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Planning and executing volitional actions in the face of conflicting habitual responses is a critical aspect
of human behavior. At the core of the interplay between these 2 control systems lies an override
mechanism that can suppress the habitual action selection process and allow executive control to take
over. Here, we construct a neural circuit model informed by behavioral and electrophysiological data
collected on various response inhibition paradigms. This model extends a well-established model of
action selection in the basal ganglia by including a frontal executive control network that integrates
information about sensory input and task rules to facilitate well-informed decision making via the
oculomotor system. Our simulations of the anti-saccade, Simon, and saccade-override tasks ensue in
conflict between a prepotent and controlled response that causes the network to pause action selection via
projections to the subthalamic nucleus. Our model reproduces key behavioral and electrophysiological
patterns and their sensitivity to lesions and pharmacological manipulations. Finally, we show how this
network can be extended to include the inferior frontal cortex to simulate key qualitative patterns of
global response inhibition demands as required in the stop-signal task.
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Before you act, listen. Before you react, think. Before you spend, earn.
Before your criticize, wait.

—Ernest Hemingway

This quote by Ernest Hemingway highlights our basic tendency
to act impulsively while reminding us that sometimes it is advis-
able to inhibit these prepotent response biases and act more
thoughtful. Recent scientific advancements have shed light on the
neural and cognitive mechanisms that implement inhibitory con-
trol of prepotent response biases (Andrés, 2003; Aron, 2007;
Logan, 1985; Miyake et al., 2000; Munoz & Everling, 2004;

Stuphorn & Schall, 2006). As part of this effort, a multitude of
tasks exist to study response inhibition empirically. Among the
tasks thought to require selective response inhibition are the anti-
saccade task, the Simon task, and the saccade-override task. Each
of these tasks induces a prepotent response bias that sometimes
needs to be overridden with a controlled response based on exec-
utive control. For example, the anti-saccade task requires subjects
to saccade in the opposite direction of an appearing stimulus. The
Simon task requires subjects to respond according to an arbitrary
stimulus-response rule (e.g., respond left or right depending on
stimulus color), but where the stimulus is presented on one side of
the screen, inducing a prepotent response bias to that side. In
congruent trials, the stimulus is presented on the same side as the
correct response indicated by the rule, whereas on incongruent
trials it is on the opposite side. Finally, the saccade-override task
(Isoda & Hikosaka, 2007) requires subjects to saccade in the
direction of a stimulus of a particular color for several repetitions
in a row. On so-called switch-trials, the instruction cue indicates
that the other colored stimulus is now the target, so that the
participant has to override the initial planned response and switch
to the other one. While critical differences exist, all of these tasks
require subjects to inhibit a prepotent response and replace it with
a different response. In contrast, while also requiring response
inhibition, the well-studied stop-signal task does not require sub-
sequent initiation of an active response but only outright inhibition
of the planned response (Verbruggen & Logan, 2008).

Electrophysiological and functional imaging data implicate key
nodes in frontostriatal circuitry as being active during response
inhibition and executive control. At the cortical level, these include
the right inferior frontal gyrus (rIFG; Aron, Fletcher, Bullmore,
Sahakian, & Robbins, 2003; Chambers et al., 2007; Sakagami et
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al., 2001; Xue, Aron, & Poldrack, 2008), the dorsolateral prefron-
tal cortex (DLPFC; Funahashi, Chafee, & Goldman-Rakic, 1993;
Johnston & Everling, 2006; Wegener, Johnston, & Everling,
2008), the supplementary eye fields (SEF; Schlag-Rey, Amador,
Sanchez, & Schlag, 1997), the presupplementory motor area (pre-
SMA; Aron, Behrens, Smith, Frank, & Poldrack, 2007; Congdon,
Constable, Lesch, & Canli, 2009; Isoda & Hikosaka, 2007), and
the frontal eye fields (FEF; Munoz & Everling, 2004). At the
subcortical level, the striatum (Ford & Everling, 2009; Watanabe
& Munoz, 2011; Zandbelt & Vink, 2010), the subthalamic nucleus
(STN; Aron, Behrens, et al., 2007; Aron & Poldrack, 2006; Eagle
et al., 2008; Hikosaka & Isoda, 2008; Isoda & Hikosaka, 2008),
and the superior colliculus are involved. Manipulations that disrupt
processing in either frontal or subcortical areas cause deficits in
response inhibition (Chambers et al., 2007; Ray et al., 2009;
Verbruggen, Aron, Stevens, & Chambers, 2010). Moreover, re-
sponse inhibition deficits are commonly observed in a wide range
of psychiatric patients with frontostriatal dysregulation, including
attention-deficit/hyperactivity disorder (ADHD; Nigg, 2001; Oost-
erlaan, Logan, & Sergeant, 1998; Schachar & Logan, 1990),
obsessive compulsive disorder (OCD; Chamberlain, Fineberg,
Blackwell, Robbins, & Sahakian, 2006; Menzies et al., 2007;
Morein-Zamir, Fineberg, Robbins, & Sahakian, 2010; Penadés et
al., 2007), schizophrenia (SZ; Badcock, Michie, Johnson, & Com-
brinck, 2002; Bellgrove et al., 2006; Huddy et al., 2009), Parkin-
son’s disease (PD; van Koningsbruggen, Pender, Machado, &
Rafal, 2009), and substance abuse disorders (Monterosso, Aron,
Cordova, Xu, & London, 2005; Nigg et al., 2006).

Together, the above data suggest that intact functioning of the
entire fronto-basal ganglia network is required to support response
inhibition. However, it is far from clear that the underlying source
of these deficits is the same. Inhibitory control is a very dynamic
process, influenced by different interacting cognitive variables and
neuromodulatory systems. Thus, response inhibition can be im-
pacted by not only dysfunctional stopping per se, but can also be
influenced by changes in motivational state (Leotti & Wager,
2010), attentional saliency (Morein-Zamir & Kingstone, 2006),
maintenance and retrieval of task rules (Hutton & Ettinger, 2006;
Nieuwenhuis, Broerse, Nielen, & de Jong, 2004; Reuter & Kath-
mann, 2004; Roberts, Hager, & Heron, 1994), and separable mod-
ulations of selective versus global inhibition mechanisms (Aron,
2011), to name a few. Although electrophysiological recording
studies demonstrate neuronal populations that differentiate be-
tween successful and unsuccessful stopping (Isoda & Hikosaka,
2007, 2008), or inhibition of prepotent responses in favor of
controlled responses (Ford & Everling, 2009; Watanabe & Munoz,
2009), there is at present no coherent framework integrating all of
these findings into a single model attempting to account for pat-
terns of electrophysiological data, or selective disruptions of com-
ponent parts and their effects on behavior.

The point of departure for our neural model builds on existing
theorizing and data regarding the differential roles of the three
main pathways linking frontal cortex with the basal ganglia (BG),
often referred to as the direct, indirect, and hyperdirect pathways.
According to this framework, the cortico-striatal direct “Go” and
indirect “NoGo” pathways together implement a selective gating
mechanism by computing the evidence for facilitating or suppress-
ing each of the candidate motor actions identified by frontal cortex.
Dopamine plays a critical role in this model by differentially

modulating the activity levels in the two striatal populations,
affecting both learning and choice. During rewards and punish-
ments, phasic bursts and dips in dopamine neurons convey reward
prediction errors (Montague, Dayan, & Sejnowski, 1996) that
transiently amplify Go or NoGo activity states, and therefore
activity-dependent plasticity. In this manner, these striatal popu-
lations learn the positive and negative evidence for each cortical
action (Frank, 2005). More chronic increases in tonic dopamine
levels also directly affect choice by shifting the overall balance of
activity toward the Go pathway over the NoGo pathway, thereby
emphasizing learned positive relative to negative associations and
speeding responding (and vice-versa for tonic decreases in dopa-
mine). Many of this model’s predictions have been validated with
behavioral studies involving dopaminergic manipulations and
functional imaging in humans and monkeys (e.g., Frank, See-
berger, & O’Reilly, 2004; Jocham, Klein, & Ullsperger, 2011;
Nakamura & Hikosaka, 2006; Palminteri et al., 2009; Voon et al.,
2010), and synaptic plasticity and opto-genetic and genetic engi-
neering studies in rodents (Hikida, Kimura, Wada, Funabiki, &
Nakanishi, 2010; Kravitz et al., 2010; Kravitz, Tye, & Kreitzer,
2012; Shen, Flajolet, Greengard, & Surmeier, 2008).

Note that in the above model, responses are selectively facili-
tated or suppressed via separate striatal Go and NoGo populations
modulating the selection of particular cortical actions. However,
more recent models have also incorporated the third hyperdirect
pathway from frontal cortex to the STN to BG output. Communi-
cation along this pathway provides a global and dynamic regula-
tion of the gating threshold, by transiently suppressing the gating
of all responses when there is conflict between alternative actions
(Frank, 2006; Ratcliff & Frank, 2012). Empirical studies using
STN manipulations (Cavanagh et al., 2011; Frank, Samanta,
Moustafa, & Sherman, 2007; Wylie et al., 2010), direct recordings
(Cavanagh et al., 2011; Isoda & Hikosaka, 2008; Zaghloul et al.,
2012), and fMRI/DTI (Aron, Behrens, et al., 2007) have similarly
supported this notion.

Nevertheless, the existing BG model cannot handle situations in
which an initial prepotent response is activated but then needs to
be suppressed (either altogether, or in favor of a more controlled
response)—situations typically studied under the rubric of “re-
sponse inhibition.” Here, we extend the model by incorporating
additional cortical regions that facilitate executive control and can
inhibit and override the more habitual response selection mecha-
nism. We consider dynamics of the prepotent response process, the
subsequent detection that this response needs to be inhibited, and
the inhibition process itself—and how all of these factors are
modulated by biological and cognitive variables. We consider
electrophysiological data in various frontal (DLPFC, FEF, pre-
SMA, ACC) and basal ganglia (striatum, STN) regions that are
well captured by the model, and how these are linked to changes
in behavior in a functional way.

Neural models are complex, in that they involve a number of
parameters interacting to produce nonlinear effects on dynamics
and behavior. There is also a risk of overfitting that could result
from adjusting parameters to precisely match electrophysiological
data from one experiment, which may make it difficult to precisely
capture electrophysiological (or behavioral) data from a different
experiment. Thus, our aim was instead to capture qualitative
patterns of data in both electrophysiology at multiple levels of
cortical and subcortical network, and of the effects of their ma-
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nipulation on behavior, with a single set of parameters.1 In other
work (Wiecki & Frank, 2010a), we show that systematic variations
in neural model parameters are related in a lawful, monotonic
fashion to more computational level parameters in a modified drift
diffusion framework, providing a principled understanding and
falsifiable experimental predictions. Moreover, despite the quali-
tative nature of model fits, we nevertheless aim to distinguish our
model from others in the literature based on general principles
independent of particular parameterizations. Toward this goal we
extracted a set of qualitative behavioral and neurocognitive bench-
mark results (listed in the Results section) which we use to assess
the validity of our model and compare to other models.

As noted above, despite surface features suggesting a single
integrated response inhibition network, there are actually multiple
dynamic components that can affect inhibition. Our contribution in
this article is to formalize these separable neural processes and to
explore their interactive dynamics. To summarize and preview the
core aspects of our work:

• We present a neural network model of the three main
frontal-BG pathways supporting prepotent action selection, inhib-
itory control, conflict-induced slowing, and volitional action gen-
eration.

• We show that behavioral changes in a range of tasks dependent
on these basic processes can result from alterations in brain connec-
tivity and state and provide testable predictions for effects of distinct
brain disorders.

