
Nonmonotonic Rule Systems with
recursive sets of restraints

V. Wiktor Marek1

Anil Nerode2

Jeffrey B. Remmel3

To Gerald Sacks and the
Golden Age of Recursion
Theory

Abstract
We study nonmonotonic rule systems with rules that admit infinitely many
restraints. We concentrate on the case when the constraints of rules form
a recursive sets and there is a uniform enumeration of codes for rules. We
show that the theory developed for nonmonotnic rule systems admitting the
rules with finite number of restraints can be lifted to such rule systems. We
give tight estimates on the complexity of the set of extensions of such rule
systems.

1Department of Computer Science, University of Kentucky, Lexington, KY 40506, Re-

search partially supported by NSF grant IRI-9012902. E-mail: marek@cs.uky.edu
2Mathematical Sciences Institute, Cornell University, Ithaca, NY 14853, Research sup-

ported by US ARO contract DAAL03-91-C-0027. E-mail: anil@math.cornell.edu
3Department of Mathematics, University of California, La Jolla, CA 92093. Research

partially supported by NSF grant DMS-9306427. E-mail: remmel@kleene.ucsd.edu

1 Introduction

In this paper we investigate the properties and the expressive power of struc-
tures we call “extended nonmonotonic rule systems”. These structures gen-
eralize in a natural fashion nonmonotonic rule systems that we have studied
extensively in the series of papers [MNR90, MNR92a, MNR94a, MNR94b,
MNR94c].

Nonmonotonic rule systems arose as a simple algebraic structure captur-
ing the essential features of what have been called “nonmonotonic logics”.
These logics arose in attempts to formalize several forms of commonsense
reasoning. These systems include: the default logic of Reiter [Rei80], the
autoepistemic logic of Moore [Moo85], the nonmonotonic modal logics of
McDermott and Doyle [MD80, McD82], the truth maintenance systems of
Doyle [Doy79], the stable semantics of general logic programs [GL88], the
answer sets semantics for logic programs with classical negation [GL90], and
the answer set semantics for clausal logic programs [YBB92].

Nonmonotonic rule systems capture in an abstract fashion all the common
features of the above mentioned reasoning systems. Here is the definition. A
nonmonotonic rule system is a pair 〈U,N〉, where U is any set and N is a
collection of rules of the form

r =
a1, . . . , am : b1, . . . , bn

c
(1)

where a1, . . . , am, b1, . . . , bn, c ∈ U . The elements a1, . . . , an, are called the
premises of r, the elements b1, . . . , bn are called the restraints of r, the element
c is called the conclusion of r. Each of the numbers m,n can be 0. If n = 0,
then we call the rule r monotonic. If m = n = 0, then we call r an axiom.

Systems 〈U,N〉, where all the rules in N are monotonic, are well-known
and well-understood. The associated notion of derivation in such systems was
characterized by Tarski [Tar56], see also Birkhoff [Bir35] and Schmidt [Sch52].
In the case of nonmonotonic rule systems, there also is a corresponding notion
of derivation. This notion of derivation is defined so as to encompass all the
nonmonotonic reasoning modes discussed above. This is the notion of a S-
proof where S ⊆ U . The set S is intended to control the applicability of
the rules. That is, in order to apply a rule we must be able to derive all

2

its premises (i.e. a1, . . . , an,) as in the case of monotonic rule systems, but
in addition the rule r can only be applied if none of the restraints b1, . . . , bn
belong to S. This notion of provability can easily be transformed into a formal
inductive definition of an S-derivation. (A similar construction for extended
nonmonotonic rule systems will be introduced below.) In this fashion we
can define the set CS(I) of all elements of U which are S-provable from I.
We then call S an extension of I in 〈U,N〉 if S = CS(I). Similarly, S
is called an extension of 〈U,N〉 if S is an extension of ∅ in 〈U,N〉. It is
easy to see that this concept generalizes the “bottom-up” representation (i.e.
via derivable formulas) of the notion of consequence, but not the “top-down”
definition of the notion of consequence as the least set closed under rules. For
more on this point, see [MT93]. Moreover, unlike the situation for monotonic
rule systems, there is no guarantee that a given nonmonotonic rule system
〈U,N〉 will have even one extension. It is also possible for 〈U,N〉 to have
many extensions. We shall be interested in studying the family E(〈U,N〉) of
all extensions of 〈U,N〉.

If 〈U,N〉 is a nonmonotonic rule system, where U is a subset of the
natural numbers ω, then one can use standard codes for finite subsets of
natural numbers plus recursive pairing functions to code each rule r of the
form (1) as a natural number. Then we can can identify N with a subset
of ω. We then say that 〈U,N〉 is a recursive nonmonotonic rule system if
both U and N are recursive. In general, when U ⊆ ω, the family E(〈U,N〉)
of all extensions of 〈U,N〉 is a subset of the power set of ω, P(ω). When
U ⊆ ω, Ferry [Fer93] was able to give a topological characterization of the
sets of the form E(〈U,N〉). A characterization of the expressive power of
recursive nonmonotonic rule systems was given in [MNR92a]. It turns out
that for every recursive nonmonotonic rule system 〈U,N〉, there exists a
recursive tree T ⊆ ω<ω such that there is a one-to-one effective, degree-
preserving correspondence between E(〈U,N〉) and [T], the set of all infinite
paths through T . Vice versa, for every recursive tree T ⊆ ω<ω, there is a
recursive nonmonotonic rule system 〈U,N〉 such that there is a one-to-one
effective, degree-preserving correspondence between [T] and E(〈U,N〉). Since
the degrees of the elements in [T] for recursive trees T ⊆ ω<ω have been
extensively studied, our results allowed us to derive various results about
the possible set of Turing degrees of extensions of recursive nonmonotonic
rule systems and on the complexity of various decision problems associated

3

with nonmonotonic reasoning systems mentioned above. Moreover, this says
that the quotients of effective closed (Π0

1) subsets of Cantor space by ≡T are
identical to quotients of sets of extensions of recursive nonmonotonic rule
systems by the same equivalence relation.

It turns out that one can get a finer measure of the complexity on the
set of extensions of a nonmonotonic rule system 〈U,N〉 by classifying non-
monotonic rule systems according to the number of so-called minimal proof
schemes which are possessed by the elements of U . Briefly, a proof scheme p
for an element x ∈ U is a formal derivation of x using the rules N which si-
multaneously keeps track of the restraints of the rules used in the derivation.
The collection of all restraints used in such a proof scheme p is called the
support of the proof scheme and is denoted by supp(p). Then for any S such
that S ∩ supp(p) = ∅, x ∈ CS(∅). The formal definition of proof scheme was
first given in [MNR92a] and will be repeated below. There is a natural well
founded preordering of the set of proof schemes of x obtained by declaring
that a proof scheme p is less than a proof scheme p′ if every rule which oc-
curs in p′ also occurs in p. There are two natural restrictions we can put on
nonmonotonic rule systems. First, one can require that every element x ∈ U
possesses only a finite number of minimal proof schemes. Such nonmonotonic
rule systems are called locally finite. A second, more restrictive, condition on
a recursive nonmonotonic rule system is that the system be locally finite and
that in addition there exists a recursive function assigning to each element
x ∈ U , the explicit index of the finite set of all minimal proof schemes of x.
Such recursive nonmonotonic rule systems are called highly recursive. It is
proved in [MNR92a], that for every locally finite recursive nonmonotonic rule
system 〈U,N〉, there exists a finitely branching recursive tree T ⊆ ω<ω such
that there is a one-to-one effective, degree-preserving correspondence between
E(〈U,N〉) and [T] and, vice versa, for every finitely branching recursive tree
T ⊆ ω<ω, there is a locally finite recursive nonmonotonic rule system 〈U,N〉
such that there is a one-to-one effective, degree-preserving correspondence
between [T] and E(〈U,N〉). Similarly, for every highly recursive nonmono-
tonic rule system 〈U,N〉, there exists a highly recursive tree T ⊆ ω<ω such
that there is a one-to-one effective, degree-preserving correspondence between
E(〈U,N〉) and [T] and, vice versa, for every highly recursive tree T ⊆ ω<ω,
there is a highly recursive nonmonotonic rule system 〈U,N〉 such that there
is a one-to-one effective, degree-preserving correspondence between [T] and

4

E(〈U,N〉). Once again, since the degrees of the elements in [T] for locally
finite and highly recursive trees T ⊆ ω<ω have been extensively studied, our
results allowed us to derive various results about the set of Turing degrees of
extensions of locally finite and highly recursive nonmonotonic rule systems
and, consequently, on the complexity of various decision problems associated
with nonmonotonic reasoning systems mentioned above. Moreover, this says
that quotients of bounded Π0

1 subsets of Cantor space by ≡T are identical
to quotients of sets of extensions of locally finite recursive nonmonotonic
rule systems by the same equivalence relation and that quotients of recur-
sively bounded Π0

1 subsets of Cantor space by ≡T are identical to quotients
of sets of extensions of highly recursive nonmonotonic rule systems by the
same equivalence relation. See section 8 for more precise statements of these
results.

Ferry [Fer91] noticed that the process of finite derivability remains the
same if we permit rules similar to (1), but allowing infinitely many restraints
as well as finitely many. Specifically, she considered rules of the form

r =
a1, . . . , am : Z

c
(2)

where a1, . . . , am ∈ U , Z ⊆ U , c ∈ U . The elements a1, . . . , an, are called
the premises of r, the elements of Z are called the restraints of r, and the
element c is called the conclusion of r.

Nonmonotonic rule systems under prior definitions correspond to the case
when Z is finite for all rules in N . Ferry proved that many properties of
nonmonotonic rule systems generalize to such extended nonmonotonic rule
systems. There are, however, important differences. First, when U ⊆ ω,
the rules with infinite Z cannot generally be coded by natural numbers.
Second, it turns out that the topological characterization of the sets of the
form E(〈U,N〉) are best expressed in terms of the Ellentuck topology [Ell74]
rather than the Cantor topology in P(ω) or its close relative, the dual Scott
topology [Fer92, Bat89].

The principal purpose of this paper is to study the expressive power of
extended nonmonotonic rule systems 〈U,N〉. First we show that when U is a
recursive subset of ω and each rule r of N, as described in (2), has the prop-
erty that the set of restraints Z of r is a recursive set, then one can define

5

natural analogues of recursive, locally finite, and highly recursive nonmono-
tonic rules systems for extended nonmonotonic rule systems. In contrast
with nonmonotonic rule systems, we shall show that the set of extensions of
a highly recursive extended nonmonotonic rule system can represent an arbi-
trary Π0

1 class up to Turing equivalence. That is, we shall show that for any
recursive tree T ⊆ ω<ω, there is a highly recursive extended nonmonotonic
rule system 〈U,N〉 such that there is a one-to-one effective, degree-preserving
correspondence between [T] and E(〈U,N〉). We only have a weaker version
of the converse result. That is, for any recursive extended nonmonotonic
rule system S, we construct a recursive tree T and a one-to-one correspon-
dence between the extensions of S and the branches through T . Although
the extension is uniformly recursive in the corresponding branch, the branch
is only recursive in the Turing jump of the extension. This result still allows
us to get some natural results on the degrees of extensions of extended non-
monotonic rule systems. For instance, it follows that if an extended recursive
nonmonotonic rule system possesses a unique extension, then this extension
is hyperarithmetic. At the end of Section 9 we show that a stronger version
of the correspondence result is false. Specifically, using a wait-and-see tech-
nique we construct an example of an extended nonmonotonic rule system
for which there is no recursive specification of the one-to-one correspondence
described above. The example (although not the argument) was suggested
by the anonymous referee of the arlier version of this paper.

This paper continues our program of demonstrating a close connection
between the nonmonotonic reasoning systems introduced by research workers
in Artificial Intelligence and Classical Recursion Theory. The ubiquitous
relationship between Logic and Recursion Theory persists in this context.
The new modes of nonmonotonic reasoning currently considered in Artificial
Intelligence can be fruitfully analyzed by recursion-theoretic methods.

Finally, we express our gratitude to the referee of the earlier version of
this paper for both corrections to version s/he read as well as the suggestion
for the counterexample to the strengthening of Theorem 9.9.

6

2 Examples of Nonmonotonic logical systems

We will introduce briefly some of the nonmonotonic logical systems men-
tioned in the introduction. We introduce three such systems: the default logic
of Reiter [Rei80], the nonmonotonic modal logics of McDermott [McD82], and
general logic programming [Apt90]. It will be shown later that each of these
example can be coded into nonmonotonic rule systems. Moreover, because
the coding of such systems into nonmonotonic rules systems is so direct, it
will be clear that there are natural ”extended” analogues of such systems
and that all the results on extended nonmonotonic rule systems proved in
this paper immediately apply to such extended systems.

2.1 Default Logic

Default Logic is a system based on the language of propositional logic and is
able to handle those rules which, informally, have the format: “normally, if
α is proven, then derive γ”. Here the word “normally” is interpreted as the
“lack of any indication of abnormality”. To make this more precise, default
logic handles default rules, which are entities in the following format:

r =
α : Mβ1, . . . ,Mβk

γ

where α, β1, . . . , βk, γ are formulas of the underlying propositional language
L. Thus, in this case, normality is interpreted as the fact that there is “no
information that ¬β1 , . . . , ¬βk holds”. Following Reiter [Rei80], a default
theory is defined as a pair 〈D,W 〉 where D is a set of default rules and W is
a set of formulas of L.

We define an operator Γ mapping P (L), the set of all subsets of the well
formed formulas of L, into itself as follows: Γ(S) is the least set U satisfying
the following three properties:

1. W ⊆ U

2. Cn(U) = U

3. For all rules r ∈ D, if α ∈ U and ¬β1 /∈ S . . ., ¬βk /∈ S then γ ∈ U .

7

Here Cn(U) denotes the set of all logical consequences of U . It is easy to
see that the operator Γ is well-defined. We then call a set of formulas S an
extension of 〈D,W 〉 if S = Γ(S).

Default logic and the extensions of default theories have been studied
extensively in the Artificial Intelligence community for the past decade. It
has been argued that default rules provide a mechanism to formalize many
important aspects of common-sense reasoning where one naturally makes
conclusions which are based not only the presence of information but also on
the current absence of other information.

2.2 Nonmonotonic modal logics

McDermott [McD82] introduced a technique which allows one to create non-
monotonic counterparts of various modal logics.

We shall use the modal language LL with one modal operator L, inter-
preted as necessitation, knowledge, or belief. Given a modal logic S, we
consider the consequence operator CnS . This consequence operator is differ-
ent from one used in most work on modal logic (see Chellas [Che80]) in that
it allows for application of necessitation to all previously proven formulas,
not only to the the axioms of S. McDermott studied the proper form of
Kripke semantics for such notion of provability.

Now, given a set of formulas T ⊆ L and another set of formulas I, inter-
preted to be the initial assumptions of the reasoning agent, we consider the
set of formulas

CnS(I ∪ {¬Lψ : ψ /∈ T})

A theory T is then called an S-expansion of I if

T = CnS(I ∪ {¬Lψ : ψ /∈ T})

The set of formulas {¬Lψ : ψ /∈ T} represents the so-called “negative intro-
spection with respect to T”. Informally, this set consists of those formulas
expressing the statements: “ψ is not believed”, for all ψ that are not in the
belief set of the reasoning agent.

8

Again, McDermott [McD82] argued that expansions can formalize essen-
tial aspects of common-sense reasoning. We shall see below that nonmono-
tonic rule systems faithfully represent McDermott expansions.

2.3 General Logic Programming

General logic programs extend the usual syntax of (Horn) logic programs by
admitting negated atoms in the body of clauses. Specifically, a general clause
is an expression of the form:

p← q1, . . . , qm,¬r1, . . . ,¬rn

Here we only assume that m ≥ 0 and n ≥ 0 so that the usual logic program-
ming clauses are special cases of general clauses. General clauses possess the
logical interpretation:

q1 ∧ . . . ∧ qm ∧ ¬r1 ∧ . . . ∧ ¬rn ⊃ p

As long as we are interested in Herbrand models of general programs, we can
consider the propositional theory ground(P) consisting of all ground substi-
tutions of clauses of P . While P is usually finite, ground(P) may be infinite if
P contains function symbols. There is of course a one-to-one correspondence
between Herbrand models of P and propositional models of ground(P).

