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Abstract We argue that one important aspect of the “cognitive neuroscience revo-
lution” identified by Boone and Piccinini (Synthese 193(5):1509–1534. doi:10.1007/
s11229-015-0783-4, 2015) is a dramatic shift away from thinking of cognitive rep-
resentations as arbitrary symbols towards thinking of them as icons that replicate
structural characteristics of their targets. We argue that this shift has been driven both
“from below” and “from above”—that is, from a greater appreciation of what mech-
anistic explanation of information-processing systems involves (“from below”), and
from a greater appreciation of the problems solved by bio-cognitive systems, chiefly
regulation and prediction (“from above”). We illustrate these arguments by reference
to examples from cognitive neuroscience, principally representational similarity anal-
ysis and the emergence of (predictive) dynamical models as a central postulate in
neurocognitive research.
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1 Introduction

Boone and Piccinini (2015) have recently argued that cognitive neuroscience con-
stitutes a revolutionary break from traditional cognitive science, distinguished by its
abandonment of the autonomy of psychology from neuroscience in favour of a multi-
levelmechanistic approach to neurocognitive explanation. In this paperwe identify one
important aspect of this revolution: a dramatic shift away from thinking of cognitive
representations as arbitrary symbols towards thinking of them as icons that replicate
structural characteristics of their targets. This shift has received increasing attention
in the philosophical literature in recent years (e.g., Churchland 2012; Cummins 1989;
Grush 2004; Gładziejewski and Miłkowski 2017; O’Brien and Opie 2015b; Ryder
2004; Williams 2017). We aim to clarify what it consists in, and explain why it has
occurred.

To this end, we identify two driving forces behind this transition to resemblance-
based accounts of cognitive representation. The first comes from a better appreciation
of what mechanistic explanation of information-processing involves. We argue that
broadly a priori arguments for thinking such mechanistic explanations mandate
resemblance-based representational architectures (as advanced by, e.g., O’Brien and
Opie 2004, 2015b) are vindicated by an examination of the nature of such expla-
nations in contemporary cognitive neuroscience. The second comes from a better
appreciation of the problems solved by nervous systems, especially as exemplified
in a recent explosion of fruitful work that focuses on regulation and prediction. We
illustrate these lessons by drawing on “predictive processing” (Clark 2016; Friston
2009; Hohwy 2013) and its conception of the mammalian cortex as a general-purpose
model-making machine.

We structure the paper as follows. In Sect. 2 we outline both the nature of and
the motivation for the symbolic approach to cognitive representations in traditional
cognitive science. InSect. 3wepresent anoverviewof the resemblance-based approach
to cognitive representation, and distinguish this iconic account from both “detector”-
based accounts and anti-representationalist research programmes.We then identify the
two chief factors that have driven cognitive neuroscience towards resemblance-based
representations: the implications of a mechanistic approach for the explanation of
information-processing systems (Sect. 4), and a greater appreciation of the problems
solved by bio-cognitive systems (Sect. 5). We conclude in Sect. 6 by identifying the
chief implications of and challenges for an iconic cognitive neuroscience.

2 Symbols and syntax in traditional cognitive science

Boone and Piccinini (2015) identify three central features of “traditional cognitive
science” (henceforth TCS), the research programme they take cognitive neuroscience
to have superseded. First, TCS understands cognition as a form of digital computa-
tion, as exemplified in Newell and Simon’s (1976) famous “physical symbol systems”
hypothesis, according to which the essence of intelligence lies in the rule-governed
manipulation of symbolic data structures. The second was closely allied to this com-
mitment: cognitive-scientific explanation is functional explanation that abstracts away
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from “implementational” details in the brain, in much the same way that a software
description of processes implemented in commercial digital computers abstracts away
from details of their hardware. Third, this led to what Boone and Piccinini (2015, p.
1510) call the “strong autonomy assumption”: scientific psychology is theoretically
independent from neuroscience; the former concerns the functional architecture of
cognition, the latter merely the contingent matter of implementation.

As Boone and Piccinini (2015, p. 1510) note, this assemblage of commitments
has the embarrassing upshot of making “cognitive neuroscience” sound like an
oxymoron—embarrassing, because cognitive neuroscience has emerged as the “main-
stream approach to studying cognition.” This new research paradigm, they argue,
abandons the strong autonomy assumption at the core of TCS in favour of amultilevel
mechanistic approach to neurocognitive explanation: a theoretical “revolution [that]
requires a different way of thinking about levels, cognitive explanation, representation,
and computation” (Boone and Piccinini 2015, p. 1513)

We are in full agreement with Boone and Piccinini’s thesis, and return inmore detail
in Sect. 4 to the nature of multilevel mechanistic explanation. Because our focus here
is on that part of the revolution they identify that concerns the nature of representation,
however, we start by getting clearer about how this construct was initially understood
in TCS.

As the reference to Newell and Simon’s hypothesis indicates, the core idea is this:
cognitive representations are symbols. It is notoriously difficult to specify what is
distinctive about symbolic forms of representation (cf. Marcus 2003). With respect
to public symbols, at least, an influential tradition differentiates them as arbitrary
representationswhose semantics is owednot to properties of the symbol itselfbut rather
to convention and interpretation (e.g. Peirce 1931–1958). When TCS first emerged,
a similar idea prevailed: symbols are formal entities individuated by their syntactic
properties in amanner familiar from formal logic, such that their systemic role within a
broader mechanism—a physical symbol system—is a function of their syntax rather
than semantics (cf. Haugeland 1989). This characteristic of digital computers lies
behind their popular characterisation as “syntactic engines” (Dennett 2013; see below).

Given this, the idea of explaining intelligence in terms of symbol manipulation has
seemed hopeless to many (e.g. Searle 1980). What we do, after all, at least seems
to be a function of what we think and want—that is, the contents of our mental
states. Nevertheless, there were at least three important ideas that made the vision of
a symbolic mind dominate TCS.

First, ground-breaking work in formal logic at the turn of the twentieth century
pioneered byfigures likeBoole, Frege andRussell demonstrated that rules of reasoning
and thus semantic relations can be mimicked (up to well-known limitations) by purely
syntactic or formal operations on symbols—that is, by purely algorithmic operations
that are insensitive to the contents of the expressions they are defined over.

Second, the work of Turing (1937) and others demonstrated that relatively simple
physical mechanisms can be designed to function as general purposes syntax-sensitive
inference machines. To many, this combination of ideas strongly suggested a vision of
the brain as such amachine: a general-purpose syntax-sensitive inference engine of the
sort envisaged by Newell and Simon (1976). This vision was bolstered by pioneering
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work byMcCulloch and Pitts (1943) that revealed how simple neuronlike nodes could
compute logical functions.

Finally, a widely-held conviction with deep roots in the philosophical tradition and
still held bymany today (e.g. Fodor andPylyshyn 2015;Gallistel andKing 2011) is that
certain conspicuous features of human cognition can only be explained by recourse
to operations on a symbol system with a combinatorial syntax and semantics. For
example, Chomsky (1959) famously argued that the generative flexibility exhibited in
language comprehension and production requires a compositionally structured symbol
system, an insight that was extended to many other domains where systematic and
productive representational capacities seem—prima facie, at least—to be required
(Fodor 1975). Digital computers are physical machines capable of exhibiting such
characteristics. Therefore—the argument goes—we are digital computers.

The upshot of these three considerations was a conception of cognitive represen-
tations as formal (syntactically individuated) entities amenable to syntax-sensitive
transformations. Before turning to explain inwhatway this conception has been largely
supplanted in cognitive neuroscience, we clarify an important issue.