• Selective response inhibition involves global conflict-induced
slowing via the hyperdirect pathway, raising the effective decision
threshold to prevent prepotent responding, followed by DLPFC in-
duction of striatal NoGo activity to inhibit the planned prepotent
response. Subsequently, the DLPFC provides top-down facilitation
onto striatal Go populations encoding the controlled response.

• Response selection and inhibition are further regulated by neu-
romodulatory influences including dopamine linked to changes in
motivational and attentional state. Dopamine reflects potential reward
values and facilitates Go actions. In addition, our model suggests that
while selective response inhibition is influenced by tonic levels of
dopamine (DA), global response inhibition is not.

• Our model is challenged in its ability to overcome prepotent
responses and evaluated by its ability to reproduce key qualitative
patterns reported in the literature, including:

– Behavioral RT distribution patterns in selective response
inhibition tasks.
– Electrophysiological activity patterns of the FEF (Everling
& Munoz, 2000), pre-SMA (Hikosaka & Isoda, 2008), the
STN (Isoda & Hikosaka, 2008), striatum (Watanabe & Mu-
noz, 2009), superior colliculus (SC; Paré & Hanes, 2003;
Pouget et al., 2011), and scalp recordings (Yeung, Botvinick,
& Cohen, 2004).
– Psychiatric, developmental, lesion, and pharmacological
manipulations of frontal function and DA modulations.

• We show that when our model is extended to include the rIFG
it can recover key electrophysiological and behavioral data from
the stop-signal task literature.

In sum, this approach provides a mechanistic account of a major
facet of cognitive control and executive functioning, which we

hope will allow for a richer understanding of the relationship
between behavioral, imaging, and patient findings.

Neural Network Model

We first introduce the neural circuit model of interacting dy-
namics among multiple frontal and basal ganglia nodes and their
modulations by dopamine. We then describe how we vary model
parameters to capture biological and cognitive manipulations.

Overview

The model is implemented in the Emergent software (Aisa,
Mingus, & O’Reilly, 2008) with the neuronal parameters adjusted
to approximate known physiological properties of the different
areas (Frank, 2005, 2006). The simulated neurons use a rate-code
approximation of a leaky integrate-and-fire neuron (henceforth
referred to as units) with specific channel conductances (excit-
atory, inhibitory, and leak). Multiple units (simulated neurons) are
grouped together into layers which correspond to distinct anatom-
ical regions of the brain. Units within each layer project to those in
downstream areas, and in some cases, when supported by the
anatomy, there are bidirectional projections (e.g., bottom-up supe-
rior colliculus projection to cortex as well as top-down projections
from cortex to colliculus). We summarize the general functionality
of the model here to foster an intuitive understanding; implemen-
tational and mathematical details can be found in the Appendix.
While a single set of core parameters (i.e., integration dynamics
and overall connection strength between layers) is used to simulate
various electrophysiological and behavioral data in the intact state,
each reported simulation is tested on 8 networks with randomly
initialized weights between individual neurons. The model can be
downloaded from our online-repository http://ski.clps.brown.edu/
BG_Projects.

The model represents an extension of our established model of
the BG (Frank, 2005, 2006; Wiecki & Frank, 2010b). Because the
extended model involves multiple components, we progressively
introduce each part, beginning with its core and then describing
how each new component contributes additional functionality.

Basic Basal Ganglia Model

The architecture of the core model is similar to Frank (2006).
While the original model simulated manual motor responses, our
model features a slightly adapted architecture in accordance to the
neuroanatomy and physiology underlying rapid eye-movements
(i.e., saccades) as reviewed in Hikosaka (2007) and Munoz and
Everling (2004). Stimuli are presented to the network in the input
layer, corresponding to high level sensory cortical representations.
An arbitrary number of motor responses can be simulated, but here

1 By qualitative, we mean that we do not attempt to quantitatively fit the
precise shape of firing of any given cell type, but we do aim to show that
a given population of cells increases or decreases firing rate at a particular
point in time relative to some task event or to some estimated cognitive
process. For example, for an area to be involved in inhibition, it must show
increased activity prior to the time it takes to inhibit a response. Or in
striatum, particular cell populations are active related to biasing the pre-
potent response, suppressing that response, and then activating the con-
trolled response—our model recapitulates this qualitative pattern.
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we include a model with just two candidate responses. The input
layer projects directly to the cortical response units in the frontal
eye fields (FEF) which implements action planning and monitor-
ing and projects to the superior colliculus (SC), which acts as an
output for saccade generation (Sparks, 2002). The SC consists of
two units coding for a leftward and a rightward directed saccade.
If the firing rate of one unit crosses a threshold, the corresponding
saccade is initiated (Everling, Dorris, Klein, & Munoz, 1999). The
time it takes an SC unit to cross its threshold from trial onset is
taken as the network’s response time (RT). Stimulus-response
mappings can be prepotently biased by changing projection
strengths (i.e., weights) so that certain input patterns preferentially
activate a set of FEF response units more than the alternative
response units. (These sensory-motor cortical weights can also
be learned from experience, such that they come to reflect the
prior probability of selecting a particular response given the
sensory stimulus [Frank, 2006].) In fact, with only these three
structures our model would only be capable of prepotent, in-
flexible responding.

By itself, FEF activation is not sufficiently strong to initiate
saccade generation because the SC is under tonic inhibition from
the BG output nucleus: the substantia nigra pars reticulata (SNr),
whose neurons fire at high tonic rates. However, the tonic SNr–SC
inhibition is removed following activation of corresponding direct
(Go) pathway striatal units, which inhibit the SNr, and therefore
disinhibit the SC (Goldberg, Farries, & Fee, 2012; Hikosaka, 1989;
Hikosaka, Takikawa, & Kawagoe, 2000). The indirect pathway
acts in opposition to the direct pathway by further exciting the SNr
(indirectly, via inhibitory projections to the globus pallidus [GP]
which inhibits the SNr). Thus, direct pathway activity results in
gating of a saccade (i.e., Go) while indirect pathway activity
prevents gating (i.e., NoGo). Striking evidence for this classical
model was recently presented by optogenetic stimulation selec-
tively of direct or indirect pathways cells, showing inhibition or
excitation of SNr, respectively, and resulting in increased or de-
creased movement (Kravitz et al., 2010).

The Go and NoGo striatal populations include multiple units
that code for the positive and negative evidence in favor of the FEF
candidate actions given the sensory input context. Relative activity
of the striatal pathways is modulated by dopaminergic innervation
from the substantia nigra pars compacta (SNc) due to differential
simulated D1 and D2 receptors present in the two pathways. In
particular, dopamine further excites active Go units while inhibit-
ing NoGo units. These effects on activity also produce changes in
activity-dependent plasticity, allowing corticostriatal synaptic
strength in the Go population to increase following phasic dopa-
mine bursts during rewarding events, and those in the NoGo
population to decrease (and vice-versa for negative events; Frank,
2005). For simplicity, in the present model, we omit learning
because the paradigms we simulate do not involve learning, and
focus on associations that have already been learned. However, it
is now well-known that striatal unit activity is modulated by the
reward value of the candidate action, such that rewarding saccades
are more likely to be disinhibited (Hikosaka, Nakamura, & Naka-
hara, 2006).

Bottom-up projections from SC to FEF allow action-planning to
be modulated according to direct and indirect pathway activity
(Sommer & Wurtz, 2002, 2004a, 2004b, 2006). This effectively
forms a closed loop in which FEF modulates the striatum which,

via gating through SNr and SC, in turn modulates the FEF.
Loosely, FEF considers the candidate responses and “asks” the BG
if the corresponding action should be gated or not. Thus, with these
structures the model can selectively gate responses modulated by
DA.

In addition to the above gating dynamics, the overall threshold
for gating is controlled by the ease with which the SNr units are
inhibited by the striatal Go units. The STN sends diffuse excitatory
projections to the SNr (Parent & Hazrati, 1995), and therefore
when STN units are active they increase the gating threshold for all
responses, effectively contributing a “global NoGo” signal (Frank,
2006; Ratcliff & Frank, 2012). The STN does not however, act as
a static increase in threshold. Rather, the STN receives input
directly from frontal cortex, and becomes more active when there
is response conflict (or choice entropy) during the early response
selection process. In the current model, conflict is computed ex-
plicitly by the dorsal anterior cingulate cortex (dACC), which
detects when multiple competing FEF response units are activated
concurrently, and in turn activates the STN to make it more
difficult to gate any response until this conflict is resolved. The full
computational role of dACC is far from resolved and likely to be
more complex than conflict detection and control (see, e.g., Alex-
ander & Brown, 2011; Botvinick, Cohen, & Carter, 2004; Holroyd
& Coles, 2002; Kolling, Behrens, Mars, & Rushworth, 2012).
Nevertheless, alternative accounts of dACC function (Kolling et
al., 2012) are entirely compatible with our model (an issue we
return to in the Discussion section), but for convenience we label
the computation as “conflict.”

Frontal Pathway Model

Volitional response selection. So far our model is able to
select/gate responses and slow down gating when an alternative
response appears to have some value relative to the initial planned
action.

However, selective response inhibition tasks (SRITs) require
executive control: integration of the sensory state together with the
task rule to not only inhibit the prepotent response but replace it
with a volitional one. Such rule-based processing is effortful and
time-consuming, and hence the controlled response process lags
that of the initial fast response capture. Based on a variety of
evidence, we ascribe the rule-based representations to the dorso-
lateral prefrontal cortex (DLPFC; e.g., Chambers, Garavan, &
Bellgrove, 2009; Miller & Cohen, 2001). This structure is involved
in the active maintenance of stimulus-response rule representations
(Brass, Derrfuss, Forstmann, & von Cramon, 2005; Derrfuss,
Brass, Neumann, & von Cramon, 2005; Derrfuss, Brass, & von
Cramon, 2004), is necessary for correct anti-saccade trials (Fu-
nahashi et al., 1993; Johnston & Everling, 2006; Wegener et al.,
2008), and is involved in selective response inhibition (Garavan,
Hester, Murphy, Fassbender, & Kelly, 2006; Simmonds, Pekar, &
Mostofsky, 2008) and response selection (Braver, Barch, Gray,
Molfese, & Snyder, 2001; Rowe, Friston, Frackowiak, & Passing-
ham, 2002). Moreover, SEF (Schlag-Rey et al., 1997) and pre-
SMA (Isoda & Hikosaka, 2007; Ridderinkhof, Forstmann, Wylie,
Burle, & van den Wildenberg, 2011) are also critically involved in
correct SRIT performance.

We consequently added an abstract executive control layer to
summarize the DLPFC, SEF, and pre-SMA complex (in the future
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referred to as DLPFC). This layer selects FEF responses and biases
BG gating according to task rules (see Figure 1). Although not
explicitly represented separately in the model architecture, we con-
ceptualize the individual contribution of DLPFC as rule encoding and
abstract action selection, whereas SEF and pre-SMA are transforming
this abstract action representation into concrete motor-actions (Curtis
& D’Esposito, 2003; Schlag-Rey et al., 1997; Schlag-Rey & Schlag,
1984). In turn, these planned motor actions can influence the selected
response in FEF and bias gating via projections to striatal Go and
NoGo neurons (Munoz & Everling, 2004).