As is the case for (Horn) logic programming, not every model of the pro-
gram has a clear computational meaning. Some models of a general program
provide a computationally sound meaning to negation. Three of the most
widely used used semantics are the supported models of Clark [Cla78] (see
also Apt and van Emden, [AvE82]), the stable models of Gelfond and Lif-
schitz [GL88], and the well-founded model of Van Gelder, Ross and Schlipf
[VGRS91]. We shall discuss here only the stable models of Gelfond and
Lifschitz since stable models are most naturally modeled by extensions of
nonmonotonic rule systems.

Since we are interested in Herbrand models, we consider the propositional
program ground(P). Given a subset of Herbrand universe, M , and a clause

C = p← q1, . . . , qm,¬r1, . . . ,¬rn

9

in ground(P), we define CM as nil if rj ∈M for some 1 ≤ j ≤ n. Otherwise
CM = p← q1, . . . , qm. Then we put

PM = {CM : C ∈ ground(P)}

Since PM is a Horn program, it possesses a least Herbrand model, NM .
Then we call M a stable model of P if M = NM . It is easy to see that a
stable model of P is a model of P . We shall see that nonmonotonic rule
systems allow for faithful representation of stable models of general logic
programs. Consequently the results about extensions of nonmonotonic rule
systems immediately imply corresponding results about stable models of logic
programs.

3 Monotonic formal systems

Tarski [Tar56] characterized monotonic formal systems by means of mono-
tonic rules of inference. Such systems include classical propositional and first
order logics, intuitionistic logic, modal logics, and many others. Suppose that
a nonempty set U is given. In a particular application U may be the collec-
tion of all statements or formulas, all legal strings of a formal system, or of
all atomic statements as in logic programming.

Definition 3.1 1. A monotonic rule of inference over U is a tuple r =
〈P, c〉, where P = 〈a1, . . . , an〉 is a finite list of objects from U and c is
an element of U . Such a rule r is usually written in the more suggestive
form

r =
a1, . . . , an

c
. (3)

We call a1, . . . , an the premises of r and c the conclusion of r.

2. A monotonic rule system is a pair 〈U,M〉, where U is a nonempty set
and M is a collection of monotonic rules.

3. A subset S ⊆ U is called deductively closed over 〈U,M〉 if for all rules
r ∈M as in (3), a1, . . . , an ∈ S implies c ∈ S.

10

The collection D = D(U,M) of deductively closed sets has the following
properties:

1. U ∈ D.

2. D is closed under arbitrary intersections. (Consequently, for every
I ⊆ U there is the least set T (I) such that I ⊆ T (I) and T (I) is
deductively closed. The operator T (= TU,M) is monotone, that is, if
I ⊆ J then T (I) ⊆ T (J)). Moreover,

3. T (I) =
⋃

{T (J): J ⊆ I &|J | < ω}.

Property (3) reflects the finitary nature of deductive closure and is closely
associated with the definition of a deduction.

An axiom is a rule without premises, that is, with the list P empty.

A deduction of an object c ∈ U from I ⊆ U is a finite sequence 〈c1, . . . , cm〉
such that cm = c, and for all i ≤ m, ci ∈ I, or ci is an axiom, or ci is the con-
clusion of a rule r ∈M such that premises of r are included in {c1, . . . , ci−1}.
Then T (I) consists of all elements of U that possess a deduction from I.

Tarski noticed that if a collection D of subsets of U possesses properties
(1), (2) and (3) above, then there is a collection of monotone rules M such
that D is the set of all deductively closed sets in 〈U,M〉.

An abstract treatment of monotonic logic programming schemes and gen-
eral methods of processing queries is given in [BBS89].

4 Nonmonotonic formal systems

Inspired by Reiter [Rei80], and Apt [Apt90], we introduced in [MNR90] the
notion of a nonmonotonic formal system 〈U,N〉.

Definition 4.1 1. A nonmonotonic rule of inference is a triple 〈P,G, c〉,
where P = {a1, . . . , an}, G = {b1, . . . , bm} are finite lists of objects
from U and c ∈ U . Each such rule is written in form

r =
a1, . . . , an: b1, . . . , bm

c
(4)

11

Here a1, . . . , an are called the premises of rule r, b1, . . . , bm are called
the restraints of rule r. Either P , or G, or both may be empty. If
P = G = ∅, then the rule r is called an axiom. The set {a1, . . . , an}
is denoted by p(r), the set {b1, . . . , bm} is denoted by R(r), and c is
denoted by c(r).

2. A nonmonotonic rule system is a pair 〈U,N〉 where U is a non-empty
set and N is a set of nonmonotonic rules.

Each monotonic rule system can be identified with the nonmonotonic rule
system in which every monotonic rule is given an empty set of restraints.

A subset S ⊆ U is called deductively closed if for every rule r of N ,
whenever all premises a1, . . . , an are in S and all restraints b1, . . . , bm are not
in S, then the conclusion c belongs to S.

In nonmonotonic systems, deductively closed sets are not generally closed
under arbitrary intersections as in the monotone case. Tarski’s axioms do
not generally hold. But deductively closed sets are closed under intersections
of descending chains. Since U is deductively closed, by the Kuratowski-Zorn
Lemma, any I ⊆ U is contained in at least one minimal deductively closed
set.

Example 4.1 Let U = {a, b, γ}.
(a) Consider U with N1 = { :

a
, a:b
b
}. There is only one minimal deductively

closed set S = {a, b}.
(b) Consider U with N2 = { :

a
, a:b
γ
, a:γ
b
},

then there are two minimal deductively closed sets, S1 = {a, b}, S2 = {a, γ}.

Definition 4.2 1. Given a set S and an I ⊆ U , an S-deduction of c from
I in 〈U,N〉 is a finite sequence < c1, . . . , ck > such that ck = c and, for
all i ≤ k, each ci is in I, or is an axiom, or is the conclusion of a rule
r ∈ N such that all the premises of r are included in {c1, . . . , ci−1} and
all restraints of r are in U \ S (see [MT89a], also [RDB89]).

2. An S-consequence of I is an element of U occurring in some S-deduction
from I.

12

3. CS(I) is the set of all S-consequences of I in 〈U,N〉.

Note that I is a subset of CS(I) and that S enters solely as a restraint on
the use of the rules imposed by the restraints in the rules. A single restraint
in a rule in N may be in S and therefore prevent the rule from ever being
applied in an S-deduction from I, even though all the premises of that rule
occur earlier in the deduction. Thus S contributes no members directly
to CS(I), although members of S may turn up in CS(I) by an application
of a rule which happens to have its conclusion in S. For a fixed S, the
operator CS(·) is monotonic. That is, if I ⊆ J , then CS(I) ⊆ CS(J). Also,
CS(CS(I)) = CS(I). However, CS(·) is antimonotonic in S, that is for fixed
I, S ′ ⊆ S implies that CS(I) ⊆ CS′(I).

Generally, CS(I) is not deductively closed in 〈U,N〉. It is perfectly pos-
sible to have all the premises of a rule be in CS(I), all the restraints of that
rule be outside CS(I), but a restraint of that rule be in S, preventing the
conclusion from being put into CS(I).

Example 4.2 U = {a, b, γ}, N = { :
a
, a:b
γ
}, S = {b}. Then CS(∅) = {a} is

not deductively closed.

We list below some basic properties of extensions (recall that an extension is
a solution to the equation CS(∅) = S).

Proposition 4.3 1. If S is an extension of I, then:

(a) S is a minimal deductively closed superset of I.

(b) For every I ′ such that I ⊆ I ′ ⊆ S, CS(I
′) = S.

2. The set of extensions of I forms an antichain. That is, if S1, S2 are
extensions of I and S1 ⊆ S2, then S1 = S2.

Given S ⊆ U , a rule r is called S-applicable if all the restraints of r are
outside S and all the premises of r are in S. We define N(S) to be the
collection of all S-applicable rules.

13

With each rule r of form (4), we associate a monotonic rule of form (3)

r′ =
a1, . . . , an

c
(5)

obtained from r by dropping all the restraints. The rule r′ is called the
projection of rule r. We write M(S) for the collection of all projections of
all rules from N(S). The projection 〈U,N〉 |S is the monotonic rule system
〈U,M(S)〉. Thus 〈U,N〉 |S is obtained as follows: First, non-S-applicable
rules are eliminated. Then, the restraints are dropped altogether. We have
the following characterization theorem.

Theorem 4.4 A subset S ⊆ U is an extension of I in 〈U,N〉 if and only if
S is the deductive closure of I in 〈U,N〉 |S.

Theorem 4.4 tells us how to test if a collection S ⊆ U is an extension
of I in 〈U,N〉. In case U and N are finite, this leads to an implementable
algorithm.
(1) Compute N(S).
(2) Project N(S) by dropping restraints to get M(S).
(3) Compute the deductive closure of I in 〈U,M(S)〉, call this T .
(4) Test whether T = S.

Note that if U is finite, then it is easy to see that one can test whether S is
an extension in linear time over the input 〈U,N〉. Finding all the extensions of
a given I is a more complex problem. A brute force algorithm is to generate
all subsets of U , and test each of them for being an extension using the
procedure above. A useful fact for improving this algorithm is the following.

Proposition 4.5 If S is a extension of I, then S consists entirely of ele-
ments of I and conclusions of certain rules in N .

Proposition 4.5 allows us to possibly cut down on the number of subsets
that we have to check to find all extension. Nevertheless, we are still left
with an exponential time algorithm to find all the extensions of 〈U,N〉. It
is unlikely this can be improved in general. For example, it is known that
the problem of determining whether a given nonmonotonic rule system has
an extension is NP complete, the problem of determining whether a given

14

x ∈ U is in some extension of 〈U,N〉 is NP complete, and the problem
of determining whether a given x ∈ U is all extensions is co-NP complete
[MT91, BF91].

A simple construction allows us to consider only extensions of the empty
set. In fact, if S is a nonmonotonic rule system, and I ⊆ U , then the system
S(I) arises from S and I by adding to N all the rules of the form :

t
for all

t ∈ I. We then have:

Proposition 4.6 T is an extension of I in S if and only if T is an extension
of ∅ in S(I).

Most systems of logic can be represented as a monotonic rule system. In
[MNR90] we provided the details of the representation of such formalisms
as rule systems. It is rather straightforward that the following systems can
be represented a monotonic rule systems: classical propositional logic, in-
tuitionistic propositional logic, classical modal systems. The fragment of
propositional logic, Horn logic, which forms a logical basis for logic program-
ming also admits such representation.

As pointed our in the introduction, the formalism of nonmonotonic rule
systems also provides a uniform description of several systems currently con-
sidered in the literature of artificial intelligence. These include: default logic
of Reiter [Rei80], general logic programming (i.e. propositional logic pro-
gramming with negation as failure and stable semantics, [GL88]), logic pro-
gramming with classical negation, [GL90], logic programming with clauses
[YBB92], nonmonotonic modal logics of McDermott [MD80, McD82], au-
toepistemic logic of Moore [Moo85] and truth maintenance system of Doyle
[Doy79]. In the next section, we will briefly describe how the systems de-
scribed in section 2 correspond to nonmonotonic rule systems.

In short, the results on nonmonotonic rule systems carry over to all these
domains. This implies that the nonmonotonic rule systems provide a uniform
method of getting results in all the application areas mentioned above.

15

5 Encoding various nonmonotonic logics by

means of rule systems

In this section, we show how to encode the three nonmonotonic logics dis-
cussed in Section 2 as nonmonotonic rule systems.

5.1 Encoding default logic

Let L be the propositional language underlying the given default logic. With
L fixed, all our nonmonotonic rule systems will have the same universe,
namely the set of all well-formed formulas of L. We now show how to inter-
pret a given default theory as a nonmonotonic rule system.

Let 〈D,W 〉 be a default theory. For every default rule r,

r =
α : Mβ1, . . . ,Mβk

γ

construct the following nonmonotonic rule dr

dr =
α : ¬β1, . . . ,¬βk

γ

Next, for every formula ψ ∈ L, define the rule

dψ =
:

ψ

and for all pairs of formulas χ1, χ2 define

mpχ1,χ2
=
χ1, χ1 ⊃ χ2 :

χ2

Now define the set of rules ND,W as follows:

ND,W = {dr : r ∈ D}∪{dψ : ψ ∈ W or ψ is a tautology}∪{mpχ1,χ2
: χ1, χ2 ∈ L}

We have the following result [MNR90]

16

Theorem 5.1 Let 〈D,W 〉 be a default theory. Then a set of formulas S is a
default extension of 〈D,W 〉 if and only if S is an extension of nonmonotonic
rule system 〈U,ND,W 〉.

Theorem 5.1 says that at a cost of a simple syntactic transformation and
additional encoding of logic as (monotonic) rules, we can faithfully represent
default logics by means of nonmonotonic rule systems.

5.2 Encoding modal nonmonotonic logics

Let LL be a fixed language of propositional logic with an additional modal
operator L. Our universe U will be as before the set of all well formed
formulas of the language LL. In our coding, we will employ a technique
similar to one used in the case of default logic.

Now, for every formula ψ ∈ LL we consider a rule

eψ =
: ψ

¬Lψ

Next we encode the necessitation rules of LL. For every formula ψ we have
the rule

nψ =
ψ :

Lψ

Finally, like in 5.1, dψ = :
ψ

.

Now, given a theory I (the set of initial assumptions) in a modal logic S,
consider the following set of rules NI,S

NI,S = {dψ : ψ ∈ S} ∪ {eψ : ψ ∈ LL} ∪

{mpχ1,χ2
: χ1, χ2 ∈ LL} ∪ {nψ : ψ ∈ LL}

{dψ : ψ ∈ I} ∪ {dψ : ψ is a tautology of LL}

We then have the following result.

Theorem 5.2 Let I, T ⊂ LL. Let S be a modal logic. Then T is an S-
expansion of I if and only if T is an extension of the nonmonotonic rule
system 〈U,NI,S〉.

17

Theorem 5.2 tells us that the nonmonotonic modal logic can be faithfully
simulated within the formalism of nonmonotonic rule systems.

5.3 Encoding stable semantics for general logic pro-
grams

We shall encode now the stable models of logic programs as extensions of
suitably chosen nonmonotonic rule systems. The universe of all our sys-
tems, U , will be the Herbrand base of the program. Next, to every general
propositional clause C,

C = p← q1, . . . , qm,¬r1, . . . ,¬rn

assign the rule

rC =
q1, . . . , qm : r1, . . . , rn

p

Now, given the program P , define

NP = {rC : C ∈ ground(P)}

We then have the following result

Theorem 5.3 Let P be a general logic program. Let M be a subset of the
Herbrand base of P . Then M is a stable model of P is and only if M is an
extension of the nonmonotonic rule system 〈U,NP 〉.

Theorem 5.3 allows us to obtain results concerning stable models of logic
programs from theorems about extensions of nonmonotonic rule systems.

These theorems and other similar results obtained in [MNR90, MNR92a]
indicate why nonmonotonic rule systems are useful in the investigations of
various nonmonotonic logical formalisms. The results, both positive and,
to some extent, negative, on nonmonotonic rule systems provide us with
corresponding results for all these formalisms.

18

6 Proof schemes: proof theory for nonmono-

tonic rule systems

We define now the basic notion used to analyze the Turing complexity of
the set of extensions of nonmonotonic rule systems. This is the notion of
a proof scheme. Intuitively, a proof scheme is a derivation together with
two additional sets of items. First, the collection of rules used in derivation.
Second, the set of elements that needs to be disjoint from the set S in order
to make our derivation an S-derivation.

More formally, we have:

Definition 6.1 A proof scheme s is a finite sequence of triples

〈〈c1, r1, Z1〉, . . . , 〈cn, rn, Zn〉〉

where c1, . . . , cn ∈ U , r1, . . . , rn ∈ N , Z1, . . . , Zn are finite subsets of U such
that for all j, 1 ≤ j ≤ n

1. c1 = c(r1), Z1 = R(r1) and p(r1) = ∅

2. For j > 1, p(rj) ⊆ {c1, . . . , cj−1}, c(rj) = cj, and Zj = Zj−1 ∪R(rj).

3. cn is the conclusion of s and is denoted by cln(s). Zn is called the
support of s and is denoted by supp(s).

