
Found Phys (2013) 43:568–596
DOI 10.1007/s10701-012-9688-y

The Notion of Order in Mathematics and Physics.
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Abstract The notion of order as a universal and fundamental conceptual category
is discussed as being based on sets of similar differences and different similarities.
A discussion of relationships between order and disorder is followed by a proposal
for a mathematical theory based on non-ordinality which could also have relevance
for indistinguishables in physics.

Keywords Order · Similarity · Difference · Indistinguishability · Indistinguishables

1 Background

The notion of order as a fundamental concept in physical theories was introduced by a
series of pioneering papers published by David Bohm [1–5]. These ideas and their re-
lation to quantum phenomena were further developed in discussions with Basil Hiley.
A comprehensive survey of these ideas were summarised in their classic book “The
Undivided Universe” [7]. For the very latest review of some aspects of this work see
the review article by Basil Hiley [6]. The wider relevance of these ideas to philosophy
and science will be found in David Bohm’s book “Wholeness and the Implicate Or-
der” [8]. It is important to emphasize that these notions were fundamentally seen as
dynamic, so ordering would be the general concept while order is a particular static
aspect. Implicate order is thus unfolding into an explicate order and the explicate or-
der enfolding into an implicate order. The verbs unfolding and enfolding are stressing
the dynamic nature of order and also how these orders are dynamically related in an
overall process.

In [7] (p. 350) Bohm and Hiley write:
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“The basic idea is to introduce a new concept of order, which we call the im-
plicate order or the enfolded order. This is to be contrasted with our current
concepts of order which are based on the ideas of Descartes who introduced
coordinate systems precisely for the purpose of describing and representing
order in physical process. The Cartesian grid (extended to curvilinear coor-
dinates), which describes what is essentially a local order, has been the one
constant feature of physics in all the fundamental changes that have happened
over the past few centuries. In the quantum domain however this order shows
its inadequacy, because physical properties cannot be attributed unambiguously
to well-defined structures and processes in space-time while remaining within
Hilbert space. Thus, for example, the uncertainty principle implies that it is not
in general possible to give a definite space-time order to the motion of a particle
in its trajectory.”

D. Bohm took order (and structure) as something more universal and fundamental
than most of our basic conceptual categories ([3], p.18). Order is concerned with sim-
ilar differences, arrangements, organisation and structure. In Bohm’s philosophy all
these notions are fundamentally dynamic. The ubiquitous character and significance
of order is due to the observation that order is common to all that we conceive and
perceive which means relating order both to the order of abstract thought of mind as
well as to matter and external reality.

Another quotation is clarifying ([7], p. 353):

“Our notions of order in physics have generally been tacit rather that explicit
and have been manifested in particular forms which have developed gradually
over the centuries in a somewhat fortuitous way. These latter have, in turn, come
out of intuitive forms and common experience. For example, there is the order
of numbers (which is in correspondence to that of points on a line), the order of
successive positions in the motions of objects, various kinds of intensive order
such as pressure, temperature, colour etc. Then there are more subtle orders
such as the order of language, the order of logic, the order in music, the order
of sensation and thought etc. Indeed the notion of order as a whole is not only
vast, but it is also probably incapable of complete definition, if only because
some kind of order is presupposed in everything we do, including, for example,
the very act of defining order. How then can we proceed? The suggestion is
that we can proceed as in fact has always been done, by beginning with our
common intuitive notions and general experience of order and by letting these
develop so as to extend into new domains and fields of application.”

As order is seen to be common to all perception and conception it does not seem
possible to give it some exhaustive formal or verbal definition. The question is then
how can we hope to describe order? The suggestion implied above is that one could
start to make explicit what we already know and point to certain essential features of
what is mostly tacit knowledge. The situation has some similarities to bare concepts
in formal theories such as class, element and morphism in set theory and category
theory. Bohm’s suggestion was that the essence of order is based on organisation
of similarities and differences. This proposal was based on an analysis of how we
construct and form categories both in perception and in abstract thought.
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The formation of categories in perception has been elucidated in numerous both
animal and human studies. These experiments suggest that the gathering of differ-
ences is the primary data of vision, which are then used to construct similarities. The
order of vision starts with the perception of differences and then proceeds by creating
similarities of these differences. In abstract thinking there is an analogous process
in the formation of categories. Categorization involves two actions: selection (“to
gather apart”) and collection (“to gather together”). The act of selection presupposes
the perception of differences from some general background. Some of these differ-
ent “things” are then selected and collected together by regarding their differences as
unimportant. Note that their common difference from the background is however im-
portant. In order to establish similarity between A and B we are essentially referring
to something third making similarity an externally imposed feature. This is brought
out more explicitly in three situations, when similarity is established:

(i) A and B are similar relative a context or background, C. Similarity is established
when the exchange of A for B makes no difference in C which can be written as
A : C :: B : C.

(ii) A and B are similar in relation to a third entity C. This is commonly expressed as
A : B :: B : C. The introduction of C gives the possibility of creating similarity.

(iii) Similarity in a process. Let P denote some process. To be a process something
must become different. Consider the process P : A becoming B and B becom-
ing C, where B is different from A and C from B . C could then be similar to A

which could represent a process with an aspect of sameness over time.

Thus Bohm proposed that order could be based on organisation of differences and
similarities i.e. order is “basically a set of similar differences” ([8], pp. 115–116),
which means that differences are insufficient for developing a description of order.
In a basic sense similarity and difference are two poles which always go together.
However, they are not symmetrical as difference is the most basic of the two. Why?
Difference is logically prior to similarity, to establish similarity there must be dif-
ference in the first place. Similarity is a consequence of disregarding differences be-
tween two things. Furthermore, one could say that difference is an intrinsic feature
while similarity is not. To say that A is similar to B only makes sense if we consider
A and B relative something different from A and B . As mentioned above, one cannot
establish similarity in one step process A → B because if there is no difference, i.e.
only similarity, it is not a step. However in B → C, C might be similar to A. This
means that in two steps or more there can be some reflexive process in the sense that
A refers to C as something similar to A. Having observed that difference is more ba-
sic, similarity is still important. They make a pair that always go together. The reason
for regarding difference and similarity as a complementary pair is that any concept or
category means bringing together different things. This must also apply to the con-
cept “difference”. Difference presupposes similarity in the sense that “differences”
are all similar in being different.

2 Order and Mathematics

It was Bohm’s contention that also in mathematics order is more fundamental than
relationship and class. For instance, when two things are related they are compre-
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hended within some totality of similar or common order, [3], p. 19. Some order is
implicit or explicit always in the background which is logically prior to the notion
of relationship or context, apparently implying that order is prior to the notion of re-
lationship. Now the question is: How to develop a mathematics based on order (and
structure)? This could entail creating a new set of axioms which treat order and struc-
ture as basic concepts. This is customary in mathematics exemplified in axiomatic
geometry by point and line as bare concepts. Creating such axioms will no doubt in-
volve a considerable amount of development and refinements of ideas and this goes
far beyond the beginnings to be discussed in this paper. The main focus here will
be on examples of some simple mathematical order, structures in terms of similarity
and difference, and finally a first attempt to formalize a basic aspect of difference
expressed as indistinguishability.

2.1 Equivalence Classes

One of the most basic and ubiquitous orders in mathematics is that of an equivalence
class, based on an equivalence relation, written as ∼ and defined by:

1. a ∼ a

2. a ∼ b iff b ∼ a

3. a ∼ b and b ∼ c implies a ∼ c

The relation ∼ then defines a class of objects, C, called an equivalence class. We
will now look at this in terms of differences and similarities. The main idea behind
equivalence classes is to be able to treat objects in the same class as “not different”
and to use any such object as a representative for all objects of this class. We are here
dealing with two kinds of similarities, itemized as (i) and (ii) in Sect. 1.

(i) Similarity relative a context, i.e. the equivalence class C. Two objects, a and b,
are seen as similar relative C as a and b can be exchanged for each other as
representatives of the class C, disregarding all other differences.

(ii) The similarity between the objects: The equivalence relation ∼ can be seen as
denoting a difference between two objects: a ∼ b. In this sense all objects in a
class have similar or the same difference to each other via the relation ∼. By the
reflexion condition (1), we have a ∼ a, so the difference between a and b is the
same as the “difference” between a and a. We could express this as a is to b as
a is to a or a : b :: a : a. Written in this way it becomes explicit that we “cancel”
all differences between the objects in the same class.

Furthermore, the equivalence relation ∼ establishes different equivalence classes.
These classes can now in turn be treated as differences. It is now possible to establish
similar differences between these classes.

