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Abstract

John Hawthorne in a recent paper takes issue with Lewisian accounts of coun-
terfactuals, when relevant laws of nature are chancy. I respond to his arguments
on behalf of the Lewisian, and conclude that while some can be rebutted, the case
against the original Lewisian account is strong.

I develop a neo-Lewisian account of what makes for closeness of worlds. I
argue that my revised version avoids Hawthorne’s challenges. I argue that this
is closer to the spirit of Lewis’s first (non-chancy) proposal than is Lewis’s own
suggested modification.

1 Counterfactuals and Chance
The antecedents of some counterfactual statements render their consequent hugely prob-
able, but not certainly true. That is, it is not impossible that a combination of unlikely
coincidences could lead to a situation in which the antecedent is true and the consequent
false. For example:

(A) If I were to toss this fair coin 10,000,000 times, it would not come
up heads every time.
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David Lewis (1979) and John Hawthorne (2005) agree that such statements are counted
as true in ordinary non-philosophical discourse. Nevertheless, were the antecedent sat-
isfied, there is a calculable chance that the consequent would turn out false. Reflecting
on this, we are inclined to endorse:

(B) If I were to toss this fair coin 10,000,000 many times, it might be
that it comes up heads every time.

And, in light of this, there is some pressure to withhold one’s assent from (A), and
endorse instead:

(A*) If I were to toss this fair coin 10,000,000 many times, it would be
extremely unlikely to come up heads every time.1

These examples give the flavour of the topic to be addressed here, but real bite is put
into the issue by an acceptance of quantum mechanics, under an interpretation accord-
ing to which the wave function for a physical system delivers objective probabilities of
location. There is a real, albeit tiny, chance that I will spontaneously disappear from my
present location while, simultaneously, an intrinsic duplicate of me appears on Mars.
Analogous considerations affect almost every routine counterfactual. Hawthorne’s ex-
ample is:

(C) If I had dropped the plate, it would have fallen to the floor.

As before, there is a small chance that the consequent fails to obtain, given the an-
tecedent. Thus, the following is tempting:

(D) If I had dropped the plate, it might have flown off sideways.

This motivates the rejection of the following:

(E) If I had dropped the plate, it would not have flown off sideways.

But (C) and not-(E) are prima facie contradictory.2 So, just as we retracted assent
from (A) in favour of (A*), it seems that we should replace (C) with (C*).

1See, however, the appendices to Lewis (1979) for a treatment of the ‘might’ counterfactual which
does not have this consequence.

2We assume that in all relevant worlds, p: (flying off sideways) and q: (falling to the floor) are
incompatible. I.e. Every p world is a not-q world, and vice versa. Then the standard semantics for
counterfactuals has it that (C) is true iff all the closest dropping-plate worlds are p worlds; and (E) is false
iff there is some dropping-plate world which is a q world. So there must be some dropping plate world
that is both a p and a q world. But this contradicts the above.
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(C*) If I had dropped the plate, it would very likely have fallen to the
floor.

Hawthorne calls this the ‘error theory’ of ordinary counterfactual judgements. His
task, and ours, is to examine ways of avoiding it, all of which are framed within the
possible-worlds approach to the semantics of counterfactuals.3

The approach to be advocated here is a modification of Lewis’s theory of coun-
terfactuals. I will develop this view in the course of evaluating Hawthorne’s critique
of Lewis’s own proposal. I first sketch Lewis’s views, and then give Hawthorne’s ar-
guments against this account, giving what I take to be the best responses available to
Lewis. I conclude, though, that Hawthorne’s objections ultimately succeed in their aim
of undermining the Lewis treatment. I then give my own version of a Lewisian view,
drawing on the notion of ‘typicality’ introduced by Elga (2004). None of the original
problems afflict my account.

Lewis’s approach
Lewis’s account of counterfactuals consists of two elements. The first is a version of a
now-standard analysis of counterfactuals:

T 
‘A� B’ is true iff B is true at all the A-worlds closest to the world of
evaluation.4

Our previous concerns can be restated in this framework. Suppose a fair coin were to
be flipped 10,000,000 times. Then there are 210,000,000 equiprobable possible outcomes.
Shouldn’t each of these possible worlds be counted as equidistant from the actual world?
But if so, then one of the ‘closest’ worlds will be one in which the coin lands heads each
time—therefore the counterfactual (A) will be false.

Whether this argument is correct depends on whether the presumptions about close-
ness are vindicated; and indeed, the other element of Lewis’s theory is an account of
what makes one world closer than another. Initially, he proposed the following:

3It is noteworthy that other approaches to counterfactuals, e.g. Edgington (1995), are not obviously
susceptible to the same concerns.

4In fact, the gloss just given is only appropriate if we grant the “Limit assumption” (Lewis, 1973,
p.19)—that there can never be an infinite series of A-worlds closer and closer to the world of evaluation.
Lewis is not prepared to grant this assumption—in fact, he thinks it false—so he offers a more generally
version of  . First, let a non-empty set of worlds S be a sphere around w if there is no
world as close to w as an element of S that is not already a member of S . Then we let ‘A� B’ be true
iff either (a) there are no A-worlds, or (b) there is some sphere S containing an A-world such that ¬A∨B
holds throughout S (Lewis, 1973, p.16).

The additional generality gained from Lewis’s official account does not alter any of the issues we will
be considering, so I will continue to use the simpler version.
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S
w1 is more similar than w2 to the world w0 if the differences between w1
and w0 are of less weight than the differences between w2 and w0. The
weighting of the differences is governed by the following principles:

1. It is of the first importance to avoid big, widespread, diverse violations
of law.

2. It is of the second importance to maximise the spatio-temporal region
throughout which perfect match of particular fact prevails.

3. It is of the third importance to avoid even small, localised, simple
violations of law

4. It is of little or no importance to secure approximate similarity of par-
ticular fact, even in matters that concern us greatly

The justification for this understanding of ‘similarity’ is not that it matches our “ex-
plicit, snap judgements” about which worlds are similar to which others. If our snap
judgements are typically sensitive to “imperfect match” over a whole region, the above
account focuses rather on “perfect match” over a limited part of the region. Lewis, how-
ever, is keen to insist that this is still a legitimate notion of similarity, in the ordinary
sense of the word.5 This is the analytic ambition. Even if we were to deny this, however,
the analysis above could be justified as a purely technical underpinning for Lewis’s ac-
count of counterfactuals. It would then stand or fall to the extent that it tracks intuitions
about the correctness of counterfactuals. This is the instrumental ambition.

The initial analysis goes wrong when worlds with chancy laws are introduced. In
the actual world, I do not drop the plate. Now consider a counterfactual with antecedent
‘I drop the plate’. The closeness of plate-dropping worlds is determined by the extent of
spatio-temporal difference and law-violation that obtain. But we can minimise both, in
a chancy world, by supposing that wave-functions collapse immediately after the drop-
ping incident, returning the world to a state that exactly resembles the actual world at
the same time. Hugely improbable, to be sure—but there is a definite positive probabil-
ity that it will happen, and there are possible worlds involving no violation of physical
law6 where it occurs. Given  and  , the effect is that, in the
majority of cases ‘if it were that p then. . . ’ will be true just in case the consequent is
true in the actual world, no matter what p is. Suppose I go walking along a cliff one
day, and play football the next. The following would come out true: “If I had thrown
myself over the cliff that day, I would have played football the next” would come out
true—which is absurd. So the account of similarity needs amendment.

5The above quotations are taken from Lewis (1979, p.54).
6Unless some violation is needed to make the world into a plate-dropping one; but this cannot be a

factor in discriminating between worlds where the antecedent holds
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Lewis calls the unlikely ‘convergence’ events that occur in such worlds ‘quasi-
miracles’. He characterises ‘quasi-miracle’ thus

What makes a quasi-miracle is not improbability per se but rather the
remarkable way in which the chance outcomes seem to conspire to produce
a pattern.
(Lewis, 1979, p.60)

Whatever happens, in a chancy situation, it is exceedingly improbable that exactly that
happened. Any particular ordered sequence of heads and tails is an equally improbable
outcome of flipping a fair coin, notwithstanding that it is an entirely typical sequence.
Not just any course of events should constitute a quasi-miracle, however, so Lewis adds
the “remarkability” clause to his characterisation.

Lewis response to the convergence problem is as follows:

What must be said, I think, is that a quasi-miracle . . . , though it is
entirely lawful, nevertheless detracts from similarity . . . The quasi-miracle
would be such a remarkable coincidence that it would be quite unlike the
goings-on we take to be typical of our world. Like a big genuine miracle, it
makes a tremendous difference from our world.
(Lewis, 1979, p.60)

The suggestion is, I take it, that we incorporate a new condition into a revised version
of .

*
w1 is more similar than w2 to the world w0 if the differences between w1
and w0 are of less weight than the differences between w2 and w0. The
weighting of the differences is governed by the following principles:

1. It is of the first importance to avoid big, widespread, diverse violations
of law, or big, diverse, quasi-miracles.

2. It is of the second importance to maximise the spatio-temporal region
throughout which perfect match of particular fact prevails.

3. It is of the third importance to avoid even small, localised, simple
violations of law, (or small localised quasi-miracles?)