It is sometimes suggested that “syntax-sensitive” processing—that is, the idea that
an information-processing system is sensitive only to the syntactic properties of its
representational vehicles, and not their semantic properties—is a characteristic of any
information-processing system, not just symbol-based ones. Dennett (2013, p. 178),
for example, writes:

Brains… are supposed to be semantic engines. What brains aremade of is kazil-
lions of molecular pieces that interact according to the strict laws of chemistry
and physics…[B]rains, in other words, are in fact only syntactic engines… A
genuine semantic engine, responding directly to meanings, is like a perpetual
motion machine—physically impossible. So how can brains accomplish their
appointed task? By being syntactic engines that track or mimic the competence
of the impossible semantic engine (emphasis in original).

This widespread view conflates two different meanings of “syntax,” however. On
one reading, “syntax” refers to the individuation of formal symbols, and is itself an
autonomous level of description that is multiply realisable at the physical level (Fodor
1975). On another reading, “syntax” just refers to those physical properties by which
representational vehicles can perform a systemic role within a mechanism. Of course,
in this latter sense all information-processing mechanisms are “syntactic engines.”
The question is what differentiates systems that are merely sensitive to the physical
properties of their component parts from genuinely information-processing systems—
that is, systems whose behaviour is a function of the representational properties of
their component parts?

An influential proposal associated with TCS (see Sect. 4 below) is that such
information-processing systems are carefully crafted mechanisms whose behaviour
is sensitive to the syntactic properties of their parts in the former sense. These are
systems in which—as Haugeland (1989, p. 106) famously put it—“if you take care of
the syntax, the semantics takes care of itself.”

Is there an alternative?
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3 Iconic representations

The history of philosophy has given rise to two major rival views about the nature of
mental representation (cf. Waskan 2006). On one view—the intellectual provenance
of TCS—mental representations are language-like entities and cognition is a matter
of what Hobbes famously called ratiocination. In contrast to this, an older tradition—
associated with figures like Aristotle, the Scholastics, and the British empiricists—
holds mental representation to be founded on similarity to the mind’s objects, and
takes as its paradigms of representation things like pictures, maps, diagrams, and
scale models (O’Brien and Opie 2015b). In Peirce’s (1931–1958) vocabulary, such
representations are iconic, not symbolic: they represent by resemblance. In addition
to the introspective vindication of this approach, an influential tradition in philosophy
contends that only the similarity between the mind’s representations and the world
could explain our ability to use the former to reason about the latter (cf. Cummins
1989; Isaac 2013; see Sect. 4 below)

Iconic approaches to mental representation fell on hard times throughout most of
the twentieth century. After all, once we must situate mental representations inside
the brain, it just seems obvious that they cannot literally reduplicate the world and its
heterogeneous contents (Cummins 1989, p.31).

We contend that this is not obvious. In fact, we contend that cognitive neuroscience
positively vindicates this ancient view about internal representation. Before turning to
justify this claim, however, we first clarify what is meant by iconic representation, and
distinguish our view from two other prominent ideas about representation in cognitive
neuroscience.

3.1 Resemblance

First, the relevant kind of resemblance for brain-bound cognitive representations is
“second-order structural resemblance” (O’Brien andOpie 2004). Roughly, this resem-
blance relation obtains between two domains when the pattern of relations among the
elements in one recapitulates the pattern of relations among the elements in the other.1

This kind of resemblance relation is thus straightforwardly consistent with a vapid
physicalism: it demands only that neural structures, properties, and processes in the
brain can instantiate the relevant structure of the domains they represent. Further,
it explains how iconic representations can capture the more rarefied characteristics
of what we think about. Insofar as such phenomena are individuated by their role
in broader structures—spatial structures, categorical structures, dynamical or causal
structures, and so on—iconic representation just requires neural vehicles to replicate
that structure. For this reason, iconic representations are often called “structural” or
“S-representations” (Cummins 1989; Gładziejewski and Miłkowski 2017; Ramsey
2007).

Second, second-order structural resemblance is weaker than isomorphism or homo-
morphism (O’Brien andOpie 2004). This is familiar frompublic iconic representations

1 See O’Brien and Opie (2004) for a more technical analysis.
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such as cartographic maps. Such iconic representations are often heavily idealised,
selective, and sometimes purposefully distortive (Horst 2016). For this reason, resem-
blance is a profoundly graded notion. Consequently, representational value is similarly
graded in iconic representations. Maps are not true or false, but better or worse, where
this continuous value is a function of their practical utility. Intuitively, you and I might
both have pretty accurate maps of London, but minemight be better than yours, Sally’s
might be better than both of ours, and Bob might have a map too accurate and detailed
to be of any use in getting around. As for maps, so for iconic representations more
generally.

Third, philosophers are fond of pointing out that resemblance is not sufficient for
representation (Crane 2003; Goodman 1969). But no dyadic relation is sufficient for
representation.We followPeirce and a long tradition of subsequent authors in assuming
that representation is essentially a triadic relation that exists between: (1) a representa-
tional vehicle or set of vehicles; (2) the target of the representation; and (3) the system
that uses or interprets the former to coordinate its behaviour with the latter (O’Brien
2015a; cf. O’Brien and Opie 2004). The claim that cognitive representations are iconic
is thus the claim that what explains the brain’s ability to exploit its internal states as
representations of target domains is that they resemble such domains (Shea 2014).
Importantly, this triadicity undermines concerns about the reflexivity, symmetry, and
ubiquity of resemblance relations:2 my map might structurally resemble itself and an
infinite number of other things (which in turn resemble my map), but it is only the
similarity between its internal structure and London that I exploit in makingmyway to
King’s Cross (O’Brien 2015a). In a slogan: “no representation without exploitation.”

We join a growing chorus of voices in advancing the thesis that cognitive neu-
roscience commits one to an understanding of cognitive representation as iconic
(Churchland 2012; Gładziejewski and Miłkowski 2017; O’Brien and Opie 2015b;
Ryder 2004). Before we explain why this shift has occurred—and identify evidence
for it—we first distinguish our view from two other prominent ideas in the literature.

3.2 Detectors

One prominent view among philosophers is that the leading concept of representa-
tion in cognitive neuroscience is the detector, a component of the nervous system
that responds selectively to (i.e. detects or indicates) the presence of some environ-
mental stimulus (e.g. Ramsey 2007). Familiar examples are edge detectors in V1 or
neuronal populations that respond differentially to the presence of specific faces in
one’s fusiform “face area.” On this view, cognitive neuroscience has abandoned an
understanding of cognitive representations as formal symbols in favour of an under-
standing of nervous systems as complex measuring instruments: intricately structured
networks of cells designed to reliably indicate the presence of functionally significant
environmental stimuli.

This cannot be right, however.

2 See Goodman (1969).
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First, detection itself is not a representational relation (Ramsey 2007). Specifically,
detection exists whenever there is a covariational relation between the states of two
systems—a relationship that is ubiquitous across all physical (cognitive, biological,
and even non-organic) systems. As such, detection is most often relevant as a pro-
posal about how representations—namely, vehicles already supposed to function as
representations—acquire their contents. Specifically, because symbols evidently do
not resemble their targets, an influential proposal is that symbols acquire semantic
properties through the indication relationships they stand in to what they represent—
the basis of various kinds of “indicator semantics” (Dretske 1981; Fodor 1987). The
claim that detection is the primary relation that nervous systems bear to their environ-
ments is thus either a call to abandon internal representations altogether (Hutto and
Myin 2013; Ramsey 2007; see below), or a proposal about how symbols acquire their
contents (e.g. Fodor 1987).