2.2 Sequential or Successive Orders Based on Similarity and Difference

Following Bohm’s own presentation and illustration in various contexts ([8],
Chap. 5), we first discuss geometrical curves in terms of different orders. The pro-
posal is that (due to D. Bohm) order is based on the organisation of differences and
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similarities, or somewhat more precise: sets of similar differences and sets of differ-
ent similarities to be explained below. Orders can further be classified or character-
ized by two main features; by different classes and by different degrees. Discussing
this, I follow D. Bohm’s own examples based on various geometrical curves ([8],
pp. 116–117). It should be pointed out that the geometrical curves are assumed to be
constituted by different connected chords. Sequential orders can be characterized by
two main aspects, accounting for the level of complexity: the class and the degree
of an order, which is illustrated by the examples below. Orders of the so called first
degree are represented by

(i) A straight line, being of the first class with one independent difference.
(ii) A circle, being of the second class with two independent differences.

(iii) A spiral, being of the third class with three independent differences.

The order of a second degree will be represented by a chain of straight lines, each
line of a first class order. Before going into each example it is essential to make some
comments: The curves are made up by connected chords where each chord is seen
as a set of independent differences. From a suggestion by Arleta Ford [9] similarity
denoted by S = (D1,D2, . . . ,Dn) relates a set of differences, in this context, different
chords. The differences Di could in turn consist of one, two or more independent
differences. The number of these constitutive differences determines the class of the
order. When different similarities S1, S2, . . . are in question there is the possibility
to form a second, or higher, degree of difference. This means that orders of higher
degree can be formed. This is because S1, S2, . . . are now seen as differences allowing
for a new similarity and thus describing order of orders, based on these differences.
As indicated, geometrical curves can be analysed as a set of ordered elements: as
small intervals of equal length which represent a set of independent differences. Each
interval is not only similar to the others in lengths but also different in locations and
orientations.

2.3 An Example from Algebra

Before discussing geometrical curves to illustrate various orders, it might be appro-
priate to give some simple examples from algebra.

A group with the elements a, b and c where am = bn = cp = · · · = e can be seen as
having a set of three similarities represented by (S1, S2, S3, . . .) = (a, b, c, . . .). Now
one could try to relate these different similarities by establishing a second degree
similarity. It would now be possible to regard the product ab to represent a difference
between a and b and the corresponding difference between b and c would be bc.
Similarity thus suggests: ab = bc and it should hold that c = b−1ab. This example
illustrates a basic feature of structure. Structure is based on orders which have a
connection (or link) which “holds the structure together”, [8], p. 119. A group with
am = bn = e where two orders are connected by e, i.e. having a common element.
Further examples of structure would be:

Ex 1 Logic is clearly an ordered structure. If a structure must have connections be-
tween orders, this connection is displayed in a proof in logics where the link or
connection is established by rules of necessity i.e. necessity directly connects:
It gives necessary connection in necessary relationships.
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Ex 2 Quaternions
Each element i, j and k generates an order of similar differences:
i, i2, i3, . . .; j, j2, j3, . . .; k, k2, k3, . . . where each i, j and k generates an order
which is the constitutive difference of respective order. We have the relations:
i2 = j2 = k2 = −1; i · j = k etc. which shows that i, j and k are connected by
the number −1 i.e. two elements of two different orders turn out to be the same
and therefore form a link between different orders. This also shows that the
parts are connected to each other in an organized system, structure, via some
common element etc.

2.4 Orders of Increasing Degree Represented by Geometrical Curves

2.4.1 Orders of First Degree: A Straight Line

From Fig. 1 we have a : b :: b : c :: c : d : etc. which constitutes the similarity. This
ratio defines a curve of the first class: that is a curve with only one independent con-
stitutive difference denoted as d1. The similarity could be denoted S = (a, b, c, . . .) ≡
(D1,D2, . . . ,Dk) where each difference Dk consists of one constitutive difference in
position (d1(k)).

2.4.2 Orders of the First Degree, Second Class: A Circle

The difference between a and b is both in position and direction. We have
two independent differences (d1, d2). The curve could be said to be of the second
class (Fig. 2).

We still have a : b :: b : c etc. Note that there is only one similarity or ratio, which
could be denoted S1 = (a, b, c, . . .) ≡ (D1,D2, . . .) and each difference Dk consists
of two constitutive differences (d1(k), d2(k)) where d1(k) represents difference of po-
sition and d2(k) represents difference of direction.

Fig. 1 A straight line

Fig. 2 A part of a circle
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Fig. 3 A spiral

2.4.3 Orders of the First Degree, Third Class: A Spiral

In the case of a spiral (see Fig. 3) we get a : b :: b : c :: c : d :: etc. or i.e. S1 =
(a, b, c, . . .) with three constitutive differences representing position, length and di-
rection (d1(k), d2(k), d3(k)).

Note that we still have only one similarity as the lengths of the segments are pro-
gressively decreasing. However the similarity (or ratio) between successive steps re-
mains invariant. Independence in this context only means that one difference cannot
be derived from the other.

2.4.4 Orders of the Second Degree, First Class

To illustrate this, here follows a direct quotation from “Wholeness and the Implicate
Order”, [8], p. 116. He writes:

“Thus far we have considered various kinds of similarities in the differences,
to obtain curves of the first, second third classes, etc. However, in each curve,
similarity (or ratio) between successive steps remains invariant Now we can
call attention to curves in which this similarity is different as we go along the
curve. In this way, we are led to consider not only similar differences but also
different similarities of the differences.”

We can illustrate this notion by means of a curve which is a chain of straight lines
in different directions (see Fig. 4). On the first line (ABCD), we can write

A : BS1 :: B : C.

The symbol S1 stands for “the first kind of similarity”, i.e. in direction along the line
(ABCD). Then we write for the lines (EFG) and (HIJ )

E : FS2 :: F : G and H : IS3 :: I : J,

where S2 stands for “the similarity of the second kind” and S3 for “the similarity of
the third kind”.

We can now consider the difference of successive similarities (S1, S2, S3, . . .) as a
second degree of difference. From this, we can develop a second degree of similarity
in theses differences. S1 : S2 :: S2 : S3”, [8], p. 116. This is the beginning of gener-
ating a hierarchy of similarities and differences, i.e relating lower levels of order to
describe order of orders.

By considering geometrical curves involving differences and similarities of a third,
fourth, and so on degree, Bohm introduces the concept of what he calls orders of
higher degree.



Found Phys (2013) 43:568–596 575

Fig. 4 Straight line segments in
different directions

Each straight line in this illustration is as in the case of a straight line represented
by one independent difference:

(d1) : (A,B,C,D) → S1 (similarity 1)

(d2) : (E,F,G) → S2 (similarity 2)

(d3) : (H, I, J ) → S3 (similarity 3).

Bohm now takes the similarities (S1, S2, S3, . . .) and constructs from these new dif-
ferences between successive similarities S1, S2, . . . , which form a new set of differ-
ences, which are denoted differences of a second degree. It is then possible to relate
these differences to get a second degree of similarity. A. Ford has suggested a simpli-
fication, [9]: Instead of considering the difference between the successive similarities
(S1, S2, S3) as a second degree of difference it is expedient to take the very similari-
ties (of a first degree) as the differences of a second degree. The very idea of order of
higher degree implies that the similarities (of a first degree) are different, and as they
are different it is natural to regard them directly as differences of a second degree.
This facilitates both a symbolization and an algebraic approach for the notation and
development of multi-level orders.

D. Bohm’s own view of the relationship between order and mathematics was es-
sentially that the current aspects of order in mathematics were insufficient. So for
instance, the order relation < tacitly presupposes that each element is considered as
completely constituted, i.e. the order of elements is external to the elements them-
selves, referring to how the elements are different from each other and then being
related. This is thus contrasted by the above discussion where the order of differences
of the chords, etc actually was seen as constituting the curve, not only describing it.
The more general challenge as Bohm saw it was ([3], pp. 23–24):

To develop a new structure of mathematical symbolism that takes into account:

• The hierarchical potentialities of order.
• Not assuming that a mathematical structure is composed of separate elements

where orders and relationships are external to what these “elements” are.
• Explicitly differentiate between constitutive and descriptive order/difference. To

be able to exhibit how these orders are related in a vast set of cross-references of
one aspect of structure to another.

