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Abstract Expert probability forecasts can be useful for decision making (Sect. 1).

But levels of uncertainty escalate: however the forecaster expresses the uncertainty

that attaches to a forecast, there are good reasons for her to express a further level of

uncertainty, in the shape of either imprecision or higher order uncertainty (Sect. 2).

Bayesian epistemology provides the means to halt this escalator, by tying expres-

sions of uncertainty to the propositions expressible in an agent’s language (Sect. 3).

But Bayesian epistemology comes in three main varieties. Strictly subjective

Bayesianism and empirically-based subjective Bayesianism have difficulty in jus-

tifying the use of a forecaster’s probabilities for decision making (Sect. 4). On the

other hand, objective Bayesianism can justify the use of these probabilities, at least

when the probabilities are consistent with the agent’s evidence (Sect. 5). Hence

objective Bayesianism offers the most promise overall for explaining how testimony

of uncertainty can be useful for decision making. Interestingly, the objective

Bayesian analysis provided in Sect. 5 can also be used to justify a version of the

Principle of Reflection (Sect. 6).

1 To Be Uncertain or Not to Be?

In November 2011 the UK Meteorological Office (Met Office) changed the way it

gave weather forecasts, from mainly qualitative expressions of uncertainty—‘rain at

times’, ‘scattered showers, mainly in the NW’, ‘up to 50 mm in places’, ‘risk of

heavy bursts’—to quantitative announcements of probabilities—‘a 10 % chance
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of …’, ‘80 % probability of disruption to …’, ‘a one-in-five chance that Heathrow

Airport might get …’, ‘a 5 % risk of … so it is probably worth the risk.’1

The question arises as to whether that was the right thing to do. A previous

attempt to introduce probability into Met Office forecasts did not augur well. In

April 2009 the Met Office announced that a barbecue summer was ‘odds on’.2 In the

face of widespread criticism in the UK press during a summer of floods in which

rainfall in June, July and August turned out to be 40 % above the long-term average,

the Met Office noted: ‘in April we said there was a 65 % chance of temperatures

above average and rainfall below average but that does leave a 35 % chance that the

opposite would be true’.3 That the British public were not ready for probabilistic

forecasting was confirmed when, on 9th December 2011, the Met Office won a

Golden Bull Award (awards which are meted out to ‘the worst examples of written

tripe’) at the annual awards ceremony of the Plain English Campaign, for their use

of ‘probabilities of precipitation’.4

Even if the public mood was not in favour of probabilistic forecasts, the question

remains as to whether it is nevertheless in the public interest to express uncertainty

this way.

This question was discussed in a Royal Society symposium on Handling

uncertainty in science, and the editors of the resulting proceedings gave the

following defence:

if the public were more exposed to weather prediction as inherently

probabilistic, perhaps there would be more acceptance of the simple fact

that one’s view about the risk of dangerous climate change should not be

framed in the black and white terms of ‘belief’ and ‘scepticism’. For one thing,

belief should have no real role in science, and, in truth, all good scientists are

inherently sceptical people (Palmer and Hardaker 2011).

This defence is unsatisfactory in two respects. First, there isn’t much uncertainty

that the climate is currently on a dangerous trajectory. Rather, uncertainty attaches

to specific long-range climate predictions, and to the question of which policy

interventions can best mitigate climate change. Neither of these latter forms of

uncertainty have yet yielded to probabilistic forecasts about which one can be very

confident. Hence there is a danger that probability is just being invoked to give a

false sense of objectivity. The second questionable feature of this defence is the

claim that belief should have no real role in science. While faith—understood as a

propositional attitude that is impervious to changes in one’s body of evidence—

1 http://research.metoffice.gov.uk/research/nwp/ensemble/uncertainty.html.
2 http://www.metoffice.gov.uk/news/releases/archive/2009/summer2009.
3 http://www.dailymail.co.uk/news/article-1202982/Met-Office-left-red-faced-Britains-forecast-

barbecue-summer-turns-washout.html. Toulmin would argue that the Met Office is using prob-

ability assertions precisely to guard against such comebacks: ‘If they unreservedly forecast cloud

later today and the skies remain clear, they can justifiably be rounded on by the housewife who

has put off her heavy wash on account of their prediction’ (Toulmin 1958, p. 47).
4 http://www.plainenglish.co.uk/awards/golden-bull-awards/golden-bull-winners-2011.html.
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arguably should have no real role in science, belief in scientific claims makes

scientific progress possible: scientists would not investigate theories unless they

believed that such theories are likely to be true, or that such investigations are likely

to be fruitful. As Ramsey (1926, p. 183) pointed out, ‘whenever we go to the station

we are betting that a train will really run, and if we had not a sufficient degree of

belief in this we should decline the bet and stay at home’. It is important—in the

context of climate change and elsewhere—to deliberate about how much belief to

apportion a scientific hypothesis, and not to sweep the very idea of belief under the

carpet.

This defence, then, merely serves to highlight the dangers of probabilistic

forecasts: at worst, they can be used a rhetorical device to convey a false sense of

objectivity, replacing apparently more subjective terms such as ‘belief’. So the

question remains as to whether it is appropriate to announce probabilistic forecasts.

In contrast to the line taken by the Royal Society symposium, the Met Office

responded to public unease as follows:

Often people want to make a decision, such as whether to put out their

washing to dry, and would like us to give a simple yes or no. However, this is

often a simplification of the complexities of the forecast and may not be

accurate. By giving PoP [Probability of Precipitation] we give a more honest

opinion of the risk and allow you to make a decision depending on how much

it matters to you. For example, if you are just hanging out your sheets that you

need next week you might take the risk at 40 % probability of precipitation,

whereas if you are drying your best shirt that you need for an important dinner

this evening then you might not hang it out at more than 10 % probability. PoP

allows you to make the decisions that matter to you (Press Release, 9th

December 2011).5

Thus the Met Office defence is that decision making requires uncertainty reports.