Clearly an initial segment of a proof scheme is also a proof scheme.

Notice that the support of a proof scheme s, Zn, has the property that for
every set S such that S∩Zn = ∅, the sequence 〈c1, . . . , cn〉 is an S-derivation.
Conversely if 〈c1, . . . , cn〉 is an S-derivation, then there is a proof scheme

s = 〈〈c1, r1, Z1〉, . . . , 〈cn, rn, Zn〉〉

such that Zn ∩ S = ∅.

There is a natural preordering on proof schemes. Namely, s1 ≺ s2 if and
only if every rule appearing in s1 appears in s2 as well. The relation ≺ is not
a partial ordering but it is well-founded. We can thus talk about minimal

19

proof schemes for a given element c ∈ U . Intuitively, a minimal proof scheme
carries the minimal information necessary to derive its conclusion. Since the
support of every proof scheme is finite, the negative information carried in
such a proof scheme is finite.

Proof schemes can be used to characterize extensions. We say that a set
S admits a proof scheme s if supp(s) ∩ S = ∅. We then have the following
characterization of extensions.

Proposition 6.2 Let S = 〈U,N〉 be a nonmonotonic rule system. Let S ⊆
U . Then S is an extension of S if and only if the following conditions are
met:

1. If s is a proof scheme and S admits s, then c(s) ∈ S.

2. Whenever a ∈ S then there exists a proof scheme s such that S admits
s.

It is easy to see that we can restrict to minimal proof schemes in Proposition
6.2.

7 Extended nonmonotonic rule systems

In this section, we shall formally define the notion of extended nonmonotonic
rule systems, i.e nonmonotonic rule systems with rules that have possibly
infinite sets of restraints, and investigate how much of the theory outlined
above can be lifted to the present case.

Definition 7.1 1. A extended nonmonotonic rule is a triple 〈P,Z, c〉 where
P is a finite subset of U , Z is a subset of U (it can be finite or infinite),
and c ∈ U . When P = {a1, . . . , ak}, Z = {b1, . . .}, then such rule is
written as

a1, . . . , ak : b1, . . .

c

20

2. A extended nonmonotonic rule system (ENRS) is a pair 〈U,N〉 where
U is a set, and N consists of extended nonmonotonic rules.

Notice that this notion is a generalization of nonmonotonic rule system con-
sidered in previous sections. That is, we allow for rules having infinite sets
of restraints. Indeed, if the set of restraints for any rule of N is finite, then
〈U,N〉 is a nonmonotonic rule system.

Next, observe that the concept of an S-derivation can be generalized
without change to the present context. The S-derivations are finite sequence
of elements of U . With a small abuse of notation we again denote the set of
all elements with an S-derivation from I by CS(I).

Definition 7.2 Let S = 〈U,N〉 be an extended nonmonotonic rule system.

1. A subset S ⊆ U is called an extension of I if S = CS(I).

2. E(S) is the set of all extensions of ∅ in S.

Basic properties of extensions, discussed in Section 4, lift to the present
context.

The notion of proof scheme also generalizes to the case of extended non-
monotonic rule systems. This includes the characterization theorem (Propo-
sition 6.2).

There is, however, an important difference. In the case of nonmonotonic
rule systems in which all the rules have finite restraints, every proof scheme
is a “finite object” over U . To make this remark more precise, treating
every element of U as an urelement we find that every proof scheme is a
hereditarily finite set over U . This is no longer the case when we allow
for infinite restraints. Now, in principle, the proof schemes are no longer
hereditarily finite over U . The reason is that the sets R(rj) do not need to
have “finite description”. In the next section we shall see that if for all rules
r ∈ N have the property that the set of restraints of r, R(r), is a recursive
set, then we can introduce a surrogate of proof scheme as a finite object.
This will require a more sophisticated coding than is necessary in case of
(ordinary) nonmonotonic rule systems.

21

8 Review of complexity results for extensions

of nonmonotonic rule systems

As stated in the introduction, the main goal of this paper is to study the
complexity of the family of extensions of extended nonmonotonic rule sys-
tems. However before we prove the main results of the paper, we shall briefly
review what is known about the complexity of the family of extensions for
nonmonotonic rule systems.

8.1 Preliminaries

Let ω denote the set of natural numbers. Let [,]:ω × ω → ω be a fixed one-
to-one and onto recursive pairing function such that the projection functions
π1 and π2 defined by π1([x, y]) = x and π2([x, y]) = y are also recursive. The
canonical index, can(X), of the finite set X = {x1 < . . . < xn} ⊆ ω is defined
as 2x1 + . . .+ 2xn and the canonical index of ∅ is defined as 0. Let Dk be the
finite set whose canonical index is k, i.e., can(Dk) = k.

Let 〈U,N〉 be a nonmonotonic rule system where U ⊆ ω. We shall identify
a rule r with the code of a triple [k, l, ϕ] where Dk = p(r), and Dl = R(r),
ϕ = c(r). In this way we can think about N as a subset of ω as well. This
given, we then say that a NRS S = 〈U,N〉 is recursive if U and N are
recursive subsets of ω

Next we shall define various types of recursive trees and Π0
1 classes. We

extend our recursive pairing function to code n-tuples for n > 2 by the usual
inductive definition, that is, let [x1, . . . , xn] = [x1, [x2, . . . , xn]] for n ≥ 3. Let
ω<ω be the set of all finite sequences from ω and let 2<ω be the set of all
finite sequences of 0’s and 1’s. Given α = 〈α1, . . . , αn〉 and β = 〈β1, . . . , βk〉
in ω<ω, write α ⊑ β if α is initial segment of β, i.e. , if n ≤ k and αi = βi for
i ≤ n. In this paper, we identify each finite sequence α = 〈α1, . . . , αn〉 with its
code c(α) = [n, [α1, . . . , αn]] in ω. Let 0 be the code of the empty sequence
∅. When we say that a set S ⊆ ω<ω is recursive, recursively enumerable,
etc., what we mean is that the set {c(α):α ∈ S} is recursive, recursively
enumerable, etc. Define a tree T to be a nonempty subset of ω<ω such that
T is closed under initial segments. A function f :ω → ω is an infinite path

22

through T provided that for all n, 〈f(0), . . . , f(n)〉 ∈ T . Let [T] be the set of
all infinite paths through T . A set A of functions is a Π0

1-class if there exists a
recursive predicate R such that A = {f :ω → ω :∀n(R(n, [f(0), . . . , f(n)])}.
We say a Π0

1-class A is recursively bounded if there exists a recursive
function g:ω → ω such that ∀f ∈ A∀n(f(n) ≤ g(n)). It is not difficult to see
that if A is a Π0

1-class, then A = [T] for some recursive tree T ⊆ ω<ω. Say
that a tree T ⊆ ω<ω is highly recursive if T is a recursive finitely branching
tree and also there is a recursive procedure which, applied to the code of a
α = 〈α1, . . . , αn〉 in T , produces a canonical index of the set of of codes of
the immediate successors of α in T . If A is a recursively bounded Π0

1-class,
it is easy to show that A = [T] for some highly recursive tree T ⊆ ω<ω, see
[JS72b]. For any set A ⊆ ω, let A′ = {e: {e}A(e) is defined} be the jump
of A, let 0′ denote the jump of the empty set ∅. We write A ≤T B if A is
Turing reducible to B and A ≡T B if A ≤T B and B ≤T A.

We say that there is an effective, one-to-one degree preserving correspon-
dence between the set of extensions E(S) of a recursive (extended) non-
monotonic rule system S = 〈U,N〉 and the set of infinite paths [T] through a
recursive tree T if there are indices e1 and e2 of oracle Turing machines such
that
(i) ∀f ∈ [T]{e1}

gr(f) = Ef ∈ E(S),
(ii) ∀E ∈ E(S){e2}

E = fE ∈ [T], and
(iii) ∀f ∈ [T]∀E ∈ E(S)({e1}

gr(f) = E if and only if {e2}
E = f).

where {e}B denotes the function computed by the eth oracle machine with
oracle B. Also, write {e}B = A for a set A if {e}B is a characteristic function
of A. For any function f :ω → ω, gr(f) = {[x, f(x)]:x ∈ ω}. Condition (i)
says that the infinite paths of the tree T uniformly produce extensions via an
algorithm with index e1. Condition (ii) says that extensions of S uniformly
produce infinite paths through T via an algorithm with index e2. Condition
(iii) asserts that if {e1}

gr(f) = Ef , then f is Turing equivalent to Ef . In the
sequel we shall not explicitly construct the indices e1 and e2, but it will be
clear that such indices can be constructed in each case.

There are two important subclasses of recursive NRS’s introduced in
[MNR92b], namely locally finite and highly recursive nonmonotonic rules
systems. We say that the system 〈U,N〉 is locally finite if for each c ∈ U ,
there are only finitely many ≺-minimal proof schemes with conclusion c.
Given a proof scheme for c, s = 〈〈c1, r1, Z1〉, . . . , 〈cn, rn, Zn〉〉, the code of s,

23

c(s), is defined by

c(s) = [n, [[c1, r1, Z1], . . . , [cn, rn, Zn]]].

If 〈U,N〉 is a locally finite recursive nonmonotonic rule system and c ∈ U ,
we let Drc denote the set of codes of all ≺-minimal proof schemes for c. We
say that 〈U,N〉 is highly recursive if 〈U,N〉 is recursive, locally finite, and
the map c 7→ can(Drc) is partial recursive. The latter means that there is an
effective procedure which, when applied to any c ∈ U , produces a canonical
index of the set of all codes of ≺-minimal proof schemes with conclusion c.

8.2 Complexity results for extensions of recursive non-
monotonic rule systems

We can now state some basic results from [MNR90, MNR92a, MNR92b,
MNR94b] on the complexity of extensions in recursive nonmonotonic rule
systems.

Theorem 8.1 For any highly recursive NRS system S = 〈U,N〉, there is a
highly recursive tree TS such that there is an effective 1:1 degree preserving
correspondence between [TS] and E(S). Vice versa, for any highly recursive
tree T , there is a highly recursive NRS system ST = 〈U,N〉 such that there
is an effective 1:1 degree preserving correspondence between [T] and E(ST).

Theorem 8.2 For any locally finite recursive NRS system S = 〈U,N〉, there
is a finitely branching recursive tree TS such that there is an effective 1:1 de-
gree preserving correspondence between [TS] and E(S). Vice versa, for any
highly recursive tree T in 0′, there is a locally finite recursive NRS system
ST = 〈U,N〉 such that there is an effective 1:1 degree preserving correspon-
dence between [T] and E(ST).

Theorem 8.3 For any recursive NRS system S = 〈U,N〉, there is a recur-
sive tree TS such that there is an effective 1:1 degree preserving correspon-
dence between [TS] and E(S). Vice versa, for any recursive tree T , there is a
recursive NRS system ST = 〈U,N〉 such that there is an effective 1:1 degree
preserving correspondence between [T] and E(ST).

24

Because the set of degrees of paths through recursive trees have been
extensively studied in the literature, we immediately can derive a number
of corollaries about the degrees of extensions in recursive NRS systems. We
shall give a few of these corollaries below.

For recursive nonmonotonic rule systems, we have the following results,
see [MNR92b].

Corollary 8.4 1. Every recursive NRS system S = 〈U,N〉 which has an
extension has an extension E such that E ≤T B where B is a complete
Π1

1-set.

2. If S = 〈U,N〉 is a recursive NRS system with a unique extension E,
then E is hyperarithmetic.

Corollary 8.5 1. There is a recursive NRS system S = 〈U,N〉 such that
S has an extension but S has no extension which is hyperarithmetic.

2. For each recursive ordinal α, there exists a recursive NRS system S =
〈U,N〉 possessing a unique extension E such that E ≡T 0(α).

These two corollaries show that the extensions of a recursive nonmono-
tonic rule system may be very complex. There are natural conditions which
will guarantee that the set of extensions of a nonmonotonic rules system are
much better behaved. For example, if the nonmonotonic rule system is highly
recursive, then we have the following results, see [MNR92b].

Call A low if A′ ≡T 0′. The following corollary is an immediate conse-
quence of Theorem 8.1 and the work of Jockusch and Soare [JS72b].

Corollary 8.6 Let S = 〈U,N〉 be a highly recursive nonmonotonic rule sys-
tem such that E(S) 6= ∅. Then
(i) There exists an extension E of S such that E is low.
(ii) If S has only finitely many extensions, then every extension E of S is
recursive.

In the other directions, there are a number of corollaries of the Theorem
8.1 which allow us to show that there are highly recursive NRS systems S such

25

that the set of degrees realized by elements of E(S) are still quite complex.
Again all these corollaries follow by transferring results of Jockusch and Soare
[JS72b, JS72a].

Corollary 8.7 1. There is a highly recursive nonmonotonic rule system
〈U,N〉 such that 〈U,N〉 has 2ℵ0 extensions but no recursive extensions.

2. There is a highly recursive nonmonotonic rule system 〈U,N〉 such that
〈U,N〉 has 2ℵ0 extensions and any two extensions E1 6= E2 of 〈U,N〉
are Turing incomparable.

3. There is a highly recursive nonmonotonic rule system 〈U,N〉 such that
〈U,N〉 has 2ℵ0 extensions and if a is the degree of any extension E of
〈U,N〉 and b is any recursively enumerable degree such that a <T b,
then b ≡T 0′.

4. If a is any recursively enumerable Turing degree, then there is a highly
recursive nonmonotonic rule system 〈U,N〉 such that 〈U,N〉 has 2ℵ0

extensions and the set of recursively enumerable degrees b which contain
an extension of 〈U,N〉 is precisely the set of all recursively enumerable
degrees b ≥T a.

Finally, we note that there are analogues of Corollaries 8.6 and 8.7 which
hold for recursive locally finite nonmonotonic rule systems. That is, one can
replace highly recursive nonmonotonic rule systems by recursive locally finite
nonmonotonic rule systems if one replaces all the statements about degrees
of extensions by the corresponding statement relative to an 0′ oracle. For
example, the analogue of part (1) of Corollary 8.6 is that every recursive lo-
cally finite nonmonotonic rule system S such that E(S) 6= ∅ has an extension
E such that the jump of E is recursive in 0′′, while the analogue of (1) of
Corollary 8.7 is that there exists a recursive locally finite nonmonotonic rule
system 〈U,N〉 which has 2ℵ0 extensions but which has no extension which
is recursive in 0′. Moreover, we can weaken the hypothesis of locally finite
and highly recursive slightly and still derive the same theorems. That is, we
say that a recursive nonmonotonic rule system 〈U,N〉 has the finite support
property if for each c ∈ U , the set of supports of all ≺-minimal proofs schemes
of c is finite. It is possible for a c ∈ U to have infinitely many ≺-minimal

26

proof schemes with the same support so that not every recursive nonmono-
tonic rule system with the finite support property is locally finite. Similarly,
we say that a recursive nonmonotonic rule system 〈U,N〉 which has the finite
support property has the recursive finite support property if there is an effec-
tive algorithm which given any c ∈ U , produces the canonical index of the
set of canonical indices of the supports of all the ≺-minimal proof schemes
of c. See [MNR94b] for further details.

9 Extended recursive nonmonotonic rule sys-

tems and their recursion theory

In this section we investigate extended nonmonotonic rule systems 〈U,N〉
such that U ⊆ ω and each rule r ∈ N has a recursive set of restraints.
Specifically, we shall assume that all rules r ∈ N are of the form

r =
a1, . . . , an : R

c
(6)

where R is a set which may be finite or infinite recursive. We do not exclude
the possibility that R is empty; in this case r is a monotonic rule. With these
assumptions, we can define natural analogues for extended nonmonotonic rule
systems of recursive, locally finite, and highly recursive nonmonotonic rule
systems. The key to our definitions is a careful definition of the code of a
rule and the code of a proof scheme.

Definition 9.1 Let S = 〈U,N〉 be an extended nonmonotonic rule system
such that U ⊆ ω and N is a set of rules r of the form (6) where a1, . . . , an, c ∈
U and R is a recursive subset of U . A code c(r) for a rule of the form (6) is
the code of the quadruple c(r) = [k, e, h, c] such that:

(i) {a1, . . . , an} = Dk,

(ii) ϕe = χR where ϕe is the eth partial recursive function and χR is the
characteristic function of R,

(iii) h is a natural number satisfying the following conditions:

27

1. If R is finite and nonempty, then h = 2 + max(R)

2. If R is infinite, then h = 0

3. If R is empty, then h = 1

(iv) c is the conclusion of the rule.