Second, a central assumption of cognitive neuroscience is that computations over
internal representations causally explain intelligence (Bechtel 2008; Boone and Pic-
cinini 2015). But detection as such cannot explain intelligence: the kind of exquisite
informational sensitivity to environmental contingencies that advocates of indicator
semantics appeal to in order to explain representation is an instance of the very intelli-
gence supposed to be explained by representation (Churchland 2012; Cummins 1996).
As Churchland (2012, p. 97) puts it, “if you are to have any hope of recognizing and
locating your place and your situation within a complex environment, you had better
know, beforehand, a good deal about the structure and organization of that environ-
ment.”

Third, and relatedly, many alleged “detectors” are better thought of as components
of larger models that function as iconic representations (see Sects. 4 and 5). Place
cells in the rat’s hippocampus, for example, reliably indicate the rat’s presence at a
certain location of the environment (Shea 2014). This fact does not explain their rep-
resentational role, however; their functioning as representations is explained by their
participation in a larger network of cells comprising “cognitive maps” whose internal
structure—roughly, the pattern of coactivation relations in the network—recapitulates
the spatial structure of the ambient environment (Gładziejewski and Miłkowski 2017;
Shea 2014).

Finally, it is plausible that even extremely simple instances of alleged “detector”-
based representations in fact represent by structural resemblance (Morgan 2014).
Consider a thermostat, for example—seemingly a paradigmatic detection-based sys-
tem. Nevertheless, what explains the thermostat’s ability to regulate room temperature
is that the pattern of relations among its bimetallic strip curvatures replicates the pattern
of relations among ambient air temperatures (see Sect. 4 below) (O’Brien 2015a). This
suggests that the core difference between paradigmatic “detector” representations and
iconic representations in cognitive neuroscience is that the relevant resemblance rela-
tion in the former case is mediated by a simple causal relation, and is purely reactive
(Gładziejewski and Miłkowski 2017). As we argue below, the core kinds of cognitive
representations in cognitive neuroscience do not have these characteristics. Biological
agents are autonomous, endogenously active—not merely reactive—systems (Bechtel
2008).
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For these reasons, we think an understanding of internal representations as detec-
tors is untenable. Nevertheless, Ramsey is evidently right that the detector-notion of
representation is widely used in cognitive neuroscience. How can we reconcile this
fact with our contention that cognitive neuroscience vindicates an iconic approach to
representation?

In three ways. First, as noted above, claims about detection are often heuristically
essential in constructing and evaluating theories about the broader internal mod-
els (i.e. iconic representations) that underpin intelligence (Bechtel 2014; Kiefer and
Hohwy2017). Indication relations are thus often crucial components of the explananda
that iconic representations are posited to explain. Second, and relatedly, our claim
is emphatically not that detection is irrelevant to the explanation of intelligence.
Evidently any adaptive system must be differentially responsive to environmental
conditions, and indication relations are thus crucial for the proper functioning of
iconic representations—forupdating them, for example (Gładziejewski andMiłkowski
2017). For these reasons, our thesis is consistent with the prevalent role that detec-
tion plays in representational theorizing. Specifically, this prevalence should not be
confused for the claim that representation is detection.

Finally, our thesis must be partially normative. Whilst we argue that iconic repre-
sentations evidently are central to contemporary research in cognitive neuroscience
(see below), we acknowledge that a detector-notion of representation is also prevalent
in that research.3 Thus our thesis should be understood as stating that our best and
most fruitful research into the nature of intelligence and adaptive response involves
iconic representations. For the reasons just stated and outlined in Sects. 4 and 5 and
below, we contend that any research that relies purely on detector relations is itself
hopeless to explain intelligence.

3.3 Anti-representationalism

Another prominent view is that the cognitive sciences are not just moving away from
symbolic representations but from the very idea that internal representations form
a core part of the explanation of intelligence and adaptive behaviour (e.g. Anderson
2014; Chemero 2009). On onemanifestation of this view, the idea is just that traditional
symbol-centred cognitive science paid insufficient attention to the importance of vari-
ables like time, action, and non-neural parts and operations in cognitive mechanisms
(e.g. Clark 1997). Context-invariant, discrete linguaformal symbols and sequential
algorithms, the argument goes, are ill-suited to many basic forms of adaptive success
(see Sect. 5) in a way that TCS was oblivious to. These lessons are salutary, and con-
sistent with the ideas we defend here. On amore “radical” manifestation of this stance,
however, this hostility to internal symbols is extended to internal representations more
generally, which are marginalised as either “peripheral or emergent” (Anderson 2014,
p. 162) or eliminated altogether (Chemero 2009) as a result.

We cannot fully address this scepticism here. Nevertheless, we briefly note three
things.

3 We thank an anonymous reviewer for pressing this point.
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First, as a claim about how cognitive neuroscience is actually practiced—the focus
of this paper—this view is mistaken. Anti-representationalism is profoundly revision-
ary. Open any mainstream textbook in the discipline and see. As far as we can tell, this
radicalism has not borne fruit when it comes to explaining even moderately sophisti-
cated instances of intelligence and adaptive success, such as a rat’s ability to navigate
a maze (Bechtel 2008). Further, we suspect there are principled reasons why it will
fail (see Sect. 5 below).

Second, and relatedly, advocates of radical anti-representationalism (particularly
dynamical systems theory approaches) often reject mechanistic explanation in favour
of covering law explanations (see Sect. 4.1) (see, e.g., Chemero 2001, 2009). The
deficiencies of such explanations in the special sciences are well-known, so we will
not recapitulate them here (see Colling and Williamson 2014a; Kaplan and Bechtel
2011a;Kaplan andCraver 2011b). In the current context, however, note that embracing
this covering law model of explanation would in effect amount to an abandonment of
cognitive neuroscience as Boone and Piccinini (we think rightly) characterise it.

Finally, as wewill see, many of these broadly anti-representationalist concernswith
TCS can be accommodated within a representationalist framework that favours iconic
representations. Indeed, there is an important irony here. Advocates of contempo-
rary anti-representationalism typically propose that we should approach the processes
responsible for intelligence and adaptive behaviour with the resources of dynami-
cal models instead of orthodox concepts like representation and computation (e.g.
Chemero 2009). An exciting body of work in contemporary cognitive neuroscience,
however, holds that the brain itself instantiates dynamical models—that is, that the
brain makes use of the very kind of model that advocates of anti-representationalist
approaches claim we should use to model the brain’s interactions with its environ-
ment. Such neurally instantiated dynamicalmodels replicate the covariational relations
among functionally significant variables, and are iconic representations par excellence.
Or so we will argue (Sects. 4 and 5). Thus the influence of dynamical systems the-
ory on cognitive neuroscience might turn out to be exactly the opposite of what its
proponents intended (cf. Bechtel 1998).

3.4 Summary

With these preliminaries in hand, we turn next to justify our claim that cognitive neu-
roscience embraces an iconic account of cognitive representations. We argue that the
shift has been driven from two directions: “from below” (Sect. 4) and “from above”
(Sect. 5)—that is, from a greater appreciation of what mechanistic explanation of
information-processing systems involves (“from below”), and from a greater appreci-
ation of the problems solved by cognitive systems (“from above”).

4 The return of resemblance

The core aspect of the cognitive neuroscience revolution identified by Boone and
Piccinini (2015) is the shift from purely functional analyses of cognitive systems to
multilevel mechanistic explanations of the capacities they exhibit. In this section we
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argue that this shift mandates an iconic understanding of cognitive representation.
This can be seen in two ways: first, by looking at what mechanistic explanation of
distinctively information-processing systems involves—a broadly a priori approach
(Sect. 4.1); and second, by looking at actual examples of mechanistic explanation of
information-processing in cognitive neuroscience (Sects. 4.2, 4.3).