This seems essentially right. Arguably, Bayesian decision theory currently provides

the best general guide to decision making. Bayesian decision theory requires

making the range of possible acts explicit, as well as their utilities and the

probabilities of the different outcomes pertinent to the decision problem. Acts and

utilities vary according to the interests of the decision maker and there is not much

advice the Met Office can offer in that regard. Therefore, if Met Office reports are to

be relevant to decision making, they need to report probabilities.

Thus a prima facie case can be made for experts publicly quoting their

probabilities to express the uncertainty that attaches to their forecasts. However, as

we shall now see, probabilistic forecasts are the thin end of the wedge.

2 The Uncertainty Escalator

Having established a need for explicit uncertainty reports, the next question that

arises is: how uncertain do we need to be?

5 http://www.metoffice.gov.uk/news/in-depth/science-behind-probability-of-precipitation.

How Uncertain Do We Need to Be? 1251

123

http://www.metoffice.gov.uk/news/in-depth/science-behind-probability-of-precipitation


The Met Office could simply give single probability reports such as, ‘a 40 %

probability of rain’. Such an expression of first order probability is required to get

Bayesian decision theory off the ground. It might mean one of two different things.

The standard Bayesian take is that this figure is the Met Office’s degree of belief in

rain; the infamous Dutch book argument, which develops Ramsey’s connection

between beliefs and bets mentioned above, is used to conclude that such degrees of

belief ought to obey the laws of probability. But this 40 % figure can alternatively

be taken as the Met Office’s best estimate of the physical probability of rain; the

argument being that decision makers are interested in the objective prospects of

rain, not in the subjective opinions of those who work at the Met Office.

In fact, the Met Office provides some of its customers with a confidence range,

rather than a point-valued probability. Thus one might report ‘a 34–46 % probability

of rain’. This expression of imprecise first order probability admits of two

interpretations. An epistemological interpretation takes this to be an expression of

partial belief; this position can be motivated by a Dutch book argument where the

bettor is allowed to buy and sell bets at different rates. Or this expression can be

viewed as providing bounds on the physical probability of rain, the thought being that

a point estimate is almost always wrong, so it makes more sense to provide an interval

estimate, which might be right on say 95 % of occasions. Either way, the idea is that

typically there is some uncertainty attached to a precise (point-valued) first order

probability report, and providing an imprecise first order probability instead can allow

one to quantify this uncertainty. This is important in a decision-making context if the

decision to be taken depends on where in the interval a precise probability lies. One

may decide to hang out one’s laundry at 40 % probability of rain but not at 45 %, and

knowing that the decision taken is not robust under changes of the probability within

the confidence range 34–46 % may actually help one take the decision: it may lead one

to be more cautious in this case, for instance, and not hang the washing out.6

Of course, not all values within the confidence range are equal. Normally, some

will be more plausible than others. Thus a 40 % probability of rain might be a much

more plausible estimate than a 45 % probability of rain, and if the difference

between one’s confidence in the two values is substantial enough, one might decide

to hang out one’s washing after all. The way to provide information for this nuance

in the decision-making process is to report a probability distribution over the first

order probability of rain. This second order probability would normally be

construed as epistemological: as a belief about one’s degree of belief in rain, or as a

belief about the physical probability of rain. A second reason for moving from

6 Some Bayesian decision theorists argue that this uncertainty about the probability of rain should not

influence decision making: all decisions should be made on the basis of precise first order probabilities.

But this is a controversial line to take. In practice our decisions are influenced by considerations to do

with their robustness under plausible alternative first order probabilities, and this is apparently reasonable.

If one’s threshold for not hanging out one’s laundry is a 45 % probability of rain and one is very confident

that the probability of rain is less than 45 % then one can be confident that one’s decision is the right one

in the circumstances. But if one knows that the first order probability is to some extent an arbitrary

representation of first order uncertainty, or a poor estimate of physical probability, and that the value

could well be higher than the threshold for the decision, then one cannot be confident that the decision is

the right one. Thus there is at least a prima facie case for taking imprecision into account. The Bayesian

position will be revisited in Sect. 3.
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imprecise first order probability to second order probability is that the end-points of

an imprecise first order probability interval are often somewhat arbitrary; a second-

order probability distribution can give positive weight to all first order probabilities

and so is not subject to arbitrary cut-offs (Good 2003).

There are also reasons to move directly from first order probability to second order

probability. In fact, de Finetti’s representation theorem shows that under certain

circumstances one’s first order degrees of belief can be thought of as having been

produced by a second order probability distribution over first order physical

probabilities: if Xi is a sequence of binary random variables that take possible values 0

or 1 and that are exchangeable with respect to one’s first order belief function P, then

PðX1 ¼ x1; . . .;Xn ¼ xnÞ ¼
Z1

0

zrnð1� zÞn�rn dFðzÞ

where rn =
P

i=1
n xi, where z may be thought of as ranging over possible values of

first order physical probability P*(Xi = 1) for Xi IID with respect to physical

probability P*, and where F may be thought of as a probability distribution over

these physical probabilities. Moreover, this second order probability distribution is

determined by the first order belief distribution: FðzÞ ¼ Pð �X1�zÞ where �X1 ¼
limn!1

Pn
i¼1 Xi=n is the limiting relative frequency of Xi (see, e.g., Schervish 1995,

§1.4; Williamson 2011, §7.4.2). Hence there is a sense in which a first order belief

distribution is equivalent to a second order probability distribution over first order

physical probability, in which case moving from first order probability to second

order probability is a trivial step.7

Note that second order probabilities can be rather speculative. Confidence interval

estimation methods might make the Met Office 95 % confident that the probability of

rain is between 34 % and 46 %, and 60 % confident that there is a 39–41 %

probability of rain, leading it to announce a second order probability distribution that

fits these two constraints. But they might just as well have announced a different

second order distribution that fits these constraints; there is often substantial leeway

in determining higher order probabilities. So it is more sensible to announce, instead

of a single second order distribution, the whole set of second order distributions that

fit the available constraints. Moreover, announcing this imprecise second order

probability can be beneficial for decision making. If some distributions in the set of

second order probability functions make it quite probable that the chance of rain is at

least 45 % then one might justifiably be cautious and refrain from putting one’s

washing out to dry after all. Thus, announcing an imprecise second order probability

can allow one to perform a useful robustness analysis that determines the sensitivity

of the decision taken to the precise second order probability measure chosen. Such a

robustness analysis can, and often does, influence decision making.