Anatomical and functional studies demonstrate projections from
both DLPFC to SEF and pre-SMA (Lu, Preston, & Strick, 1994; Y.
Wang, Isoda, Matsuzaka, Shima, & Tanji, 2005) and to striatum to
affect response gating (Doll, Jacobs, Sanfey, & Frank, 2009; Frank
& Badre, 2012; Haber, 2003), and from SEF to FEF (Huerta,
Krubitzer, & Kaas, 1987). We explore how these projections
impact dynamics of response selection. But how does the execu-
tive controller in our model “know” which rule to activate? We do
not address here how these rule representations arise via learning,
which is the focus of other PFC-BG modeling studies (see Collins
& Frank, 2012; Frank & Badre, 2012; Rougier, Noelle, Braver,
Cohen, & O’Reilly, 2005). Instead, we simulate the state of the
network after learning by simply including an Instruction layer as
a second input layer to the model encoding task condition (e.g.,
anti-saccade trial). In case of the anti-saccade task, the sensory
input layer encodes the direction of the visual stimulus and the
instruction layer encodes whether the network should perform a
pro- or anti-saccade. The DLPFC complex then integrates these
two inputs and activates a (pre-specified) rule unit that (i) projects
to the correct FEF response units supporting the anti-saccade, (ii)
activates striatal NoGo units to prevent gating of the active pre-
potent pro-saccade response, and (iii) activates striatal Go units
encoding the controlled anti-saccade.

Critically, DLPFC units are relatively slow to activate the appro-
priate rule unit. This is due to the need to formulate a conjunctive rule
representation between the visual location of the stimulus and the task
instruction (either one of these is not sufficient to determine the
correct response, and indeed, each individual input provides evidence
for multiple potential rules). Time constants of membrane potential
updating is reduced to support this integration, which also is intended
to approximate slower time course of rule retrieval and subsequent
computation to determine the correct action (via interactions with
pre-SMA and SEF). Moreover, we include considerable inter-trial
noise in DLPFC activation dynamics so that executive control is
available earlier on some trials while later on others. The slowed
integration and the increase of inter-trial noise in executive control are
necessary for the model to capture the quantitative benchmark results
(demonstrated below). Moreover, the slower controlled processing is
also a core feature of classical dual process models of cognition (e.g.,
Sloman, 1996) and the increased noise accords with the general
statistical observation that longer latencies are typically associated
with greater variability.

Competition between the two response selection
mechanisms. As outlined above, our model features two re-
sponse selection mechanisms: (i) a fast, prepotent mechanism
driven by a biased projection from sensory input to FEF; and (ii)
a slow, volitional mechanism that originates in the DLPFC which
integrates instruction and sensory input to select and gate the
correct response. Importantly, the volitional mechanism is slower
but stronger than the prepotent one. If, due to noise in the speed of
integration, executive control is slower on some trials, it might be
too late to activate the correct rule representation before the
prepotent response is gated. In contrast, when the executive con-
troller is faster, it activates the alternative FEF response, leading to
conflict-induced slowing, and then actively suppresses the prepo-
tent response via projections to striatal NoGo units encoding the
pro-saccade. This conceptualization can be regarded as a biologi-
cally plausible implementation of the cognitive activation-
suppression model (Ridderinkhof, 2002; Ridderinkhof, van den

Figure 1. Box-and-arrow view of the neural network model. The sensory
input layer projects to the frontal eye fields (FEF), striatum, and executive
control (i.e., dorsolateral prefrontal cortex [DLPFC], supplementary eye
fields [SEF], and presupplementory motor area [pre-SMA]). Via direct
projections to FEF (i.e., cortico-cortical pathway), stimulus-response-
mappings can become ingrained (habitualized). FEF has excitatory projec-
tions to the superior colliculus (SC) output layer that executes saccades
once a threshold is crossed. However, under baseline conditions, SC is
inhibited by tonically active substantia nigra pars reticulata (SNr) units.
Thus, for SC units to become excited, they have to be disinhibited via
striatal direct pathway Go unit activation and subsequent inhibition of
corresponding SNr units. Conversely, responses can be selectively sup-
pressed by striatal NoGo activity, via indirect inhibitory projections from
striatum to globus pallidus (GP) and then to SNr. Coactivation of mutually
incompatible FEF response units leads to dorsal anterior cingulate cortex
(dACC) activity (conflict or entropy in choices), which activates the
subthalamic nucleus (STN). This STN surge makes it more difficult to gate
a response until the conflict is resolved, via excitatory projections to SNr,
effectively raising the gating threshold. Striatum is innervated by dopamine
(DA) from substantia nigra pars compacta (SNc), which amplifies Go
relative to NoGo activity in proportion to reward value and allows the
system to learn which actions to gate and which to suppress. The instruc-
tion layer represents abstract task rule cues (e.g., anti-saccade trial). The
DLPFC integrates the task cue together with the sensory input (i.e.,
stimulus location) to initiate a controlled response corresponding to task
rules, by activating the appropriate column of units in FEF and striatum.
Cong � congruent; Incong � incongruent; R1 � Response 1; R2 �
Response 2; ACC � anterior cingulate cortex; GPe � external segment of
the globus pallidus.
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Wildenberg, Segalowitz, & Carter, 2004). Note however that our
implementation involves two suppression mechanisms, one in
which conflict results in global threshold adjustment, and another
in which the prepotent response is selectively inhibited.

Modulations. To test the influence of different biological
manipulations on executive control paradigms, we modify various
parameters in the network model. Here, we list the different
modulations and their implementation.

• Prepotency: To simulate differences in the strength of the pre-
potent response capture of an appearing stimulus (e.g., the pro-
saccade stimulus), we modulate the projection strength between sen-
sory input to the dominant response units in FEF and striatum.

• Speed of DLPFC: To simulate efficacy of prefrontal function, we
modulate the speed of DLPFC integration by adjusting the time
constant of membrane potential updating in these units. Faster updat-
ing implies proactive control.

• Connectivity of DLPFC: To simulate differences in intra-cortical
connectivity, we modulate the DLPFC ¡ FEF projection strength.

• Speed–accuracy trade-off: To simulate strategic adjustments in
the speed–accuracy trade-off, we modulate the connection strength
between frontal cortex and striatum (Forstmann et al., 2010). In
particular, when speed is emphasized, the FEF more effectively acti-
vates striatal Go units so that it is easier to reach gating threshold. In
contrast, accuracy adjustments are reflected in increased STN baseline
ultimately increasing the response gating threshold.

• STN impact: STN contributions are simulated by manipulating
the relative synaptic strengths from STN to SNr, effectively changing
the amount of STN activity required to prevent BG gating (Cavanagh
et al., 2011; Ratcliff & Frank, 2012).

• Tonic DA: Pharmacological and disease modulations of DA
levels are simulated by either decreasing (e.g., PD) or increasing (e.g.,
SZ) tonic DA activity, which in turn modulates relative activity of Go
versus NoGo units.

Selective Response Inhibition

Method. As summarized earlier, all SRITs have a common task
structure. (i) A prepotent response bias is induced by priming an
action. In the anti-saccade task, this is a result of the appearance of a
stimulus that initiates a “visual grasping reflex” (Hess, Bürgi, &
Bucher, 1946); in the Simon task, this is the result of placing the target
stimuli on either side of the screen, initiating a response capture
(Ridderinkhof, 2002); in the saccade-overriding task this is the result
of repeated responding to the same colored stimulus which renders
this response habitual. (ii) In congruent trials, the correct response is
the same as the prepotently biased one. (iii) In incongruent trials, the
correct response is incompatible with the prepotently biased response,
and subjects can use executive control to suppress the initially pre-
dominant action in favor of the task-appropriate one.

We implemented this common task structure as follows in our
neural network model (see Figure 2; alternative task implementations
that accommodate the differences between the tasks lead to similar
patterns, so we simplified in order to use a single task representation
of this basic process, but nevertheless simulate patterns of data evident
in specific tasks below). Two stimulus positions, left and right, were
encoded in the input layer as two distinct columns of activated units.
The prepotent bias toward an appearing target was hard-coded by
strong weights from each input stimulus to corresponding response
units in FEF. This prepotent weight facilitates fast responding for

congruent trials, but biases responding in the erroneous direction for
incongruent trials. The DLPFC layer integrates sensory input and
instruction input to activate a conjunctive rule unit encoding the
unique combination of sensory and instruction input, which then
projects to the associated correct response unit in FEF. Each of the
four DLPFC units project to the appropriate FEF response unit. Note
that weights from the DLPFC to the FEF are stronger than the
prepotent bias connection from the input layer to the FEF so that the
DLPFC would eventually override an erroneous prepotent response.
(The same functionality could be achieved by simply allowing
DLPFC units to reach a higher firing rate or to engage a larger
population of units, instead of adjusting the weights.) In addition,
DLPFC units activate corresponding Go and NoGo units in the
striatum (e.g., in an anti-saccade trial, Go units coding for the correct
response and NoGo units coding for the incorrect response get acti-
vated by top-down PFC input).

Results. We identified a set of key behavioral and neurophys-
iological qualitative patterns across SRITs that form desiderata for
our model to capture:

1. Incongruent trials are associated with higher error rates
than congruent trials (e.g., Isoda & Hikosaka, 2008;
McDowell et al., 2002; Reilly, Harris, Keshavan, &
Sweeney, 2006).

2. Reaction times (RTs) are faster for errors than correct
trials (e.g., Isoda & Hikosaka, 2008; McDowell et al.,
2002; Reilly et al., 2006).

3. Strategic adjustments in the speed–accuracy trade-off
(via changes in decision threshold) modulates functional
connection strength between frontal cortex and striatum
(Forstmann et al., 2010). Similarly, STN activity is as-
sociated with modulations of the decision threshold (Ca-
vanagh et al., 2011; Ratcliff & Frank, 2012).

4. Various psychiatric diseases associated with frontostriatal
cathecholamine dysregulation lead to increased error rates
and speeded responses (e.g., Harris, Reilly, Keshavan, &
Sweeney, 2006; McDowell et al., 2002; Reilly et al., 2006;
Reilly, Harris, Khine, Keshavan, & Sweeney, 2007).

5. Early activation of prepotent motor response, for example,
in EMG measurements (Burle, Possamaï, Vidal, Bonnet, &
Hasbroucq, 2002).

6. At least four different types of activation dynamics in FEF
neurons during correct and error incongruent trials (Everling
& Munoz, 2000). Specifically, neurons coding for the erro-
neous (i.e., prepotent) response are fast to activate and their
activity is greater on error trials than correct trials. In con-
trast, neurons coding for the correct (i.e., controlled) re-
sponse are slower to activate and their activity is reduced
and delayed on error trials. (See Figure 6c for the quantita-
tive data that forms the basis of this qualitative pattern.)

7. At least four different types of striatal neurons with disso-
ciable dynamics and direction selectivity in congruent and
incongruent trials (Ford & Everling, 2009; Watanabe &
Munoz, 2009). Specifically, (i) during pro-saccades, distinct
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neural populations code for facilitation of the correct re-
sponse and suppression of the alternative; (ii) during anti-
saccade trials, (iia) neurons coding for facilitation of the
incorrect prepotent response initially become active but
return to baseline when (iib) neurons coding for the sup-
pression of that response become active together with (iic)
neurons coding for facilitation of the correct controlled
response (see Figure 9b).

8. Neurons forming part of the hyperdirect pathway from fron-
tal cortex (pre-SMA, dACC) to the STN show increased
activity (i) before correct incongruent responses and (ii)
after incorrect incongruent responses, but (iii) baseline ac-
tivity during congruent responses (Isoda & Hikosaka, 2007,
2008; Yeung et al., 2004; Zaghloul et al., 2012). This pattern
of activity co-occurs with delayed but more accurate incon-
gruent responding.