4.1 Mechanistic cognitive science entails iconic representation

First, then, sciences such as biology and cognitive neuroscience adopt a mechanis-
tic approach to scientific explanation (Bechtel 2008; Craver 2007). This approach
is distinct from the dominant philosophical model of scientific explanation assumed
throughout much of the 20th century—namely, the “covering law” or “deductive-
nomological model”—according to which the primary goal of explanation is to
uncover universal or statistical laws and then derive statements of phenomena from
statements of such laws and initial conditions (Hempel and Oppenheim 1948, 1953).
Bechtel and Abrahamsen (2005, p. 3) offer a definition of a mechanism as “a structure
performing a function in virtue of its component parts, component operations, and their
organisation.”Mechanistic explanation proceeds by identifying these parts and identi-
fying how their organised activity gives rise to the phenomenon of interest. Unlike the
deductive-nomological framework, which seeks to explain higher-level phenomena
by reducing them to lower-level laws, mechanistic explanation is explicitlymultilevel.
That is, it seeks to explain how phenomena at one level are caused by the operation
of organised parts at the level below (Craver 2007). Multilevel mechanistic reduction
therefore rejects both traditional reductionism, which seeks to replace theories at the
higher level with theories at the lower level, as well as the strict autonomy of the
special sciences (Bechtel 2008).

Mechanistic explanations are common across the life sciences. What distinguishes
mechanistic explanation in the cognitive sciences is that the relevant mechanisms con-
tain parts that carry information, such that their operations are controlled or determined
by this information-carrying function (Bechtel 2008). That is, cognitive mechanisms
involve representations.

Whilst this view is widely accepted, it gives rise to two deep challenges. First, what
distinguishes these two kinds of mechanisms—that is, ordinary non-representational
physical mechanisms and distinctively information-processingmechanisms? Second,
how can the representational properties of structures within a mechanism be causally
relevant to the capacities it exhibits? These questions are related insofar as an answer to
the second plausibly answers the first: information-processing mechanisms are distin-
guished from other systems because the representational properties of their component
parts are causally relevant to what they do. The questions are difficult because it is not
obvious how this could be true. Representation is a relational property between inter-
nal states of a mechanism and some spatially or temporally distal (or even abstract or
non-existent) target. Notoriously, it is difficult to explain how this relational property
could be relevant to the systemic role of the internal vehicle that stands in this relation
(cf. O’Brien 2015a).
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To see the difficulties here, recall the influential idea about information-processing
prominent in TCS. On this view, representations are formal entities whose systemic
role is a function of their syntactic properties.4 Specifically, one maps syntactic prop-
erties and inferential transitions onto physical states and state transitions, which in turn
mimic semantic relations between such symbols under interpretation. As many have
noted, this seems to make representational status of such symbols irrelevant to the
mechanism’s functioning, thereby leaving both of our questions unanswered (Searle
1980; Stich 1983).

Traditionally, there have been three prominent responses to this problem. The first
accepts that there is no semantic difference between cognitive and non-cognitive sys-
tems in TCS (Searle 1980; Stich 1983). The second locates the difference at the level
of explanation, not ontology, such that the semantic interpretation of physical symbol
systems provides what Dennett (1987, p. 350) calls a “heuristic overlay” not reflective
of its real functioning (cf. Egan 2013). Finally, the third contends that distinctively
cognitive mechanisms acquire semantic properties through their causal interactions
with the environment (Fodor 1987).

None of these responses is satisfactory from the perspective of cognitive neuro-
science, however. The first effectively abandons its commitment to the explanatory
importance of internal representations (Stich 1983). The second drives a wedge
between ontological and explanatory questions that violates the basic principles of
mechanistic explanation: if internal parts are not literally representational, a descrip-
tion of the mechanism should reflect this fact, not obscure it (Ramsey 2007). Finally,
the third explains representational properties in terms of the mechanism’s functioning,
and thus violates the principle that internal representations explain such functioning
(Churchland 2012).

We contend that iconic representations offer a solution to this problem. Iconic rep-
resentations, recall, represent through resemblance to their target. As such, to explain
how the representational properties of such representations could be causally relevant
to amechanism’s functioning, we just need to show how their resemblance to some tar-
get domain could be exploited by the mechanism of which they are a part (Shea 2014;
see Sect. 3.1 above). In other words, we need to show how the capacities a mechanism
exhibits could be causally dependent on the degree to which its internal representa-
tions resemble the structure of their target. And—as Gładziejewski and Miłkowski
(2017) point out—it is not difficult to see how this might come about. Because a cog-
nitive mechanism’s functioning is causally dependent on its ability to coordinate its
behaviour—or the behaviour of the larger system of which it is a part—with some
distal domain, the resemblance between its internal representations and the structure
of that domain can be causally relevant to its success. For example, a rat’s ability
to navigate its ambient environment is causally dependent on the degree to which
its hippocampal map of that environment accurately recapitulates its spatial structure
(Gładziejewski and Miłkowski 2017). A mechanism that relies upon iconic represen-
tation is thus causally indebted to the accuracy of its internal representations—subject,

4 Or, more accurately, the physical properties these syntactic properties are systematically mapped onto.
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of course, to the qualification that maximum accuracy is neither feasible nor attractive
(see Sect. 3.1 above).

Given this, iconic representations are sufficient for mechanistic explanation of
distinctively information-processing systems, and offer a neat explanation of how
the representational properties of internal vehicles can be causally relevant to a
mechanism’s functioning. We think one can plausibly go further, however: iconic
representation is not just sufficient but necessary for this kind of explanation (O’Brien
2015a; O’Brien and Opie 2004).

To seewhy, note that a genuinely representational explanation of some phenomenon
must satisfy the following condition: the properties by which internal representations
represent must be responsible for their systemic role within the broader mecha-
nism of which they are a part. Without this, the vehicles’ representational properties
become redundant. For example, suppose we simply decide to interpret the mecha-
nism responsible for a bird’s navigational abilities in terms of a conversation between
Churchill and Hitler. In this case, the properties by which the mechanism components
represent—namely, pure convention and interpretation—are completely irrelevant to
their systemic role. Representation thus becomes amatter of observer-dependent over-
lay.

With iconic representations, by contrast, the property responsible for their represen-
tation of a given domain—namely, resemblance—doubles up as the property by which
they perform their systemic role. The reason this is possible is that both properties are
mediated by the representation’s structure, which can simultaneously re-present or
stand in for characteristics of the target and be causally relevant to a mechanism’s
broader functioning (O’Brien 2015a). If one turns to the sole serious alternative to
resemblance-based accounts of representation, however, namely causal or indicator-
based accounts, they fail this desideratum: the properties by which vehicles represent
in such accounts—namely, the presence of some causal relationship between internal
and external states—cannot itself be relevant to their systemic role (Bechtel 2008). To
see this, consider the case of a thermostat. The mere fact that internal states are caused
by external states cannot explain the systemic roles of the former in the broader reg-
ulative mechanism. For this reason, this causal relationship in thermostats mediates a
relation that can be exploited by the broader mechanism: namely, the correspondence
or resemblance relation between the height of mercury in the thermometer and the
ambient room temperature (O’Brien 2015a).

For this reason, we suspect that iconic representations are not just sufficient but
positively necessary for genuinelymechanistic explanations in which representational
properties play a systemic role. Before turning to examples of such explanations in
cognitive neuroscience, we briefly dispel a possible misinterpretation of our argument.