7 Thus formulated, de Finetti’s theorem invokes an exchangeability condition—degrees of belief about a

sequence of events are independent of the order of those events. This condition would not normally be

satisfied in the context of beliefs about rain on consecutive days, since the order matters here (rain on two

consecutive days followed by a dry day may be more likely than rain followed by no rain followed by

rain). It is however possible to weaken the exchangeability requirement to yield an analogous result that is

more applicable to weather forecasting (Diaconis and Freedman 1980).
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Of course, not all second order probability distributions within this set of

distributions are equal. It tends to be the case that some probability functions from

within a set of functions will be more plausible or natural than others: a normal

distribution, for example, often stands out as being particularly probable in the

context of certain convergence results, and so-called concentration results show that

there is a high probability that a physical probability distribution is close to the

maximum entropy distribution (see, e.g., Jaynes 1982, §3)

It should be clear by now where this is leading. The Met Office should advertise a

third order probability function, since that might show that the caution resulting

from the imprecise second order probability was too hasty. But it is hardly plausible

to suggest that a single such third order distribution stands out to the exclusion of all

others—if we consider imprecise third order probability, other plausible distribu-

tions can influence our decision. But how plausible? Plausibility is a matter of

degree and some of these third order probability functions will be more plausible

than others. What we need is fourth order probability …
We end up with an escalation in levels of uncertainty. If we admit the need for

reports of uncertainty for decision making, then there are compelling reasons for

progressing to the next level—moving to the next level might, after all, warrant

choosing a different act in the decision problem that motivated the need for

uncertainty in the first place.

This uncertainty escalator is a problem. As we have seen, there may be no stable

answer to the question of whether we should put our washing out to dry, if at each

level of uncertainty some higher level leads to a different decision. Moreover,

whether or not there is a stable answer, decision making gets harder as we ascend

the escalator. First, it becomes pragmatically harder, as there are more kinds of

uncertainty that need to be taken into account in order to make a decision. Second,

every other level up the escalator we reach imprecision, and this poses its own

difficulties. In standard Bayesian decision theory, a precise probability function will

normally trigger one or other of the acts available, as there will normally be only

one act that maximises expected utility. But when we admit imprecision, i.e., when

we consider a range of probability functions, it will often be the case that some of

these functions trigger one act while others trigger other acts. There are then two

options. One response is to say that we do not have the tools to make a decision in

such cases. Then we may end up in a situation in which we alternate between being

able to make a decision and not being able to make a decision as we progress up the

escalator. The second option is to appeal to some further rule in order to allow one

to make a decision in such cases. For example, one might choose the act that

maximises worst-case expected utility, where one considers the full range of

probability functions to determine this worst case. The problem is that a great many

such rules have been put forward in the literature, and no doubt many more will be

put forward, all of them plausible in one way or another (see, e.g., Troffaes 2007).

This introduces a new kind of uncertainty—uncertainty as to which rule to apply to

make a decision. Should one consider robustness of the decision made under a range

of such rules? Of course, not all the rules will be equal with regard to the desiderata

in play or the particular context of the decision problem, so perhaps one should

favour some rules over others. What this amounts to is weighing more highly those
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rules that fare better with respect to the chosen desiderata so as to provide to a linear

ranking of the available acts, in order that one might embark upon the act that is

most highly ranked. Formally, such a weighting would correspond to a function that

maps a decision problem to a linear ordering of acts. Now, it would be astonishing

to think that the constraints would uniquely determine a single such weighting, so

one had better consider a range of weightings. But not all weightings are equal ….

In short, imprecision yields its own set of difficulties for decision making, and

arguably even generates an escalator analogous to the uncertainty escalator

introduced above.

The moral of this story is that we need some way to halt the uncertainty escalator,

to stop us from indefinitely ascending levels of uncertainty. Any theory of

uncertainty, if it is to be relevant to decision making, had better take a principled

stance as to which level is the right place to stop. Otherwise we will never get to the

dinner tonight for want of being able to decide whether to dry our shirts indoors or

outdoors.

Those who think that one should avoid any use of epistemological probabilities

and only consider physical probabilities will want to say that we should stop at the

first level: feed in only (first order) physical probabilities to the decision problem.

The difficulty with that view is that it requires that all the relevant outcomes be the

sorts of things to which physical probabilities attach, and that the decision maker

has access to all these physical probabilities. In most cases in which there is limited

evidence of physical probabilities it will be hard to make a decision at all. This

makes the epistemological view, which we shall examine next, apparently

indispensable for decision making.

3 Bayesian Epistemology

One response to the uncertainty escalator is to take the epistemological view of

Bayesianism seriously. According to the epistemological view, probabilities

measure the strengths of an agent’s beliefs. (More precisely, the core tenet of

Bayesian epistemology is that if the strengths of the agent’s beliefs are apportioned

in an appropriate way, they are probabilities.) The object of a belief is a proposition.

Hence Bayesian degrees of belief are defined over the propositions that the agent

can express. It is the agent’s language that determines which propositions she can

express, so Bayesian probability can be thought of as defined over those

propositions expressible via sentences of the agent’s language. Setting aside those

grammatical sentences that fail to express propositions—sentences like ‘Get up!’,

‘Colourless green ideas sleep furiously.’, and perhaps ‘This sentence is false.’8—we

can think of Bayesian probability as defined over those sentences h1; h2; . . . of the

agent’s language that succeed in expressing propositions when used by that agent.

This fixes the domain of the probability function, and gives a clear answer to

precisely where on the uncertainty escalator the Bayesian comes to a stop. If the

agent’s language cannot express propositions about first order probabilities, then

8 See, e.g., Goldstein and Blum (2008) on this last kind of sentence.
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Bayesian probability is first order. Thus in practice many Bayesian decision-support

systems invoke only first order uncertainty, because it is often the case that an

artificial agent can only express propositions about, e.g., possible financial states

and transactions or possible medical symptoms and prognoses, and not propositions

about the probabilities of those states or transactions. On the other hand, if the

agent’s language can express propositions about at most n-th order probability

(precise or imprecise), then Bayesian probability is (n ? 1)-st order. Human agents,

for instance, can typically express high order uncertainty.

