
Hereditary undecidability of some
theories of finite structures.

Ross Willard

Abstract

Using a result of Gurevich and Lewis on the word problem for
finite semigroups, we give short proofs that the following theories are
hereditarily undecidable: (1) finite graphs of vertex-degree at most 3;
(2) finite nonvoid sets with two distinguished permutations; (3) finite-
dimensional vector spaces over a finite field with two distinguished
endomorphisms.

1 Introduction

All theories in this note are first-order, consistent but not necessarily com-
plete, and have finite languages. Let T1 and T2 be theories in possibly differ-
ent languages. We write T1 ≤ T2 to mean there exists K1 ⊆ Mod(T1) such
that Th(K1) = T1 and the members of K1 are uniformly interpretable by
formulas in the models of T2, as this is defined in [2, 12]. (This variant of
Rabin’s method [15] allows the use of parameters and definable factor rela-
tions.) Also let T1 ≡ T2 mean T1 ≤ T2 ≤ T1. ≤ induces a partial ordering of
the ≡-classes, roughly measuring the complexity of the models of a theory.
This ordering is compatible with some of the properties of interest to model
theorists: e.g., the classes of theories all of whose models are stable, super-
stable, or ℵ0-categorical form down-sets with respect to ≤. The ordering is
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known to have a maximum element, represented by the theory of the class G
of graphs, but otherwise has not been explored.

Recent results on the decidability of theories of locally finite varieties
are perhaps better stated in terms of ≤. For example, the beautiful theo-
rem of McKenzie and Valeriote [12] can be viewed as giving a transparent
structural characterization of those finitely generated varieties V in a finite
language satisfying Th(V) 6≡ Th(G), and reducing the corresponding prob-
lem for locally finite varieties to the special case of discriminator varieties.
Another example is the ongoing classification of those sufficiently recursive
rings R for which the class MR of R-modules has a decidable theory. This
project, at least when restricted to finite rings, seems (see e.g. [1, 13, 14])
to amount to classifying R according to whether Th(M2 aut

K ) 6≤ Th(MR)
for all finite fields K. (Here M2 aut

K is the class of K-vector spaces with 2
distinguished automorphisms.)

Let T1 be either Th(G) or Th(M2 aut
K ) for some finite field K. T1 is

undecidable (by [16] and [1, 13] respectively), and also finitely axiomatizable.
Thus

T1 ≤ T2 ⇒ T2 is undecidable. (1)

In general, any theory T1 satisfying (1) is said to be hereditarily undecidable.
The two examples in the previous paragraphs can also be seen as (partial)
affirmations of the following thesis: if V is a locally finite variety (in a finite
language) such that Th(V) is not hereditarily undecidable, then V has good
structure.

Attention among universal algebraists is now turning to the search for
structure in arbitrary pseudovarieties (classes of finite algebras closed under
quotients, subalgebras, and products) whose theories are not hereditarily un-
decidable [7, 8, 9, 10, 19]. Since Th(G) 6≤ Th(V) and Th(M2 aut

K ) 6≤ Th(V)
if V is a class of finite structures, hereditary undecidability of a pseudovari-
ety V lacking structure must be established by other means. In all results
currently known to us this is accomplished by showing Th(Gfin) ≤ Th(V),
where Gfin denotes the class of all finite graphs (whose theory is hereditarily
undecidable by [11]).

Our purpose in this note is to give a few more tools for proving the
hereditary undecidability of pseudovarieties. Let k-G denote the class of all
graphs of vertex-degree at most k; let n-P denote the class of all nonvoid
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sets with n distinguished permutations; for a finite field K let M2 end
K be

the class of all K-vector spaces with two distinguished endomorphisms; and
for a class K let Kfin denote the class of finite members of K. We prove:
(1) for all k ≥ 3 and n ≥ 2, Th(k-G) ≡ Th(3-G) ≡ Th(n-P) ≡ Th(2-P)
and Th(k-Gfin) ≡ Th(3-Gfin) ≡ Th(n-Pfin) ≡ Th(2-Pfin); (2) each theory
in the previous item is hereditarily undecidable; (3) for each finite field
K, Th((M2 end

K )fin) is hereditarily undecidable. Item (1) implies that every
graph of bounded vertex-degree is superstable, hence Th(Gfin) 6≤ Th(3-G).
Item (3) together with known results prove the hereditary undecidability of
Th((MR)fin) for many finite rings R. Items (2) and (3) are proved via a
result of Gurevich and Lewis on the word problem for finite semigroups.

