
Abstract: Attempts to arrange all of classical mechanics upon a self-contained basis
encounter difficulties due to “the lousy encyclopedia phenomenon”: hard cases
involving, e.g., billiard balls, often require that the standard treatments be
abandoned in favor of conceptually different accounts.  Worse yet, these chains of
interdependence often travel in circular loops, where the practitioner is returned to
formalisms that she had previously abandoned.   However, behaviors of this sort
are to be expected if classical doctrine is instead viewed as a “reduced variable”
covering of quantum mechanics, which is the point of view that this essay
recommends.



-2-

A Funny Thing Happened on the Way to the Formalism1

Mark Wilson, University of Pittsburgh

 In reading a standard mechanics text, one often runs across an aggravating
behavior that I call the lousy encyclopedia phenomenon, in honor of a regrettable
"reference work" that my parents had been snookered
into purchasing when I was a kid.   I would eagerly open
its glossy pages to some favorite subject ("snakes," say). 
The information there provided would prove utterly
inadequate but hope always remained, for at the end of
the article a long list of encouraging cross-references
was appended: "for more information, see rattlesnake;
viper; reptile, oviparous ..." etc.  Tracking those down,
I might glean a few pitiful scraps of information at best
and encounter yet another cluster of beckoning citations. 
Oh, the hours I wasted chasing those informational
teasers, never managing to learn much about snakes at
all! 

In a stock mechanics book, one will often read about a specific topic--let’s
say, billiard ball collisions--and realize that the treatment there outlined can’t apply
to all events of the expected type considered in fuller generality.  Thus the text
might appeal to an old treatment of Newton’s wherein one treats the colliding balls
as rigid throughout the collision and appeals to a so-called “coefficient of
restitution” to govern how much of the incoming kinetic energy gets lost.  And
then one wonders, “Gee, this account isn’t going to work if we happen to have
three balls colliding at once.  And don’t real billiard balls sometimes flex when
they collide?” Sure enough, you are likely to find a little footnote
attached: "For more on this topic, see..." But when you look up
one of those citations, you’ll find some comment that implicitly
overthrows the validity of the “coefficient of restrition” treatment
you’ve just studied:

The initial approach [historically] to the laws of collisions was predicated
on the behavior of objects as rigid bodies, with suitable correction factors
accounting for energy losses.  It is interesting to note that this concept has
survived essentially unchanged to the present day and represents the only
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exposition of impact in most texts on dynamics.2

Often the treatments found in following the footnotes do not simply "add more
details" to what we saw before in any reasonable sense of that phrase, but quite
commonly overturn the old treatments altogether.  In the case at hand, the entire
mathematical setting gets replaced: specifically, the Newtonian treatment utilizes
ordinary differential equations, whereas our specialist texts will usually employ
partial differential equations of some class, which, from a mathematical point of
view, represent an altogether different breed of critter and embody an ontology of
flexible bodies, rather than the rigid
balls we left behind.  But if you
scrutinize the new treatment, it is
likely that you will notice some
further holes that keep our new
methods from being able to handle
a generic collision adequately.  For
example, at a second stage of detail
our balls will usually be treated
according to a quasi-statical policy
pioneered by Heinrich Hertz: the
collision events are broken into
stages that are assumed to relax into one another in a "finds a local equilibrium"
manner.  This method gives very nice results for an important range of cases, but
there are plainly billiard ball events-- when wave movements initiate within the
balls--that fall outside its range of application.  When one drops into a patch better
able to handle fast dynamic effects like this, one learns that internal shock waves
often form inside our balls, which, from a mathematical point of view, means that
our governing equations “blow up” and don’t make classical sense anymore.  Well,
that eventuality drops us into yet another patch where our physics tolerates so-
called “weak solutions” and we find, rather surprisingly, that we must evoke
certain forms of thermo-mechanical principle to get our shock waves to move
through the interiors of our balls properly.  Likewise, high speed collisions at
explosive velocities bring forward an entirely new range of untreated effects within
our balls and certain cases will readily show that we have been heretofore treating
the common boundary between our balls in an unrealistic fashion (permitted no
sliding or cross-boundary transfer of wave motion).  Nor have we introduced any
mechanism that allows our balls to fracture.  And so we keep going.  Despite the
popular stereotype of Newtonian mechanics as “billiard ball” mechanics. this chain
of billiard ball descent never reaches bottom to the best of my knowledge: there



