do not correspond to concepts repre-
sented in the lexicon. For more information on geometric
ordering and its relationship with disjunction in a concept
lattice, see Widdows (2004, Ch. 1,8).

Inductive bias for machine learning and
non-distributivity

Machine learning algorithms are in various ways dependent
on theinductive hypothesis, which more or less states that
the situations we will encounter in the future are coherent
with those we encountered in the past. However, we do not
expect to encounter situations in the future which areiden-
tical to those we have encountered in the past (cf. the dic-
tum of Heraclitus, “you can never step into the same river
twice”), and so some means must be found for correctly in-
terpreting future observations based on the general features
they have in common with previous encounters.

In practice, this means that we always assume that the
training data for any learning algorithm is incomplete, and
the algorithm has to generalize from this training data to new
situations. The method of generalization depends on thein-
ductive biasof the algorithm, which is the set of premises
which, when combined with the training data, provide de-
ductive statements in novel situations (Mitchell 1997,§2.7).

Inductive bias can thus be viewed as a kind of closure
operation on the set of training examples. Insofar as the
training examples provide a set of different situationsany
of which are possible, the final classifier learned from the
training data combined with the inductive hypothesis can be
thought of as a disjunction, whose arguments are given by
the training examples and whose inductive bias is given by
the closure condition needed to smooth out the training ex-
amples to form a cohesive conceptual representation. For
example, Li and Abe (1998) use the closure condition that

notation, the distributive law readsz ∧ (x∨ y) = (z ∧x)∨ (z ∧ y)
(Davey & Priestley 1990, Ch. 4).



any cohesive set of nouns is given by a tree-cut in a noun hi-
erarchy, and use the minimum description length algorithm
to approximate such tree-cuts from training data in order to
predict what kinds of nouns are usually taken as arguments
by different verbs.

Introducing inductive bias therefore dispenses with the
distributive law, which would impose the condition that the
disjunction of the training examples should simply be the
set of all training examples, preventing the generalization to
new situations. Learning by induction is thus incompatible
with Boolean logic. (In fairness, Boole’s own examples in
The Mathematical Analysis of Logic(1847) andThe Laws
of Thought(1854) are almost entirely of a deductive na-
ture, and he does not seem to have proposed that the scheme
be used for learning premises from empirical observations.)
Since Boolean logic is not well-suited as a model for learn-
ing from incomplete experience, it is incumbent upon us
to find more appropriate models for learning and building
classes. As this paper demonstrates, non-distributive models
cangeneralize effectively from partial data, while retaining
the deductive power of logical representations.

Quad-tree representations in spatial databases
Geometric ordering relationships are important for building
and querying spatial databases. Geographic applications in-
cluding map-servers, gazetteers and local business directo-
ries need to support a variety of spatial queries, such as

• Find objects near to the pointx.

• Find objects of a given type in regionA.

• Find a path joining pointsx andy.

this last example also implying that the query

• Find paths in a region that includes pointsx andy.

must be addressed.
The notion of spatial ordering is naturally entailed in such

examples. Since there are an infinite number of possible ‘re-
gions’ of different shapes and sizes, it is never possible to
keep an index for every definable region, and the shapes and
granularities of regions for which special indexes are pre-
computed and stored must be chosen in advance. Design
goals typically include maximizing the speed and flexibility
for the user while minimizing storage and update require-
ments. Such goals entail construction around Aristotle’s
predication-inclusion principle almost inexorably: if region
B is contained in regionA, then a predicate (defined by a
user query) satisfied by an object in regionB will naturally
be satisfied by the same object in regionA. It follows that
an index kept for the subregionB must be accessible to an
index kept for the regionA — in other words, the indexing
structure must reflect the spatial ordering of containment.

Quad-tree representations
Quad-trees provide a simple representation for such indexes.
A quad tree is a tree in which each node has exactly four
children. In spatial database (Rigaux, Scholl, & Voisard
2002) and computer graphics (Foleyet al. 1990) applica-
tions, the nodes are taken to be rectangular areas, and a
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Figure 3: A parent cell in a quad-tree and its four indexed
children

node’s children are computed by bisecting the parent along
each axis. The child nodes’ areas thus form an equal parti-
tion of the parent node’s area. (Quad-trees have an obvious
generalization in higher dimensions: the number of children
at each level is equal to2N , whereN is the number of di-
mensions.)