Of course each rule possesses infinitely many codes c(r) since there is infinitely
many indices e such that ϕe = χR. The code c(r) contains the information
whether the restraint set R is finite or infinite. Moreover if R is finite,
then from the code c(r) we can effectively compute a canonical index of R by
computing the sequence ϕe(0), . . . , ϕe(h−2). Thus in the case of rules r with
finite restraints, the codes carry all the information necessary to compute the
rule r.

We shall now define the class of recursive extended nonmonotonic rule
systems.

Definition 9.2 Let S = 〈U,N〉 be an extended nonmonotonic rule system
such that U ⊆ ω and N is a set of rules r of the form (6) where a1, . . . , an, c ∈
U and R is a recursive subset of U . We say that the pair 〈S, C(N)〉 is a
recursive extended nonmonotonic rule system if

1. U is a recursive subset of ω

2. C(N) is a recursive set such that

(a) c ∈ C(N) implies that c is a code of some rule in N

(b) r ∈ N implies that there is precisely one c ∈ C(N) such that c is
a code for r

Thus our definition of recursive extended nonmonotonic rule system implies
that there is a one-to-one correspondence between N and C(N). This corre-
spondence takes a rule to its unique code in C(N) and allows us to identify
the rule r as in (6) with its code c(r) in C(N).

Recall that the definition of a proof scheme for an extended nonmonotonic
rule system is the same as the definition of a proof scheme for a nonmonotonic
rule system, see definition 6.1.

28

Definition 9.3 Let 〈S, C(N)〉 be a recursive extended nonmonotonic rule
system where S = 〈U,N〉. Let

p = 〈〈c0, r0, Z0〉, . . . 〈cm, rm, Zm〉〉

be a proof scheme for c = cn in S. Then the code c(p) is equal to

[m, [[c0, c(r0), e0, n0], . . . , [cm, c(rm), em, nm]]]

where

1. if m = 0, then either

(a) r0 = :
c0

is an axiom and c(r0) = [0, e0, n0, c0] ∈ C(N) so that
n0 = 1 and ϕe0 = χ∅ = χZ0

, or

(b) r0 = :R
c0

whereR is a nonempty recursive set and c(r0) = [0, e0, n0, c0] ∈
C(N) so that ϕe0 = χR = χZ0

and n0 = 0 if R is infinite and
n0 = 2 +max(R) in R is finite,

2. if m > 0, then assume that

[m− 1, [[c0, c(r0), e0, n0], . . . , [cm−1, c(rm−1), em−1, nm−1]]]

is the code of the proof scheme

p = 〈〈c0, r0, Z0〉, . . . 〈cm−1, rm−1, Zm−1〉〉

and
ϕem−1

= χZm−1

for the recursive set Zm−1 and

nm−1 =











0 if Zm−1 is infinite
1 if Zm−1 is empty
2 + max(Zm−1) otherwise

Then if

rm =
ci0 , . . . , cit : Rm

cm

29

where i0 . . . , it < m and c(rm) = [km, dm, nm, cm] ∈ C(N), then we let
em = f(em−1, dm) where f is a total recursive function such that for
all k1 and k2, ϕf(k1,k2) = sg(ϕk1 + ϕk2)(x). Here we use Kleene’s sg
function which is defined by

sg(x) =

{

1 if x ≥ 1
0 otherwise.

Finally we let

nm =











0 if either nm−1 or n is 0
1 if both nm−1 and n are equal to 1
max(nm−1, n) otherwise.

Let us see what is the meaning of this definition. First notice the following
property of the function f :

ϕf(k1,k2)(x) =











1 if ϕki
(x) ↓ for i = 1, 2 and ϕk1(x) + ϕk2(x) ≥ 1

0 if ϕki
(x) ↓ for i = 1, 2 and ϕk1(x) + ϕk2(x) = 0

undefined ϕk1(x) ↑ or ϕk2(x) ↑

This implies that
ϕf(em−1,dm) = χZm−1∪Rm

= χZm
.

This, in turn, implies that the last index, em is an index of the characteristic
function of the union of the restraints of all the rules applied in the proof
scheme under consideration. Moreover our definition of nm implies that:

nm =











0 if Zm = Zm−1 ∪Rm is infinite
1 if Zm = Zm−1 ∪Rm is empty
2 + max(Zm) if both Zm−1, Rm are finite

It is easy to check that we can effectively decide if p is an extended proof
scheme. That is, given a number z, we can decode from z numbers s and u
such that z = [s, u], then we can decode from u a sequence (of the length
s+ 1) of quadruples,

u = 〈〈c0, a0, e0, n0〉, . . . , 〈cs, as, es, ns〉〉

30

and check if ci ∈ U and ai ∈ C(N) for all i ≤ s, and then compute to see
that ci, ei, and ni satisfy the required conditions.

Moreover, we can define a preorder ≺ on proof schemes in extended non-
monotonic rule system just as we did in section 6. This, in turn, leads us to
the definition of locally finite and highly recursive extended nonmonotonic
systems.

Definition 9.4 Let 〈S, C(N)〉 be a recursive extended nonmonotonic rule
system where S = 〈U,N〉.

1. We say that 〈S, C(N)〉 is locally finite if for every a ∈ U there are
finitely many ≺-minimal proof schemes in S with conclusion a. We let
Dra denote the set of all codes of ≺-minimal proof schemes for a in S.

2. We say that 〈S, C(N)〉 is a highly recursive ENRS if 〈S, C(N)〉 is a
locally finite ENRS and the map a 7→ can(Dra) is partial recursive.

We are now in a position to prove the main results of our paper. Our first
result will show that the expressive power of highly recursive extended non-
monotonic rule systems is at least as great as that of recursive nonmonotonic
rule systems. This is in stark contrast with the results of section 6 where it
is shown that the expressive power of recursive nonmonotonic rule systems
is much greater than the expressive power of highly recursive nonmonotonic
rule systems.

Theorem 9.5 Let T be a recursive tree, T ⊆ ω<ω. Then there is a highly
recursive ENRS 〈S, C(N)〉 where S = 〈U,N〉 such that there exists an effec-
tive, one-to-one, degree-preserving correspondence between E(S) and the set
[T].

Proof: We shall assume that all trees T ⊆ ω<ω contain the empty se-
quence, ∅. First we shall modify the tree T as follows. Given any node
σ = (σ0, . . . , σk) 6= ∅, we let shift(σ) = (σ0 + 1, . . . , σk + 1). We let T ′ =
{∅} ∪ {shift(σ) : σ ∈ T \ {∅}}. We observe that T ′ is a recursive tree if and
only if T is a recursive tree. Moreover, it is clear that there is a recursive,
one-to-one, degree preserving correspondence between [T] and [T ′].

31

Next, we define T ′′ = T ′ ∪ {η⌢0 : η ∈ T ′} where for any node η ∈ ω<ω,
η⌢a denotes the result of concatenating a at the end of η. Clearly T ′′ is also
a recursive tree. Our construction ensures that all the coordinates of all the
sequences in T ′ are greater or equal to 1. In T ′′, every node σ will have at
least one successor node, unless σ ends with 0 in which case σ is a terminal
node, i.e. σ has no successor. This implies that in T ′′ the set of nodes with
at least one successor is recursive. On the other hand it is easy to see that
[T ′] = [T ′′], so that there is a one-to-one, degree-preserving correspondence
between [T] and [T ′′].

We are ready to construct the desired extended nonmonotonic rule system
S. First, we define U . U ′′ = {∅} ∪ {η : η ∈ T ′′ \ {∅}} ∪ {η̄ : η ∈ T ′′ \ {∅}}.
Notice that for every sequence η ∈ T ′′ \ {∅} we have in U ′′ two different
objects: η itself, and η̄. This “duplicate” η̄ is used as an indicator that η
does not belong to the putative path (i.e. extension). Then U equals the set
of all codes c(σ) of elements σ ∈ U ′′ where

1. c(∅) = 0

2. if σ = 〈σ0, . . . , σk〉 then c(σ) = [0, k, [σ0, . . . , σk]]

3. if σ = 〈σ0, . . . , σk〉 then c(σ̄) = [1, k, [σ0, . . . , σk]].

It is easy to see that U is a recursive set since T ′′ is a recursive tree. To
simplify notation, for the rest of this proof we shall implicitly identify U ′′

and U by identifying each element of U ′′ with its code. Similarly, when we
talk of proof schemes, we will implicitly identify a proof scheme and its code.

Now we define N . N consists of the following 7 classes of rules

1.
:

∅

2.
:

η⌢0
for any η ∈ T ′′ such that η possesses at least one successor in T ′′.

3.
η : {η⌢i : η⌢i ∈ T ′′ and i 6= j}

η⌢j
for all η ∈ T ′′ and j ∈ ω such that η

has at least one successor in T ′′, η⌢j ∈ T ′′, and j > 0.

32

4.
η : {η⌢i : η⌢i ∈ T ′′}

η⌢0
for all η ∈ T ′′ such η has at least one successor in

T ′′.

5.
: η

η̄
and

: η̄

η
for all η ∈ T ′′ \ {∅}.

6.
η⌢i, η⌢j :

η⌢j
for all η⌢i, η⌢j ∈ T ′′ with i < j.

7.
η̄ :

η⌢j
for all η, η⌢j ∈ T ′′ such that |η| ≥ 1.

It is easy to see that since T ′′ is recursive tree and {σ ∈ T ′′ : σ has
at least one successor in T ′′} is also recursive (see our remarks on the set
of terminal nodes in T ′′), one can easily use any index of the characteristic
function of T ′′ to produce a recursive set of codes C(N) which are in one to
one correspondence with the rules of N . Therefore 〈S, C(N)〉 is a recursive
extended nonmonotonic rule system.

Next we shall prove that 〈S, C(N)〉 is highly recursive. We must show
that each element of U is the conclusion of only finitely many minimal
proof schemes and the we can effectively compute that set of minimal proof
schemes. It should be clear that, as ∅ is a conclusion of just one rule, Dr∅ is
finite. In fact, it has exactly one element corresponding to the proof scheme
〈∅, :

∅
, ∅〉. Next we describe how to computeDrσ andDrσ for all σ ∈ T ′′\{∅}.

Fix η and assume that Drη is finite and that we have effectively computed
Can(Drη) from η. Consider a successor node, η⌢j ∈ T ′′. First consider the
case when j = 0. Note that η⌢0 ∈ T ′′. It should be clear that the nodes
of the form η⌢0 can be derived only using the rules of the form (4) or (5).
Moreover the rules of the form (5) have no premises. This means that a
minimal proof scheme for η⌢0 whose last rule is of the form (5) must be of
the form

〈〈η⌢0,
: η⌢0

η⌢0
, {η⌢0}〉〉.

If the last rule in a minimal proof scheme of η⌢0 is a rule of the form of
(4), then the proof scheme must be of the form

〈〈a0, r0, Z0〉, . . . , 〈am, rm, Zm〉〉

33

where am = η⌢0 and rm of type (4). But then

〈〈a0, r0, Z0〉, . . . , 〈am1
, rm−1, Zm−1〉〉

is a minimal proof scheme for η. Since Drη is finite, this implies that Drη⌢0

is finite. Moreover, clearly we can effectively compute Drη⌢0 from Drη.

If j ≥ 1 then we can derive η⌢j only using the rules of form (3) or (5).
If the last rule in minimal proof scheme of η⌢j is a rule of the form of (5),
then we can argue exactly as above that the minimal proof scheme must be
of the form

〈〈η⌢j,
: η⌢j

η⌢j
, {η⌢j}〉〉.

So there is just one minimal proof scheme of η⌢j whose last rule is of type
(5).

If the last rule in minimal proof scheme of η⌢j is a rule of the form of
(3), then the minimal proof scheme must be of the form

〈〈a0, r0, Z0〉, . . . , 〈am, rm, Zm〉〉

where am = η⌢j and rm of type (3). But then

〈〈a0, r0, Z0〉, . . . , 〈am1
, rm−1, Zm−1〉〉

must be a minimal proof scheme for η. Thus the set of minimal proof schemes
that use the rule (3) is also finite and can be effectively computed once Drη
is computed. Hence we can conclude that Drη⌢j is finite and that we have
an effective method of computing Drη⌢j.

Next, consider the elements of the form ᾱ. By construction, α = η⌢j for
some j. Notice that only rules of the form (2), (5), (6) and (7) can be used
to derive ᾱ.

We need to look at each of these cases.

First suppose the last rule used in a minimal proof scheme of α is a rule
of the form (2). There is only one rule of the form (2) with the conclusion ᾱ.
Moreover since all rules in (2) have no premises, it follows that there is just
one minimal proof scheme with conclusion ᾱ whose last rule is of type (2).

34

If the last rule used in a minimal proof scheme of α is a rule of the form
(5), then we can reason exactly as in the case when we used the rule (5) to
get α to conclude that there is only one such proof scheme.

Suppose the last rule used in a minimal proof scheme of α is a rule of
the form (7), then it is easy to that the minimal proof scheme must consist
of a minimal proof scheme for η̄ extended by a single triple of the form
< ᾱ, rm, Zm > where rm = η̄:

ᾱ
.

Finally consider the case when the last rule of the proof scheme is a rule
of the form (6). Here we use the inductive assumption. There is only j + 1
sets Drη⌢i with i ≤ j which are involved in the computation of of premises
of the rule of the form (6) with the conclusion ᾱ. Each of these sets is finite.
Every minimal proof scheme for η⌢j using the rule of the type (6) with i, j
arises from interveawing a minimal proof scheme for η⌢i and a minimal proof
scheme for η⌢j and putting a corresponding rule of the type (6) at the end
(and adjusting the bookkeeping). There may be, additionally, some pruning
necessary if the same rules were used in both proof schemes. Thus it is clear
that there are only finitely many minimal proof schemes for ᾱ in which the
last rule used of the form (6). Moreover, our analysis provides an effective
method of finding this set of minimal proof schemes from the set of minimal
proof schemes for ¯η⌢i for i ≤ j.

Putting together all these cases, it follows that the set Drᾱ is finite and
that there is an effective method to compute it. Thus, we conclude that S is
a highly recursive, extended nonmonotonic rule system.

Next, we shall show that there exists an effective, one-to-one correspon-
dence between E(〈U,N〉) and [T ′′]. In particular we will show that E(〈U,N〉) =
∅ if and only if [T ′′] = ∅. First, suppose that π = (π0, π1, . . .) is an infinite
path through T ′′. Define ηi = (π0, π1, . . . , πi). Then we claim that

Eπ = {∅} ∪ {ηi : i ∈ ω} ∪ {η̄ : η ∈ T ′′ \ ({∅} ∪ {ηi : i ∈ ω})}

is an extension of 〈U,N〉. To see that all elements of Eπ have an Eπ-derivation
in 〈U,N〉, note that ∅ ∈ CEπ

(∅) by rule (1). Next, it is easy to see by
induction that the rules of the form (3) allow us to prove that ηi ∈ CEπ

(∅)
for all i ∈ ω. Finally, the rules from the group (5) will allow us to prove that
η̄ ∈ CEπ

(∅) for all η ∈ T ′′ \ ({∅} ∪ {ηi : i ∈ ω}). Thus Eπ ⊆ CEπ
(∅).

35

To see that CEπ
(∅) ⊆ Eπ, we proceed by induction on the length of a

sequence. That is, assume by induction that

1. η ∈ CEπ
(∅) where η ∈ T ′′ and |η| ≤ k if and only if η ∈ {∅, η0, . . . , ηk−1}

and

2. η̄ ∈ CEπ
(∅) where η ∈ T ′′ \ {∅} and |η| ≤ k if and only if η ∈ T ′′ \

{∅, η0, . . . , ηk−1}.

Next observe that if |α| = k + 1, then the only rules which have α as the
conclusion are the rules of the form (3), (4), and (5). Since |α| = k+1, there
is β and j ∈ ω such that α = β⌢j.