-4-

seems to be no universal theory of classical billiard behavior extant. 
 Here’s another simple illustration of an important family of “lousy

encyclopedia” exceptions that philosophers, at least, often
overlook.  Often they’ll adopt some form of orthodox
Lagrangian mechanics formalism as if it “fully embodies”
the “content of classical mechanics,” when, in fact, the
formalism can only handle a wheel that slides along a rail,
not one that rolls along it (that is, the formalism only

accommodates holonomic constraints).  Well, it isn’t too hard to fix that hole, but
now consider a wheel with two concentric hubs--
"Aristotle's wheel" of antiquity--that eventually
rolls into a configuration where the two hubs now
lie upon two rails rather than one.  When the inner
hub rolls onto the upper shelf, the system shifts
into over-constraint and we are forced to drop into
a completely different arena of physical
consideration to resolve the incompatible answers
as to how far our wheel will roll in one revolution
that our two constraints supply us.  We are forced
to open up a rather large suppressed can of worms pertaining to the frictional
processes of sliding (and, usually, some bending) occurring at the two rail
junctions (the computational advantages of a Lagrangian formalism lie in the fact
that it allows to ignore such effects when they remain small).  But a direct
treatment of friction involves a lot of hidden physics that we haven’t seen before
(some of which carry us into a consideration of quantum processes). 

More generally, each drop in level in a lousy encyclopedia chain is apt to
open up a lot of suppressed physics and this often forces considerable shifts in both
mathematical setting and attended physical ontology (e.g., whether our basic
entities are point particles, rigid bodies or
flexible blobs).  Worse yet, it often happens
that some lower level in our chain will
eventually return us to some apparently
abandoned higher level, as, in fact, occurs
when a detailed treatment of fracture asks us
to once again treat portions of our billiard
ball interior as a swarm of little rigid balls
glued together by Newtonian attractions.  I
call this kind of circular behavior in our encyclopedia foundational looping and it
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greatly puzzled scientists at the end of the nineteenth century who attempted to
render the contents of classical mechanics clear.  In fact, this is why David Hilbert
set the formalization of classical mechanics on his famous list of problems that
mathematicians should attack in the twentieth century.

Such looping introduces a multi-valuedness into our circumstances in the
sense that our different patches will often describe the same physical system in
mutually incompatible ways.  Let us now explore some reasons why this odd
inconsistency can sometimes result as the natural side effect of wise descriptional
policies.   I’ll begin with a number of general remarks that pertain to situations of
this type.  

1. First of all, such multi-valuedness is often associated
with linguistic expressions that gain their full domain of
application through prolongation from one local patch to
another.  Standard examples can be found in the “analytic
functions” of complex analysis, where we employ local power
series expansions to calculate values for our expression off the
real line.  Let’s consider /z as an example where we want /z to represent the
positive square root of z over the real numbers.  We can easily find a power series
valid between 0 and 1 that can carry the significance of /z out into a little circle S1
on the complex plane.  But can we reach complex numbers that lie beyond the

dominion of S? One of the pleasant features
about power series calculations is that they can
be recentered upon different values.  So let c be
some complex value just beyond the boundary
of S .  We can now center a new series S  upon1 2
c and explore where its new boundary δ S2
takes us.   If we properly skirt blow ups and
branch points, so forth, we will eventually

construct a pattern of overlapping domains that
covers the complex plane.  But often an odd effect
occurs as we pursue this building-through-local-
prolonagtion program:  starting from a region over
z = 4, we can continue values for "/z" completely
around the origin, until we once more lie over 4
again.  But now the power series we now employ
will blithely informs us that, no, the proper value of
"/4" is not +2, as we originally thought; it is
actually -2!  If we cycle a second time around the