The advantage of this epistemological stance is that it gives a principled response

to the problem outlined in Sect. 2, and thus renders decision making possible. But

there are also several apparent disadvantages. First, it seems set to render decision

making rather intractable for agents like us who can express very high order

uncertainty. Second, it makes the decision taken depend on the agent’s language,

and it is by no means obvious that whether one should hang out the washing should

depend on one’s linguistic capabilities. Third, the epistemological approach to

Bayesianism does not fit well with the uses of Bayesianism in statistics—where

Bayesian probability is normally second order, where the domain of the probability

function is tailored very much to the individual application, and where Bayesian

probability is increasingly treated as a pragmatic tool rather than as a particular

interpretation of uncertainty (Kass 2011; Gelman and Shalizi 2013). Fourth, the

dominant epistemological view of Bayesianism takes Bayesian probabilities to

quantify subjective opinion, and takes satisfying the axioms of probability to be the

only synchronic normative constraint on degrees of belief. This strict subjectivist

position would deem rational the forecaster who announced a probability of 99 %

for a barbecue summer in the total absence of any evidence in favour of a sunny

summer—a view that would act as a red rag to a bull to arbiters of public standards

like the UK Daily Mail, which was quick to condemn Met Office probabilities that

were based on evidence. Fifth, the strict subjective view of Bayesianism is in danger

of making the very act of announcing forecast probabilities incomprehensible: why

should Met Office probabilities be of relevance to my decision problems, if I am

supposed to be making my decisions on the basis of my own subjective probabilities

and there is no normative imperative to let my own degrees of belief be guided by

someone else’s?

The first three worries can perhaps be alleviated by taking the agent’s language to

vary with her operating context. An agent who is an obstetrician by day and a

carpenter by night might be taken to move between two languages, one of which

contains terms such as ‘cardiotocograph’ and the other of which contains terms such

as ‘gimlet’. Similarly, in the context of reading this paper one will be operating with

a language in which high order uncertainties are expressible, but in the context of

hanging out the washing, one operates in a context in which domestic and

meteorological possibilities are entertained, but not—normally—higher order

uncertainties. It is of course hard to say exactly what the limits are of a language

which is contextual in this sense. But this move does bring Bayesian epistemology a

step closer to the practice of Bayesian statistics, where considerable effort is

required to determine a language in which to express a particular problem.

Regarding dependence on language, the statistician can admit that her inferences do
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depend somewhat on the way in which the problem is formulated, but point out that

some ways of formulating a problem are better than others—ways in which, for

example, one can describe the phenomena of interest and the other variables that are

explanatorily or predictively relevant and exclude as much as possible that is

irrelevant to the problem solution. If higher order uncertainties are relevant to a

decision, one may then decide that they should be expressible in the problem’s

‘language’.

One might worry that this way of looking at things makes choice of language a

decision problem that needs to be solved before we can start thinking about the

original decision problem of whether to hang out our washing, a move which could

lead to regress. But one can, on the contrary, put language first: start off with one’s

default language—the language in which one would normally express the

propositions required to state and solve the problem—and test the sensitivity of

one’s results to small changes in that language. If conclusions and decisions are not

robust under such changes then the sensitivity analysis provides grounds to move to

a new language—perhaps a language in which one can express a higher level of

uncertainty.

We shall now focus on the remaining two problems outlined above, which are

concerned with subjectivity and the motivation behind paying attention to expert

forecasters’ probabilities.

4 Objectivity and Calibration

Why should we use Met Office probabilities for decision making? This only makes

sense if its probabilities are better than our own. There are two main ways in which

one might try to say how another agent’s probabilities could be better than our own.

One might think that they could be better because we have made some mistake in

the way we’ve apportioned our probabilities—perhaps we have given h probability

0.6 instead of 1, not realising that h is implied by our evidence. But then it would

not make sense to use Met Office probabilities for decision making: once we realise

we have made a mistake, we ought to correct the mistake, not borrow the

probabilities of someone else, since the other agent’s probabilities are likely to be

grounded on different evidence and not qualify as rational given our own evidence.

The second and more promising avenue is to say that Met Office probabilities could

be better than our own because they know things that we don’t about the weather:

they have better evidence and this better evidence makes their probabilities better

calibrated to the world.

Bayesian epistemology tends to cash out the idea of calibration in two very

different ways. One kind of calibration is indirect, long-run calibration: a strict

subjectivist Bayesian such as de Finetti would argue that, if prior probabilities are

exchangeable, updating degrees of belief by Bayesian conditionalisation leads to

asymptotic calibration with empirical frequencies (see, e.g., de Finetti 1937).

Another kind of calibration is direct, short-run calibration: some Bayesians impose a

further norm on degrees of belief—often called the Straight Rule (Miller 1966,

p. 60), Miller’s Principle (Miller 1966) or the Principal Principle (Lewis 1980)—
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which says that if an agent knows just the physical probability of a proposition, then

she should directly set her degree of belief in that proposition to the physical

probability.

Indirect calibration is not applicable to our problem, for two reasons. First, Met

Office probabilities are not themselves calibrated in this way—they are not

produced by long-run conditionalisation on exchangeable priors. Rather, this sort of

forecast is produced by considering the predictions of a collection of plausible

models, produced by simulations run over a variety of plausible initial conditions

(see e.g., Slingo and Palmer 2011). To the extent that a high proportion of these

simulations predict rain, a forecast of rain will be given a high probability.9

The second reason why indirect calibration is not suited to the context of this

paper is that it offers slender grounds for the decision maker to use Met Office

probabilities for her decision problem. If she follows the norms of strict subjective

Bayesianism, then her probabilities—modulo exchangeability—will automatically

calibrate in the long run; she should update her probabilities by conditionalising on

her new evidence, not by directly adopting Met Office probabilities. Under strict

subjective Bayesianism, the only way decision maker D can match forecaster F’s

probabilities is if she has made such a commitment in her prior probabilities:

PDðh j u ^ PFðhÞ ¼ xÞ ¼ x, for all relevant propositions h and all suitable evidence

bases u. But under strict subjective Bayesianism there is no normative imperative to

adopt these prior conditional probabilities, given that the agent is free to choose

whichever probabilities she fancies for her prior. So this particular coincidence of

probabilities should be thought of as a measure-zero possibility. Worse, if F is a

forecaster like the Met Office that is known not to abide by the norms of strict

subjective Bayesianism, agent D might be (subjectively) inclined to avoid F’s

probabilities rather than match them.