4. It is of little or no importance to secure approximate similarity of par-
ticular fact, even in matters that concern us greatly

Given the formulation in terms of quasi-miracles, we are given answers to many
of our earlier questions. There is a chance that, when dropped, the plate would fly
sideways. But for it to do so would be a remarkable and low-probability event—i.e. a
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quasi-miracle. So worlds where this happens are ipso facto further away than typical
plate-dropping worlds. So flying-sideways, or always-heads, worlds, are not among
the closest where the respective antecedents holds. So (A) and (C) are vindicated, if
* can be sustained.

2 Hawthorne’s criticisms, and Lewisian responses
John Hawthorne (2005) has put forward four objections to Lewis’s revised analysis. In
this section I describe each, and try to construct the best-possible Lewisian response.

Hawthorne frequently appeals to intuitive judgements about what events are, and
which are not, remarkable. Since Lewis does not give anything like a substantial discus-
sion of how this notion is to be taken, this is fair enough. It is also fair, however, that the
opponent allow the Lewisian to precisify ‘remarkableness’ in whatever way will make
her account strongest, so long as overall a coherent story about the notion emerges.

In the case of one of the puzzles that Hawthorne presents to the Lewisian, I think
a direct rejoinder can be given. But in the other three cases, though the Lewisian may
escape refutation, the puzzles succeed in identifying costs that the account must bear.
Since these costs mount up, we are motivated to look for a revised account of remark-
ableness that will give a more satisfactory treatment of Hawthorne’s cases.

The division problem
Quasi-miracles are remarkable, low-probability events. But there are remarkable events
which do not have extremely low probability. Hawthorne’s example is as follows. Sup-
pose that a monkey is at this moment so configured that, were it to start typing now, it
would have a 20 per cent chance of producing a readable dissertation on anti-realism.

We do not want to endorse:

(F) Were the monkey to start typing, it would produce junk, not a dis-
sertation.

One can typically divide a reasonably probable event into low-probability subcases.
It’s probable that I will stand up sometime in the next few minutes; but highly unlikely
that the way I will do so will fit atomistic description D1. Every other atomistic descrip-
tion of a way of standing up is similarly improbable. These might be all the possible
ways in which I could achieve standing up—so their exclusive disjunction is highly
probable.

This goes equally for remarkable high-probability events. There are many ways
Di in which the monkey could produce a dissertation on anti-realism. Each is highly
improbable. And each is remarkable. By the above analysis, that makes each Di world
further away from actuality than every (improbable but) unremarkable world in which
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it produces junk. But this means we do get the counterfactual (F) “if the monkey were
to start typing, it would produce junk, not a dissertation” coming out true, contradicting
our earlier statement.

Response
One might be find the particular case that Hawthorne uses to illustrate the division prob-
lem problematic: a world with dissertation-writing monkeys might seem so removed
from the world of our actual experience, that one might not feel comfortable in putting
weight on one’s intuitions about what is or is not remarkable there.7 I take it, however,
that Hawthorne does not intend his example to be invoke a situation where monkeys in
general have special literary abilities; rather, we are to suppose that some actual mon-
key, which generally has actual-monkey abilities, just happens to have its brain set up
so that there’s a 20 per cent chance that the sequence of keys it strikes will produce a
readable dissertation. We are asked to suppose this actual: it is legitimate, therefore, to
apply actual-world standards of remarkableness.

One might not be quieted by this rejoinder, finding it hard to imagine what a mon-
key’s brain would have to be like to fit this description. But the division problem extends
to other (perhaps more sober) examples where we can see exactly what is involved. I
mention one in a footnote.8 Setting aside these concerns, therefore, I will continue to
discuss the division problem through Hawthorne’s monkey example.

Hawthorne’s objection rests solely on the claim that the event in question is remark-
able. To see this, suppose that the chance that the monkey produces a dissertation on
anti-realism is close to 1. Still, given that the event of the monkey’s writing the disserta-
tion is remarkable, we can argue such an event counts as quasi miraculous—and so the
counterfactual (F) would still be false. For we can still partition the event of the monkey

7I am grateful to Al Hayek for bringing this issue to my attention.
8Our example is one mentioned (in another context) by Hawthorne: the event of getting a particularly

remarkable hand dealt to one when playing Bridge: a hand containing all spades, for example. It does
not seem at all absurd to suppose that someone sometime has actually been dealt such a hand (if it is too
unlikely—Hawthorne quotes the odds as of the order of a thousand billion to one—consider some still
remarkable but less improbable distribution.) Even though the event of getting dealt all-spades strikes
one as remarkable, things can be so set up that it is highly probable that it will happen. Suppose, for
example, a deck of cards has been shuffled, and that every fourth card is a spade. Relative to this time, the
objective chance that the fourth player getting an all-spades hand are high (the only way to avoid it is the
dealer makes some mistake in dealing out the cards). The division argument says that still, this event will
count as quasi-miraculous, since we can partition the event of being dealt that hand into low-probability
subcases. We can suppose that in the actual world, the players were called away before the hand was
dealt (to get the case to work, we need to assume that it is improbable that they were called away. Let
that be so). Nevertheless, we want to say that were the hand to have been dealt, the fourth player would
have had an all-spades hand. The division argument then steps in to say that each such outcome would be
quasi-miraculous, by Lewis’s lights, the closest worlds where the supposition is true will be ones where
the player does not.
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producing the dissertation into low-probability events (perhaps according to the precise
timing of each keystroke). Each of these events will be remarkable and low-probability;
hence quasi-miraculous.

Is the monkey’s producing a dissertation, in the relevant sense, remarkable? The
Lewisian should claim that it is not. If one flips a weighted coin, no wonder that it
comes down heads most of the time. If one deals hands from a deck where every fourth
card is a spade, no wonder the fourth player gets an all-spades hand. And if one sets a
‘weighted’ monkey at a keyboard, it is no surprise if it produces a dissertation.

If an event is ‘remarkable’ just in case it is apt to be found surprising by agents, then
the monkey’s producing the dissertation is remarkable. But if ‘remarkable’ is read as
‘apt to be found surprising by ideal agents in full knowledge of all relevant information’,
then not. The notion of remarkability that Lewis presents is fairly inchoate: the moral
that the Lewisian should draw from Hawthorne’s division problem is that the notion
stands in need of precisification in the way indicated.

Though the response seems attractive, it brings a cost. Remarkableness itself is now
being explicated in explicitly counterfactual terms: as an event that would be found
surprising by well informed people, if they were told of it. This explication is forced
upon those who rely on ‘quasi-miracles’ to handle chancy counterfactuals, on pain of
succumbing to Hawthorne’s division problem. However, it appears circular. Counterfac-
tuals are being explicated in terms of an appropriate notion of similarity; and similarity
itself is now being explicated in terms of certain counterfactuals. This does not trivialise
the analysis, for it enables one to explain a broad class of counterfactuals in terms of
a small subset concerning the judgements of ideally informed agents. However, it is
incompatible with the ambition the Lewisian originally held for the analysis of counter-
factual similarity: to analyze counterfactuals in purely non-counterfactual terms. The
strategic cost of this response to Hawthorne’s division problem is thus significant.

The problem of the abundance of quasi-miracles
Take any remarkable fact about the world—an example Hawthorne suggests is the co-
incidence in apparent diameter of the Moon and the Sun. This is remarkable, and
Hawthorne maintains that it is extremely improbable as well: let us grant this for ar-
guments sake. So it counts as a quasi-miracle.

Hawthorne does not spell out exactly why the presence of quasi-miracles—even lots
of them—in the actual world causes trouble for Lewis. I will consider three possible
objections to Lewis’s account based on the assumption that quasi-miracles are abundant
in the actual world—I do not know which of these, if any, Hawthorne intended.

First, it might be argued that if quasi-miracles are abundant in the actual world,
Lewis’s characterisation of similarity will make a dull world (i.e. one just like the actual
world but with the remarkable facts excised and replaced by unremarkable ones) more
similar to the actual world than the actual world itself is. Perhaps the avoidance of ‘large
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and diverse’ quasi-miracles, will be more important than ‘exact intrinsic match’. If so,
then the dull world will be closer to actuality than the actual world itself.

Were this to be sustained, the Lewisian account would be in trouble. For if a world
is closer to actuality than the actual world is, we will have failures of modus ponens.
For consider a proposition q that is true at the dull world, but which is false in actuality;
and take a proposition p that is true at both worlds (p might be that the Sun is roughly
spherical, and q might be that the Sun and the Moon differ in apparent diameter.) Now
p� q will be true, since it is true at the closest worlds where p obtains—i.e. at the
dull worlds. So, at the actual world, we have p, p� q and ¬q—an inconsistent triad,
given modus ponens.

The second potential problem is the following. Since the presence of quasi-miracles
make for dissimilarity, worlds selected by counterfactuals will be as dull as possible
ceteris paribus. Suppose that we consider what would happen if I were to shift my leg
a little to the left. Now, since the avoidance of quasi-miracles must take priority over
exact intrinsic match, the closest worlds where I shift my leg must be dull ones. So, the
following counterfactual would be true: were I to shift my leg, the world would be dull.
The point sounds really bad when we pick particular examples: were I to shift my leg,
the Moon and Sun would not be of the same apparent diameter from the Earth.