Quad-trees are an example of an index driven by spatial
decomposition. While this approach can waste storage space
when compared to data driven approaches such as R*-trees
and their variants (Beckmannet al. 1990), the quad-tree
has some attractive characteristics. One is its implemen-
tation simplicity. Another is that when used as an index
for a spatial database, index keys can be computed directly
and without prior reference to the database. We have found
that this property is particularly handy in a distributed in-
dex where many disconnected agents may be performing in-
dex updates simultaneously. (Note that this sense of “dis-
tributed” is unrelated the Boolean distributive law. We mean
here a database that is implemented across many cooperat-
ing computers, with possibly intermittent network connec-
tivity.) The simplicity, stability, and predictability of the
quad-tree structure makes distributed updates much more
feasible.

Index keys are computed by describing the path through
the tree to the appropriate node. The empty string is used
to denote the root node in the tree, which corresponds to the
total space being indexed. We label each of the children00,
10, 11, and01, as depicted in Figure 3. We can extend these
labels recursively in the obvious fashion:1100 represents a
node two levels deep: the first child of the third child of the
root. Such a node has an area1/16 the size of the root node.
Three levels deep, there are 4 top level quadrants, 16 second
level quadrants, and 64 third level quadrants. Some of the
available quadrants are labeled in Figure 4, along with their
binary index keys in the quad-tree. Note that long index keys
correspond to small regions, and vice versa.

Thought of as a path in a tree, the choice of labels is fairly
obvious. To be useful in an application context often re-
quires the ability to compute these labels (and hence keys)
on the basis of Cartesian coordinates. Imagine a mobile user
equipped with a small computer or PDA and a GPS. This
user may wish to update a spatial index with information
about her location, expressed in latitude and longitude from
the GPS, but may not have access to the full index since she
is disconnected from a network. Fortunately, knowing only
her latitude and longitude (to some finite precision) she can
compute an index key.

The algorithm is as follows: for any set of bounded Carte-
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Figure 4: Addresses for smaller and smaller cells are gener-
ated by extending the addresses of their parents.

sian coordinates (such as latitude and longitude), normalize
the coordinates so that they lie in[0, 1). Each coordinate is
then a fraction. Convert the decimal representation of each
fraction to its binary representation. Interleave the bits of
the two sequences with thex coordinate preceding they co-
ordinate. The resulting string is the index key, or to put it
another way, the path to the correct node in the spatial tree,
or to think of it yet another way, an alternating series of bi-
furcations in space that result in a particular area.

Any finite sequence of this form represents an area.
(Points cannot be finitely represented. This is generally ac-
ceptable in real world applications since no real measuring
device has perfect precision.) It should be noted that while
all finite binary sequences correspond to areas in this model,
not all areas correspond directly to binary sequences. We
return to this rigidity later.

Joins or disjunctions in quad-trees
From an application standpoint we must often find the small-
est node in the tree that completely encloses a given set of
points. This is useful for queries like, “What are all the
objects of interest within 5 miles of my present location?”
In many spatial index structures this requires interrogating
many levels of the index and calculating many distances.
Because of the stable structure of our index, we can do it
entirely algebraically, based on the structure of the keys.

For example, suppose we wish to compute the index key
of the smallest cell that contains both the cellsE = 110101
andF = 110110 in Figure 4. This is given by the string
1101 representing the second-level quadrant that contains
bothE andF . This can be written algebraically using the
join notation

E ∨ F = 110101 ∨ 110110 = 1101.

Similarly, the join ofB andD is found to be

B ∨D = 0001 ∨ 001101 = 00.

In both cases, the join is found algebraically by taking the
longest common prefix (of even length) of the two index
keys. This method turns out to be true in general, as fol-
lows.

Theorem 1 For any set of index keys, the index key of the
smallest area containing the areas of all the given index keys
is given by the longest common prefix (of even length) of the
given keys.

Proof. For any regionA, the index keys of the children of
A are formed by adding a suffix to the index key ofA. For
any cellB such thatB ⊂ A, it follows thatA’s index key is
a prefix ofB’s index key. Since each node in the quad-tree
has a unique path to the root node, the converse (ifB is not
contained inA, the index key ofA can not precede that ofB)
also holds. The cells in the quad-tree (ordered by geometric
inclusion) and their index keys (ordered lexicographically
by the prefix ordering) are therefore isomorphic as ordered
sets.

The ‘smallest containing area’ gives the least upper
bound of two regions under the geometric ordering, and the
‘longest common prefix’ gives the least upper bound of two
index keys under the lexicographic prefix ordering. Since
order-isomorphism preserves least upper bounds, it follows
that the smallest containing area under the geometric order-
ing corresponds to the longest common prefix of the index
keys.