2 Results

For n ≥ 2 let Ln be the language consisting of the n binary relation symbols
R0, . . . , Rn−1. Let n-I be the class of all Ln-structures in which each Ri is
the graph of a partial injective function. If 〈A;R0, . . . , Rn−1〉 ∈ n-I then
we let dom(Ri) and ran(Ri) denote the projections of Ri onto its first and
second coordinates, and we write Ri(a) = b to mean (a, b) ∈ Ri.

THEOREM 2.1 For all k ≥ 3 and n ≥ 2,

1. Th(k-G) ≡ Th(3-G) ≡ Th(n-I) ≡ Th(2-I) ≡ Th(n-P) ≡ Th(2-P);

2. Same as the previous item but with each class replaced by its finite
members.

Proof. Clearly Th(3-G) ≤ Th(k-G) and Th(n-P) ≤ Th(n-I), and
similarly for the corresponding classes of finite structures. Therefore to prove
item 1 it will suffice to prove Th(k-G) ≤ Th((k+1)-I), Th(n-I) ≤ Th(2-P),
and Th(2-I) ≤ Th(3-G); and item 2 will follow from the corresponding claims
for the finite structures.

We first show Th(k-G) ≤ Th((k+1)-I). Let 〈V,E〉 be a graph of vertex-
degree at most k. By Vizing’s theorem (which is true for infinite as well
as finite graphs), the edges of 〈V,E〉 can be (k+1)-colored. Choose such
a coloring χ : E → {0, 1, . . . , k}. Fix a well-ordering < of V . Now we
construct a member of (k+1)-I with universe V by defining Ri(v) = w if
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and only if v < w, {v, w} ∈ E, and χ({v, w}) = i. 〈V,E〉 can be recovered
from 〈V ;R0, . . . , Rk〉 by means of the following formulas:

V (x) : x = x

E(x, y) :
k∨

i=0

[Ri(x) = y ∨ Ri(y) = x].

This proves both Th(k-G) ≤ Th((k+1)-I) and Th(k-Gfin) ≤ Th((k+1)-Ifin).
Next we show Th(2-I) ≤ Th(3-G). Let A = 〈A;R0, R1〉 be an arbitrary

member of 2-I. We shall build a graph 〈V,E〉 of vertex-degree at most
three in which A can be defined. First let Â = A × {0, 1} × {in, out},
R̂0 = R0 × {1, 2, 3, t} and R̂1 = R1 × {1′, 2′, 3′, 4′, t′}. Put V = Â ∪ R̂0 ∪ R̂1.
For each a ∈ A and e = (b, d) ∈ R0 let 〈Va, Ea〉 and 〈V 0

e , E
0
e 〉 be the graphs

pictured below.
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(a,0,in)

(a,1,in)

(a,0,out)

(a,1,out)

〈Va, Ea〉 where a ∈ A

(b,0,out) (e,1) (e,2) (e,3) (d,0,in)

(e,t)

〈V 0
e , E

0
e 〉 where e = (b, d) ∈ R0

Similarly, if e = (b, d) ∈ R1 then let 〈V 1
e , E

1
e 〉 be built using the vertices

(b, 1, out), (e, 1′), (e, 2′), (e, 3′), (e, 4′), (e, t′) and (d, 1, in), but this time with
(e, 4′) connected to (d, 1, in) and the triangle built on (e, 3′), (e, 4′) and (e, t′).
Then E shall be the union of all the Ea’s (a ∈ A) and the Ei

e’s (e ∈ Ri, i < 2).
Because Ri is a partial injective function (i = 0, 1) it follows that 〈V,E〉 has
vertex-degree at most three.

It should be clear that A can be recovered from 〈V,E〉. To be precise,
let A(x1, x2, x3, x4) be the following formula:

A(x̄) : x1Ex2Ex3Ex4Ex1 ∧ x1 6= x3 ∧ x2 6= x4.