Third, if quasi-miracles are abundant in actuality, it is not clear why the presence of
quasi-miracles at a world should count as a respect in which the world is dissimilar from
reality.9 If the absence of quasi-miracles is not a respect of similarity to the actual world,
then by including this in his account of the ordering on worlds which fixes the truth
conditions of counterfactuals, Lewis would have abandoned the claim to be analyzing
counterfactuals in terms of the similarity of worlds.

Response
Hawthorne cites a variety of surprising facts and takes them to constitute quasi-miracles
in the actual world. In doing so, he is presupposing (1) that they are remarkable (2) that
they are improbable.

Consider, by way of illustration, the fact that the Sun and Moon have the same ap-
parent diameter as viewed from the Earth. Is this remarkable? Certainly those ignorant
of the difference of size of the two objects involved are unlikely to remark upon it. How-
ever, we have already seen that (because of the division problem) the Lewisian should
not characterise ‘remarkableness’ of facts in terms of the knee jerk reactions of the folk;
but rather, what well-informed opinion would count as surprising. And in this case, it is
reasonably plausible that the fact under consideration will count as remarkable.

Granted this, they will indeed be quasi-miraculous if they are improbable. And I
think there’s considerable room for doubt about this in the cases that Hawthorne cites.

9Carrie Jenkins brought this reading of the objection to my attention.
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But to worry over whether or not such events are really improbable would be mere
skirmishing if we accept the basic move deployed in the division argument earlier. Typ-
ically, we will be able to represent any remarkable event in the actual world as a dis-
junction of improbable events. By the reasoning of the division argument, given that
the event itself is remarkable, so will be the various ways it can come about. Pick
the one which is realised in the actual world. This particular way is uncontroversially
low-probability, but ex hypothesi still remarkable.

There is, however, a proviso to be mentioned. The chances of events happening
change over time. Before I toss a coin, there is a 50/50 chance of it coming down heads.
After we have flipped it, and it has come down heads, the chance of it doing so (on that
very occasion) is 1.10 This is so no matter how unlikely the outcome originally was. So,
for example, the chance, at t, that the universe unfolds in the way it actually did up to t,
is 1, even if the odds against that particular sequence of events happening were initially
astronomical. Partitioning will not reinstitute the problem here.

The moral is that remarkable events are low-probability or high-probability, quasi-
miraculous or not, only relative to a choice of time (presumably, a time fixed by the
event figuring in the antecedent of the counterfactual).11

It is false to say, without qualification, that we will find a quasi-miracle in actuality
wherever we find some remarkable event, even one that was intuitively ‘unlikely’. What
is true is that, under any usual reading of ‘remarkable’ we will be able to find an abun-
dance of quasi-miraculous events in the actual world in the time following t, relative
to the chances at t. So it does seem that the actual world will contain an abundance of
quasi-miracles (i.e. in the future, relative to present chances). Some damaging effects
may be allayed by this observation: but the fundamental point—that the counterfactu-
ally nearest worlds will not contain quasi-miracles relative to any time, remain. So we
can still expect to face versions of the criticisms sketched above.

Let us consider, then, the supposed consequences in turn. First, the threat that the
actual world might not be the closest world to itself. The Lewisian might make short
shrift of this worry. One of the formal features of orderings of worlds given in Lewis
(1973) is “centring”. This just is the requirement that any world w is closer than any

10For discussion, see Lewis (1980).
11This brings up another issue with assessing Hawthorne’s claim that the coincidence of apparent

diameter of the moon and the sun is improbable. Since objective chances are usually taken to be time-
relative, we need to ask: relative to which moment is the chance of the apparent diameters coinciding
low? Certainly not relative to the present moment, or to any moment in recorded history. For, given the
way the solar system was then, it was highly likely that the apparent diameters would coincide. Perhaps
the relevant time is way back as the solar system was forming? But, of course, if we go back far enough
in a chancy world (to the big bang, say) any current event will depend on some many indeterministic
happenings that it will count as low-probability. If we’re allowed to choose any point of time to assess
the probability of an event occurring, then it looks like we’ve got a recipe for declaring almost any event
low-probability. As noted above, however, the division-problem style arguments render quibbling on this
point redundant
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other to w. So if centring is in place, there is no room for this complaint. 12

The second problem, in its strongest form, threatened that under any minor coun-
terfactual hypothesis, we would have a world without the various remarkable, hence
quasi-miraculous, features of our world. But the most damaging versions—the threat
that “if I shift my leg, the Sun and Moon will not coincide in apparent diameter from
the Earth” will come out true—can now be seen as flawed, since they ignore the time-
relativity of quasi-miracles. Relative to the time at which I shift my leg, the chance that
the Sun, Moon, and Earth are in their actual relative positions is 1; hence this remarkable
feature of the world is not quasi-miraculous. Nevertheless, we still have odd results: for
example, that under minor counterfactual assumptions, the future will be duller than the
past. This seems wrong.

What of the third potential problem? This questions whether, if the actual world is
full of quasi-miracles, we should class a world as less similar to our own in virtue of the
quasi-miracles in it. Here, I think, Lewis must bite a bullet, and see the analysis of close-
ness of worlds in terms of quasi-miracles, not as an analysis of a pre-theoretically recog-
nisable notion of similarity, but instead as instrumentally justified in getting a notion of
closeness of worlds going that will deliver the right truth conditions for counterfactuals.

In sum, the Lewisian need not worry that Hawthorne’s considerations will lead to a
revisionary logic for counterfactuals. However, the Lewisian approach appears to have
the following consequences: (1) under trivial counterfactual suppositions, it will be the
case that the future is duller than the past; and (2) the ambition to analyze counterfactuals
in terms of a non-technical notion of similarity would have to be given up. These are
substantial costs for the Lewisian to accept.

The remarkable subpattern problem
If enough events happen, then it would be surprising if we didn’t find remarkable pat-
terns arising somewhere. Suppose we have n coins, each of which is being simulta-
neously and independently flipped each 106 times. The probability of one of these
coin-flipping sequences being “all-heads” tends to 1, as the number of coins tends to
infinity. 13 So, for any high probability p you want, we will be able to choose n such

12One might worry that this merely shifts the problem: we have now the worry that Lewis’s account of
similarity is inconsistent with the formal demands (such as centring) that he puts on the notion. But it is
independently plausible that nothing can be more similar to a world than that world itself. Since this is
the case, the Lewisian can simply add in the insistence that each world is closer than any other to itself,
as part of the analysis of similarity between worlds, trumping all other concerns including the presence of
quasi-miracles. Since such a clause sustains ordinary counterfactual judgements, the addition of a clause
can be motivated both analytically and instrumentally.

13The probability of none of these sequences is all-heads is ( 21000000−1
21000000 )n. With n as 1, this figure is

close to 1. As n increases, it tends to 0. Thus, the complement—the probability that one of the sequences
of flips is all-heads—is, in the limit, 1.
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that the probability that one of the n coins generates an all-heads sequence is greater
than p.

Suppose the world contains N duplicate fair coins. Under the counterfactual as-
sumption that each is flipped a million times, let f1,. . . , fN enumerate the sequences of
heads and tails that respectively result. We can choose N large enough to make it likely
that one of the fi (sequence of one million coin flips) will turn up all-heads. Consider
the following:

(J) If N coins were each flipped 106 times, then none of the coins would
come down heads every time.

This is clearly a false counterfactual—by construction, it would have been pretty likely
that one of the fi is all-heads. However, Hawthorne takes it that Lewis’s account com-
mits us to each of the following:

(Ki) If N coins were each flipped 106 times, then the ith coin would not
come down heads every time.

A sequence of a million coin-flips landing heads each time is, after all, just the kind of
remarkable and unlikely event that constitutes a quasi-miracle. Since quasi-miraculous
worlds are ipso facto further away than non-quasi-miraculous worlds, all the closest
worlds where the N coins are each flipped 106 times, are ones which result in a typical,
random sequence of heads and tails—in particular, a sequence other than all-heads.

Now the principle of agglomeration, which Lewis’s formal treatment of counterfac-
tuals sustains, says the following:

 A� B,A�C⇒ A� (B∧C).

Using this and the Ki, we get:

(K) If N coins were each flipped 106 times, then none of the coins would
come down heads every time.

But this is just J, which we already agreed was false. Lewis’s account entails J; but J is
false; so Lewis’s account must be false.

Response
Let us symbolise the Ki as (P1∧ . . .∧PN)�¬H( fi), where Pi stands for the hypothesis
that the ith coin is flipped 106 times and H( fi) for the outcome of the series of flips
of the ith coin being all-heads. The problem was that from these, and the principle
, we can derive (P1 ∧ . . .∧ PN)� (¬H( f1)∧ . . .∧¬H( fN)). But this
counterfactual is unacceptable.
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I can see what the form of a response to this puzzle should be: one should reject
each of the Ki, and explain away whatever intuitions there are in favour of them. I
will sketch below what seems to me to be an attractive way of implementing this idea.
It would be good for the Lewisian if her theory of counterfactual similarity of worlds
would support the story I give—but whether or not Lewis’s quasi-miracles analysis can
do this is another matter, one I will discuss at the end of this section.

We should distinguish the Ki from the following:

(Li) If the ith coin were flipped 106 times, then it would not come down
heads every time.