In the following, we demonstrate how our model reproduces
these qualitative patterns.

Behavior. As expected, intact networks make considerably
more errors on incongruent trials (error rate of 15%) compared to
perfect performance in congruent trials (error rate close to 0%, not
shown), thereby capturing Qualitative Pattern 1.

Further, networks in general have longer response times
(RTs) in incongruent trials (see Figure 3b), thus capturing
Qualitative Pattern 2. Incongruent trials are slower for two
reasons: (i) it takes time for executive control (DLPFC) com-
putations due to the requirement to integrate two sources of
input to activate the associated rule; and (ii) once activated, the
controlled response conflicts with the prepotent response, lead-
ing to STN activation and associated increases in BG gating
threshold.

Additional analysis revealed that incongruent error trials are
associated with faster RTs compared to correctly performed
incongruent trials (see Figure 4). In our model, errors are made
when the faster prepotent action reaches threshold before the
inhibitory process can cancel it. This mechanism allows the
model to capture Qualitative Patterns 2 and 3.

Figure 2. Neural network model in different task conditions. (a) Pro-saccade condition. (1) Left stimulus is
presented in input layer; (2) Prepotent weights bias left response coding units in frontal eye fields (FEF); (3) Left
response Go gating neurons in striatum are activated; (4) Left response coding units in substantia nigra pars
reticulata (SNr) are inhibited; (5) The left response unit in superior colliculus (SC) is disinhibited and, due to
recurrent excitatory projections with FEF, is excited and the action is executed. (b) Anti-saccade condition. The
activity pattern early in the trial (i.e., before dorsolateral prefrontal cortex [DLPFC] comes online) is similar to
that in the pro-saccade condition. (1) Left stimulus is presented in input layer activating prepotent left response
in FEF; (2) The unit coding for the anti-saccade condition is externally activated in instruction layer; (3) DLPFC
integrates sensory and instruction input according to task rules and activates right coding units in FEF together
with right Go gating units and left NoGo units in striatum; (4) In FEF, right coding units are activated due to
DLPFC input in addition to the prepotent left coding units already active; (5) Dorsal anterior cingulate cortex
(dACC) detects co-activation of multiple FEF action plans and activates (6) hyperdirect pathway to excite
subthalamic nucleus (STN) and SNr, globally preventing gating until conflict is resolved. Eventually, stronger
controlled DLPFC activation of the right coding FEF response results in gating of the correct anti-saccade
(7). In some trials, DLPFC activation is too late, and the prepotent left saccade will have already crossed
threshold, resulting in an error. SEF � supplementary eye fields; pre-SMA � presupplementory motor area;
hyperd. prjn � hyperdirect projection; GPe � external segment of the globus pallidus; SNc � substantia
nigra pars compacta.
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We next investigated how these behavioral patterns were af-
fected by manipulations (see Figure 3a). Incongruent error rates
were most exaggerated with increased tonic DA levels, and by
disrupted STN function to simulate deep brain stimulation. The
effect of increased striatal DA on incongruent error rates captures
corresponding patterns (see Qualitative Pattern 4) observed in
non-medicated schizophrenia patients, who have elevated striatal
DA (e.g., Harris et al., 2006; McDowell et al., 2002; Reilly et al.,
2006, 2007). Tonic DA elevations are associated with speeded
responding in both congruent and incongruent trials, due to shifted
balance toward the Go pathway facilitating response gating. This
same mechanism explains the increased anti-saccade error rate.
Conversely, decreased tonic DA leads to slowed responding due to
increased excitability of the indirect NoGo pathway. The model also
predicts that STN dysfunction produces increased error rates, due to
an inability to raise the threshold required for striatal facilitation of
prepotent responses. Indeed, STN-DBS induces impulsive (fast but
inaccurate) responding in SRITs (Wylie et al., 2010).

Finally, we tested in more detail how systematic parametric
changes in a biological variable affect RT and accuracy. Figure
5a shows how RT distributions change under different settings
of FEF ¡ striatum connection strength. Figure 5b shows quan-
titatively how increases in FEF ¡ striatum connectivity leads to
faster RT and decreased accuracy (Qualitative Pattern 3).
Loosely, increasing FEF connection strength onto Go-units in
the direct pathway leads to faster gating of responses. Con-
versely, increases in STN ¡ SNr connectivity lead to slower
RT and improved accuracy (see Figure 5c). The reason for both
of these effects is that they differentially modulate SNr activity.
Recall that the SNr tonically inhibits the SC, unless it is itself
inhibited by the striatal direct pathway. Hence, any modulation
of the ease with which SNr units are inhibited— either via
stronger connections from cortex onto Go units, or by increas-
ing the SNr via the STN—will change the threshold required for
the BG to gate an action. Indeed, Ratcliff and Frank (2012) and
Lo and Wang (2006) have shown that these two mechanisms are

a b

Figure 3. (a) Error rates in incongruent trials � SEM relative to intact networks for different neural
manipulations. Networks make more errors with increased tonic dopamine (DA) levels, or subthalamic nucleus
(STN) dysfunction, compared to intact networks. (b) Response times (RTs) � SEM relative to intact networks,
for pro- and anti-saccade trials as a function of neural manipulations. For more analysis, see the main text. SNr �
substantia nigra pars reticulate; DLPFC � dorsolateral prefrontal cortex.

Model Dataa) b)

correct
trials

error
trials

Model with fast DLPFC integration speedc)

Figure 4. (a) Response time (RT) histogram for correct and erroneous incongruent trials in the model. Error
RT distributions were shifted to the left due to prepotent response capture. This pattern is exaggerated with
increased tonic dopamine (DA) due to lowered effective gating threshold. (b) RT histograms of a monkey during
the switch-task (data based on Isoda & Hikosaka, 2008). In blocks of trials, monkeys are continuously rewarded
following saccades to one of two targets. On so-called “switch-trials,” a cue indicates that the monkey should
perform a saccade to the opposite target, requiring the monkey to inhibit his planned saccade and perform a
saccade to the opposite direction. As in the model, errors are associated with shorter reaction time. (c) Reaction
time distribution of an alternative model with fast dorsolateral prefrontal cortex (DLPFC) integration speeds.
Correct trials are in red, and errors are in gray (not present). This model cannot account for the behavioral pattern
of errors and RTs as a function of congruency, in contrast to models with slowed DLPFC integration (Panel a).
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related to changes in the decision threshold in sequential sam-
pling models. Our model subsumes both of these mechanisms,
and suggests that these different routes are themselves modu-
lated by distinct cognitive variables, such as volitional speed-
accuracy modulation and conflict/choice entropy (cortico-
striatal and STN). We return to this issue in the Discussion
section.

In sum, our model captures key qualitative behavioral patterns
described in the literature (see above). Moreover, these patterns
hold over varying biologically plausible parameter ranges leading
to predictable changes in the behavioral patterns. However, given
the complexity of the underlying model, it is also important to
establish whether the internal dynamics of the different nodes of the
network are consistent with available electrophysiological data in this
class of tasks.

Neurophysiology.
DLPFC, SEF, and pre-SMA activity. Our model summarizes

the computations of the executive control complex as a single layer

corresponding to DLPFC, SEF, and pre-SMA. One of our central
predictions is that DLPFC activation must be delayed relative to
the habitual response mechanism in order to produce the desired
qualitative patterns. To demonstrate the plausibility of this ac-
count, we simulated networks with increased DLPFC speed (time
constant of membrane potential updating). Consequently, net-
works ceased to make fast errors while correct RTs became much
faster and more peaked (see Figure 4c). The reason for this pattern
is that active executive control now dominates and overrides the
prepotent mechanism during early processing. This result implies
that some delay in executive control is needed to account for
empirical findings in which incongruent RTs are delayed.

SC and FEF activity. Comparing single unit activation patterns
of SC (see Figure 6a) to those of FEF (see Figure 6b) reveals that the
activation dynamics are very similar between those two regions. Our
model thus predicts that FEF can be interpreted as a cortical saccade
planning/monitoring area that directly influences saccade generation
via its projections to SC (Munoz & Everling, 2004). Moreover, SC

low FEF striatum connect. high FEF striatum connect.
accuracy emphasis speed emphasis

a

b c

Figure 5. (a) Response time (RT) distributions for incongruent trials by network models. Frontal eye fields
(FEF) ¡ striatum projection strengths were varied along the x-axis. Correct RT distributions are on the right side
of each panel, and incorrect RT distributions are on the left side, mirrored on the y-axis. This manipulation is
equivalent to a speed–accuracy adjustment, as shown empirically to vary with presupplementory motor area
(pre-SMA) ¡ striatal communication (Forstmann et al., 2010, 2008), where here FEF plays the role of pre-SMA
for eye movements compared to manual movements studied in Forstmann et al. (2010, 2008). (b � c)
Speed–accuracy tradeoff under parametric modulation of (b) FEF ¡ striatum connection strength and (c)
subthalamic nucleus (STN) ¡ substantia nigra pars reticulata (SNr) connection strength (color coded). Black
represents low connection strength, and yellow represents high connection strength. This pattern is consistent
with decision threshold modulation. The absolute values of connection strengths in these different routes are
chosen to lie on a sensitive range producing observable effects for demonstration purposes.
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activity reveals that in both, correct and incorrect incongruent trials,
the incorrect prepotent response unit becomes active before the con-
trolled one, thus matching Qualitative Pattern 5.

dACC activity. As described earlier, the dACC computes co-
activation of both response units in FEF (i.e., when average activ-
ity is � 0.5)—a direct measure of conflict (or value of the
alternative action to that initially considered; see above). Conse-

quently, its activity (see Figure 7a) follows a similar pattern as
average FEF layer activity: Conflict is present but resolved prior to
responding in correct trials while conflict is present after respond-
ing in error trials. However, dACC does not get active in congruent
trials, because it never shifts from one action to the other.

This qualitative pattern of peak conflict activation before correct
incongruent trials but after incorrect incongruent trials matches event-

Model FEF Data FEFa) b)Model SC c)

Figure 6. (a) Average activity of individual superior colliculus (SC) units coding for the correct and error
response in correct and incorrect trials during incongruent trials aligned to stimulus onset. The prepotent (i.e.,
erroneous) response comes on before the volitional, correct response. In incorrect trials, the error-unit threshold
is crossed before the volitional response unit gets active. In correct trials, the error-unit is inhibited in time. (b)
Average activity of individual frontal eye fields (FEF) units coding for prepotent error responses and volitional
correct responses during incongruent trials aligned to stimulus onset (Benchmark Pattern 6). (c) Electrophsyi-
ological recordings in FEF of monkeys (data based on Everling & Munoz, 2000).
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Figure 7. (a) Averaged dorsal anterior cingulate cortex (dACC) activity (corresponding to conflict in frontal
eye fields [FEF]) in pro-saccade and correct and incorrect incongruent trials. No conflict is present in congruent
trials. During correct incongruent trials, conflict is detected and resolved before the response is gated. During
incorrect incongruent trials, an incorrect response is made before conflict is detected. (b) Activity recorded in
monkey presupplementory motor area (pre-SMA) during the switch-task (data based on Isoda & Hikosaka,
2007). (c) Electroencephalography (EEG) recordings from the central scalp of humans during the Flanker task
(data based on Yeung et al., 2004), thought to originate from dACC. The N2 and error related negativity (ERN)
component closely match our modeling results, replicating this aspect of Yeung et al.’s (2004) model.
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related potentials (ERPs) commonly observed in human electroen-
cephalography (EEG) studies (see Figure 7c). The so-called error
related negativity (ERN) which is measured after response errors,
whereas the so-called N2 potential is measured before correct high
conflict responses (Falkenstein, Hohnsbein, Hoormann, & Blanke,
1991; Gehring, Goss, Coles, Meyer, & Donchin, 1993). The idea that
these two signals could merely represent “two sides of the same
conflict coin” and reflective of underlying dACC activity was first
presented in the modeling work by Yeung and colleagues (Yeung et
al., 2004; Yeung & Cohen, 2006).