Let us look at the rules in question. These are:

(a)
β : {β⌢i : β⌢i ∈ T ′′ and i 6= j}

β⌢j
from the group (3), if β has at least one

successor in T ′′ and j > 0.

(b)
β : {β⌢i : β⌢i ∈ T ′′}

β⌢0
from the group (4), if β has at least one successor

in T ′′ and j = 0

(c)
: β⌢j

β⌢j
from the group (5).

Now, if β 6= ηk−1 then the rules (a) and (b) can not be used to show β⌢j ∈
CEπ

(∅) since by assumption β /∈ CEπ
(∅). Also the rule (c) is blocked since

β⌢j ∈ Eπ. Thus if β 6= ηk−1 then β⌢j /∈ CEπ
(∅). If β = ηk−1, but j 6= πk,

then the rules (a) and (b) are blocked by Eπ since ηk = ηk−1
⌢πk ∈ Eπ.

Similarly the rule (c) is blocked for j 6= πk because in this case β⌢j ∈ Eπ.
This shows that β⌢j ∈ CEπ

(∅) if and only if β⌢j = ηk. Note that for all α
with |α| = k + 1 and α 6= ηk, we have that α /∈ Eπ. Using the rules of (5),
we can derive that ᾱ ∈ CEπ

(∅) for such α.

Finally we must check that ηk /∈ CEπ
(∅). But the only rules that have ηk

as the conclusion are the rules form (5), (6), and (7), namely

(A)
: ηk
ηk

from (5),

36

(B)
η⌢k−1i, η

⌢
k−1πk :

η⌢k−1πk
from (6), where i < πk (recall that ηk = η⌢k−1πk), and

(C)
ηk−1 :

ηk
from the group (7).

(Note that the rule of the form (2) cannot be used because πk > 0. This last
fact follows since ηk possesses a successor).

The rule (A) is blocked for Eπ since ηk ∈ Eπ. Rule (B) cannot be used
because we have already shown η⌢k−1i /∈ CEπ

(∅) for every i 6= πk. Finally, rule
(C) cannot be used to show ηk ∈ CEπ

(∅) because by our induction hypothesis,
ηk−1 /∈ CEπ

(∅).

Thus we have shown that for all α ∈ T ′′ such that |α| = k+1, α ∈ CEπ
(∅)

if and only if α = ηk and α ∈ CEπ
(∅) if and only if α 6= ηk. Therefore, by

induction, CEπ
(∅) ⊆ Eπ and hence we can conclude that Eπ is an extension

of 〈U,N〉.

Next, suppose that E is an extension of 〈U,N〉. We claim that E must
be of the form Eπ where π is some infinite path through T ′′. We shall prove
by induction on k that for each k there is a unique node δk of the length k
such that δk ∈ E and that all these sequences δk are compatible. Moreover,
we shall show that if k > 0 and |β| = k, then β̄ ∈ E if and only if β 6= δk.
Note that ∅ is a unique node of the length 0 and ∅ ∈ E by the rule (1).

So assume that there is exactly one node δk such that δk is of length k,
δk ∈ E, and δk has at least one successor and that |β| = k and β 6= δk implies
β̄ ∈ E. Now suppose that |α| = k + 1 and α = β⌢j.

First, suppose β 6= δk. Then, by our analysis, β̄ ∈ E and hence the rules
of the form (7) allow us to prove that for all j such that β⌢j ∈ T ′′, β⌢j ∈ E.
Now consider the rules (a), (b), (c) with conclusion β⌢j. Note that the rules
of the form (a), and (b) can not be used to put β⌢j into E = CE(∅) since
β /∈ E = CE(∅) by our assumption. Now by rule (7), β⌢j ∈ E since β ∈ E
and hence the rule (c) is blocked for E. Thus β⌢j /∈ CE(∅) = E.

Next, assume β = δk. We claim that it cannot be the case that E∩{δk
⌢j :

δk
⌢j ∈ T ′′} = ∅. Indeed, otherwise by rule (4) for η = δk, we must conclude

that δk
⌢0 ∈ CE(∅). But since δk has at least one successor, δ⌢k 0 ∈ T ′′ and

37

hence δk
⌢0 ∈ {δk

⌢j : δk
⌢j ∈ T ′′}. But then CE(∅) 6= E which would

contradict the fact that E is an extension. Next define Fk = E ∩ {δk
⌢j :

δk
⌢j ∈ T ′′}. We just proved that Fk 6= ∅. Suppose that δk

⌢i, δk
⌢j ∈ Fk

where i < j. Then by rule (6), the fact that δk
⌢i, δk

⌢j ∈ E = CE(∅) implies
that δk

⌢j ∈ CE(∅) = E. However if we consider the possible of the form (a),
(b), (c) where β = δk which could have δk

⌢j as a conclusion, we see that
they are all blocked by E. But then we would have to conclude δk

⌢j /∈ CE(∅)
which again contradicts the fact that E is an extension of 〈U,N〉. Hence we
must conclude that there is a unique j such that δk

⌢j ∈ E. Of course, we
can now use the rules of the form (5) to conclude that if i 6= j and δk

⌢i ∈ T ′′

then δk
⌢i ∈ CE(∅) = E. At this stage of our argument we have shown

that there is a unique node of the length k + 1, δk
⌢j such that δk

⌢j ∈ E.
Moreover, for all nodes α of the length k + 1 α 6= δk

⌢j implies ᾱ ∈ E. Thus
to complete our induction step we need to prove two things. First, we must
show that j 6= 0 so that δk

⌢j is guaranteed to have at least one successor.
Second, we must show that δk

⌢j /∈ E. There are exactly two rules which
have δk

⌢0 as a conclusion:

(I)
δk : {δk

⌢i : δk
⌢i ∈ T ′′}

δk
⌢0

and

(II)
: δk

⌢0

δk
⌢0

But if we assume that j = 0 so that δk
⌢0 ∈ E then the rule (I) is blocked

for E. However since E is an extension, the rule (2) with η = δk implies
δk
⌢0 ∈ E and hence the rule (II) is also blocked for E. But this means that

δk
⌢0 /∈ CE(∅) and hence CE(∅) 6= E. Thus j > 0.

Finally, to see that δk
⌢j /∈ E, note that the only rules which have δk

⌢j
as a conclusion are:

(III)
: δk

⌢j

δk
⌢j

form the group (5)

(IV)
δk
⌢i, δk

⌢j :

δk
⌢j

from the group (6) where i < j and δk
⌢i ∈ T ′′, or

38

(V)
δk :

δk
⌢j

from the group (7)

But now we can argue exactly as we did for δk
⌢πk, that none of the rules

(III), (IV), or (V) can apply to show δk
⌢j ∈ CE(∅) given our assumptions.

Hence δk
⌢j /∈ CE(∅), as desired. This completes our induction and shows

that E = E∆ where ∆ is an infinite path through T ′′ determined by the
sequence ∅ ⊑ δ1 ⊑ δ2 ⊑

Thus we have established that the correspondence π 7→ Eπ is a one-to-
one correspondence between [T] and E(〈U,N〉). Clearly the correspondence
is effective and degree-preserving. 2

Corollary 9.6 There is a highly recursive extended nonmonotonic rule sys-
tem 〈〈U,N〉, C(N)〉 such that 〈U,N〉 has an extension but 〈U,N〉 has no
hyperarithmetic extension.

Proof: Kleene (see [Rog67], Corollary XLI(b)), showed that there is a re-
cursive tree T ⊆ ω<ω such that [T] 6= ∅ but no path through T is hyper-
arithmetical. Let 〈〈U,N〉, C(N)〉 be the extended nonmonotonic rule system
constructed for T in the proof of Theorem 9.5. Then if 〈U,N〉 possesses a
hyperarithmetic extension E, then there is an infinite path π through T such
that π ≡T E. But the set of all hyperarithmetical subsets of ω is closed under
Turing equivalence. Therefore π is itself hyperarithmetical, contradicting the
choice of T . Thus 〈U,N〉 has no hyperarithmetic extension. 2

Corollary 9.7 For every recursive ordinal α there is a highly recursive ex-
tended nonmonotonic rule system 〈〈Uα, Nα〉, C(Nα)〉 such that 〈Uα, Nα〉 has
a unique extension Eα and Eα ≡T 0(α) (where 0(α) is the αth jump of of the
recursive sets).

Proof: Clote [Clo85] showed that for every recursive ordinal α, there exists a
recursive tree Tα such that Tα has exactly one infinite path πα and πα ≡T 0(α).
The corollary follows by letting 〈〈Uα, Nα〉, C(Nα)〉 be the highly recursive
extended nonmonotonic rule system constructed in the proof of Theorem 9.5
with T = Tα. 2

39

Corollary 9.8 The problem of deciding uniformly whether a highly recursive
extended nonmonotonic rule system has an extension is Σ1

1-complete, i.e. the
set W of codes of highly recursive extended nonmonotonic rule systems which
possess an extension is a Σ1

1-complete set. (Here a number x is a code for a
highly recursive system 〈〈U,N〉, C(N)〉 if x =< u, n > where ϕu = χU and
ϕn = χC(N)).

Proof: It is easy to see that W ∈ Σ1
1, by simply writing a definition. Note

that our construction of Theorem 9.5 is uniform and hence there is a recursive
function g such that if ϕe is a characteristic function of an infinite tree T ⊆
ω<ω, then g(e) is a code for a highly recursive extended nonmonotonic rule
system constructed in the proof of Theorem 9.5.

Now [Rog67], Theorem XX, shows that E = {e : ϕe is a characteristic
function of a recursive tree on ω such that [T] = ∅} is a complete Π1

1 set.
In fact, for each A ∈ Π1

1 set Rogers constructs a recursive function h such
that ϕh(e) is always a characteristic function of a recursive tree on ω and
x ∈ A⇔ h(x) ∈ E. But this means that x /∈ A⇔ h(x) ∈ P = {x : ϕx is the
characteristic function of a recursive tree T ⊆ ω<ω such that [T] 6= ∅}. That
is P is a Σ1

1-complete set. By Theorem 9.5, x ∈ P if and only if g(x) ∈ W .
Thus W is Σ1

1-complete. 2

Now we present a weak converse to Theorem 9.5 for recursive extended
nonmonotonic rule systems.

Theorem 9.9 Let 〈S, C(N)〉 be a recursive extended nonmonotonic rule sys-
tem where S = 〈U,N〉. Then there is a recursive tree T ⊆ ω<ω and a pair of
indices e and f such that

1. for any π ∈ [T], ϕπe = χEπ
(where Eπ is an extension of S and Eπ ≤T π,

and

2. for any extension E of S, ϕE
′

f = χπe
where πE ∈ [T] and πE ≤T E ′

(where E ′ is the jump of E).

Moreover for all E ∈ E(S), EπE
= E, and for all π ∈ [T], πEπ

= π.

40

Before we provide the proof of this theorem, let us notice that all our theorem
says is that E 7→ πE is an effective, one-to-one correspondence between E(S)
and [T] but it only satisfies the inequality E ≤T πE ≤T E ′ rather than
πE ≡T E as in the effective one-to-one degree preserving correspondence
constructed in Theorem 9.5)

Proof of Theorem 9.9. There is no loss of generality in assuming that
U = ω. For if U 6= ω, we simply consider the nonmonotonic rule system
〈ω,N〉. Note that if a ∈ ω\U , then a is not a premise, restraint or conclusion
of any rule in N . This implies that for every c ∈ U the set of minimal proof
schemes with conclusion c with respect to 〈ω,N〉 is identical with the set of
minimal proof schemes with conclusion c with respect to 〈U,N〉. Moreover,
for a ∈ ω \ U , the set of minimal proof schemes with respect to 〈ω,N〉 with
the conclusion a is empty. Hence it is easy to see that 〈〈ω,N〉, C(N)〉 is
(highly recursive) recursive extended nonmonotonic rule system if and only
if 〈〈U,N〉, C(N)〉 is (highly recursive) recursive extended nonmonotonic rule
system. Moreover, it follows that E is an extension of 〈ω,N〉 if and only if
E is an extension of 〈U,N〉. Thus we assume that U = ω.

Notice that since 〈〈U,N〉, C(N)〉 is a recursive extended nonmonotonic
rule system the set MP of codes all minimal proof schemes is a recursive set.
In fact, for each a ∈ U , the set Dra of all codes of all minimal proof schemes p
with cln(p) = a is a recursive set. Moreover, we can find a recursive index for
Dra uniformly form a. That is, there exists a total recursive function g such
that ϕg(x) = χDra for a ∈ U . Thus for any a ∈ U and any code of a minimal
proof scheme p with cln(p) = a, we can compute ϕg(a)(0), . . . , ϕg(a)(p) to
find k such that c(p) is the kth element of Dra (i.e. k = |{x ≤ c(p) :
ϕg(a)(x) = 1}|), and produce minimal proof schemes p1, p2, . . . , pk−1 such that
c(p1) < c(p2) < . . . < c(pk−1) < c(p) and c(pi) ∈ Dra for i = 1, . . . , k − 1.
Now suppose that E is an extension of 〈U,N〉 and a ∈ E. Then there is a
minimal proof scheme q such that cln(q) = a and supp(q) ∩E = ∅. Suppose
that the q with the least code is p, the kth element of Dra as described above.
Then for each i ≤ k − 1 it must be the case that supp(pi) ∩ E 6= ∅. Now
from c(pi), we can read off an index ei such that ϕei

= χsupp(pi), and hence
we can effectively compute an index fi such that WE

fi
= supp(pi) ∩ E, for

any E. From the jump of E, E ′, we can effectively decide if WE
fi
6= ∅ and if

WE
fi
6= ∅, then we can use ϕei

and E to find the least x ∈WE
fi

= supp(pi)∩E.
To summarize, it follows that if E is an extension of a recursive extended

41

nonmonotonic rule system 〈〈U,N〉, C(N)〉 and a ∈ E, then there is a uniform
effective procedure which, given an oracle for E ′, will produce a pair < p, z >
such that

(i) p = µx(x = c(q) ∈ Dra and supp(q) ∩ E 6= ∅) and

(ii) if p is the kth element of Dra and c(p1) < . . . < c(pk−1) < c(q) = p are
such that c(pi) ∈ Dra for i = 1, . . . , k − 1, then

(a) k = 1 implies z = 0, and

(b) k > 1 implies z =< x1, . . . , xk−1 > where for each 1 ≤ i ≤ k − 1,
xi = µy(y ∈ supp(pi) ∩ E).

Next, suppose that E is an extension of 〈U,N〉 and a /∈ E. Then for any
minimal proof scheme p such that c(p) ∈ Dra, it must be the case that
supp(p) ∩ E 6= ∅. Moreover, since from c(p) we can read off an index e such
that ϕe = χsupp(p), we can effectively find the least element of the intersection
supp(p) ∩ E, given an oracle for E.

Our idea is to code an extension E by a path πE = (π0, π1, . . .) through
the complete ω-branching tree Tω = ω<ω as follows. First of all π2a = χE(a)
for all a ∈ ω. Also, for all a ∈ ω, π2a+1 =< ua, wa > where if a1 < . . . < an
are all elements of {1, . . . , a} \ E then:

(I) wa =< x1, . . . , xn > where for each i, xi =< b0,i, . . . , ba,i > and for all
p ≤ i, bp,i = 0 if p /∈ Drai

and bp,i = 1+min(supp(q)∩E) if q is a proof
scheme for ai such that p = c(q) ∈ Drai

,

(II) if π2a = 1 (so that a ∈ E), then ua =< p, z > where < p, z > is the pair
pair found from E ′ oracle for a as described above, and

(III) if π2a = 0 (so that a /∈ E), then ua = 0.

Clearly E ≤T πE, and by our remarks above, πE ≤T E ′. Thus the corre-
spondence E 7→ πE is a one-to-one correspondence which satisfies the require-
ments of the theorem. Hence to complete the proof of the theorem all we need
to do is to produce a recursive tree T ⋆ such that [T ⋆] = {πE : E ∈ E(〈U,N〉)}.