3 Order–Disorder

The notion of absolute disorder is a non-category. Some kind of order is common to
everything we can perceive and conceive. There is also a general problem in defining
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a fundamental concept (like disorder) only by negation. The reason is that the core
meaning of a definition is to keep something within certain limits. This is not equiv-
alent to a definition by negation as this means going outside these limits. It is not a
problem when the definition is made in a limited context. But universal and basic con-
cepts are not in a limited field and a negation will be without limits: saying disorder
is everything which order (which notion itself cannot be exhaustively defined) is not
which makes it unclear what is being referred to, [4], p. 308. Furthermore, to define
absolute lawlessness and featurelessness or disorder positively as well as negatively
we will inevitable refer to some kind or order, rule, law, feature etc. which leads to the
absurd concept of law of lawlessness, feature of featurelessness etc. which makes it
contradictory. Instead we can talk about relative disorder, relative non-regularity etc.
We are free to talk about order of an indefinitely high degree, or of infinite degree.
Instead of equating randomness with absolute disorder, we can approach this concept
differently by referring to orders of infinite degree. Disorder in the “absolute sense”
can be exchanged with an order of infinite degree, from which we in principle could
abstract any suborder or particular order, [11], pp. 137–141.

3.1 Related Orders: Causality–Determinism

When two orders are related and when given one, we can more or less determine the
other. This has been a necessary condition for prediction and causality in science.
Prediction is based on the relation between the order of physical events and the order
of time. Long before modern science, astronomers were able to relate the positions
of planets, moon etc with the clock-time order and from this the time order make
predictions of future positions. Determinism and causality are based on the fact that
two orders determine each other. In physics determinism as predictability is based
on a close relationship between the sequential order of time and an order of physical
events. Seen in the general context of order, predictability is then a particular relation-
ship between the order of time and events, where a few steps in time determine the
whole order of events. The concept of implicate order as proposed by Bohm can be
regarded as such an example where a basic order of physical processes is not related
to time-order but to an order of transformations of an algebra, denoted as an order of
enfoldment.

3.2 Unrelated Order: Relative Disorder and Randomness

A classical example of a random series based on physical events is the flipping of
coins. The relevant two orders are: The succession in time of throws and the out-
comes. These two orders are almost independent which means that given the time-
order, one cannot determine the throws and given the throws one cannot determine
the time-order. This is what is called a random sequence. This does not mean com-
plete disorder relative time order because the outcomes are not irregular in respect
to initial conditions, of position and velocity of the coin. Even if given a series of
random events with no known law like dependence on anything else, two such series
would be distinguished from one another. In this elementary sense they have some
order. The point is that total lack of order has no real meaning.
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3.2.1 Unrelated Orders

In statistical physics, thermodynamics, the movements of the individual particles de-
pend on a very large number of other particles. There is almost a complete unrelated-
ness between the individual particles, the micro order. This independence is a neces-
sary condition for the application of probability theory which in turn gives rise to a
statistical relationship, or a macro order which is expressed by laws like pV = nRT

which represents a large scale order relating pressure, volume and temperature of a
gas. This order is of a much lower degree than the microscopic order of movements
of independent molecules and almost insensitive to the order of the microscopic level
and where the order of time has disappeared completely. This illustrates that in the
limit of large numbers, random orders can approximate regular and simple orders of
low degree. In the given example the gas law does not even make sense at the mi-
croscopic level. Another example related to physics is Brownian motion. This case
illustrates that the independence of the micro order and the macro order is only rela-
tive. A small particle is exposed to random collisions. The statistical analysis (random
walk) gives that the distance from some original position is proportional to the time
passed times the square root of time: constant · √t . This means that we have not lost
a relation to time-order completely and we can use this statistical relation for predic-
tions. Therefore this example displays a situation somewhere in between complete
loss of a relationship between a microscopic order, appearing in the dynamics of the
particles, and macroscopic order.

3.2.2 Disorder and Randomness; Context Dependence

Relative disorder is not only to be found in physical events. As a simple illustration,
take the square root of 2. Express

√
2 as a string of symbols, representing the digits

in some base. If now part of this string is presented to someone who does not know
its origin, the person would find it fulfilling all criteria of randomness and “lack of
order”, and as a consequence could in no way predict the next digit from the pre-
vious ones. In the context, when the appropriate algorithm is given, it is perfectly
determined. So we have clearly a context dependence of randomness.

An analogous situation is the generation of random numbers by a computer. In a
context that does not include the computer and the algorithm, the number series pro-
duced will clearly exhibit randomness. Again in a context including the program the
numbers are generated by an algorithm of a quite low degree of order. The two notions
order and disorder have been seen to be not mutually exclusive but rather complemen-
tary. Science is in fact exploring new orders between chaos and simple kinds of order
as is seen in turbulence, chaos theory, fractals etc. Prigogine has demonstrated that
regular orders can emerge in certain chaotic systems. This means that these systems
must move through a whole spectrum of orders between chaos and regular orders
of quite low degree. Furthermore, Mandelbrot has shown the existence of set with
fractal dimensions, between spatial dimensions. Such sets can be of almost infinite
complexity of almost infinite degree of orders as exemplified by Julia sets. This situ-
ation is also reflected in modern chaos theory. Incorporating order as a fundamental
category in our thinking could give new perspectives to perceive and conceive new
laws and regularities in Nature.
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3.3 Indistinguishables: Different but not Distinct

We have now been discussing mainly sequential orders. What could be said about
non-sequential orders? The most basic sequential order is based on differences which
can be ordered or indexed, i.e. having ordinality in a mathematical or set theoretic
sense. This way of thinking leads rather directly to a notion of non-ordinality or
indistinguishability.

The motivation behind studying indistinguishables is here three-fold. As men-
tioned earlier D. Bohm suggested that order is basically described as a set of similar
differences and different similarities. Difference is seen as more basic than similarity.
The reason is that similarity presupposes difference which makes difference logically
prior to similarity. In fact, similarity is a consequence of disregarding difference. In
such a context difference becomes fundamental. It is therefore natural to ask if there
are different kinds of basic differences, i.e. is there really only one difference, usually
expressed as in a �= b? It is conceivable that two different objects comprise of two
aspects of difference: one collective and one individual. The collective aspect refers
to some collective totality, whereby different objects are different because they are
differently contributing to the whole, or collective. One could say that each object is
defined collectively by being different from all others in the shared context or collec-
tive. The individual difference then concerns a direct relation between two individu-
als. This difference is always used when some object is named, labelled, indexed to
identify each object uniquely. A “collective” difference is then reflecting that objects
are different in the sense that they, by the very being part of some whole or collection,
are differently contributing to this whole. If they were not, they would not be differ-
ent at all. If cardinality represents the collective aspect of difference, ordinality would
represent the individual. It is hard to see any reason why these two aspects necessar-
ily should be identical. This motivates a proposal of two basic kinds of differences
where non-ordinality will imply indistinguishability. Another reason for a discussion
of indistinguishables is that there are very few systematic attempts to deal with id:s
(here after I use the shorthand id for indistinguishable). Indirectly, any limitation in
the scope of the subtlety of mathematics could entail limitations in aspects of our
understanding of reality. Thirdly an obvious example of collective difference but not
of individual difference comes from physics. In quantum theory we have the notion
of Bose-Einstein statistics describing bosons, which are treated as indistinguishables.
Moreover Fermi-Dirac statistics deals with indistinguishable fermions. Even in “clas-
sical” physics the notion of id turns up in discussions of Gibbs paradox in the context
of statistical thermodynamics. There is no basic mathematical treatment available in
these situations but rather general rules of thumb.

What would a theory based on non-ordinality but only on cardinality look like?
There is something reminding of this, namely multisets, where elements are allowed
to repeat in a class, thus being identical, but still contributing to the cardinality. Ex-
amples are found in combinatorics; in repeated roots of polynomials, multisets or
prime factors etc. However, multiset theory does not really treat non-ordinality but
rather only multiple occurrences of identicals. Instead I like to explore a possible
framework of a theory based on objects which are different but lacking ordinality.
This suggests:
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(i) The introduction of a third pairity relation between objects (to differ from mul-
tiset theory), denoted as α � β .

(ii) Relaxing ordinality, necessarily implies that such objects cannot be individually
labelled, named or indexed.

(iii) Taking the “collective” aspect of difference, as fundamental. This means that
the objects are differently contributing to the cardinality of a class, but not to the
ordinality. Differently put: Each object contributes to the whole by contribut-
ing (differently) to the cardinality of some class where the class represents a
“whole”.

The original source of inspiration was Parker-Rhodes work on id:s in [10]. Many
ideas and notions in this discussion derive from this work. However, the path taken
here is not faithful to that theory being triparitous at a semantic level, which builds
on a non-transparent notion of information.

[Some notations: In α �β , α and β are called id:s. A class containing id:s is called
a Sort denoted as S. To avoid confusion with Set-theory “β in S” means β belongs
to S.]