-6-

origin using the same kind of continuation, "/4" recalculates more happily as +2
once again.  The mere fact that each individual power series supplies unique values
to a functional expression locally does not guarantee that it will also display unique
values globally.  But this tacit expectation often proves mistaken.  This, of course,
doesn’t ruin the utility of "/4"; it merely means that we need to be careful in how
we reason with the expression.

And Riemann provided us with an evocative
picture of the twisting that /z evinces: imagine a ramped
parking lot with two floors in which we can drive around
forever without running into anything (the topology of
such a Riemann surface cannot be realized as an ordinary
spatial shape within three dimensions).  While we are
driving on level one, the correct value of /4 looks as if it
should be clearly +2 but, as we motor onto level two, the
value -2 begins to seem preferable.  And so on. 

In my book I study a number of linguistic systems
that grow through prolongation and sit upon multi-valued Riemann-like surfaces as
a result.  And the general moral is that they constitute reasonable--and often
unavoidable--descriptive systems that are wholly satisfactory as long as we are
careful in not exporting data carelessly from one sheet of the surface to another
(even if the same rules are valid locally).  I call assemblies of this sort facades, for
a reason I’ll explain in a moment.

Here’s a very simple example.  When industry investigates a material for
hardness, it employs a number of different kinds of test designed to be suited to the
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particular material at hand--to whether it is a metal, plastic, rubber, ceramic, etc. 
And, in general, such tests prolong into one another fairly smoothly along their
boundaries.  Nonetheless, when we piece the whole facade together, certain mild
forms of multi-valuedness appear, although they cause no harm because we are
rarely inclined to transport data between such distanced forms of test. 

2. Let’s now switch to another observation which I’ll eventually combine
with what we’ve just noted.  To render a particular physical situation
mathematically tractable, we usually need to reduce the number of variables that
we actively track.  If we can get away with it, a popular scheme for achieving this
is to sweep the most difficult parts of the physics into regions we do not attempt to
describe accurately: we might call this a policy of physics avoidance.  And the
general rationale is this: if we can examine a situation from several sides and
discern that some catastrophe is certain to occur in a certain region, we needn't
describe the complete internal details of that calamity in order to predict when it
will occur and what its likely aftermath is likely to be (it’s analogous to being told
that "There's going to be a war here and the country will be destitute thereafter":
we don’t need to know much about the details of the war to calculate what the
country will be like thereafter).  This is exactly the policy enforced within one of
the great paradigms of "physics avoidance": Riemann and P. H. Hugoniot's
celebrated approach to shock waves.   3

Suppose we put some gas in a long tube
and give it a violent shove on one end.  
There is a simple equation that
describes our gas as a continuous fluid,
subject to a little viscosity.  But if the
initial impulse is strong enough, the
faster molecules in the pulse will
eventually overtake their slower
moving brethren ahead and create a
shock wave pileup, like the traffic snarl
that would occur if our molecules had
been automobiles.  From the point of
view of our continuous gas equation, this situation develops a descriptive
inconsistency, for our equation actually predicts that our gas must display two
distinct velocities at exactly the same spot and time (in the jargon, its
characteristics cross).  Prima facie, one would expect that this apparent
contradiction in the mathematics will force us to abandon our smoothed out fluid
description and turn to the complex details of how discrete gas molecules will
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interact when forced into such close quarters.  "Don't be so hasty," Riemann and
Hugoniot advise us. "We can accurately predict from the gas's ingoing behavior
when the shock wave is going to arise and how much gas momentum will be
funneled into that event.  Moreover, by appealing to thermodynamics, we can also
predict how the gas on the other side of the shock front will flow smoothly away
from the event.  By piecing this two-sided information together, we can predict
exactly how fast the shock wave will move down the tube, without needing to
know the complex details that actually occur inside the shocked region."  Thus the
Riemann-Hugoniot policy sweeps what, in real life, represents a narrow but still
finite region of churning air currents into a two-dimensional boundary that
separates regions of smoother gas.  The treatment descriptively collapses a finite
area of great complexity into a singularity: a point or lower dimensional boundary
separation.  Riemann and Hugoniot do not attempt to write a "law" to directly
govern the shocked area's behavior; they instead employ simple "boundary
condition" stipulations to dictate how its two neighboring smoother regions piece
together.  