Then let Eq(x̄, ȳ) and R0(x̄, ȳ) be formulas asserting:

Eq(x̄, ȳ) : A(x̄) ∧ A(ȳ) ∧ {x1, . . . , x4} = {y1, . . . , y4}
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R0(x̄, ȳ) : A(x̄) ∧ A(ȳ) ∧ ∃z0∃z1 · · · ∃z5(

|{z0, . . . , z5}| = 6 ∧ z0Ez1Ez2Ez3Ez4Ez2 ∧
z3Ez5 ∧ {z0, z1} ∩ {x1, . . . , x4} = {z0} ∧
{z3, z5} ∩ {y1, . . . , y4} = {z5} )

and let R1(x̄, ȳ) be defined in the obvious analogous way. Then θ := Eq〈V,E〉

is a factor relation of the L2-structure A′ := 〈A〈V,E〉;R
〈V,E〉
0 , R

〈V,E〉
1 〉, and

A′/θ ∼= A. The above formulas did not depend in any way on A, which
proves Th(2-I) ≤ Th(3-G). Since in this construction 〈V,E〉 is finite if A is,
we also get Th(2-Ifin) ≤ Th(3-Gfin).

Finally we show Th(n-I) ≤ Th(2-P). Let A = 〈A;R0, . . . , Rn−1〉 ∈ n-I
be given. Our goal is to construct an algebra B = 〈B; f, g〉 where f and g
are permutations of B and in which A may be defined. For each a ∈ A let
Ca be the set {a}×{0, 1, . . . , n−1}×{in, out} with f and g partially defined
as follows:

f((a, i, in)) = (a, i, out)

g((a, i, in)) =

{
(a, i+ 1, in) if i < n− 1
(a, n− 1, out) if i = n− 1

g((a, i, out)) =

{
(a, i− 1, out) if i > 0
(a, 0, in) if i = 0.

(The reader is advised to draw a picture.) Note that Ca is rigid as a partial
bi-unary algebra. Let Â be the union of all the Ca’s.

Next for i < n let R̂i = Ri × {i} and put B0 = Â ∪ R̂0 ∪ · · · ∪ R̂n−1.
Extend f and g by defining, for each i < n and e = (b, d) ∈ Ri,

f((b, i, out)) = (e, i)

f((e, i)) = (d, i, in)

g((e, i)) = (e, i).

Note that g is a permutation of B0 while f , though injective, is only
partially defined. Thus we have not yet finished our construction of B.
Nonetheless it may be helpful at this point to say what our formulas will be.
Let A(x0, . . . , x2n−1) be the conjunction of

∧
i<j<2n xi 6= xj and∧

i<n

f(xi) = xn+i ∧
∧
i<n

f(xn+i) 6∈ {x0, . . . , x2n−1} ∧
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∧
i<n−1

g(xi) = xi+1 ∧ g(xn−1) = x2n−1 ∧∧
i<n−1

g(xn+i+1) = xn+i ∧ g(xn) = x0

while for each i < n let Ri(x̄, ȳ) be the formula

A(x̄) ∧ A(ȳ) ∧ ∃z[ g(z) = z ∧ f(xn+i) = z ∧ f(z) = yi ].

Now we complete the construction of B. For each i < n and a ∈ A \
dom(Ri) choose an infinite set Si

a and designated element pi
a, together with

unary functions f = f i
a and g = gi

a on Si
a satisfying: (i) g is a bijection; (ii)

for all x ∈ Si
a and m < n < ω, gm(x) 6= gn(x); (iii) f is total and injective;

(iv) ran(f) = Si
a \ {pi

a}. Construct the union of B0 and all of the Si
a’s

(making sure the underlying sets are pairwise disjoint), and further extend
f by defining f((a, i, out)) = pi

a if a ∈ A \ dom(Ri). Then perform the dual
construction for each a ∈ A \ ran(Ri). The resulting structure, which we call
B, is a member of 2-P and satisfies 〈AB;RB

