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Abstract

Typicality is routinely invoked in everyday contexts: bobcats are typically short-
tailed; people are typically less than seven feet tall. Typicality is invoked in scientific
contexts as well: typical gases expand; typical quantum systems exhibit probabilistic
behavior. And typicality facts like these support many explanations, both quotidian
and scientific. But what is it for something to be typical? And how do typicality
facts explain? In this paper, I propose a general theory of typicality. I analyze the
notion of a typical property. I provide a formalism for typicality explanations, and I
give an account of why typicality explanations are explanatory. Along the way, I show
how typicality facts explain a variety of phenomena, from everyday phenomena to the
statistical mechanical behavior of gases. Finally, I argue that typicality is not the same

thing as probability.

This...1s...typical.

— Basil Fawlty
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1 Introduction

Typical bobcats have short tails. Some do not, of course. Because of genetic mutations,
some bobcats’ tails are long. Because of cruel trapping practices, some bobcats have no tails
at all. But nearly all bobcats have short tails. Having a short tail is typical among bobcats.

In this paper, I propose a theory of typicality. I analyze the notion of a typical property,
and I offer an account of typicality explanations. As I argue, facts about typical properties
are explanatory: we use them, quite often, to explain phenomena.

My theory is motivated by discussions in the philosophy of science literature: typicality
is invoked in statistical mechanics to explain thermodynamic behavior, and it is invoked
in quantum mechanics to explain the appearance of quantum probabilities. Some formal
accounts of typicality, applicable in some scientific contexts, have been proposed.! But there
are no general accounts of the metaphysics of typicality, of what typicality is. And there are
no systematic accounts of how typicality explains.? This paper provides both.

There are other reasons to pursue a philosophical account of typicality. We use typicality
all the time, in the most quotidian contexts. You go for a hike in the woods with a friend. A
Pennsylvania bobcat crosses your path. Your friend asks ‘Why does that creature have such
a short tail?” ‘Because it is a bobcat’, you reply, ‘and having a short tail is typical among

bobcats’. This explanation is perfectly legitimate. Your inquiring friend is not a biologist;

'For example, see (Frigg and Werndl [2012]) and (Goldstein [2001]).
2For some discussion of typicality and explanation, see (Lazarovici and Reichert [2015]) and (Maudlin
[2011]).



she is not asking about the genetic make-up of the bobcat. Nor is your inquiring friend a
mereologist; she is not interested in the part-whole relation that obtains between the tail
and its respective parts. She is interested in something else: why that particular bobcat is a
certain way. And you succeed in explaining it to her, because you point out that practically
all bobcats are that way. In so doing, you give a typicality explanation.

Not everyone agrees that typicality facts can explain, however.®> Resistance to typi-
cality explanation arose, in large part, because there is no rigorous, general account of how
typicality facts can be explanatory. If there were such an account, resistance to typicality
would probably be much less severe. Indeed, many of those who reject various typicality
explanations are sympathetic to the underlying, intuitive idea.* So objections to typicality
need not be understood as challenges to the very coherence of the notion; they can be un-
derstood as requests for clarification. What is it to be typical? And how do typicality facts
explain? Proponents of typicality have also raised questions like these. For example, Gold-
stein writes that a comprehensive philosophical analysis of typicality explanations ‘would be
most welcome’ ([2012], p. 70).

Hence the present paper, in which I develop a theory of typicality. In Section 2, I analyze
typical properties. I also give several mathematical definitions of the notion of ‘nearly all’
which that analysis invokes. In Section 3, I argue that many explanations invoke facts about
properties being typical, I propose a general formalism for typicality explanations, and I say
why typicality explanations are explanatory: roughly, they explain by providing concise and
informative summaries of the state of the world, by rendering certain phenomena expectable,
and by implicitly summarizing facts about what determines what. Finally, in Section 4, I

discuss some differences between typicality and probability.

3For arguments against typicality explanations of statistical mechanical phenomena, see (Frigg [2011], p.
82) and (Uffink [2007], p. 980).

4For example, along with Werndl, Frigg has argued in favor of an interesting topological characterization
of typicality ([2012]).



2 An Analysis of Typicality

Pre-theoretically, something is typical just in case nearly all things, of a certain sort,
are a certain way. Short-tailed bobcats are typical because nearly all bobcats have short
tails. People are typically less than seven feet tall because nearly all people are shorter than
seven feet. So there is a close connection between typicality, and nearly all of some things
being thus-and-so.