The fact that a complicated region can be descriptively avoided in this
manner does not indicate that it is therefore unimportant: the condition at the shock
front represents the most important physical event that occurs in our tube.  It is
merely that we can keep adequate track of its overall influence in a minimal
descriptive shorthand, just as "a terrible war between North and South occurred in
1861-5" may supply sufficient information to appreciate the Civil War's long term
effects upon our country adequately enough.  Indeed, the whole idea of variable
reduction or descriptive shorthand is that we are able to locate some shock-like
receptacle that can absorb complexities and allow us to treat its neighboring
regions in a simplified fashion.  The basic Riemann-Hugoniot moral sounds like a
methodological paradox when stated bluntly: a good recipe for achieving
descriptive success papers over the physical events most responsible for the
phenomena we witness!  But that, in fact, is the manner in which successful
variable reduction typically works.  And it should warn us philosophers of science
that much of the action in a physical explanation may not be supplied within its
explicit “laws” alone, but may lie hidden within the tacit singularities and
boundary joins.

It is also fairly evident that such policies of squeezing into a singularity are
not going to always work, and that we will sometimes need open up the internal
details of what actually transpires amongst the molecules within our shock front. 
When this happens, we witness a typical “lousy encyclopedia drop” into a different
realm of physical formalism. 
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3. Observations (1) and (2) fit together naturally as follows.  When we
attempt to descriptively cover a single complex situation or handle a wider range of
related situations, it is advantageous to adopt different local policies of variable
reduction over different sectors of domain and then piece them together along their
boundaries by some policy of extrapolation.  Here is a classic illustration.  Suppose
that short wavelength light from a distant light bulb strikes a completely reflective
razor blade and we want to
calculate how the light will reflect
from its surface.  We know roughly
what will occur: some of the
incoming light will miss the mirror,
but some will be reflected and
mingle with the former and, if we
view the razor from the shadow
region below, diffraction effects
will make it appear to glow as if a
flourescent light had been placed
there. Now Arnold Sommerfeld, in famous investigations of 1894,  found several4

exact expressions for the kind of analytic function that solves this problem exactly,
including a series in Bessel functions.  However, these representations prove quite
impractical because computing acceptable values upon this basis requires an
enormous number of operations.   However, Sommerfeld also found that, by
dividing the plane around the razor into three sectors  and ignoring two
extremely thin sectors of complicated behavior along their boundaries, he could

replace his slow-to-converge Bessel function series
with three series utilizing exponentials and square
roots that provide useful values with a quite
astonishing reduction in computational complexity
(perhaps by a degree of as much as 15,000 to 1). 
And then we can anticipate roughly what happens in
the inbetween regions by extrapolation.

