Skip to main content
Log in

An alternative approach to quantum phenomena

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

This paper outlines the qualitative foundations of a “quasiclassical” theory in which particles are pictured as spatially extended periodic excitations of a universal background field, interacting with each other via nonlinearity in the equations of motion for that field, and undergoing collapse to a much smaller volume if and when they are detected. The theory is based as far as possible directly on experiment, rather than on the existing quantum mechanical formalism, and it offers simple physical interpretations of such concepts as mass, 4-momentum, interaction, potentials, and quantization; it may lead directly to the standard equations of quantum theory, such as the multiparticle Schrödinger equation, without going through the conventional process of “quantizing” a classical theory. The theory also provides an alternative framework in which to discuss wave-particle duality and the quantum “measurement problem”; in particular, it is suggested that the unpredictability of quantum phenomena may arise from “deterministic chaos” in the behavior of the background field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. W. G. Wignall,Found. Phys. 15, 207 (1985).

    Google Scholar 

  2. J. W. G. Wignall,Found. Phys. 17, 123 (1987).

    Google Scholar 

  3. C. Davisson and L. H. Germer,Phys. Rev. 30, 705 (1927); I. Estermann and O. Stern,Z. Phys. 61, 25 (1930); I. Estermann, O. R. Frisch, and O. Stern,Z. Phys. 73, 348 (1931); W. H. Zinn,Phys. Rev. 71, 752 (1947); L. R. Borst, A. J. Ulrich, C. L. Osborne, and B. Hasbrouck,Phys. Rev. 70, 557 (1946).

    Google Scholar 

  4. B. W. Petley,The Fundamental Physical Constants and the Frontier of Measurement (Hilger, Bristol, 1985).

    Google Scholar 

  5. P. A. M. Dirac,Principles of Quantum Mechanics, 4th edn. (Oxford University Press, Oxford, 1958).

    Google Scholar 

  6. R. P. Feynman,Rev. Mod. Phys. 20, 367 (1948); R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    Google Scholar 

  7. G. I. Taylor,Proc. Cambridge Philos. Soc. 15, 114 (1909); P. G. Merli, G. F. Missiroli, and G. Pozzi,Am. J. Phys. 44, 306 (1976); P. Grangier, G. Roger, and A. Aspect,Europhys. Lett. 1, 173 (1986).

    Google Scholar 

  8. W. Bartelet al., Z. Phys. C 19, 197 (1983); D. Benderet al., Phys. Rev. D 30, 515 (1984).

    Google Scholar 

  9. L. de Broglie,Ann. Phys. (Paris) (10)3, 22 (1925).

    Google Scholar 

  10. J. D. Bjorken and S. D. Drell,Relativistic Quantum Fields (McGraw-Hill, New York, 1965).

    Google Scholar 

  11. Y. Aharonov and D. Bohm,Phys. Rev. 115, 485 (1959).

    Google Scholar 

  12. K. Gottfried,Quantum Mechanics, Vol. I (Benjamin, New York, 1966).

    Google Scholar 

  13. E. Nelson,Phys. Rev. 150, 1079 (1966).

    Google Scholar 

  14. D. Bohm,Phys. Rev. 85, 165, 180 (1952).

    Google Scholar 

  15. A. J. Lichtenberg and M. A. Lieberman,Regular and Stochastic Motion (Springer, New York, 1983); H. G. Schuster,Deterministic Chaos (Physik-Verlag, Weinheim, 1984).

    Google Scholar 

  16. R. Rajaraman,Solitons and Instantons (North-Holland, Amsterdam, 1982).

    Google Scholar 

  17. W. Bothe and H. Geiger,Z. Phys. 26, 44 (1924);32, 639 (1925); A. H. Compton and S. K. Allison,X-Rays in Theory and Experiment (Van Nostrand, New York, 1935).

    Google Scholar 

  18. J. F. Clauser and A. Shimony,Rep. Prog. Phys. 41, 1881 (1978); A. Aspect, P. Grangier, and G. Roger,Phys. Rev. Lett. 49, 91 (1982); A. Aspect, J. Dalibard, and G. Roger,Phys. Rev. Lett. 49, 1804 (1982).

    Google Scholar 

  19. J. S. Bell,Physics 1, 195 (1965).

    Google Scholar 

  20. W. Heisenberg,Introduction to the Unified Field Theory of Elementary Particles (Interscience, New York, 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wignall, J.W.G. An alternative approach to quantum phenomena. Found Phys 18, 591–624 (1988). https://doi.org/10.1007/BF00734564

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00734564

Keywords

Navigation