To define T ⋆, first we ensure that ∅ıT ⋆. Then we put η = 〈η0, . . . , ηk〉 in
T ⋆ if and only if η statisfies the following conditions:

42

1. For all i such that 2i ≤ k, η2i ∈ {0, 1}

2. For all i such that 2i+1 ≤ k, η2i+1 =< ui, wi > where if j1 < . . . < jni
is

a list of all elements j ≤ i such that η2j = 0, then wi =< x1, . . . , xni
>

where for s ≤ ni, xs =< b0,js , . . . , bi,js > where bp,js = 0 if p /∈ Drjs
and bp,js − 1 ∈ supp(q) if q is a minimal proof scheme for js such that
p = c(q) ∈ Drjs . Moreover for each t ≤ i, if η2t+1 =< ut, wt > and
j1 < . . . < jnt

is a list of all elements j ≤ t such that η2j = 0, then
wt =< y1, . . . , ynt

> where for each s ≤ nt, ys =< b0,js , . . . , bt,js >.
(This last requirement says that for a fixed js such that ηjs = 0, the
sequence associated to js, (b0,js , b1,js , . . .) is consistent).

3. For all i such that 2i + 1 ≤ k, if η2i = 0 and η2i+1 =< ui, wi > as
described in (2), then ui = 0

4. For all i such that 2i + 1 ≤ k, if η2i = 1 and η2i+1 =< ui, wu >
as described in (2), then ui =< p, z > where p = c(q) and q is a
minimal proof scheme for i, z = 0 if p is the first element of Dri, and
z =< z1, . . . , zk−1 > if p is the kth element of Dri for k > 1. Moreover,
if c(q1) < c(q2) < . . . < c(qk−1) < c(q) = p are all the elements of Dri
smaller or equal than p, then for i = 1, . . . , k − 1, zi ∈ supp(qi).

5. Let Eη = {i : 2i ≤ k ∧ η2k = 1}. Then for all i such that 2i + 1 ≤ k,
if η2i+1 =< ui, wi >, wi =< x1, . . . , xni

> and for s ≤ ni xs =<
b0,js , . . . , bi,js > are as described in (2), then for all s ≤ ni and p ≤ i
such that bp,js > 0,

(a) p = c(q) for some minimal proof scheme of js and

(b) bp,js − 1 > ⌊k
2
⌋ and Eη ∩ supp(q) = ∅ or

(c) bp,js − 1 ≤ ⌊k
2
⌋ and bp,js is the least element of Eη ∩ supp(q).

6. For all i such that 2i+1 ≤ k, if η2i = 1, η2i+1 =< ui, wi >, ui =< p, z >,
q is the kth element ofDri where k > 1, and c(q1) < . . . < c(qk−1) < c(q)
and z =< z1, . . . , zk−1 > are described in (4), then for all t < k

(a) zt > ⌊
k
2
⌋ and Eη ∩ supp(qt) = ∅, or

(b) zt ≤ ⌊
k
2
⌋ and zi is the least element of supp(qt) ∩ Eη.

Moreover it must be the case that Eη ∩ supp(q) = ∅.

43

It is routine to check that we can effectively decide if η ∈ T ⋆ and that if
η ∈ T ⋆ and η′ ⊑ η, then η′ ∈ T ⋆. Thus T ⋆ is a recursive tree. Moreover, it is
easy to check that if E is an extension of 〈U,N〉 and πE = (π0, π1, . . .), then
(π0, . . . , πn) ∈ T

⋆ for all n. Thus

{πE : E is an extension of 〈U,N〉} ⊆ [T ⋆]

Thus we only need to check that if π = (π0, π1, . . .) is an infinite path through
T ⋆, then π = πE for some extension E of 〈U,N〉.

So fix π = (π0, π1, . . .) and let E = {i : π2i = 1}. Suppose that i /∈ E
so that π2i = 0. Assume that Dri = {p0 = c(q0), p1 = c(q1), . . .} is the
listing of Dri in the increasing order where qt is a minimal proof scheme for
i for all t. Then for any r consider π2n+1 =< un, wn > where n > max(r, i).
Now if i is the sth element of ω \ E and |{i : 2i ≤ n ∧ π2i = 0}| = t, then
wn =< x1, . . . , xt > where xs =< b0,i, . . . , bt,i > and br,i − 1 ∈ supp(qr).
Moreover, if ⌊n

2
⌋ ≥ br,i−1, then our conditions ensure that br,i−1 is the least

element of E(π0,...,π2n+1) ∩ supp(qr) which is the same as the least element of
E ∩ supp(qr). It follows that for each p = c(q) ∈ Dri, E ∩ supp(q) 6= ∅ and
hence i /∈ CE(∅). Thus we have shown that i /∈ E implies that i /∈ CE(∅).
This means that CE(∅) ⊆ E.

Next, suppose that i ∈ E. Then π2i = 1 and π2i+1 =< ui, wi > where
ui =< p, z > and p = c(q) ∈ Dri for some minimal proof scheme of i.
Moreover, if p is the kth element of Dri, then k = 1 implies that z = 0
and k > 1 implies that z =< z1, . . . , zk−1 > where Dri = {c(q1) < . . . <
c(qk−1) < c(q) < . . .} and zi ∈ supp(qi), for i = 1, . . . , k − 1. The fact that
δn = (π0, . . . , π2n+1) ∈ T

⋆ for all n ≥ i implies that Eδn∩supp(q) = ∅ for all n
by condition (6). Hence E ∩ supp(q) = ∅, and q shows that i ∈ CE(∅). Thus
E ⊆ CE(∅) and so the equality E = CE(∅) holds. Thus E is an extension of
〈U,N〉. Moreover, if k > 1 and m = max{z1, . . . , zk−1}, then the fact that
δm = (π0, . . . , π2m+1) ∈ T ⋆ for all m implies that for i < k, zi is the least
element of E ∩ supp(qi) by condition (6). It then easily follows that π = πE
as desired. 2

Corollary 9.10 If 〈〈U,N〉, C(N)〉 is a highly recursive extended nonmono-
tonic rule system such that E(〈U,N〉) 6= ∅, then there is an extension E of
〈U,N〉 and a set B ∈ Π1

1 such that E ≤T B.

44

Proof: Kleene, see [Rog67], Theorem XLII(a), proved that for any nonempty
Π0

1 class C, C ∩ {A : ∃B∈Π1
1
(A ≤T B)} 6= ∅. Our result then follows by letting

C = [T ⋆] for T ⋆ corresponding to 〈〈U,N〉, C(N)〉 as constructed in the proof
of Theorem 9.9. Thus there exists a path π ∈ [T ⋆] and a set B ∈ Π1

1 such
that π ≤T B. But then Eπ ≤T π ≤T B. 2

Corollary 9.11 If 〈〈U,N〉, C(N)〉 is an recursive extended nonmonotonic
rule system such that 〈U,N〉 has a unique extension E, then E is hyperarith-
metic.

Proof: Clearly, if a recursive tree T has a unique path, then this path is
hyperarithmetic. Let T ⋆ be the recursive tree constructed for 〈〈U,N〉, C(N)〉
in the proof of Theorem 9.9. Then T ⋆ has exactly one infinite path (which
is πE, where E is the unique extension of 〈U,N〉. But E ≤ πE, and since
πE is hyperarithmetic, so is E, as the set of all hyperarithmetic sets is closed
under Turing reducibility. 2

Our next result will show that Theorem 9.9 cannot be strengthened to
ensure that for any recursive ENRS S = 〈U,N〉 there exists a recursive tree T
such that there is an effective, one-to-one degree-preserving correspondence
between E(S) and [T] (as is the case of Theorem 8.3 for nonmonotonic rule
systems). We are indebted to the referee of the earlier version of this paper
for suggesting the next theorem and for outlining an infinite injury priority
argument for its proof. We shall not present the referee’s proof but instead
present a much simpler “wait-and-see” argument for the same result.

Theorem 9.12 There exists a recursive extended nonmonotonic rule system
S = 〈U,N〉 such that there is no recursive tree T ⊆ ω<ω such that there is an
effective one-to-one degree-preserving correspondence between E(S) and [T].

Proof: The universe of our extended nonmonotonic rule system will be the
set of natural numbers ω = {0, 1, 2, . . .}. We will construct S so that S has
no recursive extensions. This will ensure that there can be no effective 1:1
degree preserving correspondence between E(S) and [T] if T has a recursive
path.

45

It is well known that for every recursive tree T there is a primitive re-
cursive tree T ′ such that T and T ′ have the same sets of infinite paths, i.e
[T] = [T ′]. Thus it will be enough to show that there is no primitive recursive
tree T ′ such that there is an effective 1:1 degree preserving correspondence
between E(S) and [T ′] for any primitive recursive tree T ′.

Let T0, T1, . . . be such effective list of all primitive recursive trees contained
in ω<ω. Then, in order to ensure that there is no effective one-to-one degree-
preserving correspondence between E(S) and [T] for any recursive tree T ,
it is enough to meet the following set of requirements. (Here <,> denotes
some recursive bijection between ω × ω and ω.)

R<e,n>

(i) [Tn] has a recursive element, or

(ii) There is an extension E of S such that ϕEe is not total, or

(iii) There is an extension E of S such that ϕEe /∈ [Tn].

Notice that since we construct S which has no recursive extensions, there
cannot be a one-to-one, degree-preserving correspondence between E(S) and
any [T] satisfying (i).

In order to specify a recursive extended nonmonotonic rule system we
must formally introduce codes for all the rules in N . We shall not construct
the coding function explicitly. However, throughout the construction of S,
the rules of N will be constructed in such a way that it will be clear that
each rule of N will have a recursive set as its set of constraints. It will then
be obvious that an appropriate coding function can be constructed to show
that S is a recursive extended nonmonotonic rule system.

The set of rules of N will be constructed in stages. We shall start by
adding four classes of rules to N . The purpose of our first three classes of
rules is to ensure that each extension E of S has exactly one even number in
it. We shall ensure that no other rules of S has an even number either as a
premise or as a conclusion. Thus remaining rules of S can have no effect on
the membership of an even number in an extension. Let Ev = {0, 2, 4, . . .}
denote the set of even numbers.

46

1.
: Ev

2n
for all n ≥ 0.

2.
: Ev \ {2n}

2n
for all n ≥ 0.

3.
2n, 2m :

2p
for all m,n, p where m 6= n.

Let us consider the effect of these three collections of rules on an extension
E of the S. The rules in (1) imply that if there is no even number in E, then
all even numbers are in clE(∅). Therefore every extension will have at least
one even member. Next, the rules in (3) imply that if E contains at least
two even numbers, then it contains all even numbers. However in that case
the rules in (1) and (2) are blocked for E so they cannot be used to generate
any even number into clE(∅). The rules in (3) cannot be used to generate
elements in clE(∅) until at least two distinct even numbers have been derived
in clE(∅). Since the rules in (1), (2), and (3) are the only rules which have
even numbers as their conclusion, it would follow that there would be no
even numbers in clE(∅) which contradicts the fact that E is an extension.
Thus any extension must contain exactly one even number. Now if 2n is the
only even number in E, then the rules of (2) show that 2n ∈ clE(∅). Thus
the rules in (1), (2) and (3) plus the fact that no other rules in N will have
an even number as its conclusion imply that we will be able to decompose
the set of extensions E(S) into pairwise disjoint sets E0(S), E2(S), . . . where
E2n(S) = {E ∈ E(S) : 2n ∈ E}.

Our idea is to use the set of extensions E2<e,n>(S) to help us meet require-
ment R<e,n>. For each < e, n >, we shall construct a set of rules N2<e,n> all
of which have the set Ev\{2 < e, n >} contained in their constraint set. Note
that if k 6=< e, n >, then such rules will all be blocked for any E ∈ E2k(S) so
that the set of rules N2<e,n> will have no effect on the possible extensions in
E2k(S). Thus the rules of the type (1), (2) and (3) plus the form of the rules
in N2<e,n> allow us to break up the problem of meeting the requirements
R<e,n> into a set of requirements which have no interaction with each other.

We shall construct the rules N2<e,n> in stages so that E2<e,n>(S) consists
of a single recursively enumerable, nonrecursive extension E2<e,n> such that
either

47

I2<e,n>: ϕ
E2<e,n>
e is not total, or

II2<e,n>: ϕ
E2<e,n>
e /∈ [Tn], or

III2<e,n>: [Tn] contains a recursive element.

Let Odd denote the set of odd numbers and partition Odd into three
infinite recursive sets Q,S, and Z. Let A be some recursively enumerable
nonrecursive, subset of ω and let f be a recursive injection whose range is A.
Finally, let 〈qn : n ∈ ω〉, 〈sn : n ∈ ω〉 be increasing enumerations of Q and S.
The set Z will be further partitioned below.

Our fourth class of rules will be partitioned into infinitely many classes
{(4)2k}k≥0 where for all e and n, (4)2<e,n> ⊆ N2<e,n>.

(4)2<e,n> r2<e,n>
s =

: (Ev \ {2 < e, n >}) ∪ {s0} ∪ (S \ {s0, . . . , sg(s)})

qf(s)

for s = 0, 1, . . . where g(s) is some recursive function which ensures
that the codes c(r2<e,n>

s) satisfy

c(r<e,n>0) < c(r<e,n>1) < c(r<e,n>2) <

Note that since there are infinitely many rules of the form:

: (Ev \ {2 < e, n >}) ∪ {s0} ∪ (S \ {s0, . . . , sk})

qf(s)

we can easily construct a recursive function g with the required properties
and hence ensure that that the set of rules in (4)2<e,n> will be a recursive set
of rules.

The rules in the class (4)2<e,n> are designed to ensure that the extension
E2<e,n> will be of the form

{2 < e, n >} ∪ {qi : i ∈ A} ∪K

where K is some recursive subset of Z if we fail to satisfy either of the
conditions I2<e,n> and II2<e,n>. The exact role of this class of rules will
become clear after we describe our attempt to satisfy conditions I2<e,n> and
II2<e,n>.

48

Our strategy for satisfying condition I2<e,n> or II2<e,n> is as follows. First
we partition Z into infinitely many pairwise disjoint infinite recursive sets
Z0, Z1, For each i, let Zi = {z0,i : i < ω} be an increasing enumeration
of Zi. If we are successful in satisfying condition I1<e,n> or II2<e,n>, then
E2<e,n> will be of the form {2 < e, n >, s0} ∪ P where P is some recursively
enumerable nonrecursive subset of Z.

Given a finite sequence σ = 〈σ0, σ1, . . . , σp〉 of zeros and ones, we shall
regard σ as specifying a finite set Bσ = {i : i ≤ p ∧ σi = 1}. We shall say
that such σ is 2 < e, n >-compatible if

{2 < e, n >, s0} ⊆ Bσ ⊆ Z ∪ {2 < e, n >, s0}

Thus if σ is 2 < e, n >-compatible, then |σ| > max(2 < e, n >, s0). Let
η0, η1, . . . be an effective list of all 2 < e, n >-compatible sequences in which
every 2 < e, n >-compatible sequence occurs infinitely many times. Our idea
is to process each finite sequence in this list in the stages of our construction
of the set of rules N2<e,n>.

Stage 0 of the construction of N2<e,n>.
Suppose that the sequence η0 is 〈σ0, . . . , σp〉. Let γ0

0 , γ
0
1 , . . . be an effective

enumeration of all 2 < e, n >-compatible sequences of zeros and ones which
extend η0. Then consider the following sets of rules:

(A0) r2<e,n>
i,0 =

: (Ev \ {2 < e, n >}) ∪ (Z0 \ {0, . . . , p})

i
for each i such that 1 ≤ i ≤ p such that σi = 1.

(B0) b2<e,n>0 =
: (Ev \ {2 < e, n >}) ∪ (Z0 \ {0, . . . , p})

s0

(C0) a2<e,n>
s,0 =

: (Ev \ {2 < e, n >}) ∪ (Z0 \ ({0, . . . , p} ∪ {z0,0, . . . zh0(s),0}))

z1+p+f(s),1

for each s ≥ 0. Here h0 is a recursive function that ensures that

c(a2<e,n>
0,0) < c(a2<e,n>

1,0) < c(a2<e,n>
2,0) < . . .

so that the rules in (C0) form a recursive set of rules.

49

Note that if N2<e,n> consisted only of the rules in (4)2<e,n> plus (A0), (B0)
and (C0), then there would be a unique extension E in E2<e,n>(S), namely,

E = {2 < e, n >, s0} ∪Bη0 ∪ {z1+p+i,1 : i ∈ A}.