Our thesis is this: cognitive neuroscience both entails (a prior) and exhibits (a
posteriori) an iconic approach to cognitive representation. Crucially, our thesis is
emphatically not that such iconic representations are unique to cognitive neuroscience
and thus absent from what is ordinarily thought of as TCS. This would be patently
false. Indeed, Ramsey (2007) has argued persuasively that a central construct in TCS
is precisely the “S-representation” (see also Cummins 1989). As a claim about how the
concept of internal representation was initially understood in TCS, we think Ramsey’s
claim is simply mistaken. Indeed, when Johnson-Laird (1983) advanced his model-
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based, iconic account of cognitive representation in the 1980s, he explicitly positioned
it in opposition to the dominant understanding of representation that had preceded it
in TCS—which, according to Johnson-Laird (1983 x), had neglected “a crucial issue:
what it is thatmakes amental entity a representation of something.” Further, as Ramsey
(2007) himself notes, the vast bulk of work in “naturalistic psychosemantics” that
attempts to explain how internal representations posited by cognitive science acquire
their contents explicitly shuns resemblance-based accounts in favour of causal or
informational approaches to content determination (cf. Fodor 1987; Hutto and Satne
2015).

Nevertheless, dissatisfaction with the early programme of TCS and with preva-
lent confusions around the concept of internal presentation did motivate numerous
authors within that tradition to embrace effectively iconic understandings of cognitive
representation (e.g. Gallistel 1993; Johnson-Laird 1983). Many researchers typically
thought toworkwithin the “classical” programme have thus provided some of themost
articulate defences of our foregoing argument that genuinely representational explana-
tions of a system’s behaviour require iconic representations (cf. Isaac 2013). Our claim
is that cognitive neuroscience is committed to a resemblance-based approach to cog-
nitive representations, not that this resemblance-based approach is unique to cognitive
neuroscience. The latter claim would be absurd: after all, Aristotle defended an iconic
approach to mental representation. Our title includes the “return of resemblance” for
a reason.

4.2 Cognitive neuroscience and iconic representations

If our analysis is correct, and if cognitive neuroscience advances mechanistic expla-
nations of genuinely representational systems, we should expect to find such iconic
forms of representation within information-processing models in cognitive neuro-
science. Our contention is that this is just what one does find if one examines research
in cognitive neuroscience. Other philosophers have recently conducted excellent work
on just this topic (cf. Churchland 2012; Gładziejewski and Miłkowski 2017; Kiefer
and Hohwy 2017; Ryder 2004; Shea 2014; Williams 2017). Any exhaustive overview
of such research—or of research into cognitive representation more generally in cog-
nitive neuroscience—is impossible in a paper of this scope. Instead, in this section we
focus on two examples that we think are especially important: first, the emergence of
predictive models that replicate the dynamical structure of target domains to facilitate
various cognitive functions (Sect. 4.2); and second, the recent emergence of powerful
tools for uncovering the neural encoding of categorical knowledge (Sect. 4.4).

4.3 Dynamical models

Begin with the cerebellum. The histological structure of the cerebellum has been
known for well over a century since the pioneering work of Santiago Ramón y Cajal
(see Ramón y Cajal 1989) and it may be for this reason that the cerebellum was the
target for those working in computational neuroscience while the discipline was still
in its infancy (e.g., Marr 1969).
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The microstructure of the neural connections within the cerebellum is very well
understood in part because of the very regular pattern of organisation where a number
of different cell types are organised in a stereotyped pattern (see Llinás 1975). This
pattern resembles something like a grid with parallel fibers forming synapses onto
the dendrites of Purkinje cells. Pellionisz and Llinás (1979) proposed that this struc-
ture might be ideally suited to perform a particular kind of computational operation,
namely coordinate transformation. Mathematically, coordinate transformation occurs
by multiplying an m-dimensional input vector by a m × n transformation matrix to
yield an n-dimensional output vector. This model proposed that the grid-like arrange-
ment of synapses in the cerebellum is able to act like the transformation matrix with
the synaptic weights providing the values and the firing frequencies of the input and
output cells acting as the input and output vectors. The input and output vectors are
functions of time—or more specifically time-frequency functions—allowing them to,
for example, dynamically track the movement of limbs. Moreover, the activity of the
output cells in this arrangement can be mathematically interpreted as representing a
Taylor expansion, and while the mathematics here are not of vital importance, a cru-
cial property emerges when they are considered in this way. That is, these functions
can act as predictions. Indeed, the notion that the cerebellum implements a predictive
model has been foundational in neurocomputational approaches to action control (see
Wolpert 1997).

This approach to action control makes extensive use of predictive models—in par-
ticular, models of the forward dynamics and inverse dynamics of the musculoskeletal
systems (Wolpert 1997, 1998). The model of the inverse dynamics is used as a planner
because it transforms a desired goal state into the motor commands required to bring
about that goal—that is, it computes the motor commands necessary to achieve the
goal. A model of the forward dynamics can be used to predict how the body will move
in response to a particular set of motor commands or the sensory consequences that
thismovement will generate. Focusing just on forwardmodels (for the sake of brevity),
we can see that these predictions play a crucial role in the control of action. Forward
models allow the motor system to engage in feedback control of action in the presence
of sensory delays and noise. Without being able to make use of feedback during the
performance of an action it would not be possible to update an action plan after it has
been initiated. But feedback control allows the system to correct for any deviance in
the planned trajectory by comparing the actual position with the predicted position.
In the case of the action control system, however, sensory signals take too long to
travel from the periphery to central areas to be useful and, furthermore, they can be
contaminated with noise. In this case, predictions about the limb’s position, generated
by the forward model, can be used to stand in for actual sensory feedback and motor
plans can be updated on the basis of this virtual sensory feedback or, to mitigate the
effects of sensory noise, virtual feedback and actual feedback can be combined, with
each source weighted according to their expected precision.

These forward predictivemodels of the body’s dynamics are an example of a broader
class of models, known as emulators (Grush 1997). The notion of emulators derives
from control theory, the branch of engineering that seeks to understand how to control a
target system (the plant) so as to bring about a desired behaviour. The emulator models
the plant by replicating its dynamics and, therefore, replicating how the plant would
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behave in response to certain control commands. As such, emulators function as iconic
representations. By capturing the temporal evolution of the target system, the different
states of the emulator would stand in relation to each other in the same way that those
states stand in relation to each other in the target system—that is, it would represent
by resemblance. And importantly, the emulator can be used offline so that control
commands are issued to the emulator alone without producing any behavior in the
plant. The system, equippedwith an emulator like this, is now able to try out commands
without producing behavior. The system can plan, it can entertain counterfactuals, and
it can engage in other kinds of behavior that we usually think representational systems
are capable of (Grush 2004). For these reasons, such emulators can play functional
roles that merely detector-based systems cannot.

While models of action control may seem a long way off from the kind of phenom-
ena that TCS was interested in, emulator models and similar iconic representations
have been pushed far beyond the domain of action control. Some examples include
language and dialog (Pickering and Garrod 2004), the sense of agency (Frith et al.
2000), the sense of embodiment (Carruthers 2013), perceptual prediction (Colling
et al. 2014b; Wilson and Knoblich 2005), and accounts of joint planning and col-
lective intentions (Butterfill 2015; Colling 2017), which serve as alternatives to the
propositional accounts of Searle (2002) and Bratman (1993). In addition, while the
work of Pellionisz and Llinás on the computations performed by the cerebellum we
outlined above can be seen as foreshadowing the emulation theory of representation,
the emulation theory of representation can itself be seen as foreshadowing predictive
processing, an extremely influential emerging framework on brain function to which
we return in Sect. 5.2.