STN activity. As noted in the model description, conflict
detection in the dACC results in delayed (and more accurate)
responding by recruiting the STN to prevent gating until con-
flict is resolved. Indeed, this mechanism is in part responsible
for the rightward-shifted RT distributions in correct incongru-
ent trials. Accordingly, this same pattern of increased activity
before correct responses and increased activity after error re-
sponses can be observed in STN (see Figure 8a). Again, this
qualitative pattern was also found in STN recordings in mon-
keys by Isoda and Hikosaka (2008; see Figure 8b), who showed
that timing of STN firing relative to pre-SMA was consistent
with communication along this hyperdirect pathway.

The neurocomputational model of (Brown, Bullock, & Gross-
berg, 2004) interprets the role of STN differently. In their
model, STN is activated by the output structure (FEF in their
case) to lock out the influence of competing responses after a
response has been selected. This is a critical difference to the
account presented herein where STN plays a role in the selec-
tion of a response by raising the threshold prior to response
selection, thereby delaying execution but increasing accuracy.
To show explicitly how our model predictions can be qualita-

tively differentiated from this alternative model of STN func-
tion, we disconnected dACC inputs into the STN and instead
allowed only the output structure (SC in our model) to project
to it, so that STN function operates as it does in Brown et al.
(2004). As can be seen in Figure 8c, the activity pattern changes
dramatically. Specifically, there is no more differentiation of
activation patterns between the different trial types as is ob-
served in our model and the empirical data (Isoda & Hikosaka,
2008). Because STN only influences processing after response
selection, it also does not lead to delayed responding or decision
threshold adjustment. This qualitative difference in model pre-
dictions is fundamental and not subject to parameter tuning, as
it reflects a distinct computational role for the STN. Although
we focused on the Brown model for demonstration purposes
here, other models of STN function with different connectivity
would similarly not account for these data. For example, the
biophysical model of Rubchinsky, Kopell, and Sigvardt (2003)
assumes that STN neurons provide focused selection of a par-
ticular action (by disinhibiting SNr, taking the role of the direct
Go pathway) while simultaneously inhibiting competing actions
(by exciting SNr in other columns). This model cannot explain
this activity pattern because co-activation of multiple cortical
inputs does not result in increased STN activity (see Figure 6b
in Rubchinsky et al., 2003).

Striatal activity. Figure 9a shows striatal activity in congru-
ent and incongruent trials (column I and column II, respec-
tively) for direct-path Go and indirect-path NoGo units (upper
and lower rows, respectively). In each case, activity selective to
the correct and error responses are color coded. The model
closely captures the qualitative pattern across four cell popula-
tions (Qualitative Pattern 7) identified in monkey dorsal stria-
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Figure 8. (a) Averaged activity of the model subthalamic nucleus (STN) layer during pro-saccade and correct
and incorrect incongruent trials relative to response execution. During congruent trials, STN units exhibit a small
early increase in activity that subsides. Correct incongruent trials show increased activity early on in the trial
which causes the conflict-induced slowing and prevents prepotent response gating. In error trials, this mechanism
is triggered too late, and the incorrect response gets executed. (b) Electrophysiological recordings of the monkey
STN (data based on Isoda & Hikosaka, 2008) on correct and incorrect switch trials and non-switch trials. (c)
Average activity of the STN layer of an alternative model in which STN is not excited by dorsal anterior
cingulate cortex (dACC) but instead by saccadic output (superior colliculus [SC] in our model) as proposed by
Brown et al. (2004). This model does not predict differences between trial types.
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tum recordings during the anti-saccade task (see Figure 9b and
Ford & Everling, 2009; Watanabe & Munoz, 2009). In partic-
ular, for congruent trials, correct-coding Go neurons gate the
response while error-coding NoGo units suppress the alterna-
tive. In incongruent trials, Go neurons for the error-coding
prepotent response are initially activated, but are then followed
by increased activity of the corresponding NoGo population
which then suppresses the initiated Go activity via NoGo ¡ Go
inhibitory projections (Taverna, Ilijic, & Surmeier, 2008). Fi-
nally, the controlled Go-correct units are activated and an
incongruent response is executed. Thus, our model predicts that
the pattern of electrophysiology observed in empirical record-
ings arises due to top-down cognitive control modulation of
direct and indirect pathway neurons.

Note again that we can distinguish our model’s predictions
from those of other models that omit the indirect pathway as a
distinct source of computation (there are several) or from mod-
els that do include it but assign a different function. The neural
network model of Brown et al. (2004) assumes the indirect
pathway activation defers execution of the correct action plan
until the time is appropriate. This would suggest that the exec-
utive control complex would activate NoGo units coding for the
correct response, not the incorrect response as in our model. To
demonstrate how this leads to qualitatively different patterns
than is observed in our model and the data (see Pattern 7 and
Figure 9c) in which this alternative account is simulated in our
model. (However, we note that Brown et al.’s, 2004, model
could potentially accord with our model in the sense that they
also advocate a mechanism by which negative prediction errors
drive learning in the NoGo cells, which after training on the
AST may also produce the patterns we observe here given that
the prepotent response would be punished.) Similarly, the
prominent model of Gurney, Prescott, and Redgrave (2001)
suggests that this pathway serves as a control pathway rather

than providing negative evidence against particular actions as in
our model, and it is unclear how this control function (while not
disputed per se) would reproduce the patterns observed here.

Global Response Inhibition

Method. In SRITs, the selectively inhibited prepotent re-
sponse must be replaced with another, controlled response. Con-
versely, the stop-signal task (SST) requires outright response in-
hibition (e.g., Aron & Poldrack, 2006; Cohen & Poldrack, 2008;
Logan & Cowan, 1984) and is used to assess global inhibitory
control (Aron, 2011). Specifically, subjects are required to press
left and right keys in response to Go-cues appearing on a screen.
On a subset of trials after the Go-cue has been presented, a
stop-signal is presented after variable delay (i.e., stop-signal delay;
SSD) instructing the subject to withhold responding.

Here, we show that our model can also simulate the SST after
we included the right inferior frontal cortex (rIFG) with direct
projections to STN (Aron, Behrens, et al., 2007; see Figure 10).
Given the assumptions of the race model (i.e., a race between
Go and Stop processes), one can estimate the stop-signal reac-
tion time (SSRT) by measuring the probability of successful
inhibition at different SSDs. This inhibition function is then
compared to the distribution of Go reaction times in non-stop
signal trials. There are several extensive reviews of the SST
(Verbruggen & Logan, 2009), so here we focus on how our
model captures the available evidence. Note that the SST typ-
ically refers to the task involving manual movements (and
inhibition thereof), but a well-studied equivalent has been used
in the oculomotor domain, where it is referred to as the coun-
termanding task. While the neuronal circuitry involved in Go-
responding depends on the response modality, the neuronal
circuitry involved in the global mechanism may be independent
of the response modality (Leung & Cai, 2007).
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Figure 9. (a) Averaged striatal activity during correct pro- (first column) and incongruent trials (second column) in
Go (first row) and NoGo (second row) neuronal populations. In each case, activity for correct (red) and error (blue)
response (resp.) coding units are shown separately. As described in the text, the Go units for the prepotent response
become active early in the trial for both trial types, but in anti-saccade trials, these are followed by NoGo units that
veto the Go activity and finally Go activity for the controlled response due to top-down dorsolateral prefrontal cortex
(DLPFC) activity. (b) Electrophysiological recordings of the monkey striatum (data based on Watanabe & Munoz,
2009). The first row represents neurons coding corresponding to the executed response (i.e., Go neurons), and the
second row represents neurons coding that suppress execution of the corresponding action (i.e., NoGo neurons). (c)
Alternative model simulating Brown et al.’s (2004) assumption that the indirect pathway acts to defer the execution
of the correct response, rather than suppress the alternative response. Note that predictions for Go pathway accord with
those of our model and the data, but prediction of NoGo neurons differs.
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Networks are presented with one of two input stimuli (left or
right), represented by a column of four units each. As in prior
simulations, prepotent responses are implemented by weights
from the input units to the corresponding FEF response units,
such that a left stimulus suggests a left response. On 25% of
trials, a stop-signal is presented with variable delay (by acti-
vating devoted units in the sensory input layer). The stop signal
units send excitatory projections directly to the rIFG layer. rIFG
units in the hyperdirect pathway excite the STN (Aron, Beh-
rens, et al., 2007; Neubert, Mars, Buch, Olivier, & Rushworth,
2010) and prevent striatal response gating, and therefore inhibit
responding if the SC has not already surpassed threshold. In
addition to this global rIFG-STN response suppression mecha-
nism, the DLPFC combines the stop-signal input and the stim-
ulus location to selectively inhibit the associated response via
activation of the corresponding population of striatal NoGo

units. Critically, this selective mechanism is slower but remains
active after the STN returned to baseline and prevents subse-
quent responding. Thus, the model uses a fast, global but
transient response inhibition mechanism and a slower, selective
but lasting mechanism (Aron, 2011). To estimate the SSRT, we
use the dynamic one-up/one-down staircase procedure for ad-
justing the SSD (e.g., Logan, Schachar, & Tannock, 1997;
Osman, Kornblum, & Meyer, 1986).

We tested the influence of rIFG lesions on the SSRT (Aron,
Monsell, Sahakian, & Robbins, 2004) by parametrically reducing
the projection strength of rIFG to the STN.

The selective norepinephrine (NE) reuptake inhibitor Atomox-
etine increases NE release and improves stop-signal performance
in animals, healthy adults, and adult ADHD patients (Chamberlain
et al., 2007, 2009). NE is hypothesized to adaptively change the
activation gain of neurons in frontal cortex (Aston-Jones & Cohen,

Figure 10. Extended neural network model including right inferior frontal gyrus (rIFG) during stop-signal
trials. (1) Left input stimulus activates (2) left-coding frontal eye fields (FEF) response units and (3) initiates
gating via striatum (similar to pro-saccade trial in a). After a delay, (4) the stop-signal is presented which
activates (5) rIFG, which in turn (6) transiently activates the subthalamic nucleus (STN) and finally (7) the whole
substantia nigra pars reticulata (SNr) to globally prevent gating. Note that dorsolateral prefrontal cortex (DLPFC)
is beginning to get active to initiate selective response inhibition via striatal NoGo units. hyperd. prjn �
hyperdirect projection; Conf � conflict; GPe � external segment of the globus pallidus; SNc � substantia nigra
pars compacta; SC � superior colliculus; R1 � Response 1; R2 � Response 2.
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2005). We consequently tested the influence of decreasing the gain
parameter in units of the frontal cortex.2

Finally, we simulated different motivational influences on stop-signal
accuracy. Evidence for the neural underpinnings of motivational biases
comes from an fMRI study by Leotti and Wager (2010), who reported
that subjects instructed to focus on speed instead of accuracy exhibited a
greater increase in activations in brain regions associated with response
facilitation, including the FEF and the striatum. Conversely, when in-
structed to focus on accuracy, subjects exhibited greater activity in IFG
regions associated with response inhibition. We thus simulated these
activation patterns to account for speed–accuracy tradeoff in a similar
manner as in the anti-saccade simulations. In the speed-condition, we
manipulated the strength of FEF to striatum connections due to evidence
that frontostriatal connectivity is enhanced under speed emphasis (Forst-
mann et al., 2010, 2008; Mansfield, Karayanidis, Jamadar, Heathcote, &
Forstmann, 2011). Conversely, in the accuracy condition we increased
baseline excitatory input to rIFG, allowing it to be more excitable and
hence facilitating STN recruitment. This simulation approximates the
effect of a putative PFC rule based representation to focus on accuracy.
Recent data supports the notion that the (right) STN, which receives input
from rIFG, shows increased excitability associated with an increased
response caution during accuracy focus (Mansfield et al., 2011).