In the notation above, the Li can be formulated as Pi � ¬H( fi). I take it that these
are paradigmatic examples of conditionals that should come out true on a non error-
theoretic treatment of counterfactuals and chance (at the least, I cannot see any way of
developing a non error-theoretic account that does not render them true).

The truth of the Li is quite compatible with the untruth of the Ki. To raise problems
on the basis of Li, we would need, in addition to , something like the
following principle:

A� B,C� D⇒ (A∧C)� (B∧D)

But this is not supported by the standard logic of counterfactuals.14

The form that a response to the subpattern problem should take, I suggest, is the
following: to declare the Li are true, but the Ki are not.15 But can Lewis’s quasi-miracles
support this classification?

Again, the reasoning of the division problem will make consideration of whether or
not the pattern is low probability redundant. Any particular pattern will be extremely un-
likely; so the particular one exemplified in a particular counterfactual world will be low-
probability. The question of whether or not the patterns in question are quasi-miraculous
is thus a matter of whether they are remarkable. Surely, the situations depicted by the Li
are remarkable—these are worlds where a coin is flipped a million times, and comes up

14Nor should it be. A counterexample would be: (1) If I were to disconnect the wiring, the bomb
would be disarmed. (2) If I were to press the button, the bomb would go off. (1) and (2) could both be
true, but we certainly should not infer (3) If I were to disconnect the wiring and press the button, the
bomb would be disarmed and go off. The principle mentioned is of a kind with putative rules such as
antecedent-strengthening (A� C⇒ A∧ B� C) and transitivity (A� B,B� C⇒ A� C), either
of which would allow us to infer (J) from the Li—but which are notoriously invalid in conditional logics.

15I leave it open whether the ex hypothesi untrue Ki should be classified as false. For all that has been
said, the Ki may be indeterminate in status. The qualification is important if we want to leave open the
question of whether Conditional Excluded Middle holds: for the falsity of Ki would then entail the truth
of the opposite conditionals. And we could then derive equally unpalatable results! No such reasoning
goes through if the Ki are unacceptable because indeterminate. Thanks to Al Hajek for highlighting this
issue.
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heads every time that it is tossed. But is the same true of the situations depicted by the
Ki? Is a string of 106 heads, in the context of many trillions of coin-flips, remarkable?

We have already noted that remarkability of events needs to be understood as an
information-relative notion, if Lewis’s account is to be tenable at all. Given this, it
is clearly not remarkable that there exists such a sequence somewhere within such an
enormously long run of coin-flips: the well informed agent would see this as a statistical
inevitability. So Lewis could reply to Hawthorne that in the context of trillions of coin-
flippings, a sequence of a million heads is not remarkable, and not quasi-miraculous.
So, Lewis might argue, he has no need to grant each of the Ki, and so can avoid the
unwelcome consequences.

However, this response seems to trade on ambiguity. We may concede that it is not
remarkable that there is some sequence of a million heads within a long coin-flipping
sequence. But all this means is that the overall sequence of billions of flips is not re-
markable in virtue of containing a sequence of a million heads. But the relevant question
to ask is whether the subsequence that consists of a million adjacent ‘heads’ is or is not
remarkable. The first murder in a horror film can be surprising, even if it isn’t surprising
that there are murders in a horror film.

Since it is particular events (such as segments of coin-flippings) that are classified as
remarkable/quasi-miraculous or not, rather than worlds as a whole, the unremarkable-
ness of the overall sequence seems beside the point. So, I contend, there is no escape for
the Lewisian here: they are indeed committed to the particular sequences of a million
‘heads’ counting as remarkable. Consequently they are committed to each Ki, and to
the absurd J.

The problem of the exclusion of the more probable
Take some particular unremarkable sequence of coin-flips. Call it S . Consider the
following:

(G) If you were to flip the coin 10,000,000 times, you would produce a sequence other
than S

(H) If you were to flip the coin 10,000,000 times, you would produce a sequence other
than all tails or all heads

(I) Producing a sequence of all tails or all heads is twice as likely as producing S .

On Lewis’s account, (H) is true, since it concerns a remarkable outcome. But (G)
is false, since the outcome it concerns is unremarkable—one of the closest worlds is an
S -producing world. Hawthorne claims that these instantiate an uncomfortable pattern.

14



Response
I shall argue that resisting this problem does not require the Lewisian to accept any new
costs.

The alleged problem requires us to find the following claims in tension:

• ¬[A� B]

• A�C

• A� (B is at least as likely as C)

But what kind of tension is it that Hawthorne discerns here? Perhaps it is that it sounds
odd to assert all three in the same context. Call this the weak reading of Hawthorne’s
criticism of Lewis. A much more damaging objection to Lewis would be the claim
that H, I and ¬G should be seen as incompatible propositions, whereas Lewis wrongly
represents them as compatible. Call this the strong reading of Hawthorne’s objection.

If Hawthorne’s point is captured by the weak reading, it is not clear why the Lewisian
should be worried. To begin with, notice that this criticism would not directly attack
Lewis’s approach, for Lewis’s theory aims to tell us which counterfactuals are true, not
which are assertible. To be sure, our total account of counterfactuals should, amongst
other things, have something to say in explanation of the assertibility or non-assertibility
of certain combinations of counterfactuals. However, for all we have so far said, the
overall account of counterfactuals embedding the Lewisian analysis may include such
an explanation. At this stage, all we can say is that if Lewis’s account is right, the ex-
planation of our reluctance to assert H∧ I∧¬G will not be that the conjunction is false.
If that is a cost of the Lewisian approach, it seems to me a minor one.

What certainly needs to be defused is Hawthorne’s objection under the stronger read-
ing. If can be maintained that H, I, and ¬G not only fail to be jointly unassertable, but
are positively incompatible, this would be a serious—even decisive—blow to Lewis’s
position. Here I respond directly: I think it is demonstrably the case that H, I and ¬G
are compatible.

We can reformulate the claim that G, H and ¬I are incompatible as the claim that
the following is a valid inference pattern:

 

A�C, A� [B is at least twice as likely as C]⇒ A� B

The form of the objection is notable. It does not take the form of picking out a
specific counterfactual, about which we can argue that Lewis’s account delivers the
wrong verdict. Here, we are rather asked to make judgements about the logical relations
between counterfactual judgements in the abstract.
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Many invalid principles of conditional logic look good in abstract—transitivity and
antecedent strengthening are classic examples. More pertinently, the following rule
looks plausible to many people when they first come across it:

 16

^A, A� [non-zero chance that B]⇒ ¬(A� ¬B)

However plausible this sounds in the abstract, it is, as Lewis shows, disastrous in action.
Consider, for example, the counterfactual supposition that there is an unrealised chance
that p, i.e. q := (non-zero chance that p)∧¬p. Clearly, we should have the counterfac-
tuals

q� non-zero chance that p
q� ¬p

But in the presence of the chance rule these are contradictory.17 One moral to be taken
is that intuitions, in the abstract, about the validity of patterns of inference about coun-
terfactuals are unreliable.

The exclusion rule is equally unacceptable. In cases where the relevant antecedents
are actualised, we have straightforward counterexamples.18 Suppose that we are about
to toss a pair of dice, and in fact they will land on snake-eyes. Nevertheless, at the
time at which they are tossed there is a 1/36 chance of them landing snake-eyes, and a
35/36 chance of them landing with some other combination of faces. By the centring
assumption, we have:

• dice tossed� landing snake-eyes

• dice tossed � (dice landing in a combination other than snake-eyes is (more
than) twice as likely as the dice landing snake-eyes)

But we do not have the result the exclusion rule would force upon us:

• dice tossed� dice will land in a combination other than snake-eyes

That this refutes the exclusion rule as stated is, I think, undeniable. But one might
wonder whether some suitably refined version might still hold good. One might hold out
hope for a version of the exclusion rule restricted to truly counterfactual cases—cases
where the antecedent is false. One modification would simply be the following:

16The first premise is needed because, on the standard Lewis-Stalnaker system, counterfactuals with
impossible antecedents are vacuously true. A fortiori, for impossible A, A� ch(B) > 0 and A� ¬B
will both be vacuously true.

17For this argument, and a more complex one that does not involve counterfactuals with chancy vo-
cabulary in their antecedents, see Lewis (1979, p.65). Notice that the counterexample just given, the
antecedent need not be actually true—so this is a counterexample to a weakened ‘chance rule’ where ¬q
is added as an extra premise. This will be significant below.

18I am extremely grateful to an anonymous referee for pointing to these.
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¬A,A�C,A� [B is twice as likely as C]⇒ A� B

If this is valid, it is still enough to underpin Hawthorne’s criticism of Lewis.
However, even a modified form of the exclusion rule is unacceptable. Notice that it

immediately gives us the following restricted version of the chance rules:

  

^A, A� [ch(B) < 1/3]⇒ ¬(A� B)

The proof is as follows:19

1. ^A Premise
2. A� [ch(B) < 1/3] Premise
3. A� [ch(¬B) > 2× ch(B)] Probability theory, Logic, 2
4. A� B Supposition for reductio
5. ¬(A� ¬B) 1,4, counterfactual non-contradiction
6. A� ¬B Exclusion* rule, 3,4
7. ¬^A 5,6 logic
8. Contradiction 1,7
9. ¬(A� B) Reductio on 4

A slight modification of Lewis’s counterexample to the unrestricted chance rule re-
buts the restricted chance rule, and hence the exclusion* rule. Consider the proposition
that some unlikely (chance 0.3) event will in fact occur (i.e. ch(p) = 0.3∧ p). This
proposition is not impossible, and further we have both:

(p∧ ch(p) = 0.3)� p
(p∧ ch(p) = 0.3)� ch(p) < 1/3

But this is then a counterexample to the restricted chance rule. Notice again that
the antecedent here can be supposed not to obtain at the actual world; so this is a coun-
terexample that works against the reformulated version of the exclusion rule suggested
earlier. 20

In sum: Hawthorne’s objection under the weak reading does not yet do enough to
embarrass the Lewisian story; but under the strong reading, the criticism cannot be
sustained.