That is, clearly, no element of Z0\Bη0 can be a member of an extension since
there would be no rule in N2<e,n> whose conclusion is in Z0 \Bη0 . Thus the
rules in (A0), (B0), and (C0) would force Bη0 ∪ {z1+p+i,1 : i ∈ A} ∪ {s0} in
E. The presence of s0 in E would ensure that none of the rules in (4)2<e,n>

are E-applicable so that

E = {2 < e, n >, s0} ∪Bη0 ∪ {z1+p+i,1 : i ∈ A}

is the only possible extension. It is then straightforward to check that E =
clE(∅) so that E is an extension in this case. Thus E is the unique extension in
E2<e,n>(S) in this case. Moreover, E is nonrecursive since A is a nonrecursive
recursively enumerable set.

Our strategy is to attempt to add the rules in (A0), (B0), and (C0) to
N2<e,n> in substages. At the substage 0 of stage 0, we add the rules in (A0)
and ((B0) to N2<e,n>. At substage s > 0 of stage 0, we add the rule a2<e,n>

s−1,0

to N2<e,n> only if there is no t ≤ s such that if we compute ϕ
B

γ0
0

e,t (0), . . . ,

ϕ
B

γ0
t

e,t (0) then for some j ≤ t, ϕ
B

γ0
j

e,t (0) converges and Bγ0
j
⊆ {2 < e, n >

, s0} ∪ Bη0 ∪ {z1+p+f(r),1 : r < t − 1}. Here we say that ϕCe,t(x) converges if
the e-th oracle machine with the input x and the oracle C gives an output
in t or fewer steps. We also define the use of a convergent computation
ϕCe (x), use(C, e, x), to be the maximum of {0} ∪ {h : h is a query to the
oracle C in the computation of ϕCe (x)}. Clearly, if ϕCe,s(x) converges, then
use(C, e, x) ≤ s.

If we are successful in adding a2<e,n>
s−1,0 to N2<e,n> at each substage s > 0

of stage 0, then we will have ensured that E as described above is the only
extension of E2<e,n>(S) and that ϕEe (0) is not defined. Thus we would satisfy
the requirement R<e,n>.

So suppose that s is the least substage of stage 0 at which we cannot add
a2<e,n>
s−1,0 to N2<e,n>. Then we have two cases.

50

Case 1. There is some γ0
j where j ≤ s and

Bγ0
j
⊆ {2 < e, n >, s0} ∪Bη0 ∪ {z1+p+f(r),1 : r < s}

where 〈ϕ
B

γ0
j

e,s (0)〉 /∈ Tn. In this case we pick the least k ∈ Z0 such that
k > max(s, |γ0

j |+ 2) and the rule

: Ev \ {2 < e, n >}

k

has a code which is strictly larger than the code of any rule in (A0), (B0), or
{a2<e,n>

t,0 : t < s} and k is in the constraint set of all the rules in (A0), (B0),

and {a2<e,n>
t,0 : t < s}. If k0 is the least such k then we add

p0 =
: Ev \ {2 < e, n >}

k0

to N2<e,n>. Note that the rule p0 ensures that k0 ∈ E for any extension E of
E2<e,n>(S) and has the effect of killing all the rules we have added to N2<e,n>

up to this point at the stage 0 in the sense that they will not be E-applicable
for any E ∈ E2<e,n>(S). We then add the following set of rules to N2<e,n>.
Let γ0

j = 〈β0, . . . , βq〉.

(A0,1) r2<e,n>
i,0,1 =

: (Ev \ {2 < e, n >}) ∪ (Z2 \ {0, . . . , q})

i
for each i such that 1 ≤ i ≤ q such that βi = 1.

(B0,1) b2<e,n>0,1 =
: (Ev \ {2 < e, n >}) ∪ (Z2 \ {0, . . . , q}))

s0

(C0,1) For each r ≥ 0

a2<e,n>
r,0,1 =

: (Ev \ {2 < e, n >}) ∪ (Z2 \ ({0, . . . , q} ∪ {z0,q, . . . zh1(r),2}))

zk0+f(r),3

where h1 is a recursive function which ensures that

c(a2<e,n>
0,0,1) < c(a2<e,n>

1,0,1) < c(a2<e,n>
2,0,1) < . . .

so that the rules in (C0,1) form a recursive set.

51

In this case we can argue almost exactly as we did above that there is a
unique extension in E2<e,n>(S), namely

E2<e,n> = {2 < e, n >, s0, k0} ∪ {zk0+i,3 : i ∈ A} ∪Bγ0
j
.

Note that since i ≤ zi,3 and hence k0 ≤ zk0+i,3 for all i,

E2<e,n> ∩ {0, . . . , k0 − 1} = Bγ0
j
∩ {0, . . . , k0 − 1}.

Since use(Bγ0
j
, e, 0) < k0, it follows that ϕ

B
γ0
j

e (0) = ϕ
E2<e,n>
e (0). Thus we have

ensured that since 〈ϕ
B

γ0
j

e (0)〉 /∈ Tn, either ϕ
E2<e,n>
e is not total or ϕ

E2<e,n>
e /∈

[Tn].

In the first two situations, i.e. where we are able to add a2<e,n>
s,0 to N2<e,n>

for each s ≥ 0 or where we fail to do this and end up in case 1, we do not
add any more rules to N2<e,n>, and we do not go to the next stage. In both
these situations E2<e,n>(S) will consist of a single, recursively enumerable
nonrecursive extension and one of the conditions I2<e,n> or II2<e,n> will hold.

Case 2. We assume that the assumptions of Case 1 do not hold.

In this case, there is a γ0
j extending η0 such that ϕ

B
γ0
j

e (0) is defined and

〈ϕ
B

γ0
j

e (0)〉 ∈ Tn. Then we pick the least k ∈ Z0 such that k > max(s, |γ0
j |+2)

and the rule
: Ev \ {2 < e, n >}

k

has a code which is strictly larger than the code of any rule in (A0), (B0), or
{a2<e,n>

t,0 : t < s} and k belongs to the constraint set of all the rules in (A0),

(B0), and {a2<e,n>
t,0 : t < s}. If k0 is the least such k, then we add the rule

p0 =
: Ev \ {2 < e, n >}

k0

to N2<e,n> and go onto the Stage 1. As before the effect of adding of the rule
p0 toN2<e,n> is that it ensures that k0 belongs to every extension of E2<e,n>(S)
and hence none of the rules added toN2<e,n> up to this point in stage 0 are E-
applicable for any E ∈ E2<e,n>(S). Thus in Case 2, we essentially negate the
effect of all rules added to N2<e,n> at stage 0 except for p0 for any extension

52

of E2<e,n>(S). The rule p0 forces k0 to be in all extensions of E2<e,n>(S). We
also know that there is at least one 2 < e, n >-compatible extension γ of η0

such that ϕBγ
e (0) is defined, 〈ϕBγ

e (0)〉 ∈ Tn, and use(Bγ, e, 0) < k0. Thus if

δ0 is a sequence of length k0 + 1 such that Bδ0 = {k0} ∪ Bγ, then ϕ
Bδ0
e (0) is

defined, 〈ϕ
Bδ0
e (0)〉 ∈ Tn, δ0 is 2 < e, n >-compatible sequence extending η0,

and use(Bδ0 , e, 0) < |δ0| so that ϕ
Bδ0
e (0) = ϕBη

e (0) for all η extending δ0.

The structure of stage s of our construction is essentially the same as
stage 0. That is, if we get to stage s, we assume that we defined integers
k0 < . . . < ks−1 where for each i < s, ki ∈ Zi, and we have added rules

pi =
: Ev \ {2 < e, n >}

ki

which have the effect of ensuring that any other rules added to N2<e,n> at
stages 0, . . . , s−1 are not applicable for any E ∈ E2<e,n>(S). Since we added
only finitely many rules to N2<e,n> at stages 0, . . . , s − 1, we can compute
the maximum of the codes of all the rules added at the stages 0, . . . , s − 1.
We denote this number by ms.

Stage s > 0 of the construction of N2<e,n>.
Suppose ηs = 〈σ0, . . . , σp〉.

If there is a ki with i < s such that ki + 1 ≤ |ηs| and ki /∈ Bηs
, then let ks

be the least k ∈ Zs such that k > ks−1 and the code of the rule

pk =
: Ev \ {2 < e, n >}

k

is strictly bigger than the code of any rule added to N2<e,n> at stages
0, . . . , s− 1. In this case we add pks

to N2<e,n> and go directly to the stage
s+ 1. Otherwise, proceed as follows:

Let γs0, γ
s
1, . . . will be an effective list of all 2 < e, n >-compatible se-

quences γ such that the length of γ is greater or equal than ks−1 + 1, γ
extends ηs, and {k0, . . . , ks−1} ⊆ Bγ .

Consider the following sets of rules:

53

(As) r2<e,n>
i,s =

: (Ev \ {2 < e, n >}) ∪ (Z0 \ ({0, . . . , p} ∪ {z0,s, . . . , zui,s}))

i
for each i such that 1 ≤ i ≤ p such that σi = 1. Here u0, . . . , up are
chosen so that ms < c(r2<e,n>

i,s).

(Bs) b2<e,n>s =
: (Ev \ {2 < e, n >}) ∪ (Zs \ ({0, . . . , p} ∪ {z0,s, . . . , zv,s}))

s0

where v is selected so that c(b2<e,n>s) is larger than the code of any rule
in As. Note As is not empty since s0 and 2 < e, n > are Bηs

(Cs) a2<e,n>
t,s =

: (Ev \ {2 < e, n >}) ∪ (Zs \ ({0, . . . , p} ∪ {z0,s, . . . zh2s(t),s}))

z1+ks−1+f(t),s+1

for each t ≥ 0. Here h2s is a recursive function that ensures that

c(b2<e,n>s) < c(a2<e,n>
0,s) < c(a2<e,n>

1,s) < c(a2<e,n>
2,s) < . . .

so that the rules in (Cs) form a recursive set of rules.

We can then argue exactly like in stage 0 that if N2<e,n> consisted of the
rules in (4)2<e,n> plus the rules added at the stages 0, . . . , s−1 plus the rules
in (As), (Bs), and (Cs), then E2<e,n>(S) consists of a unique extension E
where

E = {2 < e, n >, s0, k0, . . . , ks−1} ∪Bη0 ∪ {z1+ks−1+i,s+1 : i ∈ A}

Once again we attempt to add the rules in (As), (Bs), and (Cs) in substages.
At substage 0 of stage s, we add the rules (As) and (Bs) to N2<e,n>. At
substage t > 0 of stage s, we add a2<e,n>

t−1,s only if there is no j ≤ t such that

if we compute ϕ
Bγs

j

e,t (0), . . . , ϕ
Bγs

j

e,t (s), then ϕ
Bγs

j

e,t (i) converges for i = 0, . . . , s,

Bγs
j
⊆ {2 < e, n >, s0, k0, . . . ks−1} ∪Bηs

∪ {zf(q),s+1 : q < r − 1},

and kl ∈ Bγs
j

for l < s.

If we are successful in adding a2<e,n>
t−1,s to N2<e,n> at each substage t of

stage s, then we will have ensured that E as described above is the only
extension of E2<e,n>(S). Moreover, we will have ensured that it is not the
case that ϕEe (i) is defined for all i ≤ s. Thus we would automatically satisfy
requirement R<e,n>.

54

If we are not successful in adding in adding a2<e,n>
r,s to N2<e,n> for all

r > 0, let t be the least substage for which we cannot add a2<e,n>
t−1,s to N2<e,n>.

As before we have two cases.

Case 1: There is a sequence γsj which extends ηs such that j ≤ t, ϕ
Bγs

j

e,t (0), . . . , ϕ
Bγs

j

e,t (s)

are all defined, 〈ϕ
Bγs

j

e,t (0), . . . , ϕ
Bγs

j

e,t (s)〉 /∈ Tn,

Bγs
j
⊆ {2 < e, n >, k0, . . . , ks−1} ∪Bηs

∪ {zf(r),s : r < t− 1},

and ki ∈ Bγs
j

if i < s. In this case we pick the least k ∈ Zs such that the rule

: Ev \ {2 < e, n >}

k

has a code which is strictly larger than the code of any rule added to N2<e,n>

at stages 0, . . . , s up to this point, k > max(t, ks−1, |γ
s
j |+ 2), and k is in the

constraint set of all rules in (As), (Bs), and {a2<e,n>
r,s : r < t}. If ks is the

least such k, then we add

ps =
: Ev \ {2 < e, n >}

ks

to N2<e,n>. Note that the rule ps ensures that ks ∈ E for any extension in
E2<e,n>(S) and hence none of the rules we have added to N2<e,n> at the stage
s other than ps will be applicable for any E ∈ E2<e,n>(S). We then add the
following set of rules to N2<e,n>. Let γsj = 〈β0, . . . βq〉.

(As,1) r2<e,n>
i,s,1 =

: (Ev \ {2 < e, n >}) ∪ (Zs+2 \ ({0, . . . , q} ∪ {z0,s+2, . . . , zui,s+2}))

i
for each i such that 1 ≤ i ≤ q such that βi = 1 where ui is chosen so
that c(r2,<e,n>

i,s,i) is larger than the code of any rule added to N2<e,n> at
stages 0, . . . , s up to this point.

(Bs,1) b2<e,n>s,1 =
: (Ev \ {2 < e, n >}) ∪ (Zs+2 \ ({0, . . . , q} ∪ {z0,s+2, . . . , zv,s+2}))

s0

where v is chosen so that c(b2<e,n>s,1) is larger than the code of any rule
in (As,1). Note As,1 is not empty since s0 and 2 < e, n > are in Bγs

j
.

55

(Cs,1) For each r ≥ 0,

a2<e,n>
r,s,1 =

: (Ev \ {2 < e, n >}) ∪ (Zs+2 \ ({0, . . . , q} ∪ {z0,s+2, . . . zh2s+1(r),s+2}))

z1+ks+f(r),s+3

where h2s+1 is a recursive function which ensures that

c(b2<e,n>s,1 < c(a2<e,n>
0,s,1) < c(a2<e,n>

1,s,1) < c(a2<e,n>
2,s,1) < . . .

so that the rules in (Cs,1) form a recursive set.

In this case we can argue as we did in stage 0 that there is a unique
extension in E2<e,n>(S), namely

E2<e,n> = {2 < e, n >, s0, k0, . . . , ks} ∪ {z1+ks+i,s+3 : i ∈ A} ∪Bγs
j
.

Moreover since 〈ϕ
Bγs

j
e (0), . . . , ϕ

Bγs
j

e (s)〉 /∈ Tn, then it will be the case that

either ϕ
E2<e,n>
e is not total or ϕ

E2<e,n>
e /∈ [Tn].

Once again, if we are in the first two situations at stage s, i.e. where we
are able to add a2<e,n>

t,s to N2<e,n> for each t ≥ 0 or where we fail to do this
and end up in case 1, we do not add any more rules to N2<e,n>, and we do
not go to the next stage. In both these situations, E2<e,n>(S) will consist
of a single recursively enumerable nonrecursive extension E2<e,n> and either

ϕ
E2<e,n>
e is not total or ϕ

E2<e,n>
e /∈ [Tn].

Case 2: The assumptions of Case 1 do not hold.
In this case there must be a sequence γsj extending ηs such that

(i) |γsj | ≥ ks−1 + 1,

(ii) {2 < e, n >, s0, k0, . . . , ks−1} ⊆ Bγs
j
,

(iii) ϕ
Bγs

j

e,t (i) is defined for i = 0, . . . , s, and

(iv) 〈ϕ
Bγs

j

e,t (0), . . . , ϕ
Bγs

j

e,t (s)〉 ∈ Tn .

Then we pick the least k ∈ Zs such that k > max(t, ks−1, |γ
s
j |+ 2), the rule

: Ev \ {2 < e, n >}

k

56

has a code which is strictly larger than the code of any rule that we have
added to N2<e,n> at stages 0, . . . , s up to this point. If ks is the least such k,
then we add

ps =
: Ev \ {2 < e, n >}

ks

to the set N2<e,n> and go to stage s + 1. Note that in this case, if we
let δs be the string of length ks such that Bδs = {ks} ∪ Bγs

j
, then {2 <

e, n >, s0, k0, . . . , ks} ⊆ Bδs , δs extends ηs, and ϕ
Bδs
e (i) = ϕ

Bγs
j

e (i) for i ≤ s
since for each such i, Bδs and Bγs

j
agree up to use(Bγs

j
, e, i). Thus, since

|Bδs | − 1 ≥ use(Bγs
j
, e, i) for all i ≤ s, any sequence η which extends δs will

have ϕBδ
e (i) = ϕ

Bγs
j

e (i) for all i ≤ s.