4 A Novel Parity Relation �, Representing a New Difference Between Objects
Which Lack Ordinality

4.1 Preliminaries

A theory of id:s is a theory about a novel category of items, which entails a new kind
of difference between them. This kind of difference reflects a “collective” difference,
where such objects cannot be ordered in any unique way, or cannot individually be
contrasted to each other by some unique indexing or labelling procedure. On the other
hand we want each object to contribute differently to some totality or more precisely
here, to a cardinality. To deal (more systematically) with this situation a novel parity
relation, denoted as α � β , between id:s is introduced. This difference can naively be
said to lay “in between” identity and ordinary distinction (here written as ⊥). Thus
we arrive at six parity relations based on =, � and ⊥ (Table 1).

All relations are symmetrical. It should be emphasized that while being triparitous
a theory of id:s is fundamentally different from a many-value logic on one hand and
from a theory of multisets (allowing for a number of identical elements in a set) on
the other. This will become more clear below. Each negation of =, � and ⊥ is defined
as the disjunction of the other two. This is important to stress as, for instance a † b

could mean that neither =, nor � can be excluded.

Table 1 Parity relations
Definite parity relation Negations

a = b, equal a �= b, a and b are different

a � b, a and b are id:s a | b, a and b are distinguishable

a⊥b, a and b are distinct a † b, a and b are indistinct
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Below follows an outline of a theory of a (quasi) class of indistinguishables (id:s).
It should be pointed out that a formal Sort-theory is still under construction and the
axioms below can be subjected to modifications at a later stage. These (quasi) classes
are called Sorts and have members and parts that might be id:s. Parenthesis are used
to denote contexts, such as [A] which can be read as “in the context of A”. A “col-
lection” is a specific context, written as (A) and provides to some extent an analogy
to {M} in set theory. A collection, (X), has the main function of “enclosing” which is
inside, entailing a separation from what is outside, thus creating a collective context
or a whole. A part of a Sort is called subsort or member.

Definition 4.1 (Sort)

(i) A Sort is a (quasi) class of objects which might contain id:s.
(ii) A Sort is called pure iff a ⊥ b does not hold for any two objects in the Sort.

Otherwise it is named mixed.

Axiom 4.1 (Existence of Sorts) ∃x, ∃y and ∃S (Sort) such that x in S & y in S,
where x � y.

Axiom 4.2 (Axiom of cardinality) Every Sort is associated with a unique cardinal
number, which is identical to a natural number.

Axiom 4.3 (Pairity relations of Sorts)

1. Two Sorts, or their parts or members, must have one of the possible six pairity
relations.

2. S and T two Sorts: if there is no object α in S and β in T such that α ⊥ β and if
S and T have equal cardinality, either S = T or S � T .

Comment: If for some α in S and some β in T α ⊥ β , this will imply that S and T

can be indexed by α and β respectively and can thus be ordered, hence S ⊥ T .

Axiom 4.4 (Axiom of extensionality) (∀z; z in S ⇔ z in T ) ⇔ S = T . S is equal to
T iff any item in T is an item in S and vice versa.

Axiom 4.5 (Collection Axiom) For any χ , the collection of χ , denoted (χ), defines
a whole comprising the same objects as in χ , while

(i) χ �= (χ), except when cardχ = 1 or cardχ = 0.
(ii) cardχ = card(χ), unless χ itself a collection.

(iii) ((χ)) = (((χ))).
(iv) Given x in A, and some y in (A) it is generally undecidable whether x = y or

x � y, without further information.

Axiom 4.6 (Identity Axiom) χχ = χ (i) and χ = ψ iff cardχψ = 1 (ii).

Definition 4.2 (Empty Sort) An empty Sort ∅, for any x ⇒ x not in ∅.
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Definition 4.3 (Singleton) A singleton is a Sort, s, for which there is only one object
in s: x in s and y in s ⇒ x = y.

Axiom 4.7 (Existence of singletons) There exists singletons according to Defini-
tion 4.3 such that

(i) card s = card(s) = 1.
(ii) s = (s).

Comment: The second criteria makes Sort-theory very different from set theory
where members and sets are clearly separated, M �= {M}.

Axiom 4.8 (Existence of Empty Sort) There exists an empty Sort denoted ∅ accord-
ing to the Definition 4.2 such that card ∅ = 0 and it holds that: ∅ = ( ) and (∅) = ( ).

Comment: The uniqueness of ∅ follows from Axiom 4.4 (axiom of extensionality)
by assuming ∅1 and ∅2 and observing ∅1 �= ∅2 cannot be falsified.

Postulate 4.1 An element or set in the category of Set can only have the parity rela-
tion ⊥ (distinction) with an object in a pure Sort.

Postulate 4.2 Given aRb and bRc where R is one of the parity relations R ∈ {=,

�,†}. It can never be the case that any pair of a, b, c is distinct (such as a⊥c).

Postulate 4.3 Given aRb and b⊥c where R ∈ {=,�,†} implies distinction between
a and c, i.e. a⊥c.

Postulate 4.4 (Invariance to permutation of id:s) In any relation or expression where
two id:s are permuted or interchanged, provided that there is no ambiguity that the
same token, say x, or y refer to the same object, for every occurrence of the same,
the relation or the expression remains invariant.

Comment: “Postulate” reflects a more temporary status than “Axiom”.

4.1.1 Id:s Form Equivalence Classes of Sorts

From the transitivity implied by Postulate 4.2 it is seen that the pairity relation a†b

is an equivalence relation. It holds that: a†a (as † is the disjunction of � and =)
and also: a†b and b†c ⇒ a†c as a ⊥ c is impossible due to Postulate 4.2. The term
“class” is not used in a set-theoretic way. Moreover a in E1 and b in E2 where E1

and E2 are two different sort-classes of id:s. The only possible relation is a⊥b as
otherwise a and b would be related by = or �, i.e. they would be equivalent.

Definition 4.4 The equivalence sort-classes of id:s define pure Sorts.
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4.2 Introduction of “Ordered” Pairs; Non-Ordinality

The basic ordering of two objects is commonly defined as an ordered pair P(a, b) =
(a, (a, b)). The parenthesis ( ) denote a collection of items as defined above i.e. a
Sort seen as a collective whole. To be consistent with a notion of non-ordinality as
formulated in the axiom above, the natural choice is P(a, b) = P(b, a).

Axiom 4.9 (Non-Ordinality) P(a, b) = (a, (a, b)) = (b, (a, b)) = P(b, a).

4.2.1 Fundamental Ambiguity

Consider P(a, b) = P(b, a) written as (a, (a, b)) = (b, (a, b)). If the first objects a

and b in respective pairs would be well defined it would imply a = b. To avoid this an
alternative is to say that the first object is not well defined. The proposal here is that
the first element only represents one of the two elements in (a, b), and does not refer
to a particular one. To be consistent with this approach it is further assumed that in
expressions like ((a, b), (a, b, c)) we can only say that the first “collection” of objects
appears in the second (a, b, c) and cannot make a difference between this expression
and the expressions ((a, c), (a, b, c)) or ((b, c), (a, b, c)). To deal with this kind of
ambiguity a special quantifier Û is called for: Û a b c , meaning one of a, b, c but no
one in particular. This will be discussed separately below.

4.2.2 Context Dependence

The ambiguity caused by the non-ordinality axiom P(a, b) = P(b, a) (Axiom 4.9)
means that in general one cannot demonstrate that two identical symbols refer to
the same object like the two symbols a in P(a, b) = (a, (a, b)) appear in different
contexts. When the contexts are different there is no guarantee that we can unam-
biguously refer to the same item or object. To have a consistent theory, this is then
generalized: Given some collection (α,β, γ ) of id:s. If now one or more are dupli-
cated or “taken out” of the collection these symbols cannot unambiguously refer to
the same objects as being in the original collection. To bring this out more explicitly:
Consider the “collection” C of unordered pairs: C = ((x, z), (y,w)). Now permute
x ↔ y giving C′ = ((y, z), (x,w)) which by the Postulate 4.4 leaves C unchanged
that is: C = C′. If we now try to identify say x and z in both C and C′ i.e. set x = z in
both C and C′. We would get ((x, x), (y,w)) for C, and as (x, x) = (x), according to
the identity axiom (Axiom 4.6), we have the equality: ((x), (y,w)) = ((x, y), (x,w))

(for C′), which obviously is false. The mistake is to identify two elements x, z being
in different contexts or collections and having different pairity relations in C: x � z

while in C′: x†z. This is because x and z are in different contexts in C′, i.e. the con-
texts of (x,w) and (y, z) respectively. Without further information it could be that
x = z and hence we can only say x†z. This kind of context dependence calls for
particular rules when we can relate two id:s.
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4.3 Existential and Universal Quantification

4.3.1 Existential Quantification

In a standard approach existential quantification of a predicate is generally expressed
as ∃x; Q x is true, where x belongs to some class C and asserts that there are some
members in C which have the property Q. It is assumed that it is possible to select
the appropriate items by some (unspecified) procedure. However, in the case of Sorts,
the nature of id:s does not allow for selecting a particular item as this would imply
some labelling, naming or indexing. Even to say that some particular item in a Sort
has the property Q is to assert something that cannot be proven by any algorithmic
approach. By testing one by one we cannot identify if one item has been tested or not.
To assert that some member of a Sort has the property Q is something that cannot be
disproven. If we test some x in a Sort to see if Q x is true and find that it is not, we
have to go on testing every member in S. However, we cannot label which ones have
been tested so we could end up in indefinitely examining the same individual. There
is however one exception. In a definition one could demand that something having a
property Q shall exist. Such a statement is not open to test. However, it may turn out
in some other context that the definiend is proven not to exist if due care is not taken.
Generally this is avoided by explicitly only taking the cardinality of the individuals
having property Q. More precisely: as any Sort has a unique cardinal number one
should be able to assert that in a given Sort a certain subsort with definite cardinality
has the property Q x, as the subsort is only specified up to cardinality.