While indirect calibration is not applicable to our problem, direct calibration

appears to be more promising. First, expert forecasters validate their models by

ensuring that they are directly calibrated to physical probabilities: if it is known to

rain on 30 % of days and a model forecasts rain on 70 % of days, then the model

will be thrown out or its parameters will be changed to ensure better calibration.

Indeed, to the extent that Met Office probabilities are calibrated, they are directly

calibrated. Second, direct calibration appears to offer some scope for setting one’s

degrees of belief to those of the forecaster. If one should directly calibrate to

physical probabilities, then it seems plausible that one should directly calibrate to a

forecaster’s probabilities that are themselves directly calibrated to physical

probabilities.

So far we have seen that there are two kinds of Bayesianism. One kind—strict

subjectivism—maintains that the only norms on degrees of belief are that they

should be probabilities and they should be updated by Bayesian conditionalisation.

9 Moreover, as noted in footnote 7, exchangeability is rarely plausible in the context of this sort of

forecasting: the probability of rain on any particular day is higher if there is rain the day before. However,

long run calibration is possible under weaker conditions than exchangeability (see, e.g., Gaifman and Snir

1982, §2). Note that where long-run calibration cannot be guaranteed through conditions such as

exchangeability, it can be forced by adopting further norms on Bayesian probability; this is sometimes the

strategy of statistical approaches to forecasting (Skouras and Dawid 1999).
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This kind of Bayesianism pins its hopes on indirect calibration, but it does not seem

to have the wherewithal to explain why a decision maker should need to make use

of expert probabilities. A second kind of Bayesianism admits a further norm, direct

calibration, which does seem to offer more scope in this regard.

It should be noted, though, that this second kind of Bayesianism itself admits two

versions. One, which is sometimes called empirically-based subjective Bayesianism,

says that direct calibration is the only further norm on strength of belief. This kind of

Bayesianism maintains that, to the extent that the agent knows empirical probabilities,

her degrees of belief should be directly set to those probabilities, but otherwise she is

rational to adopt any probabilities that she pleases. Another sort of Bayesianism—

objective Bayesianism—adopts a further norm on strength of belief, which deems an

agent’s belief function to be irrational if it attaches strong belief or disbelief to a

proposition in the absence of evidence that forces such strong commitment. Since

entropy is a natural measure of the lack of commitment of a probability function, this

norm is sometimes explicated using the Maximum Entropy Principle: an agent’s

belief function should be one, from all those that are directly calibrated with evidence

of chances, that has maximum entropy (Jaynes 1957; Williamson 2010).

It turns out that empirically-based subjective Bayesianism has mixed success in

accounting for the use of expert probabilities in decision making. If decision maker

D learns that PF(h) = x and that x is a good estimate of the corresponding physical

probability, then x might become D’s best estimate of the physical probability and it

can be rational to set PD(h) to x. However, this requires learning not just the expert’s

probability but also the fact that that probability is closely calibrated to empirical

probability. This is very demanding. More typically, D will learn just that

PF(h) = x. If D assumes that F follows the norms of empirically-based subjectiv-

ism, she cannot infer that x is a close estimate of physical probability, for that would

suppose that F knows the physical probability, which may not be true. The most

D can infer is that x has been arbitrarily chosen by the expert from some set of

probabilities compatible with the data that is available to F. Perhaps F only knows

another physical probability P*(h ^ u) = w, where w� x� 1; in which case PF(h)

is only constrained to lie in the interval [w,1]. Perhaps F only has a confidence

interval [w, y] for P*(h), where w� x� y; again, this would lead to a constraint

PFðhÞ 2 ½w; y�: Then learning just that PF(h) = x may tell D next to nothing about

P*(h), because D does not know how wide the interval is from which PF(h) has been

chosen. To be sure, D does know that F is an expert, and can assume that F has more

evidence than she has, in which case F’s intervals are perhaps narrower than her

own. But that alone does not provide grounds for D to switch her probabilities to

those of F, because she may yet have some important evidence that F does not have.

The Met Office, for example, only has evidence about the current weather obtained

from certain weather stations at certain times of the day, and often makes false

claims about the current weather, let alone the future weather. So, if you can see a

shower about to blow over your garden then that evidence will be more pertinent in

the short term than any Met Office forecast. Overall, then, while empirically-based

subjectivism appears more promising than strict subjectivism in accounting for the

use of expert probabilities for decision making, the grounds that it offers for

matching expert probabilities are typically rather paltry.
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In sum, one would want to say that there are some circumstances under which

one ought to pay attention to an expert forecaster’s probabilities (e.g., when that

expert is likely to have more substantial evidence than one does oneself).

Unfortunately, strict subjectivism doesn’t seem able to say that. For the strict

subjectivist, anything goes: while the principle of total evidence says that expert

forecasts should be added to one’s stock of evidence, as far as strict subjectivism is

concerned there is no normative imperative to have them influence one’s degrees of

belief. Even empirically-based subjectivism, which does admit direct calibration to

physical probabilities, struggles to make this claim: a forecaster’s reported

probability does not on its own provide enough information about the physical

probability to warrant direct calibration.

Interestingly, however, in certain well-defined circumstances objective Baye-

sianism does offer more scope in this regard, as we shall now see.

5 Matching Objective Bayesian Probabilities

In this section we focus on the specific question as to when, if two agents follow the

norms of objective Bayesianism, it can be rational for one to adopt the probabilities

of the other.