19The probability theory in step 3 just uses the fact that ch(¬p)= 1−ch(p); thus if ch(p)< 1/3, ch(¬p)>
2/3. Step 5 appeals to an instance of Conditional non-contradiction, which states that p� q and p�¬q
are incompatible. Thus, if we have the former, we can infer the negation of the latter. Instances of
conditional non-contradiction for conditionals with possible antecedents are a standard part of Stalnaker-
Lewis conditional logics.

20Indeed, if our logic contains the principle of conditional excluded middle (schematically, A� B∨
A� ¬B) then we can derive the original chance rule from the exclusion* rule. The crucial principle,
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The state of play
We have looked at Hawthorne’s four problems in turn, and I have tried to give the best-
possible Lewisian responses. Though resisting the exclusion problem brings at most
minor costs to the Lewisian theory, in the other three cases, substantial costs are in-
curred. Resisting the division problem seems to require we introduce counterfactual
elements into our general analysis of counterfactuals: vitiating the original Lewisian
strategic ambitions for the theory. The abundance problem has at least two worrying
consequences: it seems to vitiate Lewis’s analytic ambition, to be giving an account of
counterfactuals in terms of an intuitive notion of similarity; and further, under insignif-
icant counterfactual assumptions, we have that no remarkable events would happen in
the future, even though they are abundant in the past. The remarkable subpattern prob-
lems shows that the Lewisian is committed to a series of counterfactual judgements (the
Ki), which collectively entail an absurd result.

I take it then, that Hawthorne’s objections show that the Lewisian account of coun-
terfactuals is in bad order. The response, however, should be to develop a better Lewisian
analysis, more in keeping with the original non-chancy analysis, and not to abandon the

entailed by conditional excluded middle, is:

(A� (B∨C)) ⇐⇒ (A� B)∨ (A�C)

We need in addition a further assumption: that there are four mutually exclusive and exhaustive propo-
sitions p1, p2, p3, p4, such that A� [ch(pi) = 0.25] (we can choose these to be propositions about when
a certain radioactive atom will decay, for example. E.g. p1 might be that a certain atom of Uranium 235
will decay before t; p2 that it will decay between time t and time t′, p3 that it will decay between time t′

and t′′, and p4 will decay after t′′. With an appropriate choice of intervals, these propositions will meet
the stated conditions.)

Note then that, by probability theory and logic we will have for each i, A� [ch(pi) < 1/3] and hence
A� [ch(B∧ pi) < 1/3]. For possibly true A, we can apply the restricted chance rule to our previous
result that A� [ch(B∧ pi) < 1/3], to derive ¬(A� (B∧ pi)), for each i.

Moreover have: �(B ⇐⇒ ((B∧ p1)∨ . . .∨ (B∧ p4))), and from conditional excluded middle we have:

(A� ((B∧ p1)∨ . . .∨ (B∧ p4))) ⇐⇒ ((A� (B∧ p1))∨ . . .∨ (A� (B∧ p4)))

putting these together we can derive:

(A� B) ⇐⇒ ((A� (B∧ p1))∨ . . .∨ (A� (B∧ p4)))

But we have already proved the negation of each disjunct on the right hand side; so we can conclude that
the left hand side is false. That is, we can conclude ¬(A� B), as required.

In sum: the unrestricted chance rule can be derived from the restricted chance rule in the presence of
conditional excluded middle. And we have already seen that the latter can be derived from the exclusion*
rule. So in the presence of conditional excluded middle, the exclusion* rule enables one to derive the
unrestricted chance rule. which we have already seen to be unacceptable.

Conditional excluded middle is a feature of Stalnaker’s logic of conditionals, but Lewis rejects it.
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account altogether. In the remainder of the paper, I outline one such approach.

3 Fit, Typicality and Randomness

Fit between worlds and laws
Within Lewis’s overall system, the notion of possible worlds “fitting” with laws of na-
ture comes into play twice. Firstly, as we have seen, a component determining the
counterfactual similarity of worlds to actuality is that they maximise fit with the actual
laws. Secondly, “fit” is given a central role in fixing the laws of nature that obtain in
a given possible world: under Lewis’s Humean “best systems analysis” of laws of na-
ture, the laws of nature of world w are that axiomatic system that optimises simplicity,
predicative power, and fit with the facts of w.21

In each case, there is the challenge to explicate what this notion of “fit” means when
the laws of nature are chancy. The simple proposal that w fits with L when w contains
no violations of the laws in L does not sufficiently constrain the relation. A rule that says
that the chance of a coin coming up “heads” is 0.3, and one that says that the chance
is 0.6 are equally simple and have equal predicative power: but in a world where the
relative frequency of heads in a billion coin-flips is 0.6, a Humean will wish the “best
system” to embed the latter rather than the former as a law. Moveover, we saw at the
beginning of this paper the difficulties that the simple “no violation” proposal causes for
counterfactuals.

Lewis endorses different ways of patching his treatment of “fit” in the two cases.
As we have seen, in the case of counterfactual similarity, he supplements his account by
appeal to a new factor influencing whether or not worlds are similar to actuality: whether
they contain remarkable improbable events. In the case of laws of nature, however, he
tries a more direct patch, replacing the “no violation” analysis of fit with something else.

The new analysis of fit appeals to the probability that the world arises, given the
laws of nature. The proposal is that w fits with L to the extent that L makes w probable.
Take a world like that described above, consisting of a billion coin flips, with a relative
frequency of heads to tails of 0.6. A law that assigns a chance 0.6 of an arbitrary flip
resulting in “heads” assigns a far greater probability to this result, than a putative “law”
that assigns chance 0.5 to the same event.

Lewis’s patch in the case of counterfactual similarity is attacked—ultimately suc-
cessfully, I have argued—by Hawthorne. But the patch in the case of laws of nature also
has problems. The “zero-fit” problem (Elga, 2004) is that, when we deal with worlds
that comprise infinitely many trials of the events in question, the probability of any given
outcome is likely to be zero by the lights of the intuitively “correct” laws. For example,
in a world which contains infinitely many flips of a fair coin, the probability assigned

21Lewis’s description of his overall system can be found in the introduction to Lewis (1986).
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to the actual outcome will be zero.22 The result is that the probability of an infinite
world by the lights of laws of nature does not do the work we wanted it to do: it does
not favour the law assigning chance 0.6 to a coin turning up “heads” over one assigning
0.5 to describe a world containing an infinite series of coin flips with limiting relative
frequency of heads to tails of 0.6.

Hawthorne’s attack on Lewis’s use of “remarkableness”, and the Elga zero-fit prob-
lem for Humean view of chancy laws, together demonstrate that the Lewisian must go
back to the drawing board to get a decent theory of “fit” covering the chancy case.
Clearly, the most attractive and economical route would be to find a single way of elu-
cidating “fit” that would address the problems with both theories. I believe this can be
done. In what follows, I will argue Elga’s proposals for addressing the zero-fit prob-
lem can be used to formulate an analysis of counterfactual similarity that is immune to
Hawthorne’s attacks.

Typicality
Let us revisit the basic intuitions. Given the information that a coin is fair, how should
you expect a long enough series of coin-flips to turn out? Well, you should not attempt
to predict the particular outcome: the detail of how things go at each point is a matter
of pure chance. But you can formulate some general expectations. You will expect,
for example, that the limiting relative frequency of heads to tails will be 0.5. You will
expect the sequence HTH to turn up just as often as THT. You will expect that looking
at every other result will give you a sequence of coin flips just as “disordered” as the
original series.23

What you can legitimately expect is that the outcome of the series of coin flips will
have certain global properties. In short, you expect the outcome to fall within a broad
class of outcomes: the typical ones.

I submit that requiring a world to be “typical” by the lights of its laws of nature
is a legitimate explication of the constraint that the world “fits” those laws. Allowing
this explication, we can address both the “zero-fit” concerns about the Humean theory
of chancy laws, and (I shall argue) the Hawthorne puzzles over chancy counterfactuals.
On the former point, Elga (2004) suggests the following. We admit that a variety of
assignments of chances to coin flips are all (a) compatible with the actual outcome of
infinitely many coin flippings; and (b) all the assignments assign the same (zero) chance
to the particular outcome of the coin flippings. Nevertheless, the actual outcome is only
typical according to some of these putative ‘chancy laws’. For the outcome of an infinite
series of coin flippings to be intuitively typical, the limiting relative frequency of heads

22Keeping the laws of nature constant, all particular outcomes of a finite series of flippings will be
equiprobable, which is the reason why Lewis’s gloss of “fit” in the case of laws of nature doesn’t look
promising even initially as a gloss of “fit” for the case of counterfactual similarity.