Further, it has been argued that even cognitive representations usually understood
in the form of “detector”-style representations are better understoodwithin the broader
framework of predictive models we have outlined here. For example, the extremely
influential research on “mirror neurons” in psychology and neuroscience—namely,
neurons that are active not just when an organism performs an action but when it
observes a conspecific performing the same or similar action—are often understood
through the framework of motor resonance (e.g. Gallese and Goldman 1998; cf. Pel-
legrino et al. 1992). Nevertheless, many have noted that this effectively detector-based
framework seems to be inconsistent with the informational and functional profile of
such neurons (cf. Csibra 2008; Umiltà et al. 2001), which are inherently predictive in
character and structured into broader networks fromwhich they derive their functional
roles, leading some to rename them emulator neurons (Csibra 2008) and situate them
which the iconic account of representation we outline here (Colling et al. 2013, 2014b;
cf. also Clark 2016 ch. 7 and Kilner et al. 2007).

4.4 Resemblance and cognitive neuroimaging

One of the primary tools that cognitive neuroscience has made use of for uncovering
neural mechanisms has been functional neuroimaging—techniques such as functional
magnetic resonance imaging (fMRI), electroencephalography (EEG), andmagnetoen-
cephalography (MEG). These techniques attempt to isolate particular brain regions
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involved in particular cognitive capacities or to identify the timing of particular sub-
components of a larger cognitive capacity. Therefore, they can—or at least should
(Colling and Robers 2010; McCauley and Bechtel 2001)—represent the first step
in the mechanistic decomposition of a cognitive capacity. Until recently, these tech-
niques have not been suited to uncovering representations proper but have rather been
restricted to detecting neural signals that might correlate with some stimulus or cogni-
tive task. This, however, has changed with the development of newer techniques that
aim to uncover the structure and content of representations more directly. These tech-
niques, which are based on neural decoding methods, endorse a resemblance-based,
or iconic, account of cognitive representation. Neural decoding analyses exploit the
idea that if the brain encodes information in patterns of neural activity then it should be
possible, using the right techniques, to decode this information and uncover the con-
tent in a particular pattern of neural activity. In a typical neural decoding experiment,
the experimenter might, for example, show the participant images from two different
categories while recording brain activity using fMRI, EEG, or MEG (Grootswagers
et al. 2017; Ritchie et al. 2017). A linear classifier is then trained to distinguish the
patterns of activity produced in response to one class of stimuli from the patterns of
activity produced in response to a different class of stimuli. In effect, the brain activity
in response to each stimulus is treated as a point in high-dimensional activation space,
and the classifier works by trying to place a decision boundary between the points
corresponding to the two classes of stimuli.

Neural decoding methods themselves do not make any strong claims about the
nature of cognitive representation. Specifically, a decoder could successfully distin-
guish the brain activity produced in response to stimulus A without that brain activity
representing ‘A’ unless that statistical regularity was actually exploited by the brain
(Ritchie et al. 2017). However, a related technique, known as Representational Simi-
larity Analysis (RSA; Kriegeskorte and Kievit 2013), which employs neural decoding,
plausibly can support claims about the nature of mental representation.

RSA attempts to uncover the structure of neural activation spaces. Rather than sim-
ply trying to distinguish the brain activity in response to stimulus A from the brain
activity in response to stimulus B, an RSA analysis asks about the pattern of relation-
ships between classes. For example, if a participant were shown images of different
kinds of animals, for example, pigs, sheep, cows, dogs and cats, RSA could test how
similar the pattern of neural activity is for each pairwise combination of stimuli. From
this, it might be possible to discern whether there is a greater degree of similarity
in the neural activity in response to sheep, cows, and pigs than there is between the
neural activity to cows and cats, and this might create clusters of neural similarity that
might correspond to our semantic categories of pets and farm animals (see Contini
et al. 2017; Wardle et al. 2016; Ritchie and Carlson 2016 for examples of how RSA
has been used, and see Ritchie et al. 2017 for a philosophical introduction to RSA).

Importantly, however, RSA can go further than simply uncovering semantic cat-
egories. RSA can also be used to uncover the structure of semantic categories. We
know from philosophical work (Wittgenstein 1953) and work in cognitive psychology
(Rosch and Mervis 1975) that semantic categories aren’t formed by each exemplar
within the category sharing an attribute with every other item in the category. Rather,
each exemplar might share one attribute with some, but not all, other exemplars. As a
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result, the exemplars in the category might be linked by a family resemblance relation
or aweb of overlapping attributes. A consequence of this is that some exemplars within
the category might be more prototypical of the category than others. The structure of
the semantic category allows us to see, for example, that football is more prototypi-
cal of the category ‘sport’ than golf. Or that football is more similar to rugby on the
dimension of ‘sport’-ness than football is to golf. These are claims about the sim-
ilarity relations between the content of representations. These structures have been
probed in psychological experiments using reaction time measures, with the general
finding being that more prototypical exemplars are categorised into the appropriate
category quicker. However, in the case of iconic representation, we should expect to
find resemblance relations at the level of content mirrored at the level of the vehicle
(consider how two maps would be similar if they were maps of two geographically
similar cities). Therefore, it might be possible to ask the question: is the pattern of
relationships between tokens in the represented domain mirrored at the level of the
brain? That is, canwe examine the brain directly and find evidence for the second-order
resemblance relation advanced by proponents of iconic representation?

This is indeed what was done by Richie, Carlson, and colleagues (Carlson et al.
2014; Ritchie et al. 2015; see also Ritchie and Carlson 2016) by using RSA to generate
neural activation spaces for images of animate and inanimate objects. Each token in
these two categories was represented as a point in this activation space. A decision
boundary, which maximally separated these two classes, was then drawn through this
activation space.With the decision boundary in place, the distance between each token
and the decision boundary could be measured, and this distance could be correlated
with reaction times on an animate/inanimate judgment task. The results showed that
the distance from the decision boundary predicted the reaction times—that is, the
closer an exemplar was to the decision boundary separating animate and inanimate
objects the slower people were to categorize it as animate. As reaction times have
been shown to mirror the semantic relations between tokens in a category (Rosch
and Mervis 1975), these experiments provide evidence that these relations are also
mirrored at the level of neural population codes, exactly as one would expect if the
brain made use of iconic forms of representation.

4.5 Summary

In this section we have argued on a priori grounds that mechanistic explanations of
information-processing systems requires iconic representations—a lesson we have
sought to illustrate by focusing on two especially promising areas of research in actual
cognitive neuroscientific practice. This includes not only work that posits predictive
dynamical models, but also recent work in cognitive neuroimaging that is explicitly
directed at uncovering the structure of iconic representations in brain.

5 Prediction, regulation, and the model-making cortex

Boone and Piccinini (2015) rightly chastise TCS for being insufficiently attentive to
mechanistic considerations in cognitive theorizing. Specifically, they argue that the
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methodological assumptions of TCS are insensitive to the important ways in which
“structures constrain functions and vice versa” (Boone andPiccinini 2015, p. 1522, our
emphasis).We are in full agreementwith this thesis, and have argued that amechanistic
approach to the explanation of information-processing in cognitive systems mandates
an iconic account of cognitive representation.

However,we contend that there has also been an underappreciated shift in theway in
which cognitive neuroscience addresses functional questions independently of struc-
tural constraints. That is, there has been a dramatic shift in the way in which cognitive
neuroscience identifies the problems that cognitive systems (or sub-systems) solve.5

This shift has been driven not just by greater sensitivity to the constraints imposed
by the structure of neural mechanisms, but by a better appreciation of functional con-
straints that TCS was largely oblivious to. In this section, we note two of the most
exciting trends in this respect—the emergence of broadly global theories of brain
function that focus on regulation and prediction (Sect. 5.1)—and we explain how
this shift has been equally important in driving cognitive neuroscience towards iconic
representations (Sect. 5.2).