But there is a price to pay for the convenience
of our new descriptive reduction.   The formula we
use to compute values of light intensity around the
blade must follow a sectorized policy: in region ,1

we trust formula to give us correct values, but once the boundary line into  is1 2

crossed, our allegiance needs to be shifted to formula  which is obtained from 
by altering its coefficients in a certain way and a similar handoff must occur when
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we move into sector  (this odd behavior is called the Stokes Phenomenon (after
its discoverer, George Stokes) and the lines that divide our sectors are called Stokes
lines).   In fact, our replacement series obtains its advantages through practicing
physics avoidance and ignoring the complicated light behaviors that occur within
the little slices near the Stokes line boundaries.  This policy lets us employ
exponential terms to characterize the dominant behaviors that occur inside each of
the  patches in very simple terms and to handle the complicated Stokes line
regions by shock wave-like patching together.  But in effecting this changeover in
representational language--that is, moving from Bessel term factors to exponentials
and square roots--our descriptive language undergoes what I like to call an
alteration in inferential personality, allowing those square roots in our
representation places our descriptive language upon a Riemann-like parking lot. 
And this alien element then prevents us from using computational rules that work
uniformly everywhere across our razor: we must instead divide our domain of
treatment into sectors if we want to obtain reasonable and self-consistent values. 
So, in my terms, we wind up covering our razor blade circumstances with a
reduced variable patch-work facade.  In a mathematician’s terms, such a facade is
the natural structure that arises when one approximates the locally dominant
behaviors below using asymptotic approximation.

Now it is a striking feature of Sommerfeld's approximation facade (he noted
the fact himself) that its components correspond quite tightly to the traditional
world of geometrical optics--the
venerable assumption that light
travels in rays--, for our three sectors
correspond to its different regions of
ray behavior.  But we obtain a
splendid bonus in addition: our
asymptotic policies also supply a ray-
like approach to the diffraction
pattern witnessed around the blade's
edge.  Now diffraction is not a
phenomena that is easily handled
within an the old-fashioned ray
picture (its traditional explanations were quite strained), but it emerges as a natural
companion of the regular rays once we view our geometrical optics world as
arising as a asymptotic facade over an underlying wave domain.  Indeed, from this
point of view, it seems natural to investigate whether we can’t extend the old ray
picture in more detailed ways by considering further terms in higher order
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expansions of our asymptotic expansions (the physicist J.B. Keller was a pioneer in
this work).  If we do this, we find ourselves adding some rather strange ray-like
structures to a traditional geometrical optics picture, such as the odd creeping rays
that spin off glass globes as they were luminous lawn sprinklers and sundry
imaginary waves that we can’t directly see, but control the intensity of the light we
do witness.  In this way, we create a very useful structure of improved ray optics5

that floats above the wave account of light in the manner of a patchwork facade.  In
fact, this is the “world” in which modern optical designers usually work--you can’t
design a telescope very ably if you attempt to struggle directly with unreduced
wave optics.  However, if we mistakenly approach the jumble of elements found in
our facade as simply a "physical theory" in its own right, we are likely to become
puzzled by its "imaginary rays" and all that.  Viewed more properly as simply a
facade covering of wave optics, these strange locutions make good sense

However, if we don’t go so far as to add anything quite so radical as
“imaginary rays” to our geometrical picture, our variable reduction procedures can
easily create a doctrinal set that looks “kinda like a theory,” but with puzzling
elements in it.  And this observation suggests a useful analogy.  In the days of old
Hollywood, fantastic sets were constructed that resembled Babylon in all its
ancient glory on screen, but, in sober reality, consisted of nothing but pasteboard
cutouts arranged to appear, from the camera's chosen angle, like an integral
metropolis.  When we look at traditional
classical mechanics in its full extent, I believe
that we witness sheets of mechanical assertion
that do not truly cohere into unified doctrine in
their own rights, but merely appear as if they
do, if the qualities of their adjoining edges are
not scrutinized too scrupulously.  In short,
classical mechanics, taken across its full extent
of expected application, represents a patchwork
of globally incongruent claims that might very
well pass for a unified theory, at least, in the
dark with a light behind it.  And, borrowing
from my Hollywood analogy, that is why I like
to say that it is really comes structured as a
theory facade, rather than a proper “theory” per
se.