5.1 An Objective Bayesian Analysis

We saw that for the objective Bayesian there are three norms on rational belief.

These norms can be explicated as follows (Williamson 2010). The Probability

norm says that a belief function should be a probability function: D’s belief

function PD 2 P, the set of all probability functions defined on the sentences of

the agent’s language of the moment. The Calibration norm says that a belief

function should be directly calibrated with evidence of physical probabilities:

PD 2 ED, the convex hull of the set of probability functions that satisfy constraints

imposed by evidence.10 The Equivocation norm says that a belief function should

otherwise be equivocal: PD should be as close as possible to the equivocator

probability function P= which gives equal probability to each possible state of the

world that the agent can express, where closeness of probability function to the

equivocator is measured using Kullback-Leibler (KL) divergence. (A probability

function in ED that is maximally equivocal in this sense is the one that has

maximum entropy.) In the case in which the agent can only represent three

possible states x1, x2, x3 of the world (e.g., signifying respectively rain, shine

and overcast weather at a specific location and a specific point in time), this

procedure is depicted as follows:

10 Throughout this section, we shall assume for ease of exposition that constraint sets such as ED are

closed as well as convex. This is the case, for example, with equality constraints or non-strict inequality

constraints.
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With the forecaster F following the same procedure we have the following

picture:

Were decision maker D to learn the forecaster’s evidence, she would be able to

derive EF and then revise her belief function to point P0D 2 ED \ EF that is closest

to the equivocator function P=:
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But in the case of probabilistic forecasting considered in this paper, the decision

maker learns only the forecaster’s probability function PF defined over the partition

{x1, x2, x3} of interest, or some values of that function. Suppose that the agent

learns the forecaster’s probability function PF. In this case D can infer that there is

some convex set EF whose most equivocal member is PF. Since PF is the closest

member of EF to the equivocator P=, the set EF must be in the region of P that is at

least as far from the equivocator as PF. I.e., EF cannot lie inside the dashed curve

below:
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In fact, because EF is convex, it must lie beyond the tangent at PF to that curve,

i.e., in region F which may be defined as the largest convex set of probability

functions that contains PF but contains no probability function closer to the

equivocator than PF:

Learning PF, therefore, is tantamount to learning that there exists evidence that

constrains degree of belief to lie in region F: D’s new evidence is thus such as to

constrain her belief function to lie in E
0
D ¼ ED \ F; as long as this set is non-empty.

Her new belief function P0D is then the maximally equivocal member of E0D :

Thus when ED \ F is non-empty, E0D ¼ ED \ F. On the other hand, if the new

evidence is inconsistent with the old, ED \ F ¼ ;; then some consistency
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maintenance procedure must be invoked. One simple procedure is to take

E
0
D ¼ hED [ Fi, the convex hull of the functions that fit either the new evidence

or the old (Williamson 2010, §3.3.1). We shall adopt that procedure here.

In the diagram above, P0D 6¼ PF and the decision maker does not simply adopt the

forecaster’s probabilities. The question arises as whether there are circumstances in

which the decision maker ought to switch to the forecaster’s belief function. The

answer is that the switch is justified precisely when the forecaster’s belief function is

consistent with the decision maker’s prior evidence:

Theorem 1 P0D ¼ PF iff PF 2 ED.

Proof First we shall see that PF 2 ED implies P0D ¼ PF . Now PF 2 ED implies

that F is consistent with ED; so E
0
D ¼ ED \ F. Note that KL-divergence from the

equivocator has a unique minimiser in a closed convex set of probability functions,

and ED;F and E
0
D are all closed and convex. PF is the unique function in F that is

closest to the equivocator P=, so there is no other function in F \ ED that is as close

to the equivocator as PF. Hence P0D ¼ PF .

Next we shall see that P0D ¼ PF implies PF 2 ED. There are two cases.

1. F is consistent with ED; so E
0
D ¼ ED \ F. Suppose that P0D ¼ PF . Since

PF ¼ P0D 2 E
0
D ¼ ED \ F, we have that PF 2 ED.

2. F is inconsistent with ED, so E
0
D ¼ hED [ Fi. In this case PF 62 ED and we need

to show that P0D 6¼ PF: Geometrically this can be seen as follows:

Since ED lies outside F, some part of the line segment between PF and PD will lie

inside the contour of probability functions that are equally far from P= as PF (the

dashed curve above). This part of the line segment contains points in
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E
0
D ¼ hED [ Fi that are closer to the equivocator than PF, so it is not possible that

P0D ¼ PF .

This picture generalises to higher dimensions. As long as PF is not on the

boundary of the probability simplex, it lies on a locally smooth convex surface of

points that are the same distance from P= as PF, and region F is bounded by the

hyperplane tangential to this surface at PF. Call this case (a). Since the line segment

between PF and PD does not lie on that tangent plane (nor indeed in region F), and

the tangent plane is the only supporting plane at PF of G¼dffP 2 P : P is at least as

close to the equivocator as PF}, the line segment must intersect the contour surface

and contain points that are closer to the equivocator than PF, so P0D 6¼ PF .

On the other hand, if PF is on the boundary of the probability simplex then there

is no tangent plane in the usual sense. Case (b): if PF is a vertex of the probability

simplex then G is the simplex itself and any non-vertex is more equivocal than PF.

In particular, any point sufficiently close to PF on the line segment from PF to PD is

more equivocal than PF, so P0D 6¼ PF . Case (c): otherwise PF is on the boundary but

not a vertex and the contour surface meets the boundary at PF. This case is pictured

in two dimensions below:

Here we have a combination of the previous two cases, as there are two or more

supporting hyperplanes to G: the faces of the simplex on which PF lies, and the

‘one-sided’ tangent plane of the contour surface at PF defined as the limit of a

sequence of tangent planes to the contour surface at points on the surface (but not on

the boundary of the simplex) that approach PF. These planes also bound F. Then,

depending on the location of the line segment between PF and PD, it either crosses

the contour surface as in (a), or else passes through a region of points closer to the

equivocator as in (b). Either way, P0D 6¼ PF ; as required. h
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Thus objective Bayesianism does provide grounds for adopting a forecaster’s

probability function when that function is consistent with the decision maker’s

evidence.11

5.2 Presuppositions

We shall now examine how three of the presuppositions behind the above analysis

can be relaxed.