5.1 Homeostatic prediction machines

Sterling and Laughlin (2015 xvi) open a recent textbook with the claim that “the
core task of all brains…. is to regulate the organism’s internal milieu.” In line with
much recent work (Anderson 2014; Barrett 2017; Cisek 1999; Friston 2010; Hohwy
2013; Seth 2015), they argue that this overarching regulative lens on brain function
can be exploited to derive general “principles of neural design” that might guide
the very kinds of mechanistic explanation Boone and Piccinini note as central to
cognitive neuroscience. As Barrett (2017, p. 3) puts it: “a brain did not evolve for
rationality, happiness or accurate perception. All brains accomplish the same core
task: to efficiently ensure resources for physiological systems within an animal’s body
(i.e. its internal milieu) so that an animal can grow, survive and reproduce.”

This regulative perspective on brain function has deep roots in traditions like mid-
twentieth century cybernetics (Conant and Ashby 1970), perceptual control theory
(Powers 1973), dynamical systems theory-approaches to cognition (VanGelder 1995),
and a recent wave of work in theoretical neuroscience and biology that focuses on
homeostasis and allostasis (the active process of achieving homeostasis) as overar-
ching principles of brain function (for a representative sample, see: Anderson 2014;
Barrett 2017; Corcoran and Hohwy 2018; Friston 2009, 2010; Seth 2015; Sterling
and Laughlin 2015). Indeed, we saw it above in Grush’s (1997; 2004) important work
on emulators (Sect. 4.2), in which general characteristics of cognitive representations
are derived from a control-theoretic perspective on brain function (see also Bechtel
2008, 2009).

At its deepest, the central idea underlying this efflorescence of work is that bio-
logical systems are distinctive in acting upon their environments to maintain their
structural integrity and the homeostasis of their essential variables in a way that keeps

5 These are questions that arise at what Marr (1982) called the “computational” level of explanation.

123



Synthese (2018) 195:1941–1967 1959

them far from thermodynamic equilibrium (Bechtel 2009; Friston 2010). In other
words, they actively self-organize around their homeostatic set-points and thus some-
how avoid the general tendency towards increasing disorder described by the second
law of thermodynamics (Anderson 2014; Friston 2009, 2010). Brains are the control
systems principally responsible for facilitating this process of self-organization in the
organisms of which they are a part, mitigating the impact of environmental changes
that push the organism outside its optimal states. For many, this important observation
can be used to extract a foundational “job description” for brains: “to exert control over
the organism’s state within its environment” (Cisek 1999, pp. 8–9) and thus “maintain
organism-relevant variables within some desired range” (Anderson 2015, p. 7).

Advocates of this regulative perspective contend that it has profound implications
for our understanding of cognition (Cisek 1999; Friston 2009, 2010; Sterling and
Laughlin 2015). Before turning to one manifestation of this recent stance, we note
how radically different this approach to functional considerations is to that which
characterised TCS: rather than functional decomposition of cognitive sub-systems in
terms of analyses of the problems they solve that are largely unconstrained either
structurally or functionally by lower-level sciences, this regulative perspective on
brain function draws on theoretical considerations from statistical physics, theoretical
biology, and mathematical and engineering frameworks on the nature of control and
self-organization (see below) (cf. Bechtel 2008, pp. 159–201).

Alongside this turn to regulation, a similarly dramatic shift in recent years has been
the turn towards prediction and anticipatory neural dynamics as a central variable in
adaptive success (Barr 2011; Clark 2016; Downing 2009; Hohwy 2013). Downing
(2009, p. 39), for example, notes that prediction often went “unappreciated as a funda-
mental component of intelligence” in TCS, in contrast to a widespread contemporary
recognition that it “represents a fundamental principle of brain functioning which is
at the core of cognition.” Barr (2011 v) concurs, reporting a broad consensus that
prediction is “a universal principle in the operation of the human brain.” “The term
“predictive brain”, Bubic et al. (2010, p. 2) argue, “depicts one of the most relevant
concepts in cognitive neuroscience.”

What has induced this turn towards prediction as a fundamental operating principle
of cognition? In part, it has been justified by recourse to very general considera-
tions concerning adaptive success (Ryder 2004), which are in turn often linked to the
foregoing control-theoretic perspective (see Sect. 5.2 below) (see Friston 2009, 2010;
Sterling and Laughlin 2015). For example, any adaptive system that is not purely reac-
tive must be able to anticipate changes in its environment, and any form of effective
intervention in one’s environment mandates sufficiently accurate information about
its likely effects. As Llinás (2001, p. 21) puts it, “the capacity to predict the outcome
of future events—critical to successful movement—is, most likely, the ultimate and
most common of all global brain functions.” Further, the turn to prediction has been
partially taken over from work in machine learning, where prediction-driven learning
has been central in explaining how artificial neural networks can exploit the statis-
tics of their sensory input to learn about the structure of its source without guided
supervision (Kiefer and Hohwy 2017).

In addition, purely reactive systems are extremely energetically inefficient (Sterling
and Laughlin 2015): among other things, anticipatory dynamics enable brains to focus
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only on functionally significant surprises in sensory input, effectively ignoring much
the incoming signal (see below).More specifically, prediction has played a pivotal role
in explaining (among numerous other phenomena) how brains: (i) disambiguate noisy
and ambiguous sensory inputs (Hohwy 2013); (ii) disambiguate self-induced sensory
inputs from environmentally induced ones (Blakemore et al. 2000); (iii) overcome
various time-delays in incoming sensory signals in effective sensorimotor processing
(see Sect. 4.2) (Franklin and Wolpert 2011); (iv) simulate “off-line” environmental
processes (Barr 2011); and much more (for excellent overviews, see Barr 2011; Bubic
et al. 2010; Clark 2016). This importance of prediction to so many aspects of cognitive
functioning motivates Hawkins and Blakeslee (2004, p. 89) to declare that “prediction
is not just one of the things your brain does. It is the primary function of the neocortex,
and the foundation of intelligence. The cortex is an organ of prediction.”

Recently, this emphasis on regulation and prediction has reached its apotheosis
in “predictive processing” (Clark 2016; Friston 2010; Hohwy 2013), a global theory
of brain function which comprises one manifestation of a broader trend of theoreti-
cal approaches that view the mammalian cortex as a general-purpose model-making
mechanism whose chief function is prediction (e.g., Friston 2009, 2010; Hawkins and
Blakeslee 2004; Ryder 2004). Predictive processing is by far the most ambitious and
influential of such approaches, touted by some as the “first unified theory of the brain”
(Huang 2008)—a ”paradigm shift” (Friston et al. 2017, p. 1) that constitutes “the most
complete framework to date for explaining perception, cognition, and action in terms
of fundamental theoretical principles and neurocognitive architectures” (Seth 2015, p.
1). Roughly, it states that brains self-organize around a single, overarching imperative:
theminimization of long-term prediction error, themismatch between the sensory data
they predict on the basis of their model of the world and the sensory data they receive
from that world (Clark 2016; Friston 2010; Hohwy 2013). When recapitulated up the
hierarchical structure of the neocortex, this process of prediction error minimization
is supposed to account for “perception and action and everything mental in between”
(Hohwy 2013, 1, our emphasis].

We don’t propose to take a stand on the truth of predictive processing. An enor-
mous amount has been and continues to be written about it, both in the scientific and
philosophical literature (see Clark 2016 and Hohwy 2013 for excellent overviews,
and Colombo and Wright 2017 for criticism). It would be impossible to provide a
full overview—let alone critical evaluation—of the theory in the space here. Further,
as many have noted, predictive processing is at best a mechanism sketch (cf. Kaplan
and Craver 2011b) at present, pitched largely at Marr’s (1982) “algorithmic” level of
descriptionwith only tentative proposals about how the functional roles it identifies are
realised in cortical circuitry (cf. Brodski et al. 2015; Gordon et al. 2017;Weilnhammer
et al. 2017).6 Nevertheless, it nicely illustrates the points we aremaking, andmanifests
how a regulative and thoroughly predictive perspective on brain function harmonises
with an iconic approach to cognitive representation.