4.3.2 Universal Quantification

The situation is different regarding universal quantification i.e. using all, every or
any. As no particular selection is involved, universal quantification does not create
problems. We can write this as: ∀x; x in C ⇒ P x = ( ) where C some (Sort) class.
No testing procedure is required in universal quantification: we can arbitrarily pick
any one.

4.3.3 Conditional Quantification

From the observation that we can consistently deal with universal quantification, it
can be argued for a limited form of quantification

∀x; Q x = ( ) ⇒ P x = ( )

where accordingly P x is true for anything that holds for Q x. That Q x is true could
be the result of some definition or else unproblematically given.

4.3.4 Negation of Universal and Conditional Quantification

The negation of a universal quantification: ¬(∀x;x in C ⇒ P x = ( )) “destroys” the
universal quantifier ∀ as it means that there are some x in C for which P x is false, or
(not P ) is true, turning the statement into an existential quantification. This does not
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mean that we cannot negate P , but we have to use some conditional quantification
∀x;Q x = ( ) ⇒ (not P) = (/), which says that P does not hold for any x such that
Q x is true. This discussion is now expressed in the following axioms.

Axiom 4.10 (Forbidden existential quantification) Unconditional existential quan-
tification is forbidden, except when demanded so by (reasonable) definitions. Rea-
sonable should be read as non-inconsistent or non-incoherent.

Moving on to the negation of conditional quantification to consider ¬(∀x; Q x ⇒
P x). This means that there exists some x for which Q x is true, but P x is false i.e.
(∃x; P x = (/) and Q x = ( )). This is existential quantification and forbidden. This
does not mean that “not P ” (¬P) is meaningless. We can say that ¬P does not hold
for any x such that Q x is true. As “any x” is universal quantification it is allowed
for and we write ∀x; Q x = ( ) ⇒ ¬P x = (/).

Axiom 4.11 Universal quantification is allowed for.

Axiom 4.12 Conditional existential quantification is generally allowed for: P holds
for any x such that Q x is true.

Axiom 4.13 (Existential quantification involving cardinality) ∃x in S; card(x in S

for which P x is true) = n, n ∈ N and n ≤ card S.
This defines a subsort h of S: ∀x in h ⇒ P x and card(h) = n.

5 Subsorts, Unions and Other Things

A subsort of a Sort a part of S which is defined as usual:

Definition 5.1 (Subsort) h ⊆ S ⇔ ∀x(x in h ⇒ x in S) and cardh ≤ cardS.

Definition 5.2 (Proper subsort) ∃x in S and x not in h and cardh < cardS. (Due to
the existential quantifier ∃ we demand the existence by definition.)

Some comments:

1. Writing x in h, y not in h says that only one of two elements x, y, ((x, y) in S), one
belongs to h, the other does not. It is not meaningful to assign a certain property
to x in particular (in this case “x in h”) as this would entail a “labelling” of x

and y which is forbidden. Consequently x in h,y not in h cannot meaningfully be
distinguished from y in h,x not in h.

2. cardh1 �= cardh2 ⇒ h1⊥h2; (see Axiom 4.3); The reason is that h1 and h2 can be
assigned two different unique cardinal numbers.

3. cardh1 = cardh2 gives without further information the pairity relation h1†h2 as
h1 and h2 have equal cardinality. If they are known not to be identical we will get
h1 � h2.
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4. Given a Sort S, cardS = N each n < N will entail an equivalence (Sort) class of
subsorts each with cardinality n. It is seen from this that we get N distinct classes
of subsorts of S, one for each cardinality.

As cardinality is fundamental we state:

Theorem 5.1 Given a subsort h of a (pure) SortS, h ⊆ S it holds that: cardh =
cardS ⇔ h = S.

Proof (⇒): From Axiom 4.3 cardS = cardh ⇒ h � S or h = S. If h � S we can
permute h and S in h ⊆ S i.e. S ⊆ h and according to Axiom 4.4 it follows h = S.
The implication in the other direction is immediate. �

5.1 Relative Complement

Given h, a subsort in S we need to construct the complement of h in S. We do this
by the following

Definition 5.3 (Relative Complement in S) Every h in S defines a subsort Ch in S

(i) cardh + cardCh = cardS.
(ii) ∀x in S it holds that x in h or x in Ch.

(iii) From (ii) follows immediately that C[Ch] = h. Consider Ch and C[Ch] where
every x either in Ch or C[Ch], so if x not in Ch ⇒ x in C[Ch]. While (ii)
gives also x in h. If x in h ⇒ x not in Ch and thus x in C[Ch] which gives the
equality (Axiom of extensionality).

5.2 Intersection of Sorts

Definition 5.4 (Intersection of Sorts) The intersection of S1 and S2: S1 ∩ S2 ⇔
x in S1 and x in S2.

5.3 The Union of Sorts

Considering the usual definition:

Postulate 5.1

(i) x in S1 ∪ S2 ⇔ x in S1 or x in S2. This reveals a difficulty: If we want to identify
the members in S1 ∪S2 there is no clear way to associate an element x uniquely
with S1 and not with S2. This would imply a labelling of the elements: say x in
S1, x not in S2 while y not in S1, y in S2. This is indistinguishable from x in S2,
x not in S1 and y in S1, y not in S2. Therefore (i) calls for a modification: It is
clear that S1 ∩ S2 and cardS1 ∩ S2 does not create the same problem because
every element x in S1 ∩ S2 has the same “label” namely “x in S1 and x in S2”
or is indexed by cardS1 ∩S2. Using intersection and relative complement, union
can be expressed and defined by: S1 ∪ S2 = C[CS1 ∩ CS2] where S1 and S2
belong to the same equivalence class (Sort), and CSi denotes the complement of
Si in S.
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(ii) S1 ∪ S2 = C[CS1 ∩ CS2].
(iii) cardS1 ∪ S2 = cardS1 + cardS2 − cardS1 ∩ S2.

Now, take the complement of each side of (ii): CS1 ∪ S2 = CS1 ∩ CS2, as
CCS = S. For any x in S1 ⇒ x not in CS1 ⇒ x not in CS1 ∩ CS2 ⇒ x not in
CS1 ∪ S2 ⇒ x in S1 ∪ S2 and analogously for x in S2. This demonstrates that we
can work comfortably with the usual definitions of union under the restrictions given.
This also gives Si ⊆ S1 ∪ S2, (i = 1,2).

Theorem 5.2 cardS1 ∩ S2 = cardS1 if and only if S1 ⊆ S2

(⇒): cardS1 ∪ S2 = cardS1 + cardS2 − cardS1 ∩ S2 = cardS2. Assume the con-
trary: ∃x;x in S1 and x not in S2 implying cardx ∩ S2 = 0. x in S1 ⇒ x in S1 ∪ S2 as
well as x ∪ S2 ⊆ S1 ∪ S2 (by definition of union). Hence, cardx ∪ S2 ≤ cardS1 ∪ S2,
as x ∪S2 is a subsort of S1 ∪S2. But then cardx +cardS2 −cardx ∩S2 ≤ cardS1 ∪S2
i.e. 1 + cardS2 ≤ cardS2 which is a contradiction ⇒ for all x in S1 it holds that x is
in S2.

(⇐): x in S1 ⇒ x in S2 ⇒ x in S1 ∩ S2 ⇒ S1 ⊆ S1 ∩ S2 ⇒ cardS1 ≤ cardS1 ∩
S2 and obviously: cardS1 ∩ S2 ≤ cardS1 which implies cardS1 = cardS1 ∩ S2. The
theorem gives immediately that cardS1 ∩ S2 = cardS1 = cardS2 ⇔ S1 = S2.