0 , . . . , R
B
n−1〉 ∼= A. This proves

Th(n-I) ≤ Th(2-P).
Unfortunately B is infinite even if A is finite (unless every Ri happens

to be a permutation). Therefore a different construction is needed to prove
Th(n-Ifin) ≤ Th(2-Pfin). Suppose A ∈ n-Ifin. Let B0 be defined as before.
Fix i < n. Because Ri is a partial injective function, and by finiteness, we can
pick a bijection φi : A\dom(Ri) → A\ran(Ri). For each a ∈ dom(φi) add two
new points (a, i, 1) and (a, i, 2), and define g((a, i, j)) = (a, i, j) (j = 1, 2) and
f((a, i, out)) = (a, i, 1), f((a, i, 1)) = (a, i, 2) and f((a, i, 2)) = (φi(a), i, in).
Let this be done for all i < n, and let B be the resulting structure. Again
B ∈ 2-P and 〈AB;RB

0 , . . . , R
B
n−1〉 ∼= A, and this time B is finite.

Next we describe a result of Gurevich and Lewis [6] which we shall need.
A cancellation semigroup with zero and identity is a semigroup with zero and
identity which satisfies

If xy = xz 6= 0 or yx = zx 6= 0, then y = z.

Let A be the set of quasi-identities valid in all semigroups, and let ¬FC
be the set of quasi-identities refuted in some finite cancellation semigroup
with zero and identity. Gurevich and Lewis proved that A and ¬FC are
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recursively inseparable. To prove this, they adopted a specialized version
of Turing machines, which among other things requires at least two halting
states, one of which is q1. Then they described an effective procedure which
to each such Turing machineM with associated tape symbol set T = T0∪{a0}
(a0 being the blank symbol) assigns a finite semigroup presentation 〈∆;E〉
having several nice properties. In the discussion which follows, we shall let
〈∆;E〉 be exactly as described in [6], except that we delete the symbol A0

from ∆, and we delete the ‘initialization rule’ A0 = ↑q0
0↑ from E (so that

item 5 below will be true).
We adopt the following notation: ∆∗ is the semigroup of all words over

the alphabet ∆;
E∼ is the congruence of ∆∗ generated by E. (Thus ∆∗/

E∼ is
the semigroup presented by 〈∆;E〉.) The useful properties of 〈∆;E〉 are:

1. T ∪ {↑} ⊆ ∆. (↑ is an end-of-tape marker.)

2. ∆ contains a set Q′ of symbols, disjoint from T ∪ {↑}, one member
being q0

0. (Q′ is in two-to-one correspondence with the set of states of
M .)

3. ∆ contains a symbol 0 such that x0
E∼ 0x

E∼ 0 for all x ∈ ∆∗.

4. For all w ∈ T ∗
0 , M on input w halts in state q1 if and only if ↑q0

0w↑
E∼ 0.

The above items are typical of encodings of Turing machines in semigroup
word problems. Next come the special properties. Let

Y = {x ∈ ∆∗ : x
E

6∼ 0 and x has at most

one occurrence of a symbol from Q′}.

5. Y is closed under
E∼.

6. For all w ∈ T ∗
0 , M on input w halts in a state different from q1 if and

only if ↑q0
0w↑ ∈ Y and the

E∼-class containing ↑q0
0w↑ is finite.

7. For all x, y, z ∈ ∆∗, if xy, xz ∈ Y and xy
E∼ xz, then y

E∼ z; and if

yx, zx ∈ Y and yx
E∼ zx, then y

E∼ z.

7



(In their paper, Gurevich and Lewis prove items 4 and 6 only when w
is the empty word, but their proofs work for all w. Item 5 is an immediate
consequence of the definition of E, while item 7 is essentially proved in their
analysis of G on page 190. The reader should note the following misprint in
[6]: the transition symbols σm must be indexed by m ∈ (Q′ × T ) ∪ {0}, and
the transition rules must be modified by requiring that m = 〈qe

i , ak〉.)
For each n < ω let Qn denote the set of all quasi-identities in the variables

v0, . . . , vn−1 (in the language of semigroups). Recall that A is the set of quasi-
identities valid in all semigroups, while ¬FC is the set of quasi-identities
refuted in some finite cancellation semigroup with zero and identity. Also let
¬F be the set of quasi-identities refuted in some finite semigroup. A slight
modification of the argument in [6] yields:

LEMMA 2.2 1. There exists n < ω such that A ∩ Qn and ¬FC ∩ Qn

are recursively inseparable.