First, predictive processing situates brain function within the context of home-
ostatic regulation as outlined above. Specifically, it contends that prediction error

6 We thank an anonymous reviewer for pressing this point.
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minimization is a special case of a more fundamental imperative in biological systems
to self-organize under conditions tending towards increasing disorder, whereby the
brain’s ceaseless efforts to align top-down predictions with the incoming signal main-
tain the broader organism within those biophysical states consistent with homeostasis
(Friston 2009, 2010). For this reason, Yufik and Friston (2016) describe its functional
approach as a “physics of the mind,” an attempt to view cognition from the perspective
of statistical physics and theoretical biology.

Second, predictive processing unsurprisingly places prediction at the functional
core of cognition. It is only by minimizing the error in their predictions of the incom-
ing signal that brains can maintain the organisms of which they are a part within their
optimal states and thus fulfil their homeostatic function (Friston 2010; Friston et al.
2017). Crucially, to effectively minimize the error in their predictions of the incoming
signal requires that they effectively predict how the environmental causes of such sig-
nals are likely to evolve under various kinds of alteration and intervention (Clark 2016,
p. 6). That is, a brain can effectively predict the incoming signal only by effectively
predicting the worldly causes of that signal and how they are likely to alter and evolve.

Third, and most importantly for our purposes, at the centre of predictive processing
is a commitment to a thoroughly iconic account of cognitive representation, whereby
cortical dynamics come to recapitulate regularity structures in the body and envi-
ronment and thereby realise a rich, hierarchically structured generative model with
which to anticipate the incoming signal (Gładziejewski 2015; Kiefer andHohwy 2017;
Williams 2017). Specifically, it is only by inducing and updating a hierarchically struc-
tured dynamical model of the bodily and environmental causes of their sensory input
that predictive brains can fulfil their regulative function (Seth and Friston 2016). In
this way “neuroanatomy and neurophysiology can be regarded as a distillation of sta-
tistical or causal structure in the environment disclosed by sensory samples” (Seth
and Friston 2016, p. 3), and the brain’s generative model “inherits the dynamics of
the environment and can predict its sensory products accurately” (Kiebel et al. 2009,
p. 7). The generative models in this framework are thus effectively versions of the
dynamical (emulator) models introduced in Sect. 4, albeit ones that encode proba-
bilistic dependencies between environmental variables rather than deterministic ones,
in a way familiar from Bayesian networks in machine learning (Pearl 2009; cf. Kiefer
and Hohwy 2017).

5.2 Regulation, prediction, resemblance

Crucially, this commitment to iconic representation is not incidental in predictive
processing. Specifically, iconic representations are positively mandated by its com-
mitment to a thoroughly regulative and predictive conception of brain function.

To see this, note that the free-energy principle effectively advances an information-
theoretic vindication of the “good regulator theorem” advanced by Conant and Ashby
(Conant and Ashby 1970; cf. Ashby 1952, 1956; and Seth 2015 for an excellent
summary), according towhich optimal regulationmandates the construction of amodel
that replicates the functionally significant structure of the system being regulated.
Roughly, that is, the theorem asserts that any system whose function is to regulate
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another system must—insofar as it is optimal—exploit a stand-in or model of that
system that is isomorphic (i.e. structurally similar) to it. If this is right, and if the core
task of all brains is homeostatic regulation, we should expect the fundamental kind
of cognitive representations to be iconic representation—just as predictive processing
asserts. As Conant and Ashby (1970, p. 89) famously put it:

The theorem has the interesting corollary that the living brain, so far as it is to
be successful and efficient as a regulator for survival must proceed, in learning,
by the formation of a model (or models) of its environment.

What about prediction?7 As noted above, predictive processing capitalizes on research
in machine learning in which unsupervised learning is driven by the exploitation of a
generative model of environmental causes (Kiefer and Hohwy 2017). The punchline
of this research is that the only way in which such a system can successfully predict
or anticipate the sensory input generated by the world is by effectively becoming that
world—that is, by inverting and thereby recapitulating the process by which sensory
input is generated in its structure and dynamics (Kiefer and Hohwy 2017; Williams
2017). The link between prediction and iconic representation in this context is thus
not incidental. What Clark (2016, p. 299) calls the “prediction-and-generative-model-
based” approach to the mind is fundamentally committed to iconic representations in
which the structure of internal representations in the brain come to replicate the struc-
ture of the generative process by which sensory input impinges upon it (Gładziejewski
2015).

Predictive processing is thus a concrete illustration of the deep theoretical links
between regulation, prediction, and iconic representation. Nevertheless, as noted
above, these links are in principle independent of predictive processing’s theoreti-
cal idiosyncrasies, which is still in its infancy, and which is yet to develop the fully
mechanistic details required for full maturity. What it nicely reveals, however, is that
the shift towards an iconic brain is driven as much by a greater appreciation of purely
functional considerations as it is by the demands ofmultilevel mechanistic explanation
that Boone and Piccinini rightly stress.

6 Conclusion

We have argued in this paper that the cognitive neuroscience revolution described by
Boone and Piccinini has engendered a dramatic shift away from traditional ways of
thinking of cognitive representation and back towards a truly ancient one—towards
resemblance-based representations. Specifically, we have argued that this shift has
been driven both from the demands of mechanistic explanation and from a greater
appreciation of the problems solved by bio-cognitive systems, and we have sought
to illustrate this shift by reference to what we regard as some of the most important
and exciting developments in recent neuroscience. We end this paper by noting three

7 Craik (1943) argues for both the centrality of prediction to cognition and the necessity of internal structural
models for prediction.
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issues that have arisen in our discussion that deserve greater consideration than space
constraints have allowed us to provide here.

First, we have tied iconic representation to exploitable structural similarity and
to homeostatic regulation. For some, this kind of move implies an implausible
“pan-representationalism” (Ramsey 2007) that trivialises the concept of cognitive
representation beyond recognition. We disagree. “Pan-representationalism” as such
cannot be an objection to a view. How widely a concept applies must be decided by
empirical inquiry, not pre-theoretical intuitions, and we think the views defended in
this paper highlight the important scientific discovery that the exploitation of inter-
nal models is characteristic of all adaptive systems, thereby highlighting a profound
continuity between life and mind. Nevertheless, addressing these issues requires more
space than we could allocate here.

Second, a general worry often levelled against a focus on iconic representations is
that they will not scale to explain the more sophisticated cognitive capacities exhibited
by organisms like ourselves. Whilst we regard this worry as misplaced, we recognise
that a central challenge for the vision of an iconic brain that emerges in the current paper
is how the information-processing strategies they employ might interact with—and
become augmented and transformed by—the public combinatorial symbol systems
that TCS transposed into the head.

Finally, our paper has necessarily focused only on a selective range of work in cog-
nitive neuroscience, and has therefore neglected a good deal of contemporary research
on the nature of cognitive representation and cortical information-processing. Perhaps
the most exciting of this work is Eliasmith’s (2013) recently developed “semantic
pointer” approach to cognitive representation, which attempts to integrate the insights
of classical symbolic approaches within a mechanistic framework. A more thorough
exploration of our argument would show how this research—and other promising
directions in cognitive neuroscience—could be integrated into the resemblance-based
perspective on representation advocated here. We think it can be done, but doing it is
a task for another paper.
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