Now from this point of view, it is natural
that our mechanics facade will display the
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puzzling features we discussed earlier: the lousy encyclopedia phenomenon and
foundational looping.  In fact, our survey suggested strategic reasons for expecting
these two features to emerge as the natural concomitants of the policies of variable
reduction and squeezing complexities into singularities that underwrite the
descriptive successes provided in our covering facades.  But if we can’t eliminate
multi-valuedness and looping from our overall set of classical mechanics doctrines,
we can’t expect that any reasonable closed-unto-itself set of assertions will be able
to duplicate our facade in descriptive power, anymore than any self-contained
doctrine can weld together the strange ingredients found in modern “improved
geometrical optics” into a self-contained world view.  

Putting the point in a different way, let’s consider how the puzzling
descriptive patterns we find in classical organization might look as an asymptotic
covering of the quantum domain.  That is, let’s ask ourselves from a quantum
mechanical perspective, "At what length scale will quantum effects supply
molecules with a sufficiently robust notion of shape that classical modeling
techniques will begin to provide useful answers?"  We will soon discover that the
quantum/classical handoff occurs at many different levels depending on the
particularities of the system studied.  That is, molecules (or, quite often, matter
collected into bundles of a higher scale of organization) must be first supplied with
a trackable "shape" before any form of classical treatment is applicable and the size
scale at which these tradeoff points
are permitted can vary greatly.  And
closer inspection will show that both
that the kinds of “classical molecules”
we require (i.e., point-like, extended
or blobby) and the physical data we
squeeze into singularities will differ
enormously from one classical
situation to another. The net effect of
this bumpy support makes the set of classical doctrines sitting above the quantum
world look like a suit of armor welded together from a diverse set of stiff plates.
Considered solely on its own terms, its organizational rationale will seem elusive,
but, regarded as outer fitting suitable for a quantum mechanical knight underneath,
the entire affair makes complete strategic sense as an efficient asymptotic covering. 
To dogmatically assume that this jumble of hinged doctrine can be regularized into
a self-contained axiomatized format that employs only Newtonian terminology
misdiagnoses the true nature of its descriptive successes: they are effective
precisely because their sundry routines of physics avoidance neatly cover the
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quantum realm like an excellently tailored fabrication of buckler, breastplate and
shin guard.   In other words,  if we purify the contents of the predicates that repose
upon our facade into complete internal coherence, we will find ourselves sitting
within the land of quantum mechanics, and no longer in classical mechanics at all.

But, of course, it is entirely understandable why David Hilbert and the
physicists of his day would not have anticipated this assessment and would have
looked to other means for resolving the surface oddities of classificatory use that
puzzled the Victorians.  Who might have then conceived that it is through quantum
mechanics that classical doctrine would find its "unity"? 

Let me extract a few quick philosophical observations from our discussion.
First of all, it should be clear that facades can represent very extremely important
descriptive systems (I think this moral carries over into everyday descriptive
technique as well).   However, unlike the intimations of, say, Nancy Cartwright on
topics such as this, the phenomenon should suggest neither sweeping
instrumentalist conclusions nor murky mysticism about causation’s role in physical
understanding.  Instead, we learn that certain bodies of doctrine find their
“coherence” as asymptotic coverings of other realms, instead of displaying the
internal closure expected within traditional philosophy of science pictures.  The
manner in which improved geometrical optics sits over wave theory constitutes our
basic model for the phenomenon and I suggest that many of classical mechanics’
oddities can be explained in an allied way.

And this also suggests popular assumptions in philosophical circles that
“theories” inevitably support globally defined models is far too rash, as the lousy
encyclopedia behavior readily shows.  It seems to me that we will learn a lot more
about how both good science and effective descriptive language operate if we
scrutinize in more careful detail the strategic advantages that we extract through
suppressing detail within somewhat artificial “boundary conditions” and the like,
rather than continuing to blithely appeal to ill-defined “models,” “possible worlds”
and the like.  
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