Finally we consider the situation where we complete all the stages s ≥ 0.
In this situation, it is easy to see that we add a finite number of rules to
N2<e,n> at each stage s and our construction ensures that the codes of all
the rules added to N2<e,n> at stage s + 1 are larger than the codes of rules
added to N<e,n> at stage s. This fact ensures that N2<e,n> is a recursive set
of rules. The rules p0, p1, . . . force that K = {k0, k1 . . .} is a subset of any
extension E ∈ E2<e,n>(S) and no other rules added to N2<e,n> during stages
0, 1, . . . are E-applicable. The rules in (4)2<e,n>, then show that there is a
unique extension E2<e,n> of E2<e,n>(S) where

E2<e,n> = {2 < e, n >} ∪K ∪ {qi : i ∈ A}.

It is easy to see that our construction ensures that k0 < k1 < . . . is an
recursively enumerable increasing sequence so that K is a recursive set and
therefore E2<e,n> is a recursively enumerable set nonrecursive set.

Moreover, in this case, we know that for any s and any 2 < e, n >-
compatible sequence 〈ηj〉j∈ω such that kj ∈ Bηj

whenever ki + 1 < |ηj|, there
is a 2 < e, n >-compatible sequence γ extending ηj such that

(a) ϕBγ
e (i) is defined for i = 0, . . . , s,

(b) 〈ϕBγ
e (0), . . . , ϕBγ

e (s)〉 ∈ Tn,

(c) ki ∈ Bγ whenever ki + 1 ≤ |γ|, and

57

(d) use(Bγ, e, i) ≤ |γ| − 1 for i = 1, . . . , s.

This fact allows us to define an effective infinite sequence of strings of 0 and
1’s, γ0 ⊑ γ1 ⊑ . . . as follows. Let γ0 = 〈β0, . . . , βmax(s0,2<e,n>)〉 be a string of
0’s and 1’s such that βi = 1 iff i ∈ {s0, 2 < e, n >}. By our construction, we

can find a 2 < e, n >-compatible string γ1 extending γ0 such that ϕ
Bγ1
e (0)

is defined, 〈ϕ
Bγ1
e (0)〉 ∈ Tn, use(Bγ1,e,0) ≤ |γ1| − 1, and ki ∈ Bγ1 whenever

ki + 1 ≤ |γ1|. Now assume that we have defined a sequence of 2 < e, n >-
compatible strings

γ0 ⊑ γ1 ⊑ . . . ⊑ γs

such that for all j ≤ s,

(i) γj is 2 < e, n >-compatible,

(ii) ki ∈ Bγj
whenever ki + 1 ≤ |γj|,

(iii) ϕ
Bγj
e (i) is defined for i = 0, . . . , j − 1,

(iv) 〈ϕ
Bγj
e (0), . . . , ϕ

Bγj
e (j − 1)〉 ∈ Tn, and

(v) use(Bγj
, e, i) ≤ |γj| − 1 for all i ≤ j − 1.

Then by our construction we can find a 2 < e, n >-compatible string γs+1

extending γs such that

(a) ki ∈ Bγs+1
whenever ki + 1 ≤ |γs+1|,

(b) ϕ
Bγs+1
e (i) is defined for i = 0, . . . , s,

(c) 〈ϕ
Bγs+1
e (0), . . . , ϕ

Bγs+1
e (s)〉 ∈ Tn, and

(d) use(Bγs+1
, e, i) ≤ |γs+1| − 1 for all i ≤ s.

It then follows that if we define πs = ϕ
Bγs+1
e (s), then 〈π0, π1, . . .〉 is an infinite

recursive path through Tn and hence [Tn] has a recursive element.

58

It is easy to see that {N2<e,n>}e,n∈ω is an effective sequence of recursive
sets and hence with an appropriate coding function c one can easily show
that N =

⋃

e,n∈ωN2<e,n> is also recursive. Thus S = 〈ω,N〉 is a recursive
ENRS for which there is no recursive tree T ⊆ ω<ω such that there is an
effective 1:1 correspondence between E(S) and [T]. 2

We note that the infinite injury priority argument suggested by a referee
constructs a recursive ENRS S satisfying Theorem 9.12 which has a unique
extension. However we shall not give that construction here. We do note
that the system S we constructed in Theorem 9.12 has the property that all
the extensions of S have the same Turing degree, namely the degree of A.

10 Lω1,ω characterization of extensions of ex-

tended nonmonotonic rule systems

In this section we will give a logical characterization of extensions for certain
extended nonmonotonic rule systems. This characterization uses the infini-
tary logic Lω1,ω. The results we obtain here are similar to ones found in
[MNR92a].

We will be interested in characterization of extensions of extended non-
monotonic rule systems 〈U,N〉 where both U and N are denumerable. Notice
that for (nonextended) nonmonotonic rule systems, N is denumerable if U
is denumerable. But now, for extended nonmonotonic rule systems, it is no
longer the case that U being denumerable forces N to be denumerable. In-
deed in such cases we can only conclude that |N | ≤ 2|U |. We will consider
only the case when |N | ≤ ω.

Our point of departure is the observation that although the restraints
of the rules are now possibly infinite, the S-proofs and proof schemes are
still finite. Moreover, the relationship ≺ between proof schemes is still well-
founded. Thus there is a minimal proof scheme of x ∈ U below each proof
scheme for x. However there is a subtle difference between the present sit-
uation, extended nonmonotonic rule systems, and the previous one for non-
monotonic rule systems with rules admitting only finite restraints. In this

59

latter case, we not only could find a minimal proof scheme for each a ∈ U
which is the conclusion of some minimal proof scheme (as is also the case in
the present situation) but in addition, given a support Z of a proof scheme
for a, we could find a minimal proof scheme p′ for a such that supp(p′) = Z ′

where Z ′ ⊆ Z and Z ′ is a minimal set with this property. This is no longer
the case for extended nonmonotonic rule systems.

Example 10.1 Let U = {b0, b1, . . . , } and define ri = :Zi

b0
where Zi =

{bi+1, bi+2, . . . }. Then each 〈〈b0, ri, Zi〉〉 is proof scheme for b0. Each Zi is a
support for one such scheme, but there is no proof scheme with empty support
for b0.

However, the fundamental result for proof schemes (Proposition 6.2) is
true, and we state a version of it suitable for our considerations.

Proposition 10.1 Let 〈U,N〉 be an extended nonmonotonic rule system,
and let a ∈ U . Let M be an extension of 〈U,N〉.

1. Let s be a proof scheme for a and suppose supp(p) = S. Then if
S ∩M = ∅, a ∈M .

2. Conversely, if a ∈ M , then there exists a proof scheme s such that
supp(s) ∩M = ∅.

Proof: Part 1 is proved by induction on the length of scheme s. Part 2 is
proved by induction on the length of M -proofs of elements of M . 2

In the case we are considering in this section where we assume that both
U and N are denumerable, the set of all proof schemes for 〈U,N〉 is denumer-
able. Thus, for every a ∈ U the set Sa of all proof schemes with conclusion
a is denumerable. Consequently, the set Za of supports of all proof schemes
in Sa is denumerable.

Now for every u ∈ U , let cu be a new constant. Let L∞ be the propo-
sitional language of Lω1, ω generated by all constants cu. Thus L∞ is the
least language containing all constants cu and closed under negation and
denumerable disjunctions and denumerable conjunctions.

60

We define the satisfaction relation |= between subsets of U and formulas
of L∞ as follows:

Definition 10.2 1. M |= cu if u ∈M

2. M |= ¬ψ if M 6|= ψ

3. M |=
∧

i∈I ψi if for all i ∈ I M |= ψi

4. M |=
∨

i∈I ψi if for some i ∈ I M |= ψi

Given Z ⊂ U , define a formula outZ as

∧

u∈Z

¬cu.

Given a ∈ U , let ϑa denote the formula

∨

Z∈Za

outZ .

Since Za is denumerable for every a ∈ U , ϑa is in L∞ for each a ∈ U . Next
we let chara denote the formula

ca ⇔ ϑa.

Finally, we let charU,N denote the formula

∧

a∈U

chara.

We then have the following logical characterization of extensions of 〈U,N〉.

Theorem 10.3 Let 〈U,N〉 be an extended nonmonotonic rule system such
that both U and N are denumerable and let charU,N be the sentence of L∞

defined above. Then M ⊆ U is an extension of 〈U,N〉 if and only if M |=
charU,N .

Proof: We use Propositions 6.2 and 10.1. First, suppose that M is an ex-
tension of 〈U,N〉. Then if a ∈ M , there exists some proof scheme p with

61

conclusion a which is admitted by M . Thus if Z = supp(p), then M ∩Z = ∅
and hence M |= outZ . Therefore M |=

∨

Z∈Za
outZ . Moreover M |= ca (since

a ∈ M). Therefore M |= chara. Now if a /∈ M , then since M is an ex-
tension of 〈U,N〉, M ∩ supp(s) 6= ∅ for every proof scheme s for a. Thus if
Z = supp(s) where s is a proof scheme for a, then M |= ¬outZ . It then fol-
lows that the formula

∨

Z∈Za
outZ is false in M . But ca is also false in M and

hence M |= chara. Thus M |= chara for all a ∈ U and hence M |= charU,N .

Conversely, if M |= charU,N , then for all a ∈ U , M |= chara. By analyzing
the form of chara, it is easy to see that whenever a ∈M , there is some proof
scheme for a which is admitted by M , and when a /∈ M , then there is no
proof scheme for a which is admitted by M . Therefore M is an extension of
〈U,N〉. 2

References

[Apt90] K. Apt. Logic programming, In: J. van Leeuven, ed, Handbook of
Theoretical Computer Science, pages 493–574, MIT Press, Cam-
bridge, MA”, 1990.

[AvE82] K.R. Apt and M.H. van Emden. Contributions too the theory of
logic programming. Journal of the ACM., 29:841–862, 1982.

[Bat89] A. Batarekh. Topological Aspects of Logic Programming. Ph. D.
dissertation, University of Syracuse, 1989.

[BF91] N. Bidoit and Ch. Froidevaux. General logical databases and
programs: Default logic semantics and stratification. Information
and Computation, 91:15–54, 1991.

[Bir35] G. Birkhoff. On the structure of abstract algebras. Proceedings
of the Cambridge Philosophical Society, 31:433–454, 1935.

[BBS89] H.A. Blair, A.L. Brown, V.S. Subrahmanian. Monotone Logic
Programming. In: Intentional Logics for Programming, L. Farinas
del Cerro and M. Penttonen, eds, pages 1–22, Oxford Univ. Press,
1992.

62

[Che80] B.F. Chellas. Modal logic, an introduction. Cambridge University
Press, 1980.

[Cla78] K.L. Clark. Negation as failure. In H. Gallaire and J. Minker,
editors, Logic and data bases, pages 293–322. Plenum Press, 1978.

[Clo85] P. Clote. On recursive trees with a unique infinite branch. Pro-
ceedings of the American Mathematical Society, 93:335–342, 1985.

[Doy79] J. Doyle. A truth maintenance system. Artificial Intelligence,
12:231–272, 1979.

[Ell74] E. Ellentuck A new proof that analytic sets are Ramsey. Journal
of Symbolic Logic 39:163-165, 1974.

[Fer91] A. Ferry. Enriched Nonmonotonic Rule Systems M.Sc. Thesis
University of Kentucky, 1991.

[Fer92] A. Ferry. A topological characterization of stable and minimal
model classes of propositional logic programs. Annals of Mathe-
matics and Artificial Intelligence, To appear.

[Fer93] A. Ferry. Characterizations and properties of classes associated
with logic programming semantics. To appear.

[GL88] M. Gelfond and V. Lifschitz. The stable semantics for logic pro-
grams. In R. Kowalski and K. Bowen, editors, Proceedings of the
5th international symposium on logic programming, pages 1070–
1080, Cambridge, MA., 1988. MIT Press.

[GL90] M. Gelfond and V. Lifschitz. Logic programs with classical nega-
tion. In D. Warren and P. Szeredi, editors, Proceedings of the 7th
international conference on logic programming, pages 579–597,
Cambridge, MA., 1990. MIT Press.

[JS72a] C.G. Jockusch and R.I. Soare. Degrees of members of π0
1 classes.

Pacific Journal of Mathematics, 40:605–616, 1972.

[JS72b] C.G. Jockusch and R.I. Soare. π0
1 classes and degrees of theories.

Transactions of American Mathematical Society, 173:33–56, 1972.

63

[McD82] D. McDermott. Nonmonotonic logic II: nonmonotonic modal the-
ories. Journal of the ACM, 29:33–57, 1982.

[MD80] D. McDermott and J. Doyle. Nonmonotonic logic I. Artificial
Intelligence, 13:41–72, 1980.

[MNR90] W. Marek, A. Nerode, and J.B. Remmel. Nonmonotonic rule sys-
tems I. Annals of Mathematics and Artificial Intelligence, 1:241–
273, 1990.

[MNR92a] W. Marek, A. Nerode, and J.B. Remmel. Nonmonotonic rule
systems II. Annals of Mathematics and Artificial Intelligence,
5:229–263, 1992.

[MNR92b] W. Marek, A. Nerode, and J.B. Remmel. How complicated is the
set of stable models of a recursive logic program? Annals of Pure
and Applied Logic, 33:229–263, 1992.

[MNR94a] W. Marek, A. Nerode, and J. B. Remmel. A Context for Be-
lief Revision: Forward-Chaining Normal Nonmonotonic Rule Sys-
tems. Annals of Pure and Applied Logic 67(1994) pp. 269-324.

[MNR94b] W. Marek, A. Nerode, and J. B. Remmel. The stable models of a
predicate logic program. Journal of Logic Programming 21(1994)
pp. 129-154.

[MNR94c] W. Marek, A. Nerode, and J. B. Remmel. Rule systems, well-
orderings and forward chaining. In preparation., 1993.

[Moo85] R.C. Moore. Semantical considerations on non-monotonic logic.
Artificial Intelligence, 25:75–94, 1985.

[MT89a] W. Marek and M. Truszczyński. Relating autoepistemic and de-
fault logics. Proceedings of the 1st international conference on
principles of knowledge representation and reasoning, KR ’89”,
pages 276–288, 1989.

[MT91] W. Marek and M. Truszczyński. Autoepistemic logic. Journal of
the ACM, 38:588 – 619, 1991.

64

[MT89] W. Marek and M. Truszczyński. On reasonings by a fully intro-
spective, intelligent, agent. In Proceedings of the international
conference on computing and information, pages 417–419, Ams-
terdam, 1989. North-Holland.

[MT93] W. Marek and M. Truszczyński. Nonmonotonic logics; context-
dependent reasoning. Berlin: Springer-Verlag, 1993.

[RDB89] M. Reinfrank, O. Dressler, and G. Brewka. On the relation be-
tween truth maintenance and non-monotonic logics. In Proceed-
ings of IJCAI-89, pages 1206–1212, San Mateo, CA., 1989. Mor-
gan Kaufmann.

[Rei80] R. Reiter. A logic for default reasoning. Artificial Intelligence,
13:81–132, 1980.

[Rog67] H. Rogers. Theory of recursive functions and effective computabil-
ity. McGraw-Hill, 1967.

[Sch52] J. Schmidt. Uber die Rolle der transfinites Schlussweisen in einer
algemeiner Algebra. Mathematische Nachrichten 7:165-182, 1952.

[Tar56] A. Tarski. Logic, semantics, metamathematics. Oxford University
Press, Oxford, 1956.

[VGRS91] A. Van Gelder, K.A. Ross and J.S. Schlipf. Unfounded sets and
well-founded semantics for general logic programs. Journal of the
ACM 38(1991).

[YBB92] F. Yang, H. Blair, and A. Brown. Programming in default logic.
University of Syracuse, 1992.

65