23Compare Elga (2004, p.72).
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to tails must equal the single-case chance of the coin landing heads rather than tails.
This immediately narrows down possible “best systems” to plausible candidates.

One can see also how such a notion will help us analyze counterfactual similarity.
For a world to be optimally close to actuality, it will have to be typical by the lights of
laws of nature: the hope will be that worlds where dropping a plate leads to it shooting
off sideways will count as atypical by the lights of the chancy laws; and hence further
away from actuality than worlds where such improbable coincidences do not arise.

Typicality as an objective feature of outcomes
No progress will have been made, however, if to invoke “typicality” is merely to invoke
“remarkableness” in a new guise. And it might be suggested that a typical sequence,
is just one which a well-informed agent would find unremarkable. I do not claim that
such a ‘projective’ understanding of typicality is inconsistent with ordinary usage of that
term. I maintain, however, that a non-projective property of typicality can be identified,
and that this is the one of interest in the present context.

I contend that we can identify the required notion of typicality (relative to an assign-
ment of chances) with the mathematical property of a set of outcomes being random
(relative to an assignment of chances).24 The identification of typicality with random-
ness should, on reflection, seem plausible. In the special case of the outcome of a series
of coin flips, for example, randomness has all the characteristics we wanted typicality
to have. It is concerned to pick out, from amongst a series of equiprobable outcomes, a
class within which we can expect the outcome to fall. It is a holistic property of a whole
series of outcomes—a random sequence will contain local patterning, so long as they
are swamped by the overall disorder. A sequence is not random if it exhibits biases—if,
for example, in the long run the limiting relative frequency of heads to tails does not
match the chances.

Randomness thus seems to have the formal features that we want typicality to have.
And, I believe, intuitive judgements or how typical an outcome is by and large coincide
with intuitive judgements of how random it is (by the lights of the governing probability
function). That every typical sequence will be random seems to me beyond dispute; and
that every random sequence will be typical seems highly plausible.25

24In this I follow Elga (2004) and Gaifman and Snir (1982).
25It has been suggested to me that, e.g. outcomes of a sequence of fair coin-flips which exhibit overall

biases towards heads, say, may still count as random, so long as the outcomes are still intuitively “dis-
ordered”. It certainly does not seem obvious to me that such sequences should count as random; and
this is the kind of issue on which I would defer to whatever a best overall theory of randomness says on
the issue (the von Mises-style mathematical characterization of randomness comes down against such
sequences being random). It may be that the intuitive notion of ‘randomness’ is vague enough that there
are a variety of tractable notions that would count as precisifications of that concept. If so, it is enough for
my purposes if typicality turns out to be one (objective) precisification of randomness. As we shall see
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For present purposes, we need not require some reductive analysis or mathematical
definition of the notion of randomness: all we need do is convince ourselves that there
is some such property that outcomes of chancy processes can objectively possess or
fail to possess. We can then leave the question of whether this feature is reducible or
must be taken as primitive for another occasion; our use of it will go through either way.
However, it may help to look in a bit more detail at one option for giving a mathematical
characterization of typicality/randomness: in particular, that found in Elga (2004) and
Gaifman and Snir (1982).26

The basic idea common to the proposals of Elga (2004) and Gaifman and Snir (1982)
is to look, not at the probability of a particular outcome arising, but at the probabilities
of a suitable set of properties which that outcome instantiates. When considering the
outcome of flipping a fair coin, ‘all heads’ is a low-likelihood property (in the infinite
case, it is probability 0 that the outcome has this property). ‘Having as many heads as
tails, in the long run’ is a high-likelihood property (in the infinite case, it is probability
1 that the outcome has this property). The general theme is that an outcome is random
to the extent that it possesses high-probability properties.

(It is important that we restrict attention to a suitable range of properties. Each
outcome possesses one ‘exact distributional’ property, specifying the result of each flip.
Thus, if we required that a random outcome have nothing but high-probability proper-
ties, then no outcome would be random. We need to find a way to select appropriately
‘discriminating’ or ‘test’ properties. Elga’s proposal is that we look at appropriately
simple properties: details are given in the footnote.27)

in the discussion below, one plausible candidate precisification is the target of the formal work discussed
below.

In connection with this, see Eagle (2005) for arguments that the usual formal characterizations do not
match our ordinary concept of randomness (notice that for all that is argued in that paper, the formal
characterizations may still succeed as a direct characterization of typicality).

26For a survey of some other attempts at analyzing randomness mathematically, see Eagle (2005).
27The simple properties will be those ascribed to the outcome by a simple sentence. What are “simple”

sentences? Elga suggests these should be the sentences of a language containing only a specially selected
range of predicates, whose quantificational complexity is below a certain bound.

Two questions arise: what is ‘canonical vocabulary’ here invoked? And what, exactly, is the quantifi-
cational complexity below which sentences count as ‘simple’?

On the first point, we may suppose, in the general case, that this will be a language whose only predi-
cates stand for ‘perfectly natural’ microphysical properties. The use of such restricted languages within
the overall Lewisian project is familiar: it is for example, used within the Humean account of laws of
nature, to make good a notion of theoretical simplicity. Just in that case, the proposal avoids any dam-
aging language-relativity of the analyzed notion. Famously, Lewis argues that the invocation of perfectly
natural properties is indispensable for a great range of projects. See Lewis (1983).

On the second point, Gaifman and Snir characterize a hierarchy of notions of typicality/randomness,
depending (in the present terminology) on what depth of quantifier complexity is allowed in simple sen-
tences (they call these the ‘test’ sentences). It seems plausible to me that the sense of ‘simple sentence’
relevant to characterizing typicality is vague: that many points of the Gaifman and Snir hierarchy will give
rise to a property of outcomes that is an acceptable precisification of randomness/typicality. It strikes me
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This gives us a general sense of what the objective randomness of an outcome (rel-
ative to a probability function) could consist in. But in a special case, we can go one
better, and show how these ideas allow the formulation of a rigourous mathematical
characterization of what it is for an outcome to be random. This can be found in the
technical work of Gaifman and Snir (1982): they define random worlds as ones that
satisfy all the simple probability-1 properties.28 In the case where worlds are infinite in
extent, Gaifman and Snir (1982) make a persuasive case that their definition adequately
captures what it is for an infinite series to be random.29 I shall assume, therefore, that
in the infinite case (Gaifman and Snir, 1982) provides a formally tight and intuitively
adequate characterisation of a random sequence.

However, their original definition does not give satisfactory results in finitary worlds.
To be random, a sequence need only to instantiate a suitable test set of probability-1
properties. In the finitary case, this doesn’t adequately constrain matters: in the finitary
case there are no non-trivial probability 1 properties, so every sequence will trivially
satisfy every probability 1 property. It follows that on the Gaifman-Snir definition,
every finite sequence is random.

One response to this challenge is to attempt to generalize the Gaifman/Snir charac-
terization. Elga attempts to do so, in effect by giving the ‘general characterization’ with
which we started. So, for example, since the relative frequency of heads to tails in an
‘all heads’ finite outcome is less probable than that the relative frequency that occurs in
an intuitively disordered outcome, on Elga’s approach the former is to that extent less
random than the latter.

Perhaps Elga’s characterization can be made precise, and will enable a general char-
acterization of the typicality of sequences, finite and infinite. If so, we can appeal to it in
the current case. But as noted above, we are not obligated to offer a reductive character-
ization of typicality/randomness in order for that notion to be available in characterizing

as no objection to the proposed characterization if the notion of typicality turns out to be vague in this
way.

Elga, at an analogous point, chooses to focus on a particular depth of quantifier complexity as de-
termining the ‘simple sentences’. For Elga, the simple sentences are the ∃∀ sentences of the canonical
language. He does not explain why this class in particular best serves to characterize typicality; absent
further elaboration, this seems less principled than the proposal suggested above (that it be vague whether
or not the ∃∀ sentences count as the simple, as opposed to e.g. the ∀∃ sentences or the ∀∃∀ sentences).

28See previous footnote for details about the relevant notion of a ‘simple’ property.
29As mentioned above, the Gaifman and Snir (1982) characterisation of randomness is not the only

proposed mathematical characterisation of this notion, but it is uniquely interesting for our purposes.
Unlike other proposed mathematical analyses of randomness their proposal not restricted to idealised
coin-flipping scenarios, but can be applied to arbitrary possible worlds featuring the outcomes of proba-
bilistic processes.

The Gaifman and Snir (1982) approach may be seen as a generalization of the von Mises-style charac-
terisation there discussed, though the authors also connect it to the complexity theory approach deriving
from Kolmogorov. Both the von Mises and the Kolmogorov approaches make essential appeal to proper-
ties of linear sequences of chance events, making them insufficiently general for our purposes.
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counterfactual similarity. All we need is the concession that our intuitive judgements of
the randomness or typicality of a finite sequence (relative to a set of chancy laws gov-
erning the generation of the sequence) are based, not just on projections of what we find
remarkable, but on objective features of the sequences. We learn from the work of Gaif-
man and Snir that infinite sequences can be objectively random or non-random. What
would it be to remain sceptical over whether there is an objective notion of randomness
in the finitary case? The suggestion would have to be that our impressions of objective
disorder, which in the infinite case track an objective feature of the outcomes, system-
atically deceive us in the finite case. To me, this suggestion seems grossly implausible.
Whether or not we have a mathematical characterisation to hand, therefore, we have
reason to think that there is some such feature for mathematical characterisations of
randomness to aim at.