While we have thus far supposed that the forecaster reveals her whole probability

distribution PF over the partition of outcomes of interest, this supposition is not

essential. Suppose instead, for example, that outcomes x1; . . .;x2n are the atomic

states �A1 ^ � � � ^ �An of a propositional language with propositional variables

A1; . . .;An, and that forecaster F reveals only that PFðh1Þ ¼ x1; . . .;PFðhkÞ ¼ xk; for

sentences h1; . . .; hk of the propositional language. So the forecaster reveals that

PF 2 PF ; where PF ¼
df fP 2 P : Pðh1Þ ¼ x1; . . .;PðhkÞ ¼ xkg is a closed convex set

of probability functions (in fact it is an affine subspace of the simplex). Decision

maker D can infer that there is evidence that constrains the forecaster’s probability

to lie in region EF that is itself contained in the region F determined by the tangent

to the contour line at the point bPF¼df
the function in PF that is closest to the

equivocator P=. Theorem 1 then implies that P0D ¼ bPF iff bPF 2 ED. In particular, if

D has no evidence relevant to h1; . . .; hk then bPF 2 ED so P0D ¼ bPF and

P0Dðh1Þ ¼ x1; . . .;P0DðhkÞ ¼ xk, i.e., the decision maker adopts the forecaster’s

announced probabilities:

Corollary 2 If F reveals that PFðh1Þ ¼ x1; . . .;PFðhkÞ ¼ xk and D has no prior

evidence bearing on h1; . . .; hk; then P0Dðh1Þ ¼ x1; . . .;P0DðhkÞ ¼ xk.

A second presupposition underlying the above discussion is that closeness to the

equivocator is to be measured using KL-divergence. KL-divergence is the natural

measure of closeness when the loss function in the decision scenario is not known in

advance; however, a case can be made for using other measures given particular loss

functions (Williamson 2010, §3.4.4; Grünwald and Dawid 2004). It should be

apparent that the key features of the closeness measure that were required in the

proof of Theorem 1 were that a closed convex set of probability functions should

have a unique member that is closest to the equivocator, and that tangent planes

should be definable at each point on a contour surface (a set of probability functions

that are equally close to the equivocator), which normally requires differentiability

11 One might worry whether Theorem 1 is consistent with the Obstinacy Principle of Paris (1999), which

says, ‘receiving evidence supporting what one already thinks should not cause one to alter one’s views’

(Paris 1999, p. 80). If F \ ED 6¼ ; then the decision maker’s new evidence is compatible with her prior

evidence and one might worry that Obstinacy demands that her belief function should not change, i.e.,

that P0D should be PD rather than PF. (I am grateful to Hykel Hosni for raising this concern.) But in fact

there is no inconsistency here. In the set-up of this paper, Obstinacy implies that P0D ¼ PD if PD 2 F. On

the other hand, Theorem 1 implies that P0D ¼ PF if PF 2 ED. These are consistent because if PD 2 F and

PF 2 ED then PF = PD.
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of the contour surface. Other divergence functions that have these properties can be

substituted for KL-divergence in the above analysis.

A third presupposition is that the decision maker’s prior evidence still counts for

something after the forecaster’s probabilities are revealed. Thus E
0
D is ED \ F or

hED [ Fi, which are symmetrical with respect to the agent’s prior evidence region

ED and the inferred region F containing the forecaster’s evidence. If, on the other

hand, D defers to F’s evidence by abandoning her own previous evidence and

setting E
0
D ¼ F, then switching to the forecaster’s probabilities will always be

justified: P0D ¼ PF simply because PF is the most equivocal function in F: (The

difference between these two policies corresponds to the distinction between belief

merging and belief revision in the theory of qualitative belief change.)

5.3 Caveats

Admittedly it is debatable whether the Met Office follows the norms of objective

Bayesianism sufficiently closely for an objective Bayesian decision maker to apply

the above justification and adopt Met Office probabilities. While the Met Office

certainly does not follow the norms precisely as explicated above, it does directly

calibrate its models to frequency data, and it does equivocate insofar as it doesn’t

announce extreme probabilities in the absence of evidence that forces them to be

extreme. (The Met Office does announce ‘weather warnings’ in situations in which

extreme weather is consistent with evidence.) In any case, this concern is not exclusive

to objective Bayesianism. Whatever one’s theory of uncertainty, the decision maker

needs to be confident that the forecaster is forecasting in a rational way in order to

justify using the forecaster’s probabilities for decision making. While strict subjective

Bayesianism and empirically-based subjective Bayesianism have difficulty providing

such a justification even where the forecaster is following the appropriate norms, we

have seen that the objective Bayesian can provide such a justification.

A second caveat should be borne in mind. The discussion of this paper is based

on the situation in which a single forecaster gives a single forecast. The picture

obviously becomes more complicated when multiple forecasters are introduced, and

also when the decision maker has some grounds (such as the long-term forecasting

history of each forecaster) for assessing the reliability of forecasts. There is already

a substantial literature offering treatments of the more complicated situation from

the perspectives of statistics and machine learning (see e.g., Skouras and Dawid

1999; Cesa-Bianchi and Lugosi 2006). How these complications relate to the

discussion of this paper is left as an interesting question for further research. The

focus is on the single-forecast case here because there remains a need for a

satisfactory interpretation of this more simple situation. From the philosophical

perspective, at least, one needs to walk before one can run.

6 Conclusions

The main conclusions of the paper are as follows. While probability forecasts are

indeed useful for decision making, there is a natural escalation in the level of
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uncertainty at which those forecasts should be pitched: however one expresses the

uncertainty that attaches to a forecast, there are good reasons for expressing further

uncertainty about that uncertainty, either by invoking imprecision or higher-order

uncertainty. Bayesian epistemology provides the means to avoid rising endlessly up

this escalator, by tying expressions of uncertainty to the propositions expressible in

an agent’s language. But Bayesian epistemology comes in three main varieties.