2. A ∩Q2 and ¬F ∩Q2 are recursively inseparable.

Proof. Begin by choosing a finite alphabet T0 and two recursively enu-
merable subsets U1, U2 of T ∗

0 such that U1 and U2 are recursively inseparable.
By standard methods it can be shown that there is a Turing machine M of
the kind used by Gurevich and Lewis, having exactly two halting states q1, q2,
and such that for all w ∈ T ∗

0 , M on input w halts in state qi if and only if
w ∈ Ui (i = 1, 2). Obtain 〈∆;E〉 for M as described above, and let n = |∆|.
We may assume with no loss of generality that {v0, . . . , vn−1} = ∆. Let φ
be the conjunction of the relations (equations) in E. For each w ∈ T ∗

0 let
φw ∈ Qn be the quasi-identity φ → (↑q0

0w↑ = 0). We claim that (i) w ∈ U1

if and only if φw ∈ A, and (ii) if w ∈ U2 then φw ∈ ¬FC. (i) follows from

item 4 above. (ii) is proved as in [6]: if w ∈ U2 then let W be the
E∼-class

containing ↑q0
0w↑ and let X be the set of all subwords (including the empty

word) of members of W . X is a finite subset of Y and is closed under
E∼.

Let Xc = ∆∗ \ X; then Xc/
E∼ is an ideal of the semigroup ∆∗/

E∼. Thus

X/
E∼ ∪ {0} with the product (x/

E∼)(y/
E∼) defined to be (xy)/

E∼ if xy ∈ X,
and 0 otherwise, is a finite semigroup with zero and identity which refutes
φw; moreover, it satisfies the cancellation law by item 7 above. This proves
(ii). Since the map w 7→ φw is effective and sends U1 into A∩Qn and U2 into
¬FC ∩Qn, it follows that A∩Qn and ¬FC ∩Qn are recursively inseparable.
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To prove the second item, choose a two-element alphabet {a, b} and let
h : ∆∗ → {a, b}∗ be the injective homomorphism defined by h(vi) = bai+1b.
Let 〈{a, b};hE〉 be the semigroup presentation obtained by replacing each

x = y ∈ E by h(x) = h(y). Clearly if x ∈ ∆∗ and y′ ∈ {a, b}∗, then h(x)
hE∼ y′

if and only if y′ = h(y) for some y ∈ ∆∗ such that x
E∼ y. Thus if w ∈ T ∗

0

then M on input w halts in state q1 if and only if h(↑q0
0w↑)

hE∼ h(0), while M

on input w halts in state q2 if and only if h(↑q0
0w↑) ∈ h(Y ) and the

hE∼-class
containing h(↑q0

0w↑) is finite. In the latter case, ifX ′ is the set of all subwords

of members of the
hE∼-class containing h(↑q0

0w↑), then X ′/
hE∼ ∪ {0} with the

obvious multiplication is a finite semigroup satisfying the relations in hE and

refuting h(↑q0
0w↑)

hE∼ h(0). The reduction to quasi-identities in the previous
paragraph shows that A ∩Q2 and ¬F ∩Q2 are recursively inseparable.

THEOREM 2.3 1. Th(3-Gfin) and Th(2-Pfin) are hereditarily undecid-
able.

2. For each finite field K, Th((M2 end
K )fin) is hereditarily undecidable.

Proof. 1. Let n witness the claim in Lemma 2.2.1. Recall that n-I
is the class of structures 〈U ;R0, . . . , Rn−1〉 where each Ri is the graph of a par-
tial injective function on U . Let n-C be the class of algebras 〈U ; f0, . . . , fn−1; 0〉
where 0 is a constant and each fi is a unary operation satisfying the axiom

fi(0) = 0 ∧ ∀x∀y(fi(x) = fi(y) 6= 0 → x = y).