5.4 Partitioning of a Sort

Definition 5.5 A partitioning of Sort S is a class H of subsorts and is denoted as
H = |h(1), h(2), . . . , h(k)| where

(i) x in h, h subsort of H ⇒ x in S.
(ii) Any two subsorts h′, h′′ of H ⇒ h′ ∩ h′′ = ∅. (∅ is here the empty sort.)

(iii) cardh(1) + cardh(2) + · · · + cardh(k) = cardS.

These conditions imply

1. h′, h′′ subsorts of H : cardh′ ∩ h′′ = card∅ = 0.
2. S = ⋃

h(k).

As every h(k) in
⋃

h(k) and as hk is a subsort of S this implies that
⋃

h(k) in S.
Furthermore,

card
⋃

h(k) = cardh(1) + cardh(2) + · · · + cardh(k) − cardh(1) ∩ h(2) + · · ·
+ terms containing intersections ⇒ (all card h(i) ∩ h(j) = 0)

= cardh(1) + · · · + cardh(k) = cardS. (1)

From Axiom of cardinal extensionality it follows that
⋃

h(i) = S. Note that the par-
tition defines a multiset {cardh(1), . . . , cardh(k)}. We need further to postulate the
existence of partitioning.

Postulate 5.2 (Partition postulate) Given any Sort, S with cardS = N . For every inte-
ger partitioning of N = {ni}, there is a corresponding partitioning of S into subsorts
h(i), where cardh(i) = ni such that S = ⋃

h(i) and h(i) ∩ h(j) = ∅ for h(i) �= h(j).
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As has been observed before, such a partitioning is only unique up to cardinality,
any permutation of id:s between the subsorts leaves the partitioning invariant.

6 Blur: A Novel Ambiguity Quantifier

No property of id:s is more basic than being subject to confusion. As was seen from
discussing “ordered pairs” one would need some consistent notation to deal with
situations like P(a, b) = (a, (a, b)) = P(b, a) = (b, (a, b)), where the first element
does not refer to a particular element in (a, b) but to one of the two elements. Given
(a, (a, b)) we want to express something that represents one of (a, b), but indecisive
which, and consequently not the two taken together as a collective. This is written
as P(a, b) = (Û a b, (a, b)) where Û a b denotes and represents one of (a, b) but
not one particular. If we exclude distinction, a⊥b, the only possible pairity relation
between Û a b and the elements a, b could be: a†Û a b and b†Û a b. To restrict
Û a b to the collection (a, b) we would also need to say that card(a, b, Û a b) = 2.
We will now formulate a definition of Û .

Definition 6.1 (Blur Û ) The blur of two entities, x and y, denoted as Ûxy yields
undecidably either x or y but not both together. Two necessary conditions must be
fulfilled: For any predicate or property P it holds that:

1. P Ûxy ⇒ Px and Py.
2. Px and Py ⇒ P Ûxy.

Ûxy is then generalized in the obvious way to several entities Ûxyz · · · . The notion
Ûn h can be used for the blur of n elements in some subsort h. From 2, when x

and y also are singletons with cardinality one we have: cardx = 1 and cardy ⇒
card Ûxy = 1. (Here card is substituted for P .)

6.1 Some Relations Involving Blur

Definition 6.2 Û Û = Û .

For a union z in Ûh ∪ Ûg could be written ¬(z not in h ∨ z not in g) =
¬(z not in h ∪ g).

Definition 6.3 Ûh ∪ Ûg = Ûh ∪ g; Ûh ∩ Ûg = Ûh ∩ g.

As an illustration we evaluate Û |Ûh∪Ûg|: from the Definition 6.3 Û |Ûh∪Ûg| =
Û |Ûh∪g| = Û Ûh∪g = (by Definition 6.2) = Ûh∪g. Applying associativity gives
ÛaÛab = Û Ûaab = Ûab which also is easily generalized.

6.2 Distributivity

Consider any reasonable relator/operator/Q and function f x, where function is used
in the most general sense assigning anything (entity, Sort) to x.
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Q(Ûf xfy) ⇔ Q(f x) ∧ Q(fy), (2)

Qf (Ûxy) ⇔ (Qf )x ∧ (Qf )y, (3)

where Qf is seen as a predicate. It is reasonable to assume that there is no difference
between Q(f x) and (Qf )x and from this conclude that (2) = (3). As Q is arbitrary
it follows.

Distributivity
f [Ûxy] = Ûf xfy.

6.3 Complement of Blur

1. CÛxy = ÛCxCy, given that cardx = cardy = 1.
2. card ÛCxy = cardS − 1.

An easy way to see this is to use distributivity: Put f ≡ C and we get CÛxy =
ÛCxCy directly. Now, put p = card in the first necessary condition for blur (1):
cardCÛxy = card ˆUCxCy, now cardCx = cardS − 1 ⇒ cardCÛxy = cardS − 1
according to (1) above. An example: C[ÛCxCy] = C[CÛxy] = Ûxy.

7 The Collection Operator

A collection is a class/subtotality, C, which defines a context of its own. This concept
is illustrated by comparing a subsort h ≡ S (S is a pure sort for the sake of argument),
and the collection of h, written as (h). Taking any object in h, say α and any object
β in (h) we cannot without further information decide whether α �= β or α = β .
The collection, ( ), separates C from whatever is “outside” in this respect. To copy
or duplicate some subsort E by selecting objects (id:s) is not possible due to the
problem with existential quantification. As id:s can not be labelled or indexed in
order to know which of the objects have been copied and which have not. This calls
for some procedure corresponding to “sorting out” or “collecting” id:s. One way to
deal with this is to define an operator which acts as copying and “collecting together”.
By letting such an operator Ω act on some sort S, we distinguish some collection
from the sort. If h is a subsort of S, we write ΩhS ≡ (h). This means that ΩhS = (h)

defines a duplication of the objects in the subsort h in S. One could say that Ωh is
copying and “lifting out” part of S to form a Sort denoted by (h). By the operation
Ω or ( ), the items “lose contact” with the original Sort. A consequence of this is that
in a Ω a b c · · · or a, (a, b, c, . . .) the two symbols a do not necessarily refer to the
same item. This is axiomatised as

Axiom 7.1 (Axiom of Collection Operator) A collection Ωh S also denoted (h) is an
operation on the Sort which duplicates and separates a subsort h from S in the sense
that any a in S and b in (h) will generally have the pairity a † b.

Given two subsorts k and h such that k ∈ h ∈ S there exist collection operators
such that
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(i) ΩhS = (h)

(ii) Ωk(ΩhS) = Ωk(h) = ((k))

(iii) cardx = 1 ⇒ Ωx = x = (x).

This implies directly that ΩkΩh and ΩhΩh = Ω2
h in particular produces a singleton

((k)) or ((h)) as these collections have only one member, (k) and (h) respectively.
We can now operate once more Ω((h)) which can only yield the collection of (h)

i.e. ((h)) in accordance with (iii). We can therefore unambiguously write Ω3
hS =

Ω2
hS or simplified as Ω3

h = Ω2
h . These axioms imply: that we do not necessarily

get something different when writing X → (X ), i.e. allowing for (X ) = X while
demanding that (((X ))) = ((X )).

8 Functions to and from a Sort

We will consider two kinds of functions: collective functions (to be defined) and
functions as operators.

8.1 I Functions as Collection of Pairs: “Business Not as Usual”

A function can generally be defined as a new class of ordered pairs from a direct
product, D × R, where D is the domain and R the codomain, with the first compo-
nent in the pair only occurring once in this class. When sorts are considered special
problems arise for two reasons: firstly the id:s cannot be indexed in any unique way
and secondly their context dependence described above.

The difficulty to define functions from a “product” Domain × Codomain can be
illustrated by mappings to be defined from Sort to Set, i.e. from S to M . To define a
function S × M entails selecting a collection of pairs from S × M where each pair is
in the form

(α, x1), . . . , (α, xn), (β, x1), . . . , (β, xn), (σ, x1), . . . , (σ, xn). (4)

The construction of a function S → M amounts to selecting one pair for each argu-
ment in S. Select say (α, x1). Now we want to choose another pair with a different
argument from α. But as we have “taken out” α from its collective context in S when
forming (α, x1) due to the context dependence of id:s it could be confused with any
other id in S. Whatever choice we make next, call it (β, x2), there is no way to be sure
that we have not selected (α, x2) i.e. (α, x2)†(β, x2). The reason once more: Func-
tions, defined as pairs, must be differently constructed. This failure of a selection of
pairs also intuitively follows from the fact that id:s cannot be indexed in any unique
way. Abandoning methods based on pair selection it remains to consider other ap-
proaches.