Results. As with the SRITs above, we extracted a list of key
qualitative results from the literature that we use to evaluate the fit of
our model.

1. The probability of inhibiting a response decreases monoton-
ically as SSD increases (Verbruggen & Logan, 2008).

2. Error responses that escape inhibition are, on average, faster
than Go responses on no-stop-signal trials. However, while
the distributions begin at the same minimum value, the
responses that escape inhibition have a shorter maximum
value (Verbruggen & Logan, 2008).

3. STN neurons are excited to stop signals but show little
differentiation between stop-signal inhibition and stop-
respond error trials (Aron, Behrens, et al., 2007). Contrary,
downstream SNr neurons are excited in correct trials but are
disinhibited during error trials (Schmidt, Leventhal, Petti-
bone, Case, & Berke, 2012).

4. SEF neurons are activated in stop-signal and stop-response
trials after SSRT and can thus not contribute to successful
stopping (Stuphorn, Taylor, & Schall, 2000).

Behavior. To illustrate the staircase procedure, Figure 11a shows
an example trace of how SSDs are adjusted to assess 50% stop-signal
accuracy. As can be seen, the network with rIFG lesion is impaired at
stopping and requires shorter SSD on average to inhibit successfully.

As can be seen in Figure 11b, the inhibition function resulting from
testing the neural network systematically with different SSDs reveals
a monotonically decreasing probability of correctly stopping (Quali-
tative Pattern 1).

Cumulative RT distributions of Go and non-canceled Stop trials are
presented in Figure 12. Both distributions match closely up until SSD
� SSRT (Qualitative Pattern 2), suggesting that both are generated by
the same process.

Different modulations affect GoRT and SSRT in different ways
(see Figures 13a and 13b). While DA manipulations certainly speed
GoRT, SSRT remains largely unaffected. On the other hand, when the
network is tested with reduced gain (simulating low NE levels), or has
lesions to either STN or rIFG, it exhibits SSRT deficits (increases).
Finally, simulated accuracy emphasis results in slowed Go RT but
faster SSRT (more effective inhibition). The pattern that emerges
from these results is that SSRT is changed by modulations of param-
eters that are part of the global inhibitory pathway: rIFG and STN.

Neurophysiology. To assess the neural correlates of stopping
behavior in our model, we analyzed STN and SNr activity aligned to
stop-signal onset. As can be seen in Figure 14, there is little differ-
entiation between stop-signal inhibition and error trials while SNr
units show a marked dip in error trials that is less pronounced in
inhibition trials (Qualitative Pattern 3).

We moreover analyzed the activity pattern of our executive control
complex which consists of DLPFC, SEF, and pre-SMA. As can be
seen in Figure 14, activation is observed in stop-signal trials (both
stop-respond and successful inhibitions) only after SSRT and could
thus had no influence on the stopping (Qualitative Pattern 3). This
result implies that global stopping to salient stop signals is most likely
driven by the fast stop process along the rIFG-STN hyperdirect
pathway. We ascertain that executive control processes are delayed
relative to this global stopping mechanism, and may participate in
selective response inhibition (and in the stop-change task, activation
of the correct response) after the global response pause has passed.

Discussion

The interaction between executive control and habitual behavior
is a central feature of higher-level brain function, and plays a role
in various domains from cognitive psychology (under the rubric of
“System 1” vs. “System 2”; Evans, 2003) to machine learning
(model-free vs. model based control; Daw, Niv, & Dayan, 2005).
At the core of this interaction is a mechanism that allows executive
control to override the habitual system and guide action selection.
A multitude of psychological cognitive tasks have been used to
probe the nature of this interaction. The stop-signal task requires
outright stopping of a response already in the planning stage. The
anti-saccade (Hallett, 1978), Simon (Simon, 1969), and saccade
override (Isoda & Hikosaka, 2007, 2008) tasks all involve inhibi-
tion of a prepotent action together with initiation of an action
incompatible with the prepotent one. Despite the apparent behav-
ioral simplicity of these tasks, various lines of research have
revealed a highly complex and tightly interconnected brain net-
work underlying response inhibition consisting of frontal areas
including DLPFC, SEF, pre-SMA, FEF, rIFG, and dACC and
basal ganglia structures including the striatum and STN.

We presented a dynamic neural network model of selective and
global response inhibition which provides a description of the
distributed computations carried out by individual brain regions
and neurotransmitters. The complexity of this model is grounded
by well-established neuroanatomical and physiological consider-
ations, and accounts for a wealth of key data including electro-
physiology, psychiatric and pharmacological modulations, behav-

2 Gain modulates how step-like the activation-dynamics of units are in
relation to their input activity. Low gain leads to linear activation dynam-
ics, while high gain levels make a unit respond in a binary-like fashion.
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ioral, lesion, and imaging studies. Moreover, this model is
constrained (i) by using a single parameterization across all sim-
ulations of intact function and (ii) by the multitude of qualitative
results from different levels of analysis it is required to reproduce.
Although we used one parameterization across the intact model
simulations, we also generalized the functionality via systematic
manipulations across a range of parameters. In other work (Wiecki

& Frank, 2010a), we have shown that the emerging fundamental
computational properties of this complex system as a whole are
captured by analysis using a modified drift diffusion model, in
which distinct mechanisms within the neural model (e.g., STN
projection strength, DLPFC speed) are monotonically related to
high level decision parameters (e.g., decision threshold, and drift
rate of the executive process).

a b

Figure 11. (a) Progression of the staircase procedure for manipulating stop-signal delay (SSD) in networks
with reduced right inferior frontal gyrus (rIFG)–subthalamic nucleus (STN) connectivity (connect.). Trial
number is plotted on the x-axis, and the SSD in milliseconds (converted from simulator time) is plotted on the
y-axis. If a response is successfully inhibited on stop-signal trial, the SSD is increased by 20 ms to make it harder.
If a response is erroneously made on a stop-signal trial, the SSD is decreased by 20 ms. Networks without lesion
are highest in general representing the most effective stop-process that is able to withhold responses even when
the SSD is quite long. (b) Inhibition function of the neural network model in the stop-signal task. The model is
tested on systematically varying levels of SSD in milliseconds, and the proportion of correctly inhibited trials
is plotted along the y-axis.

Model Dataa) b)
SSD SSRT SSRTSSD

Figure 12. (a) Cumulative reaction time (RT) distributions of the neural network model and from a monkey
experiment. (b) Cumulative RT distribution from a monkey experiment for comparison (data based on Lo et al.,
2009). The solid red line denotes mean stop-signal delay (SSD); the broken red line denotes stop-signal reaction
time (SSRT) offset at SSD. The broken blue horizontal line represents 50% stopping accuracy. Note that the
response distribution sums to the response probability—not necessarily to 1.
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Selective Response Inhibition
In our SRIT simulations, the model assumes that prepotent,

reflexive actions such as a saccade to an appearing stimulus (e.g.,
a pro-saccade) are selected via the cortico-cortical route and
swiftly gated by the BG. An abundance of data supports the
general involvement of the BG in saccade generation and inhibi-
tion (e.g., Hikosaka, 1989; Hikosaka et al., 2000; Hikosaka &
Wurtz, 1986). Conversely, the cognitive control system not only
represents the task rules needed to respond appropriately (e.g., in
DLPFC), but also incorporates a downstream mechanism in
dACC-STN to detect when these rules indicate an alternative
action than was originally initiated. Thus our model synthesizes
the popular account of dACC in terms of response conflict (Bot-
vinick, Braver, Barch, Carter, & Cohen, 2001) with recent studies

suggesting that dACC rather reflects the value of the alternative
action (Kolling et al., 2012). Moreover, via the hyperdirect path-
way to the STN, this mechanism serves to transiently increase the
BG gating threshold to prevent prepotent actions from being
facilitated and allows more time for the controlled PFC-striatal
mechanisms to selectively suppress this response and to facilitate
appropriate alternative courses of action. It has also been shown
that the SEF, FEF (Munoz & Everling, 2004), dACC (Botvinick et
al., 2004), pre-SMA (Isoda & Hikosaka, 2007), and STN (Isoda &
Hikosaka, 2008) are involved in detecting conflict between a
planned response and the current rule, and for switching from an
automatic to a volitional response (e.g., anti-saccades).

To detect conflict between reflexive and controlled responses,
the system needs to be able to compute the correct identity of the

a b

Figure 13. (a) Mean response times (RTs) in milliseconds � SEM (converted from simulator time) for Go trials
under different modulations (see text). (b) Mean stop-signal reaction time (SSRTs) in milliseconds � SEM
(converted from simulator time) under different modulations (see text). DA � dopamine; act � activity; NE �
norepinephrine; rIFG � right inferior frontal gyrus; pre-SMA � presupplementory motor area; IFG � inferior
frontal gyrus; STN � subthalamic nucleus; SNr � substantia nigra pars reticulata; act � activity; cons �
connections.

Stop-Signal inhibit
Stop-Signal error

SSD SSRT

c) Model: STNa) Model: Go d) Model: DLPFC
SSD SSRT

b) Model: SNr
SSD SSRTSSD SSRT

Figure 14. Average activity aligned to stop-signal onset for inhibited and error stop-signal trials. (a) Striatal
Go-neuronal activity. (b) Substantia nigra pars reticulata (SNr) activity. (c) Subthalamic nucleus (STN) activity.
(d) Activity of the executive control complex consisting of dorsolateral prefrontal cortex (DLPFC), supplemen-
tary eye fields (SEF), and presupplementory motor area (pre-SMA). SSD � stop-signal delay; SSRT �
stop-signal reaction time; PFC � prefrontal cortex.
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controlled response itself. In the model, the DLPFC integrates task
instructions and current stimulus location and forms a conjunctive
rule representation (Bunge & Wallis, 2008; Wallis & Miller, 2003)
that then provides evidence for the associated controlled response
via its projection to the FEF, and further biases the gating of this
response (and the selective suppression of the reflexive response)
via striatum. We demonstrated that this is a necessary condition for
our model by showing that a model with faster integration speeds
fails to account for key behavioral patterns.

Thus, it should be clear that compared to a congruent response,
an incongruent response should (i) be more prone to error because
it depends on successful inhibition of prepotent actions which may
be close to threshold by the time conflict is detected and (ii) take
longer due to (iia) additional computation needed for the DLPFC
to perform the requisite vector inversion (activation of correct rule
representation among multiple competitors based on an integration
of input and instruction), and (iib) the delay in commitment to a
response resulting from the increase in decision threshold along
the hyperdirect pathway.