The extra condition that this prefix be ‘of even length’ pre-
vents the inclusion of regions whosex-coordinates coincide
but whosey-coordinates do not (since we are using a binary
alphabet to model a 4-way branching tree). In a higher di-
mensional space, the extra condition is: ‘of length that is a
multiple of the dimensionality.’

This claim may not seem intuitive at first, but it becomes
quite obvious when it is recalled that the keys are paths in
a tree. Each of the given index keys represents a path to a
node in the tree. Since every node of the tree contains all
its children, the smallest node containing each of the given
nodes is the one that lies furthest along the common portion
of the paths in tree. Because of the way we labeled paths, it
must be identical to the longest common prefix of the keys.
There is always such a path, since the root node contains
every node. There can be no smaller node that contains all
the children, because the space is partitioned with no overlap
at every level of the tree.

Because we find an area which must contain the given
areas, but may also contain other points, we have another
non-distributive disjunction. When representing a collection
of disconnected objects, a distributive Boolean disjunction
may be appropriate, but in geographic situations requiring us
to display a connectedregioncontaining the desired objects,
non-distributive logical structures are much more natural.

Significance of this approach
We believe it is important to consider this method in a histor-
ical context. None of the ingredients are new, but the com-
bination is novel and powerful.



The method of using numbers to represent points in the
plane is due largely to Descartes (1598-1650). The adapta-
tion of such methods to describeregionsas well as points
will be addressed further in the next section. While Carte-
sian coordinates use tuples of numbers, since the 19th cen-
tury the discovery ofspace-filling curves(eg. by Peano and
Hilbert) makes it possible to represent parts of the plane us-
ing asinglenumber, as we have done here. These parts are
single points only in the theoretical limit (where the rep-
resentation may be of infinite length), and in practice are
usually cells of a uniform size (unlike the quad-tree, which
naturally represents cells of several nested sizes). Space-
filling curves are useful for building spatial indexes (Rigaux,
Scholl, & Voisard 2002, pp. 221-223) though they can never
be completely faithful to the geometric structure of the space
being indexed.

Another important influence on our method is the use
of numbers to represent different levels ofspecificityrather
than different magnitudes. This owes much to the practical
work of Stevin (1548-1620) and Napier (1559-1617), who
introduced and popularized the decimal point as a way of
using Hindu-Arabic numerals to represent numbers in the
range[0, 1) with unlimited specificity. By convention in the
practical sciences, such numbers often refer to regions, the
appropriate size of which is determined by the accuracy and
precision of available measuring techniques: for example,
it is taught that the decimal0.6 should be used to represent
measurements in the region[0.55, 0.65) to one significant
figure. If we adopt the convention of rounding down rather
than rounding to the nearest significant figure so that0.6 rep-
resents the interval[0.6, 0.7), we recover the practice of us-
ing the prefix ordering to give a tree-structure on regions in
the real line of different levels of specificity.

The quad-tree indexing structure described in this section
combines these two important ideas, using representations
of numbers of increasing specificity as coordinates and in-
terleaving these coordinates to give a spatial indexing struc-
ture for any compact region ofN -dimensional space. With
this structure, the geometric ordering of regions of space is
naturally encoded by the lexicographic ordering of the index
keys.

Examples such as these show that the Cartesian synthesis
of algebra and geometry can be naturally extended to incor-
poratelogical operations within a common theoretical and
practical framework. The logic of such structures will often
be non-Boolean, not because Boolean logic is ‘wrong,’ but
because Boole’s decision to limit the possible values of co-
ordinates to0 and1 (Boole 1854, p. 37) is appropriate for
modeling some situations and not others.

In particular, Boole’s choice of discrete binary values
leads to the distributive law because the disjunction of0 and
1 becomes the discrete set{0, 1}. A change to continuous
values is represented by a mere change in bracket symbols
to give the interval[0, 1], which represents a non-distributive
disjunction of0 and1. That one of these operations is con-
sidered part of standard logic and the other is considered part
of analysis or geometry is for historical reasons. Our quad-
tree index successfully combines logic and geometry, not by
inventing a complicated new bridge between them, but by

ignoring this artificial historical division.