8.2 II Collective Functions

We need some approach where the collective nature of the mapping is basic. A func-
tion here called collective function from a Sort S, does not act separately on a par-
ticular argument but “simultaneously” on every id and subsort of S. We therefore
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postulate that the function F , representing a general collective mapping, i.e. from
Sort to Sort, from Sort to Set or from Sort to mixed Sort defines a context from the
whole domain. The arguments in F are directly related in an image of parts/subsorts
of the domain: Given Fα and Fβ , α and β can be regarded to be in the same context
which means being in the same context of the collective mapping F . The underlying
idea is to define functions from and to a Sort as a collective operation acting on the
whole domain “simultaneously” in contrast to sequentially on the arguments. This
approach requires some further definitions and postulates.

Postulate 8.1 (Collective functions) The arguments in a collective function F can
be given a definite pairity relation without ambiguity i.e. α and β in Fα,Fβ can
consistently be seen as different i.e. α � β .

Note that this is in contrast to a collection of pairs like [(α, x1), (β, x2)] where we
could only say α†β where α and β are “copied” from some Sort or collection into
the context of the collection of pairs. The Postulate 8.1 states that a collective function
defines a common context for objects in the domain to yield definite pairity relations
between them.

Definition 8.1 (Definition of Collective Functions and Existence Postulate) A col-
lective function F is defined by:

(i) F [h(1) ∪ h(2)] = Fh(1) ∪ Fh(2).
(ii) F [h(1) ∩ h(2)] = Fh(1) ∩ Fh(2).

(iii) cardFh ≤ cardh, where h, h(1) and h(2) are arbitrary id:s or subsorts (or ele-
ments or subsets if D is a set) in the domain, D, of F .

(iv) cardx = 1, where x is an element in D.
(v) cardFh = 0 ⇔ h = ∅ for which F∅ = ∅.

Definition 8.2 (Surjective functions) F is surjective (onto D) if: cardFD ≥ cardR,
where D is the domain and R is the codomain.

Definition 8.3 (One-to-one functions) F is one-to-one if: cardFD = cardD =
cardR, where D is the domain and R is the codomain.

From (iii) it is observed that cardFx = 1 if cardx = 1 as cardFx > 0, unless
x = ∅. Given a partitioning of the domain D of a collective function: denote the
partitioning as

D = |H | = Uh(i), (5)

(where the index might only be notational as subsorts can be id:s when D is a Sort).
From the definitions a number of direct consequences follows:

Theorem 8.1 A partitioning of the domain D = Uh(i) induce a partitioning of the
codomain, R, by the image of F of R: FR, that F is onto (surjective). This induced
partition is UFh(i) = R.
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Proof Given h(j) and h(k) in some partition D = Uh(i) gives Fh(j) ∩ Fh(k) =
F [h(j) ∩ h(k)] ⇒ cardFh(j) ∩ Fh(k) = cardF [h(j) ∩ h(k)] ≤ cardh(j) ∩ h(k) = 0 as
h(j) ∩ h(k) is empty by definition ⇒ F [h(j) ∩ h(k)] is empty. Moreover, FD ⊆ R

and FD = cardR by definition of an onto-function which gives that FD = R by the
axiom of cardinal extensionality. Thus R = FD = FUh(i) = UFh(i). This demon-
strates that UFh(i) is a partitioning of R. �

Theorem 8.2 For every one-to-one function F , D → R, and for every partition of D;

D = Uh(i),

it holds that cardFh(i) = cardh(i).

Proof From the previous theorem we know that F induces a partitioning of R, by R =
UFh(i) (as F is onto). By definition cardD = cardR = cardFD = cardFUh(i) =∑

cardFh(i) ≤ ∑
cardh(i) = cardD, whence from cardFh(i) ≤ cardh(i) it follows

that cardh(i) = cardFh(i) as we cannot have equality if cardFh(j) < cardh(j) for
any h(j). �

We also have:

Theorem 8.3 For every F and every partitioning of the domain D = Uh(i) it holds
that Fh(i) �= Fh(j) ⇒ h(i) �= h(j) for arbitrary subsorts/subsets in the partition.

Proof Assume the statement is false. Then for some F , and partitioning of the do-
main D: Uh(i) = D, there are h′, h′′ such that Fh′ �= Fh′′ and h′ = h′′. Suppose
Fh′ �= Fh′′, while h′ = h′′. cardFh′ ∪ Fh′′ = cardFh′ + cardFh′′ − cardFh′ ∩
Fh′′ > cardFh′ + cardFh′′ if cardFh′ ∩ Fh′′ > 0 or cardF [h′ ∩ h′′] > 0. But
F [h′ ∩ h′′] = 0 only when h′ ∩ h′′ = ∅ and as h′ = h′′ this is not possible. Thus
cardF [h′ ∪ h′′] = cardFh′ ∪ Fh′′ ≥ cardFh′ + cardFh′′. But cardF [h′ ∪ h′′] =
(h′ = h′′) = cardFh′ ⇒ cardh′′ < 0 which is impossible. �

Theorem 8.4 For F given as an arbitrary one-to-one function D → R with FD =
R, cardD = cardR. For every partition D = Uh(i) and for any h(i) and h(j) in D it
always holds that h(i) �= h(j) ⇔ Fh(i) �= Fh(j).

Theorem 8.5 For every onto collective function F there is at least one partitioning
of the domain D = |H | = Uh(i), such that cardFh(i) = 1 for every h(i) in |H |. The
(multi) set {cardh(i)} is called the characteristic set of F .

Theorem 8.6 Given a collective function F , and characteristic partitioning of the
domain D = Uh(i). It then holds for every objects x1 and x2 in D that: Fx1 = Fx2 ⇔
x1 and x2 both in some h in Uh(i).

8.3 Collective Functions from Sort to Set

In accordance with the previous section each image of the subsorts in some partition-
ing H of S
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FH = |Fh(1), . . . ,Fh(k)|
is now some Set, M = {y1, y2, . . .}, where accordingly Fh(i) = yi . Again it is ob-
served that when subsorts are under consideration they are

1. not uniquely defined (up to permutation of objects between subsorts only)
2. when two objects are id:s themselves they can only be indexed for notational pur-

pose.
{

Fh(1) = y1

Fh(2) = y2

}

cannot be distinguished from

{
Fh(2) = y1

Fh(1) = y2

}

when h(1) � h(2).

We have seen that cardFS ≤ cardS with equality when F is one-to-one

α �= β ⇔ Fα �= Fβ (Theorem 8.4). (6)

This can be explicitly written as cardS = card |α,β, . . . | = card |Fα,Fβ, . . . | = n.
We can now formulate a simple and useful “Cardinality-Function” theorem.

Theorem 8.7 (Cardinality Function) For every SortS and every SetM there exists a
unique natural number n, only depending on S, denoted cardS = n such that

I for every SetM with cardM ≤ n, there exists at least one onto function S → M

fulfilling the criteria of Sort → Set functions.
II for any SetM with cardM = k > n there is no such onto function.

III this defines the same cardinal number as has been axiomatised for every Sort,
choosing cardM = n. For any such onto function F when cardM = cardS it
holds that a in S, b in S, a �= b ⇒ Fa �= Fb.

Some comments:

I is just the existence Postulate 8.1 applied when the domain is a Sort and the
codomain a set.

II is a direct consequence of condition (iii) in the definition of collective functions.
III For F one-to-one: cardD = cardFD = M = n by definition (n unique follows

obviously from I and II).

8.4 Number of Functions Sort to Set

For functions based on sets the number of mappings from M → N equal nm, where
cardM = m and cardN = n. Due to invariance to permutations etc. the number of
functions Sort → Set, Set → Sort and Sort → Sort are greatly reduced. Given the
Sort S, cardS = n and Set M , cardM = k. A mapping F was determined by

(i) A multiset of integers {ni} representing a partitioning of S into subsorts h(i)

where cardh(i) = ni and
∑k

i=1 ni = n.
(ii) The image {Fh(i)} = {yi}, card{Fh(i)} ≤ k where the integer ni is assigned to yi .

Two functions will be different if either the multisets {ni} differ or the sets {yi}
differ or both.
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(a) The number of into functions from S to M . Thus the problem is equivalent
to finding the number of partitions of the integer n into k parts, which from
combinatorics is known as being

(
n+k−1
k−1

) = (
n+k−1

n

)
.

(b) The number of functions from S onto M follows now from a) by demanding
that card{Fh(i)} = k i.e. every yi ∈ M is the image of some h(i). This is seen
by writing n = (n1 −1)+1+· · ·+(nk −1)+1 = (n1 −1)+· · ·+(nk −1)+k

and the problem becomes equivalent to a) by putting n → n − k which gives(
n−1
k−1

)
.