4 Hawthorne’s worries reconsidered
We can generalise Lewis’s original definition of counterfactual similarity to remove the
reliance on a particular explication of ‘fit’ between laws and worlds that is appropriate
only to the non-chancy case. We reach the following characterisation:

**
w1 is more similar than w2 to the world w0 if the differences between w1
and w0 are of less weight than the differences between w2 and w0. The
weighting of the differences is governed by the following principles:

1. It is of the first importance to avoid big, widespread, diverse lack of fit
with laws of nature

2. It is of the second importance to maximise the spatio-temporal region
throughout which perfect match of particular fact prevails.

3. It is of the third importance to avoid even small, localised lack of fit
with laws of nature.

4. It is of little or no importance to secure approximate similarity of par-
ticular fact, even in matters that concern us greatly

We get the original formulation when we fill in an analysis of ‘fit’ in terms
of no violation of the laws of w0. The suggestion to be investigated here is that where
laws of nature are chancy, we instead fill in an analysis of ‘fit’ in terms of a world’s
being maximally typical by the lights of the laws of w0. Filling this in, we arrive at:

 

w1 is more similar than w2 to the world w0 if the differences between w1
and w0 are of less weight than the differences between w2 and w0. The
weighting of the differences is governed by the following principles:
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1. It is of the first importance to avoid atypicality of the world as a whole,
by the lights of the chancy laws of nature of w0.

2. It is of the second importance to maximise the spatio-temporal region
throughout which perfect match of particular fact prevails.

3. It is of the third importance to avoid even small, localised, atypicalities
by the lights of the laws of w0

4. It is of little or no importance to secure approximate similarity of par-
ticular fact, even in matters that concern us greatly.

The first thing to be ascertained is that this gives rise to a non-error theoretic account
of standard counterfactuals. Consider our paradigmatic counterfactual, (E):

If I had dropped the plate, it would not have flown off sideways.

On the typicality approach, quantum events conspiring to send the plate flying off side-
ways would constitute at the very least an atypical local space-time region, by the lights
of the actual laws. Thus, due to clause (3) in the characterization of chancy similarity,
such worlds will be more distant from actuality than those where (as expected) the plate
falls to the floor and breaks.30

We can now reconsider Hawthorne’s objections to the Lewisian approach. I shall
not revisit the problem of the exclusion of the more probable here, since I believe that an
adequate response to Hawthorne is already available: the rule of inference on which the
problem rests can and should be given up, on independent grounds. For the other three
puzzles, I contend that in each case, the objections that undermine Lewis’s analysis of
chancy counterfactual similarity do not cause problems for the typicality account.

The Division problem avoided.
Recall the scenario: a monkey is currently so-configured that there is an 0.2 probability
that if it starts typing, it will produce a readable dissertation. The problem was that
on the ‘quasi-miracle’ treatment of chancy counterfactuals, we could argue that ‘if the
monkey started typing, then it would not produce a dissertation’ was true. To escape
this, it looked like we would have to give up Lewis’s ambition to explicate counterfactual
similarity without appealing within the analysis (circularly?) to counterfactuals.

Lewis says that quasi-miracles are remarkable, low-probability outcomes. The divi-
sion argument, in effect, aimed to show that the ‘low-probability’ aspect of this defini-
tion is redundant. Is there any corresponding worry for my favoured analysis in terms
of typicality?

30Though see the ‘lucky runs’ concern below.
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I suggest not. The whole point of typicality is that low-probability events (even
probability 0 events) can be differentiated as typical or atypical, by looking at whether
or not the overall pattern of events instantiate highly-probable properties.

In the case at hand, one would have to argue that any outcome having the property
of featuring a monkey producing a dissertation is atypical. The way to do this is to
argue that the property featuring a monkey producing a dissertation is the kind of low-
probability property of outcomes which typical sequences should not instantiate. But the
case at hand is precisely not one where this is the case: ex hypothesi the chances at the
time relevant to assessing the counterfactual are set up so that there is a high probability
that the outcome will have the property featuring a monkey producing a dissertation.

The remarkable subpattern problem defused
We are to consider a situation where we have an enormous number of fair coins, none
of which are flipped. We are asking about counterfactual scenarios in which some or
all of the coins are flipped a million times each. To avoid refutation, we must avoid
commitment to:

(Ki) If N coins were each to be flipped 106 times, then the ith coin would
not have come down heads every time.

For these counterfactuals would entail the unacceptable result that no coin in the series
of flips would have come down heads every time; whereas if we choose N large enough,
we can make it almost inevitable that there would be some such ‘all-heads’ coin.

We distinguished the (Ki), above, from some related counterfactuals which are the
kind of thing that our approach should declare true:

(Li) If the ith coin were to be flipped 106 times, then it would not have
come down heads every time.

I contend that the typicality account of counterfactual similarity makes the Ki false and
the Li true.

The point is a simple one. The counterfactual scenarios envisaged by the (Li) are
ones where only one coin is flipped. In such a world, the result that each flip lands
heads amounts to a hugely atypical (non-random) sequence. The counterfactual scenario
envisaged by each of the (Ki) involve a sequence of flippings of fair coins, with length
N × 106. N has been chosen long enough to make it almost inevitable that there is,
somewhere in this sequence, a run of a billion heads. With that as antecedent, there is
nothing atypical in any of the situations described by the consequent: there are optimally
typical worlds wherein the ith coin lands heads every time. Each (Ki) is refuted by one
such world.

The underlying difference between this approach and the Lewisian ‘remarkableness’
story, is that remarkableness is presented as a property of local events. Any consecutive
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string of a billion heads in flips of a fair coin is remarkable. We have no principled
grounds for taking into consideration the wider setting, in which we see that the presence
of such a string is a predictable feature of the world. By contrast, typicality (randomness
by the lights of the chancy laws of nature) is a global property of the pattern of events
that make up a possible world. In the context of the overall pattern of events, remarkable
local facts can be required by to overall typicality.

The abundance problem defused
Quasi-miracles were remarkable, low-probability events. Hawthorne claims there are
likely to be many of these in reality, and on this basis derives problems. On our revised
approach, the potential abundance of quasi-miracles is of no relevance, since they play
no role now in the analysis of counterfactuals. The analogous concern however, is this:
what if the actual world is not as typical as it might be?

If we look at the revised version of  we see that the thing that is of the
first importance in assessing whether a world is close to actuality, is whether overall it
fits with actual laws of nature: and in the present context, this is the requirement that
it be typical by the lights of those laws. Now, it seems indeed to be possible that some
non-actual world will be more typical by the lights of the actual laws of nature, than is
actuality itself. Suppose that the actual (finite) outcome of a sequence of coin flips is a
slight departure from the relative frequency predicted by theory. Then, by the lights of
**, a world which matches exactly the relative frequency predicted by theory
is ipso facto closer than one that does not.

As in the previous case, three consequences threaten: (a) the actual world being less
close to itself than some other world. (b) under slight counterfactual assumptions, the
future will be typical even while the past remains atypical. (c) the thesis that counter-
factuals are being analyzed in terms of a recognizable notion of similarity is threatened.

(a) is, I think, adequately dealt with in just the way that the original Lewisian re-
sponse handled it: there is no need to think that (a) follows from the abundance result.
The analogue of (b) was more discomforting: it seemed to commit us to the claim that if
I had moved my leg slightly a second ago, the future would be ‘duller’ (less remarkable)
than the past. The corresponding result in the present case, however, seems unproblem-
atic. Suppose the past to have been atypical by the lights of the actual laws of nature.
Then we are committed to the claim that if I had moved my leg slightly a second ago,
then the future would be typical (and more typical than the past). But this is intuitively
right: if the laws of nature are as we have assumed them to be, then the future would
proceed in the way that those laws predict. It may be true that in this world simple-
mindedly projecting past trends into the future would justify a belief that the future
will exhibit similar trends, while the counterfactual truth is that such ‘atypical’ trends
would not continue. However this is merely to note the fact that the sort of scenario
under consideration is counterinductive, and gives no reason for thinking the relevant
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counterfactual false.
In respect of problem (c), the typicality account is again in a strong position. The

problem, recall, was that if the actual world contained lots of remarkable, unlikely
events, then in the intuitive sense, worlds similar to it should also contain remarkable,
unlikely events. ‘Dullness’ of worlds makes them positively dissimilar to actuality in
an intuitive sense: yet on Lewis’s view dullness will place a world closer to actuality
than it otherwise would have been.

Let us immediately note that the typicality account does not place dull worlds closer
to actuality than others. It is only to be expected that in various places, surprising
coincidences will occur. Indeed, a lack of surprising coincidences would be an atypical
feature of a world like ours: hence, if anything, dullness of a world will increase the
distance between that world and actuality, on the typicality account of the similarity
metric.

But even if the original problem is avoided, does an analogous one emerge? The
analogous problem would have to be this: if the actual world is atypical, then atypical
worlds intuitively should be ipso facto more similar to reality than typical worlds.