Strict subjective Bayesianism and empirically-based subjective Bayesianism have

difficulty in justifying the use of a forecaster’s probabilities for decision making. On

the other hand, objective Bayesianism can justify the use of such probabilities, at

least when they are consistent with the agent’s evidence. Hence objective

Bayesianism offers the most promise overall for explaining how testimony of

uncertainty can be useful for decision making.

Some of the lessons of this paper carry over to a rather different concern: that of

justifying the Principle of Reflection, which says roughly that one ought to set one’s

current degrees of belief to one’s future degrees of belief, should one know them.

Here one’s future self stands in the place of the forecaster. Subjective Bayesians

often adopt this principle by fiat, as it is closely connected with Bayesian

conditionalisation which plays a central role in subjective Bayesianism.12 But

Bayesian conditionalisation plays a less central role in objective Bayesianism: in

many circumstances new objective Bayesian probabilities obtained by the procedure

outlined in Sect. 5 concur with what might have been obtained by Bayesian

conditionalisation, but in certain cases they do not (Williamson 2010, Chapter 4).

The question then arises as to whether a Principle of Reflection should be adopted

and, if so, what form it should take. Corollary 2 shows that objective Bayesians

should endorse a Principle of Reflection: in the absence of any prior evidence

bearing on the relevant propositions, if an agent learns some of her future degrees of

beliefs then she ought to set her current degrees of belief to those future degrees of

belief right away. Moreover, one can drop the qualification about prior evidence if

the agent is prepared to defer to her future evidence.

The Principle of Reflection is usually formulated using conditional probabilities:

PðhjP0ðhÞ ¼ xÞ ¼ x: As Howson (2012, §5) notes, this formulation is inconsistent

with the axioms of probability: if PðhÞ ¼ 1; PðP0ðhÞ ¼ xÞ[ 0 and x \ 1, the

axioms of probability imply that PðhjP0ðhÞ ¼ xÞ ¼ 1 6¼ x. Mirroring the less central

role played by Bayesian conditionalisation in objective Bayesianism, conditional

probabilities also play a less central role, and the objective Bayesian would avoid

such a formulation (Williamson 2010, §4.4.2). If the agent had no prior evidence

concerning h, then learning that P0ðhÞ ¼ x would tell her that she will receive

evidence that the physical probability P*(h) is no more equivocal than x, so she can

set P(h) = x since that is the most equivocal value compatible with her new

evidence (Corollary 2). If, however, her prior evidence forced P(h) = 1 then the

new value P0ðhÞ ¼ x\1 does not satisfy prior evidence. Everything then depends on

how the prior evidence is treated. If the prior evidence were retained, then the

12 There is some debate as to what the precise connection between the two principles is. While van

Fraassen (1995, §5–6) argues that conditionalisation implies reflection, this is disputed by Weisberg

(2007).
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method of Sect. 5 would apply and Theorem 1 would ensure that PðhÞ 6¼ x. On the

other hand, if she were to defer to her later evidence, she would switch to P(h) = x.

While the objective Bayesian approach to reflection provides a principled

response to Howson’s concern, it also overcomes other problems that beset

reflection. For example, I believe to degree 1 that I ate a sandwich for lunch today,

h, but I realise that in a year’s time my degree of belief in h will be much lower,

because I will no doubt forget what I ate today long before then (Talbott 1991, §2).

Given that I eat a sandwich for lunch about four times a week, I am confident that

my future degree of belief that I ate a sandwich for lunch today will be 4
7
. Rather

dubiously, the usual principle of reflection would seem to require that I should now

adopt degree of belief 4
7

in h. But objective Bayesianism would not require this. Let

us apply the analysis of Sect. 5. My current evidence forces P(h) = 1, so

E � fQ 2 P : QðhÞ ¼ 1g. I then realise that my evidence in a year’s time will, by

the Calibration norm, force P0ðhÞ ¼ 4=7; so F � fQ 2 P : QðhÞ�4=7g. Setting

aside changes of evidence in the intervening year that are unrelated to h, it is

plausible that E \ F ¼ E. Hence I should continue to adopt degree of belief 1 in h
for the time being, as seems rational.

We see, then, the although objective Bayesianism does admit a version of the

principle reflection, it is not the usual version. In fact, neither does the objective

Bayesian version coincide with van Fraassen’s General Reflection Principle (van

Fraassen 1995, §4), which can be formulated in our framework as follows. Consider

what one’s current evidence tells one about a future belief function P0. Clearly, as

far as current evidence is concerned, P0 2 P, the set of all probability functions.

Suppose that Q is the smallest convex set of probability functions such that, as far as

one’s current evidence is concerned, P0 2 Q. Then one’s current belief function

should lie in that set, i.e., P 2 Q.

Again, the approach of Sect. 5 reveals the extent to which objective Bayesianism

conforms to such a principle. Since current evidence implies P0 2 Q, it implies

something about one’s future evidence, namely that that E
0 � F, where F is

determined by the most equivocal function Q 2 Q as in Sect. 5. Now E \ F 6¼ ; for

otherwise E ¼ hE [ Fi which implies that F � E, a contradiction. So E ¼ E \ F.

Hence E � F. What does this imply about one’s current belief function P, the most

equivocal function in E? There is clearly no general guarantee that P 2 Q. Nor does

there seem to be good reason to insist that P 2 Q as a new norm on objective

Bayesianism.

On the other hand consider this slightly different formulation of the General

Reflection Principle: suppose that Q is the smallest convex set of probability

functions that, as far as one’s current evidence is concerned, contains the set E0 of

probability functions compatible with one’s future evidence; then one’s current

belief function should lie in that set, i.e., P 2 Q. In this case, current evidence

implies more than E
0 � F : it implies that E0 � Q. Applying similar reasoning to

that used above, E \Q 6¼ ; so E ¼ E \Q and hence E � Q. In particular, then,

P 2 Q. So this version of the General Reflection Principle does hold for objective

Bayesian degree of belief.
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