Early cognitive models of interference control assumed a dual-
route mechanism for action selection, including an automatic re-
sponse route and a volitional one (Eimer, 1995; Kornblum, Has-
broucq, & Osman, 1990; Ridderinkhof, 2002; D. Wang,
Kristjansson, & Nakayama, 2005). This model was extended to
include selective suppression of the automatic response by the
volitional response mechanism (i.e., the activation-suppression
model; Ridderinkhof, 2002; Ridderinkhof et al., 2011). Our model
shares these attributes but makes two crucial contributions to this
discussion: (i) strong predictions on the neural correlates of these
abstract cognitive processes, and (ii) a raise in decision threshold
requiring more evidence to gate any response. This latter mecha-
nism may not only be adaptive as a fast route to prevent gating of
prepotent actions, but could also serve to increase the likelihood
that the alternative action selected is the most accurate (particu-
larly when there may be more than one, as is often the case in more
realistic executive control scenarios than those typically studied in
simple response inhibition tasks).

Response time distributions and errors: Neural
underpinnings. At the behavioral level, our intact model repro-
duces the same patterns found empirically—networks made more
errors (see Figure 3a) and were in general slower (see Figure 3b)
on incongruent trials compared to congruent trials (e.g., Harris et
al., 2006; McDowell et al., 2002; Reilly et al., 2006, 2007).
Incongruent errors were more likely to occur when networks
responded fast (see Figures 4 and 5a as well as Ridderinkhof et al.,
2011). These errors result primarily from variance in the speed of
cognitive control (DLPFC), but also in the prepotent response (in
some trials gating is faster than others) and in the inhibition
process (in some trials the hyperdirect pathway and/or striatal
NoGo process is slower). Moreover, reduced DLPFC connectivity
also degrades accuracy on incongruent trials, mirroring the empir-
ical performance degradation in anti-saccade tasks during devel-
opment associated with reduced DLPFC connectivity (Hwang,
Velanova, & Luna, 2010). A more explicit investigation into the
dynamics of these processes comes from the simulated electro-
physiology across brain regions and trial types.

Conflict- and error-related activity: Relation to existing
models. The Error Related Negativity (ERN) is an event-related
potential associated with errors made in forced-choice reaction

time tasks (Falkenstein et al., 1991; Gehring et al., 1993). The
ERN reaches its peak within 100 ms after the erroneous response.
Using a connectionist model, Yeung and colleagues hypothesize
the ERN to reflect conflict between the executed, erroneous re-
sponse and the still-evolving activation of the correct response
(Yeung et al., 2004; Yeung & Cohen, 2006). Thus, the error
detection mechanism reflects an internal correction of the executed
response, leading to a transient period of response conflict. Ac-
cording to this same framework, a similar potential should be
observed in high conflict trials before correct responses, when
conflict is resolved prior to responding. These authors indeed
reported that the N2 potential exhibited just this profile and argued
that it reflected the same underlying conflict mechanism in the
dACC.

Our dACC node exhibits the same qualitative pattern of in-
creased activity (i) before correct incongruent responses, (ii) after
incorrect incongruent responses and (iii) baseline activity during
congruent responses. However, this pattern is not unique to ERPs
thought to originate from dACC, but is also found in electrophys-
iological recordings in pre-SMA, SEF (Emeric, Leslie, Pouget, &
Schall, 2010), and STN (Isoda & Hikosaka, 2008). Our model
provides an explicit framework that recapitulates these effects and
explores their influences on behavior. Together, these dynamics
accord with our earlier assertion that our model synthesizes the
conflict model with the notion that the dACC reflects the value of
the alternative action: This network only becomes activated when
the alternative action is deemed to be more correct than the
prepotent one. This process occurs either prior or following re-
sponse execution (as in the conflict monitoring account), but must
always occur after the initial activation of an incorrect (often
prepotent) response (not specified by the conflict account but
consistent with the alternative action value account).

Global Response Inhibition

By adding a single rIFG layer to our model, we generalized our
model to capture data from global response inhibition tasks such as
the SST. As we demonstrated above, this model recovers key
qualitative behavioral patterns reported in the literature. Moreover,
model neurophysiology revealed interesting similarities to recent
rat electrophysiological recordings in the SST (Schmidt et al.,
2012). Specifically, while STN activity surges in response to the
stop signal to the same extent regardless of whether the response
is successfully inhibited or not, activity in the SNr strongly dif-
ferentiates between these trial types. During errors, the striatal Go
signals were potent and early enough to inhibit SNr activity in
spite of the STN surge. These results suggest that the source of
response inhibition errors is variance in the Go process, but that the
duration of the stop-process is rather fixed. This conceptualization
matches closely with the interactive horse-race model (Verbruggen
& Logan, 2009). Here, we hypothesize that the critical point of
interaction between the two processes is the SNr.

Why did we add an rIFG layer given that our initial model
already contained an executive control complex including
DLPFC? As described above, rIFG and STN involvement in the
SST is well established, and moreover, simulations showed that
the activations in our executive control complex needed to account
for SRITs was too slow to account for global response inhibition
needed in SST. Nevertheless, the nature of the (potentially sepa-
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rable) mechanisms engaged for detecting when inhibitory control
is necessary, and how it should be implemented, remains largely
elusive. In particular, the role of rIFG is actively debated. Some
studies specifically implicate the rIFG in response inhibition (Aron
et al., 2003; Chambers et al., 2007; Sakagami et al., 2001; Ver-
bruggen et al., 2010; Xue et al., 2008), whereas others report rIFG
activity in tasks lacking pure response inhibition demands, sug-
gesting that it is more involved in monitoring or salience detection
(Chatham et al., 2012; Fleming, Thomas, & Dolan, 2010; Hamp-
shire, Chamberlain, Monti, Duncan, & Owen, 2010; Munakata et
al., 2011; Sharp et al., 2010; Verbruggen et al., 2010). Our model
unifies these two seemingly opposing views by arguing that the
rIFG in fact detects salient events and, via downstream processing,
engages a stopping mechanism whether or not it is required by the
task rules. In both the stop-signal and stop-change task, subjects
have to detect an infrequent signal which tells them to update their
current action plan. We argue that these signals are salient events
and, via noradrenergic modulation, enhance processing in the rIFG
which, in turn, causes an orienting or circuit breaker response by
activating the STN (Swann et al., 2011) to pause response selec-
tion. This pause enables the volitional DLPFC based response
selection mechanism to take control and either inhibit a specific
response (as in the stop-signal task) or initiate a new response (as
in the stop-change task). This theory of a rIFG triggering a global
response-pause is supported by rIFG involvement in the oddball
task (Huettel & McCarthy, 2004; Stevens, Skudlarski, Gatenby, &
Gore, 2000) which requires no behavior adaptation whatsoever,
yet still causes response slowing (Barcelo, Escera, Corral, &
Periáñez, 2006; Parmentier, Elford, Escera, Andrés, & San Miguel,
2008). Indeed, in many of the above-reported studies in which
rIFG is activated under conditions of monitoring or saliency, when
they have been reported, subject RTs were nevertheless delayed
despite no overt inhibitory demands (Chatham et al., 2012; Flem-
ing et al., 2010; Sharp et al., 2010).

Different Forms of Response Inhibition

Inhibitory control can be issued globally or selectively (Aron,
2011; Aron & Verbruggen, 2008). The brain seems to revert to a
global inhibitory mechanism when unexpected events occur that
require quick response adaptation (e.g., stop-signals), and to a
selective inhibitory control mechanism when response inhibition
can be prepared (Greenhouse, Oldenkamp, Aron, & Diego, 2012;
Hu & Li, 2011). We propose that selective inhibition of the
prepotent response is initiated by the DLPFC and implemented via
the indirect corticostriatal NoGo pathway (Hu & Li, 2011; Jahfari
et al., 2011; Watanabe & Munoz, 2009, 2010; Zandbelt & Vink,
2010). Global response inhibition on the other hand is driven by a
salience detection mechanism implemented in the rIFG which
directly projects to the STN to inhibit responding (Aron, Durston,
et al., 2007; Eagle et al., 2008; Isoda & Hikosaka, 2008; Jahfari et
al., 2012, 2011; Kühn et al., 2004; Mink, 1996; Nambu et al.,
2000; Nambu, Tokuno, & Takada, 2002).

In addition to the selectivity of inhibitory control, differences
exist between proactive and reactive initiation of response inhibi-
tion (Aron, 2011; Cai, Oldenkamp, & Aron, 2011; Greenhouse et
al., 2012; Swann et al., 2012). Our modeling work suggests mul-
tiple possible sources for proactive control. Speed–accuracy ad-
justments are implemented by increasing functional connectivity

between frontal motor regions and striatum to decrease the deci-
sion threshold under speed emphasis (see Figures 5b and 5c as well
as Forstmann et al., 2010; Lo & Wang, 2006). The second proac-
tive mechanism increases response caution by increasing baseline
rIFG activity to prime saliency detection and slow responding via
the rIFG-STN hyperdirect pathway (see Figure 13b). Interestingly,
while FEF ¡ striatum functional connectivity influence speed and
accuracy in our SRIT simulations, SSRT in the stop-signal task is
unaffected by this modulations and is only improved by an in-
crease in tonic rIFG activity. This suggests that proactive control
in form of mere response slowing is uneffective in reducing
SSRT—the staircase procedure adapts to slower overall respond-
ing—but that enhanced attentional monitoring has preferential
influence on global inhibitory control. In other words, although all
these mechanisms can lead to adjustments in decision threshold,
only those associated with active engagement of the stop process
will facilitate inhibitory control per se. If confirmed, this result
may have implications for refining therapy of inhibitory control
disorders like addiction, obesity and OCD. Nevertheless, it re-
mains important to emphasize that the striatal NoGo pathway is
also thought to help to prevent the proactive selection of maladap-
tive responses.

Multiple Mechanisms of Response Threshold
Regulation in Fronto-Basal-Ganglia Circuitry at
Different Time Scales

Different mechanisms in our neural network influence the gat-
ing threshold for initiating motor responses at distinct time scales,
and modulated by distinct cognitive variables. First, the strength of
cortico-striatal projections regulate the ease with which cortical
motor plans can be gated by the BG, allowing for speed emphasis
in the speed-accuracy tradeoff (see Figure 5c). This aspect of our
model is quite similar to the model of Lo and Wang (2006) and
was subsequently corroborated by Forstmann et al. (2010). Our
model converges on the same conclusion but extends this view by
showing that gating threshold is also more dynamically regulated
on a shorter time-scale by (i) motivational state (changes in DA
levels, which are modulated by reinforcement and also facilitate
striatal Go signals); and (ii) response conflict and saliency (via the
hyperdirect pathway, making it more difficult or Go signals to
drive BG gating; Jahfari et al., 2011). Moreover, STN efficacy in
the neural model is positively correlated with increases in esti-
mated decision threshold (Ratcliff & Frank, 2012). Evidence for
conflict-induced decision threshold adjustment via the hyperdirect
pathway has been recently described in a reinforcement-based
decision making task (Cavanagh et al., 2011). Increases in frontal
EEG activity during high conflict decisions were related to in-
creases in decision threshold estimated by the drift diffusion
model. Intracranial recordings directly within the STN also re-
vealed decision conflict-related activity during the same time
period and frequency range as observed over frontal electrodes
(see also Zaghloul et al., 2012). Moreover, disruption of STN
function with deep brain stimulation led to a reversal of the
relationship between frontal EEG and decision threshold, without
altering frontal activity itself. These data thus support the notion
that frontal-STN communication is involved in decision threshold
adjustment as a function of conflict. Similarly, proactive prepara-
tion to increase decision threshold in the stop signal task when stop
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signals are likely is associated with hyperdirect pathway activity
(Jahfari et al., 2012).