Clearly Th(n-Cfin) ≡ Th(n-Ifin). Thus by Theorem 2.1 it suffices to prove
that Th(n-Cfin) is hereditarily undecidable. For each word σ = vi1 · · · vik in
the variables v0, . . . , vn−1 let σ̂(x) be the term fi1 · · · fik(x). If ψ ∈ Hn is

(σ1 = τ1 ∧ · · · ∧ σm = τm) → σ0 = τ0

then let ψ̂ be the sentence in the language of n-C obtained by replacing each
σi = τi with ∀x[σ̂i(x) = τ̂i(x)]. Clearly ψ is true of all semigroups if and
only if |= ψ̂. On the other hand, suppose S is a finite cancellation semigroup
with zero and identity which refutes ψ; pick a0, . . . , an−1 ∈ S witnessing this.
For each i < n define fi(x) = aix, and define S = 〈S; f0, . . . , fn−1; 0〉. Then
S ∈ n-Cfin. As S has an identity it follows that S |= σi(ā) = τi(ā) if and only
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if S |= ∀x[σ̂i(x) = τ̂i(x)]; hence S refutes ψ̂. These remarks together with
Lemma 2.2.1 prove that Th(n-Cfin) is hereditarily undecidable.

2. Since every (finite) semigroup can be embedded in the semigroup of all
endomorphisms of a (finite-dimensional) K-vector space, the above argument
can essentially be repeated (using Lemma 2.2.2 this time) to prove hereditary
undecidability of Th((M2 end

K )fin).

Here are some comments regarding Theorem 2.3. (i) It is possible that
part 1 of the theorem is folklore; if so, then we hope that our presentation
of it is sufficiently novel to warrant publication. (ii) In particular, Garfunkel
and Shank [5] have claimed (correctly) that the class of finite planar cubic
graphs has a hereditarily undecidable theory; however the proof remains
unpublished (cf. [18]). (iii) Part 2 of the theorem together with results in the
literature allow one to deduce the hereditary undecidability of Th((MR)fin)
for many finite rings R. For example, let p be a prime and put R = Zp9 [x :
x2 = 0]. Baur [1] showed how to interpret M2 end

Zp
in MR; the same argument

interprets (M2 end
Zp

)fin in (MR)fin.

The hereditary undecidability of both Th(M2 aut
K ) and Th((M2 end

K )fin)
suggests an obvious problem.

Problem 1: Is Th((M2 aut
K )fin) hereditarily undecidable, ifK is a finite field?

The answer should be yes, but the result of Gurevich and Lewis does
not seem to be strong enough to prove it. What is apparently needed is
the recursive inseparability of the sets of (i) open formulas in 2 variables (in
the language {·, −1}) which are valid in all groups, and (ii) open formulas
in 2 variables which are refuted in some finite group. The best result in
this direction is due to Slobodskoi [17]: there exists n < ω such that the
sets of (i) open formulas in n variables valid in all periodic groups, and (ii)
open formulas in n variables refuted in some finite group, are recursively
inseparable. Slobodskoi’s result can be used to deduce the undecidability
(though not the hereditary undecidability) of Th((Mn aut

K )fin) for sufficiently
large n.

Here is another problem, this time concerning discriminator varieties.
Recall that a discriminator variety is any variety of the form HSP(K) where
K is a class of algebras satisfying

∀x∀y∀z[(t(x, x, z) = z) & (x 6= y → t(x, y, z) = x)]
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for some term t(x, y, z) in the language of K. We have conjectured that if
V is a locally finite discriminator variety in a finite language, then Th(V)
is undecidable if and only if Th(G) ≡ Th(V). However the corresponding
conjecture for Vfin may be false. Let K be the class of all finite algebras
〈A; b, t〉 where t is the ternary discriminator function on A (i.e., t(x, y, z) = x
if x 6= y, t(x, x, z) = z) and b is a binary operation satisfying the axiom

∀x∀y[b(x, y) ∈ {x, y} ∧ (b(x, y) = x↔ b(y, x) = y)] ∧
∀x∀y1∀y2∀y3∀y4[(b(x, y1) = b(x, y2) = b(x, y3) = b(x, y4) = x) →

|{x, y1, y2, y3, y4}| < 5].

Let V = HSP(K). V is locally finite. Since K coincides with the class of
finite models of its universal theory, Vfin is simply the class of finite direct
products of members of K (see [4, Theorem IV.9.4]). The reader should see
that K is bi-interpretable with 3-Gfin, so Th(3-Gfin) ≤ Th(Vfin). (It can also
be shown by the methods in [3] or [20] that Th(G) ≡ Th(V).)

Problem 2: Is it true that Th(Gfin) 6≤ Th(Vfin)?
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