Vector lattices and composition
The quad-tree of the previous section has several drawbacks.
For example, two points may in fact be close to one an-
other, but if they are on opposite sides of the boundary
separating two top-level cells, then the whole of the space
will be returned as the quad-tree disjunction of these points.
(For example, in Figure 4 the disjunction001111 ∨ 110000
has empty common prefix and returns the whole space.)
While some of these problems are peculiar to the quad-
tree methodology, similar insensitivity is a common feature
of tree structures generally. If there is no mechanism for
multiple-inheritance (and therefore cross-classification), the
closure condition on a collection of leaf-nodes is often very
strong and may return an uninformative generalization.

Such taxonomic classification is in some ways an oppo-
site extreme from the Boolean set-theoretic model. Boolean
logic permitsanycollection of objects to represent a concept
(technically, to be theextensionof a concept; see Ganter &
Wille (1999, Ch. 1)), so there are no closure conditions at
all. Adding any single elementv to a subsetU (assuming
thatv 6∈ U ) creates a setU ∪ {v}, and sinceU ⊂ U ∪ {v},
any set of the formU ∪ {v} is a parent of the setU un-
der the inclusion ordering. At the other extreme, taxonomic
classification allows each node in the tree to have only asin-
gle immediate parent, and thus a unique path up to the root
node.

In this final section, we describe the closure conditions
and ordering in vector spaces and their subspaces, as a fer-
tile middle ground between the Boolean and taxonomic ex-
tremes. Vector spaces (sometimes called ‘linear spaces’)
are generalizations of (and include) the traditional Euclidean
notions of lines and planes (in particular, lines and planes
through the origin).

The standard closure condition in a vector spaceV is
given by the property oflinearity — a subsetU ⊆ V is
considered to be avector subspaceof V if for all a andb in
U , the linear combinationλa+µb is also inU . The simplest
subspaces are lines and planes which pass through the ori-
gin. The corresponding closure operation on a set of vectors
is to take their linear span,

span{a1, . . . an} = {λ1a1 + . . . + λnan}.

For example, the linear span of the linesOA and OB in
Figure 5 is the planeOAB. Thus the planeOAB is the
disjunction of the linesOA and OB. Using the vector
sum for disjunction, the intersection for conjunction, and
the orthogonal complement for negation, the collection of
subspaces of a vector space naturally forms a logic, which
has been used especially to model experimental postulates
in quantum mechanics (Birkhoff & von Neumann 1936;
Putnam 1976).

Vector space models for information are a standard part
of information retrieval (Salton & McGill 1983; Baeza-
Yates & Ribiero-Neto 1999). However, vector models in
information retrieval have mainly treated words and docu-
ments as points rather than regions (though as stated, the
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Figure 5: Lines and planes in a vector space

process of clustering and classifying these points leads to
a consideration of regions in the space (Schütze 1998)).
The drawback of using only this most basic unit is that
no point is contained in any other, and the logical struc-
tures based upon geometric containment that we have dis-
cussed in this paper are not exploited. Using the lattice of
closed subspaces is an appealing alternative since it gives
a natural ordering on concepts: so far, experiments have
shown that unwanted content can be removed from search
results more effectively by representing the unwanted con-
tent as the vector disjunction (plane spanned by) the un-
wanted keywords, rather than treating these keywords as
separate points and removing their average (Widdows 2003;
2004, Ch. 7).

The use of linear models in physics has for a long time
been much more sophisticated, and is becoming gradually
unified in a combinedgeometric algebra(Lasenby, Lasenby,
& Doran 2000). This is based upon the works of Grassmann
(1809–1877) and Clifford (1845–1879), who developed a
product operation on vectors which can be used to build
larger representations from primitive components. For ex-
ample, theouter productof two vectorsa andb is thebivec-
tor a ∧ b which represents the directed region swept out by
a andb. This has the useful property thatb∧ a = −a∧ b, so
these operators form a useful counterpart to traditional com-
mutative compositional operators such as vector addition or
disjunction.2 A related operation on vectors is thetensor
producta⊗ b, used to represent the interaction between par-
ticles in quantum mechanics, and used by Plate (2003) for
composition in connectionist memory models,

Vector models provide mathematically sophisticated tools
which combine the geometric and logical approaches for
representing and combining concepts. As a classification
scheme, they take a middle road: the closure conditions on a
linear space can be used to generate well-formed concepts,
but since a line can belong to many different planes, a rich
structure of cross-classification arises naturally.

2The outer product operator∧ should not be confused with the
logical conjunction, and indeed it behaves more like a directed dis-
junction. The precise relationship between the composition oper-
ations of geometric algebra and those of quantum logic, and de-
veloping a suitable notation for combining these, may be a useful
research topic.
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