In our neural models, conflict-related STN activity subsides
with time (see Figure 8), due to resolution of conflict in FEF/ACC,
feedback inhibition from GPe, and neural accommodation. Thus a
more refined description of this transient STN surge is that it
initially increases the decision threshold (more so with conflict),
followed by a dynamic collapse of the decision threshold over
time. Indeed, a recent multilevel computational modeling and
behavioral study by Ratcliff and Frank (2012) supported this idea
by showing that a collapsing threshold diffusion model provided
good fits to both the BG model and to human participant choices
in a reinforcement conflict task. Moreover, the temporal profile of
the best-fitting collapsing threshold corresponded well to the time
course of the collapse in STN activity across time.

Psychiatric Disorders and Differential Effects of
Dopamine and Norepinephrine

Abnormal striatal DA signaling is hypothesized to be at the core
of many disorders, including PD (Bernheimer, Birkmayer, Horny-
kiewicz, Jellinger, & Seitelberger, 1973), SZ (Breier et al., 1998),
and ADHD (Casey, Nigg, & Durston, 2007; Frank, Santamaria,
O’Reilly, & Willcutt, 2007). Intriguingly, all of these disorders are
linked to response inhibition deficits in the stop-signal task. Our
earlier BG models have successfully accounted for a wide variety
of findings associated with striatal DA manipulations across rein-
forcement learning and working memory tasks (for review, see
Wiecki & Frank, 2010b). Yet, we found here that striatal DA
manipulations, while affecting overall RT, had negligible effects
on response inhibition deficits as assessed by SSRT (see Figure
13b). This prediction converges with recent evidence (reviewed in
Munakata et al., 2011) showing that levodopa, a drug that in-
creases DA levels in striatum (Harden & Grace, 1995), had no
influence on SSRT in PD patients (Obeso, Wilkinson, Casabona, et
al., 2011; Obeso, Wilkinson, & Jahanshahi, 2011).

This lack of DA effect raises the question of the source of the
response inhibition deficits in the aforementioned disorders. One
conspicuous candidate is abnormal NE functioning as suggested
by evidence in both ADHD (Faraone et al., 2005; Frank, Scheres,
& Sherman, 2007; Ramos & Arnsten, 2007) and PD (Farley et al.,
1978). In our simulations, NE modulation influences SSRT via its
gain-modulatory effects in rIFG (Aston-Jones & Cohen, 2005).
Additional support for this account comes from pharmacological
experiments using the selective norepinephrine reuptake inhibitor
atomoxetine, which improves response inhibition performance in
animals, healthy adults, and ADHD patients (Chamberlain et al.,
2007, 2009). Moreover, fMRI analysis revealed that atomoxetine
exerted its beneficial effects via modulation of rIFG (Chamberlain
et al., 2009), providing additional support for the model mecha-
nisms. Finally, this highlights an alternative source for response
inhibition deficits observed in PD patients previously linked to DA
dysfunction (see Vazey & Aston-Jones, 2012, for a review high-
lighting the importance of aberrant NE signaling in cognitive
deficits of PD patients).

Limitations

Despite our model’s success in reproducing and explaining a
wide array of data and offering potential solutions for long stand-

ing issues in the field, we certainly acknowledge that there are
many errors of omission and—although we did not include any
biological features that are unsupported by data—perhaps some
errors of commission. We however note that most of our assump-
tions and simulations are largely orthogonal to each other. Thus,
each aspect of the model is falsifiable on its own, without neces-
sarily falsifying other aspects. We discuss a few salient limitations
below; it is by no means exhaustive.

Specificity of PFC Regions and Function

While the BG of our neural network model is fairly concrete and
solidly grounded on ample anatomical electrophysiological, and
functional evidence, the individual contributions of frontal regions
including DLPFC, SEF, pre-SMA, FEF, and dACC are not as
well-established currently. For example, we identified an execu-
tive control network in our model consisting of DLPFC, SEF, and
pre-SMA. The task rules and necessary motor commands to follow
them are implemented by hard-coded input and output weight
patterns of its extended network (i.e., sensory input, instruction,
FEF, and striatum). This implementation short-circuits a lot of the
computational complexities the biological system has to solve; (i)
the executive controller has to selectively retrieve the appropriate
rule for the current trial from short or long-term working memory;
(ii) integrate the sensory evidence to compute the correct response
(e.g., via vector inversion); (iii) compute the necessary motor
sequences to perform the correct action; and (iv) identify incor-
rectly activated prepotent responses and selectively suppress them.
While neural network models with a more detailed representation
of PFC exist (e.g., O’Reilly & Frank, 2006) in which rule-like
representations can develop through experience, how exactly the
necessary computations can be implemented dynamically is as-of-
today a still unresolved question.

Critically, our focus in this work was on how PFC and BG
interact when inhibitory control is required by extending the de-
tailed BG model by Frank (2006). We also account for some
electrophysiologcal data in frontal cortex, while acknowledging
that there is still some uncertainty in the respective roles of these
areas and their interactions, which will be open for revision as
more data become available.

Learning

Previous BG models explored the role of DA in feedback driven
learning (Wiecki & Frank, 2010b). As humans (but not mon-
keys) are able to perform this task without learning, we chose
to remain agnostic about the type of learning that takes place
prior to performing the task. Thus, we hard-coded task rules
into the model. An additional driving factor is the lack of
published reports on specific learning phenomena in the SRITS
and the SST.

Conclusions

We presented a comprehensive, biologically plausible model
of global and selective response inhibition which takes known
properties of the neuronal underpinnings into account and tries
to link them with results from cognitive science, electrophysi-
ology, imaging studies and pharmacological experiments. Here,
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we showed that augmenting our previously described BG model
with the addition of the FEF, DLPFC, and rIFG allows us to
simulate control over prepotent responses and to capture a
wealth of data in this domain across multiple levels of analysis.
We furthermore provide multiple mechanisms that can lead to
disruptions in inhibitory control processes and which have
implications for interpretation of data from patients with psy-
chiatric disorders such as SZ and ADHD. Our model shows that
the observed deficits in inhibitory control paradigms do not
necessarily have to reflect dysfunctional response inhibition per
se but could be due to other factors—such as salience, conflict
detection, and/or motivation—and could be related to distinct
neural mechanisms.
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Appendix

Implementational and Mathematical Details of the Model

Software

The model and the Python scripts are available in the online
supplemental materials.

Implementation Details

Like Frank’s (2006) original model, this model is implemented
in the Emergent neural modeling software framework (Aisa et al.,
2008), which can be downloaded here: http://grey.colorado.edu/
emergent/index.php/Main Page.

Emergent measures simulator time in cycles. Here, we con-
vert this time to milliseconds by multiplying cycles by 4 to roughly
match behavioral and electrophysiological data.

Emergent uses point neurons with excitatory, inhibitory, and
leak conductances contributing to an integrated membrane poten-

tial, which is then thresholded and transformed via an
x

x � 1
sigmoidal function to produce a rate code output communicated to
other neurons (discrete spiking can also be used, but produces
noisier results).

The membrane potential Vm is a function of ionic conductances
g with reversal (driving) potentials E as follows:

�Vm�t� � ��
c

gc�t�g�c�Ec � Vm�t��, (A1)

with 3 channels (c) corresponding to the following: e excitatory
input, l leak current, and i inhibitory input. Following electrophys-
iological convention, the overall conductance is decomposed into
a time-varying component gc(t) computed as a function of the
dynamic state of the model, and a constant g�c that controls the
relative influence of the different conductances. The equilibrium
potential can be written in a simplified form by setting the excit-
atory driving potential (Ee) to 1 and the leak and inhibitory driving
potentials (El and Ei) of 0:

Vm
� �

geg�e

geg�e � glg�e � gig�e
, (A2)

which shows that the neuron is computing a balance between
excitation and the opposing forces of leak and inhibition. This
equilibrium form of the equation can be understood in terms of a
Bayesian decision making framework (O’Reilly & Munakata,
2000).

The excitatory net input/conductance ge(t) or �j is computed as
the proportion of open excitatory channels as a function of sending
activations times the weight values:

�j � ge�t� � �xiwij� �
1

n�i
xiwij. (A3)

The inhibitory conductance can either be computed by the kWTA
(k-Winners-Take-All) function described in the next section or by
modeling inhibitory interneurons. Leak is a constant.

Activation communicated to other cells (yj) is a thresholded (x)
sigmoidal function of the membrane potential with gain parameter
�:

yj�t� �
1

�1 �
1

��Vm�t� � 	��
	 , (A4)

where [x]� is a threshold function that returns 0 if x0 and x if x0.
To avoid dividing by 0, we assume yj(t) � 0 if it returns 0. This
activation is subject to scaling factors (wt_scale.abs and wt_scale
.rel) that modify how much impact the projections have on the
post-synaptic neurons.

Inhibition Within and Between Layers

Inhibition between layers (i.e., for GABAergic projections be-
tween BG layers and striatal inhibitory interneurons) is achieved
via simple unit inhibition, where the inhibitory current gi for the
unit is determined from the net input of the sending unit. For within
layer lateral inhibition (used here in premotor cortex), Leabra uses
a kWTA (k-Winners-Take-All) function to achieve inhibitory
competition among neurons within each layer (area). The kWTA
function computes a uniform level of inhibitory current for all
neurons in the layer, such that the k � 1th most excited unit within
a layer is generally below its firing threshold, while the kth is
typically above threshold. Activation dynamics similar to those
produced by the kWTA function have been shown to result from
simulated inhibitory interneurons that project both feedforward
and feedback inhibition (O’Reilly & Munakata, 2000). Thus, al-
though the kWTA function is somewhat biologically implausible
in its implementation (e.g., requiring global information about
activation states and using sorting mechanisms), it provides a
computationally effective approximation to biologically plausible
inhibitory dynamics. kWTA is computed via a uniform level of
inhibitory current for all neurons in the layer as follows:

gi � gk�1
	 � q�gk

	 � gk�1
	 �, (A5)

where 0q1 (0.25 default) is a parameter x for setting the inhibition
between the upper bound of gk and x. These boundary inhibition
values are the lower bound of gk�1 computed as a function of the
level of inhibition necessary to keep a unit right at threshold:

gi � gk�1
	 � q�gk

	 � gk�1
	 �. (A6)

(Appendix continues)
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In the basic version of the kWTA function, which is relatively rigid
about the kWTA constraint and is therefore used for output layers,
gk

	 and gk�1
	 are set to the threshold inhibition value for the kth and

k � 1th most excited neurons, respectively. Thus, the inhibition is
placed exactly to allow k neurons to be above threshold, and the
remainder below threshold. For this version, the q parameter is
almost always .25, allowing the kth unit to be sufficiently above
the inhibitory threshold.

The premotor cortex uses the average-based kWTA version, gk
	

is the average gi
	 value for the top k most excited neurons, and gk�1

	

is the average of gi
	 for the remaining n � k neurons. This version

allows for more flexibility in the actual number of neurons active
depending on the nature of the activation distribution in the layer
and the value of the q parameter (which is typically .6), and is
therefore used for hidden layers.

Hysterisis and Accommodation

Ia�t� � ga�t�g�a�Vm�t� � Ea�. (A7)

Ih�t� � gh�t�g�h�Vm�t� � Eh�. (A8)

Eh is excitatory; Ea is inhibitory.

ga and gh are time-varying functions that depend on previous
activity, integrated over different time periods.

ga�t� �
ga�t � 1� � dtga
�1 � ga�t � 1��; if �ba�t� � 	a�

ga�t � 1� � dtga
�0 � ga�t � 1��; if �ba�t� � 	d�

(A9)

Computation of Conflict

Dorsal anterior cingulate cortex (dACC) activity is the Hopfield
energy of the presupplementory motor area:

dACCact � FEFleftact
* FEFrightact

(A10)
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