This should be resisted. Recall the Lewisian concentrates aspects of similarity,
rather than intuitions about similarity ‘all things considered’. So simply pointing to
a general feature of the actual world that is shares with another world (so that they are
‘in some sense’ similar) is not enough to cause problems for the approach.

In the non-chancy case we have a principled story about the two aspects of similarity
that go into the similarity metric: one aspect is exact match to actuality on matters of
particular fact; the other aspect is fit with the actual laws of nature. In the quasi-miracles
case, we could not appeal to this story to explain the sense in which the ‘similarity met-
ric’ captures genuine similarity of worlds, since quasi-miracles weren’t invoked either
as part of a general analysis of what it is to fail to ‘fit with’ the actual laws of nature,
or as part of what it is to fail to match actual matters of particular fact. All Lewis tells
us is that intuitively quasi-miracles ‘detract from similarity with the actual world’. One
can perfectly reasonably challenge this directly: on the grounds that if the actual world
contains an abundance of quasi-miracles, then it is not at all clear why their presence
should make for dissimilarity rather than similarity with the actual world. Note that it
is the departure from the principled “intrinsic-match + fit-with-laws” story that makes
this response available.

But in the revised case no such departure arises. The whole point is that typicality
is proposed as an explication of what it is to fit chancy laws of nature. So it is perfectly
reasonable to assess worlds as similar to actuality to the extent that they are typical by
the lights of the actual laws.
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The problem of nearby lucky runs
There is one problem, however, against which our previous moves will not help. In the
discussion of the remarkable subpattern problem, we supposed that the world initially
contained no coin-flippings, so that in relevant counterfactual scenarios the only relevant
chance events were those described in the antecedent of the counterfactual. Our problem
arises when we drop this assumption.

Let us now suppose the actual world contains infinitely many flips of a fair coin.
Call any sequence where the coin comes down heads a million times in a row a lucky
run. Since the world contains infinitely many flips of a fair coin, it is chance 1 that a
sequence of a million heads occurs somewhere in the world (indeed, it is chance 1 that
there will be infinitely many such sequences).31 So it is chance 1 that the world contains
lucky runs.

Now suppose in addition that I could have flipped the fair coin an additional million
times, but decided not to. Characteristically, the non error-theoretic approach wants to
say that the following counterfactual is true: “were I to have flipped the coin a million
times, it would not have landed heads each time”.

However, is a world where my coin flipping turns up heads each time more distant
from actuality than one where the outcome is less surprising? Crucially, in the case at
hand, the run of a million heads does not render the world as a whole less typical—
such occasional lucky runs are a statistical inevitability. The difference between worlds
where my counterfactual coin flipping produces a typical outcome and one where it
produces a sequence of all-heads is just in the location of the lucky run: in one case the
atypicality occurs when I flip the coin, in other worlds the lucky run occurs somewhere
else. But if these worlds differ only in location of lucky runs and not in how well the
worlds match actual fact or fit with actual laws of nature, it looks like they will be
equidistant from actuality. The result of this would be that “were I to have flipped the
coin a million times, it would not have landed heads each time” would be false on the
Lewisian analysis: for there would be an optimally close antecedent-world where the
consequent fails.

This problem could be posed directly for the plate-dropping counterfactual (E). In a
world where plate-dropping events occur infinitely many times, it is chance 1 that some
plate-droppings will be followed by the plate flying off sideways. Again, the difference
between counterfactual worlds where I drop my plate and it breaks, and counterfactual

31To see that a sequence of a million heads has chance 1 of occurring, consider a die with 2106
sides.

Roll it infinitely many sides. It is chance 1 that at some point, the very first side happens. But each side
of this die can be conceived as a particular outcome to a sequence of one million coin flips, with the
very first side corresponding to all-heads. And to flip a coin infinitely many times is exactly equivalent
to rolling this die infinitely many times. So it is chance 1 that an all-heads sequence will happen at some
point. The same argument shows that, given some n and ε we can choose an m such that the chance that
a sequence of n heads occurs somewhere in a sequence of m flips of a fair coin is within ε of 1.
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worlds where I drop my plate and it flies off sideways, is merely a matter of whether
one of these rare but inevitable occurrences occurs around here.

Worlds where a lucky run occurs during my coin-flipping, and those worlds where
a lucky run occurs somewhere else, are exactly on a par as regards (a) global typicality
and (b) the fact they contain localised atypicalities. Similarly for worlds where the plate
flies off sideways when I drop it in comparison to worlds where all plate-flying-sideways
events happen to other people—again,   seems to rate them equidistant
from actuality. It looks, therefore, as if   cannot help rescue the above
counterfactuals.

The challenge is a serious one, but I think that a response is available. I suggest
we make a small adjustment to  , in effect relativizing the similarity of
worlds to our current perspective.

We can take it that each counterfactual statement is made in a context where a par-
ticular spatio-temporal location is salient. E.g. when considering the counterfactual ‘if I
were to flip this coin one million times’, the salient location is here, now. What we must
do is hold that ‘localized atypicalities’ are worse (make worlds more dissimilar) when
they are atypicalities over a region containing the salient location. This ensures that
the closest counterfactual worlds are ones where any ‘lucky runs’ are in spatio-temporal
regions distant from the events invoked in the counterfactual. As anticipated, the sim-
ilarity relation becomes context-sensitive; variations in which location is salient may
change whether it is w1 or w2 that is closest to actuality.32

The final proposal for a neo-Lewisian analysis of chancy counterfactuals is thus the
following:

C *
w1 is more similar than w2 to the world w0 if the differences between w1
and w0 are of less weight than the differences between w2 and w0. The
weighting of the differences is governed by the following principles:

1. It is of the first importance to avoid atypicality of the world as a whole,
by the lights of the chancy laws of nature of w0.

32In typical cases, the salient location will be the location of the events described by the antecedent of
the counterfactual. But there are various cases where this would be difficult. Some antecedents will not
describe located events at all (If there had never been any elephants. . . ); some antecedents will describe
multiple events located at different places (If Nixon had pushed the button and Brezhnev had invaded
Western Europe. . . ); sometimes the consequent will make salient a location that differs from that of the
antecedent (If Adam had not eaten the apple, I would be living in Eden). There are several ways of
handling such cases. Perhaps the simplest is to say that in these circumstances it will be indeterminate
which location is salient; and consequently indeterminate what the relevant similarity ordering of worlds
is. Given this, for a counterfactual to be unambiguously true it must be true on every way of resolving
the indeterminacy. The apparatus of supervaluations (Lewis, 1970; Fine, 1975) can be deployed to this
end. (Invoking supervaluations to resolve indeterminacies in the similarity ordering has precedent: see in
particular (Stalnaker, 1984, pp.134-5).)
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2. It is of the second importance to maximise the spatio-temporal region
throughout which perfect match of particular fact prevails.

3. It is of the third importance to avoid even small, localised, atypicalities
by the lights of the laws of w0 especially when the atypical region is
one that contains the salient location.

4. It is of little or no importance to secure approximate similarity of par-
ticular fact, even in matters that concern us greatly.

I contend that this package avoids all of Hawthorne’s worries and the concern just
raised.33 Furthermore, it is an implementation of the original Lewisian idea of relating
similarity to intrinsic match of particular fact and fit with laws of nature.

5 Conclusion
Hawthorne contends that the problems he adduces require either a contextualism about
counterfactuals, or an abandonment of the Lewisian picture altogether. I think that the
issues that Hawthorne raises do show that Lewis’s rather ad hoc invocation of quasi-
miracles has highly problematic consequences, and should be rejected. I have argued
that this, the main thrust of his paper, is correct.

The diagnosis of the problem I have urged is that at the time that Lewis tried to
extend his account of counterfactuals to the chancy case, he had not worked out his
Humean account of chancy laws of nature. Once this is in place, and understood in
terms of typicality of a world by the lights of as actual laws, the analysis I have offered
is a straightforward generalisation of the original account.

I contend, therefore, that the basic idea in Lewis’s approach extends naturally to an
account of chancy counterfactuals that does not fall to the objections that Hawthorne de-
velops. Not only does this account avoid or ameliorate the specific points that Hawthorne
makes, it is independently motivated and yields desirable conclusions.

Given that best empirical theory seems to tell us that the actual laws of nature are
chancy, a credible theory of counterfactuals is of critical importance. Lewis’s original

33Stephen Leuenberger has raised an interesting new worry. Consider the counterfactual “If, in the next
30 billion years, all dropped plates were to fly off sideways, the universe would go on to exist for much
much more than 30 billion years.” Arguably, the typicality account renders them this true. The case for
this is that, given the actual laws of nature, to accommodating the antecedent while maintaining overall
typicality, we’d have to ensure the universe is “big enough” that the event would count as the sort of local
atypicality that doesn’t undermine overall typicality. Other examples can be constructed using the same
idea. Leuenberger has suggested ways of patching the above account to avoid these conclusions. I am
unsure whether we should be looking to complexify the account to avoid these results, or whether we
should simply classify them as surprising consequences of the overall best theory. In part, this is because
I cannot see what theoretical significance such counterfactuals would have in a wider context, and so
what would turn on matching pre-theoretic intuitions at this point.
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analysis fails on this account; but the positive ‘typicality’ account of counterfactual
similarity offered here remedies this deficiency.
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