(c) Consider now all possible functions from S to M . The largest possible k is
obviously k = cardS = n representing the cardinality mapping of S. From
(b) we will then sum over 1 ≤ k ≤ n giving

n∑

k=1

(
n − 1

k − 1

)

= 2n−1.

(d) An injection, card(S) = card(FS), from S to M where k ≥ n will mean the
conditions cardh(i) = 1, α �= β in S ⇒ Fα �= Fβ (where α and β represent
any two id:s, not two in particular). This is easily seen to give

(
k
n

)
possible

functions as each mapping defines a subset in M with card = n.
From physics we recognize that the number of mappings in case b above,

(
n−1
k−1

)

is equivalent to the number of states in Bose-Einstein statistics.

8.5 Collective Mappings Set to Sort

A novel feature of possible mappings to Sorts is that the image of an element could
be an unspecified (fundamentally unspecified) member of some subsort/subcollection
of S,h ⊆ S. The notion for such unspecified element is the blur of the elements in
h, Ûh. Given an element x in the domain (x ∈ M) we could assign the value Ûh

to x. In contrast to mapping Sort → Set the ambiguity is now found in the codomain
with id:s as members. Again the definition of collective functions Sort → Set will be
the approach. It is important to point out when dealing with Sorts, care must be taken
when something is defined that the definition will not be inconsistent with the basic
axioms regarding id:s.

Definition 8.4 A Collective function F : M → S is characterized by

(i) F(m1 ∪ m2) = Fm1 ∪ Fm2 where m1 and m2 are subsets of M .
(ii) Fx1 �= Fx2 → x1 �= x2 or as Fxi in S, Fx1 �= Fx2 means Fx1 �Fx2. As before

the cardinality of the image is less than or equal to the cardinality of the domain.
(iii) cardFm ≤ cardm.
(iv) The image of a subset m ⊆ M defines in general a subsort in S

Fm = h ⊆ S (7)

with the usual meaning x ∈ m ⇒ Fx in h and for every α in h there is some
y ∈ m such that Fy = α.

(v) F can be specified by a partitioning of M into subsets M = ⋃k
mi where for

each mi : Fmi in S, FM = F [⋃k
mi] = h in S, cardh = k. From this follows
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Fxi = Fxj iff xi and xj ∈ ml for some l. (8)

vi Any permutation of the id:s in h leaves the collective function invariant.

8.6 Number of Distinct Functions Set to Sort

It was observed that the defining partitioning of the domain M = ⋃k
mi is the only

cause for distinction between two collective functions M → S. A partitioning of the
set M is different from that of a Sort as we now have to have set-partitionings and not
partitions of integers. As was seen each partition of M into k subsets will define an
image of FM which defines a subsort of cardinality between 1 and k in S. Different
subsorts will not give different functions if they have the same cardinality. Let us
therefore determine the number of mappings for cardFM = k defining subsort h(k)

in S. This must then equal the number of set-partitions of M into k subsets. This
number is known as a Stirling number of the second kind denoted S(n, k) with a
recursive formula S(n, k) = S(n − 1, k − 1) + kS(n − 1, k), k ≤ n. This gives the
number of onto functions from M → S. Next to get the number of into functions
M → S is directly given from summing over all possible images each defined by
cardFM = cardh = i giving

∑k
i=1 S(n, i). Finally to find the number of functions

from a set M → S when cardM = n we will sum over all functions from Mk → S

from k = 1 to k = n, where Mk denotes any set with cardinality k, which sum is
given by the Bell number B(n) = ∑n

k=1 S(n, i) recursivity given by B(n + 1) =∑n
i=0

(
n
i

)
B(i).

8.7 Sort to Sort Functions

It is clear by now that the partitioning of the domain is crucial in the definition of
collective functions S → T . Each partitioning H of S is then defined to be mapped
into another Sort via a corresponding collective function F

F(H) = F(h(1) ∪ · · · ∪ h(k)) = Fh(1) ∪ · · · ∪ Fh(k)

where FH defines a subsort in the Sort T . As before cardFh(i) = 1 ⇒ cardFH = k,
for a partitioning into k subsorts of S, cardS = n, cardT = k. Each partitioning of
S into k subsorts corresponds to the partitioning of the integer n into k sums cor-
responding to one onto function to T (any permutation in the codomain leaves the
function invariant). The number of partitions of the integer n into k sums will there-
fore correspond to the number of onto functions to T . This number is denoted as
pk(n). The number of all into functions Sn → Tk is given by summation over k. For
each pi(n) we have

∑k
i=1 pi(n). All possible functions S → T , cardT ≥ n is then

given by
∑n

i=1 pi(n) = p(n) which has the estimate p(n) = 1
4
√

3
exp (π

√
2n
3 ). The

focus on the number of functions has been justified by the direct connection with
statistics in physics, particularly quantum theory.

9 Functions as Operators from and to a Sort

In the context of Sorts there is a clear difference between functions defined as classes
of ordered pairs and as operations. Collective functions being some analogue to class
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of pairs were associated to sets of cardinal numbers. A function regarded as an op-
eration on an argument to give a certain value can “naively” be seen as an operation
of “exchanging something for something else”, assuming we can give some meaning
to functions as operations defined when Sorts are in question. If two such functions
have values in some Sort, they can never be distinct, for in that case there must be
some x in the domain for which f x ⊥ gx which cannot happen when the range is a
Sort. As there is no way to select a particular value in the range R, it seems as the
only possibility is to say that the value f x in R is completely undetermined, which
is equivalent to saying f x = ÛR (the blur of R), whose value then can be seen as a
“constant value” for f i.e. f a “constant function”.

9.1 Endomorphisms

A special class of functions from and to a Sort are endomorphisms. Considering en-
domorphisms of Sorts. where the argument and the value are in the same Sort, reveals
some more possibilities for defining values of a function. The basic reason is that for
f x = y, x and y in a Sort S, x and y can be related to each other in the common
context of S. To take advantage of this we should try to create as much “structures”
in S as possible. For instance, we have different subsorts in S, determined up to car-
dinality. As an illustration, let us look at possible values for an endomorphism (as an
operator):

(1) f x = x is a legal value as we have not changed anything, i.e. seeing f as an
operator “exchanging something for something else”, f x = x represents “no ex-
change”. One can further impose the condition f x = x when x in h, h some
subsort which accordingly is defined up to cardinality. This subsort then defines
an invariant subsort relative f :s domain. Such an invariant subsort in f :s domain
is then determined up to cardinality: f x = x when x in h, cardh = n say.

(2) Relating f x to some subsort h (if x in h does not involve a forbidden selection
i.e. if we do not choose a particular value in h). Thus defining f x = Ûh is an
allowed value when x in h. The reason why we can consistently demand that x is
in h is that x already is in the context of h and can thus relate to id:s in h, meaning
that x cannot be confused with some x′ not in h. We could also “assign” the
value ÛCh, where Ch is the complement to h as x �= all id:s in Ch. Continuing
in similar ways to operators on two arguments f xy, one can define a limited
number of different operators/functions. In this case one can create an analogue
to binary operations. These operators can in turn be treated as new id:s forming
Sorts of operators, etc. forming certain hierarchies of these.

10 Conclusion

In the second part of this paper I have been discussing consequences of introduc-
ing a weaker form of difference. This was called collective difference, characterized
by lacking the normal individual difference when two objects are contrasted to each
other, while being different in the sense of differently contributing to some common
collective context, whole, collection etc. It was seen in the first part that the notion
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of order could be based on the basic notion of difference and similarity. To establish
similarity between two things, reference to something third was seen as necessary.
Therefore when regarding items with any collective difference this third item must
be some collective common context expressed as: a is to C as b is to C, C repre-
senting some collective context. An example of this can be seen in the definition of a
collective mapping F from a Sort: Fa = Fb where a and b are similar in relation to
the common context of F which could be written as: a is to F as b is to F .

To form more mathematical structures working with Sorts, an important notion
we have not been discussing at any length is operators, transformations etc. Due to
non-ordinality such concepts will generate much poorer structures than in set theory,
but might have aspects which are not naturally seen in a set-theoretical context. Cer-
tain classes of operators of Sorts representing endomorphisms could themselves be
regarded as id:s, thus generating new Sorts. This procedure could then be repeated
to yield hierarchies of Sorts, the structure of which might not easily be visible in a
set-theoretic framework.

As a speculation, it is conceivable that not only particles could be indistinguishable
in physics but also other aspects of a physical reality, such as physical states.
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