In this section, I make that close connection precise. I propose an analysis of typical
properties: an account of what typical properties are. This precisifies the pre-theoretic idea
that something is typical just in case nearly all of the relevant things are a certain way.

Here is the analysis of typical properties.

TYPICAL PROPERTY
Let ' be a set and let P be a property. P is typical in I' if and only if nearly all

of the elements in I exemplify P.

For example, let I' be the set of all bobcats and let P be the property is short-tailed. Then
P is typical in I because nearly all bobcats have short tails.”?

TYPICAL PROPERTY invokes the notion of ‘nearly all’. There are many formal defi-
nitions of that notion; I cannot cover them all here. So I shall focus on three of the most
common.

When T is finite, ‘nearly all’ can be quantified by counting. Let I" be a large finite set,’

let P be a property, and let Ap be the set of elements in I" which exemplify P. ‘Nearly all’ of
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the elements in I' exemplify P =4 for some non-negative e much smaller than 1,

5TYPICAL PROPERTY can be used to analyze another typicality notion: the notion of a typical object.
Let T be a set, let P be a property, and let 2 be a member of I". Then « is typical, (relative to P and T) if
and only if x exemplifies P and P is typical in I'. So a bobcat with a short tail is typical,, relative to the
property of being short-tailed and the set of all bobcats.

61 stipulate that T is large because if I were small, it would not make much sense to say that ‘nearly all’
of the elements of I have a certain property. There would not be enough elements in I" for ‘nearly all’ of
them to be any particular way.

"As usual, |X| denotes the cardinality of the set X. The cardinality of a finite set, for example, is just
the number of elements it contains. T\ Ap is the set of elements in T' which are not in Ap.



Call this the ‘counting-theoretic’ definition of ‘nearly all’.

For example, nearly all bobcats have short tails. To see why, let I' be the set of all
(actual) bobcats, let P be the property is short-tailed, and let Ap be the set of all (actual)
bobcats which exemplify P. For the sake of the example, suppose that the fraction of bobcats
M\Ap| 1

I < 1000

which do not have short tails is less than one in a thousand; that is, suppose
Since Tloo is quite small, the counting-theoretic definition of ‘nearly all’ implies that nearly
all elements in I exemplify P. In other words, nearly all bobcats have short tails.

When T’ is infinite, some other definition of ‘nearly all’ is required. One invokes cardi-
nalities. Let I' be an infinite set, let P be a property, and let Ap be the set of elements in I’
which exemplify P. ‘Nearly all’ of the elements in I' exemplify P =4 [["\Ap| < |['|. Call this
the ‘cardinality-theoretic’ definition of ‘nearly all’.

For example, on the cardinality-theoretic definition, nearly all real numbers are irra-
tional. Let I' be the set of reals. Let P be the property is irrational, and let Ap be the set of
irrationals in I". Then the set of elements in I' which are not in Ap—the set of rationals—is
countable. The cardinality of [' is uncountable. So nearly all reals are irrational.

A third definition of ‘nearly all’ is used throughout statistical mechanics and quantum
mechanics.® In full detail, it is quite technically sophisticated. But the basic idea is extremely
intuitive. Whereas the previous two definitions quantified ‘nearly all’ by count or cardinality,
this one quantifies ‘nearly all’ by measuring size. Let I' be a set, let P be a property, and
let Ap be the set of elements in I' which exemplify P. Let m be a measure on subsets of

[': m takes a subset A of T' as input, and outputs the size m(A) of A.2 ‘Nearly all’ of the

elements in I' exemplify P (relative to m) =4 for some non-negative e much smaller than 1,

m(D\Ap)

i < .19 Call this the ‘measure-theoretic’ definition of ‘nearly all’.}!

8 A version of this definition is discussed in (Frigg [2011], p. 80).

9See (Folland [1999]) for the rigorous definition of a measure.

10T his definition of ‘nearly all’, like the counting-theoretic definition, is context-dependent: whether or not
a particular € counts as ‘much smaller than 1’ varies from context to context. Consequently, whether or not
a property is typical depends on context too. That is a feature of this account of typicality, not a bug: the
notion of typicality seems, pretheoretically, like it should depend on context.

"This definition requires that Ap be measurable, that m(I') be non-zero, and that m(T") be finite.



For example, let I" be a circle, and let S be a very small sector of I'; so .S is shaped like a
very thin slice of pie. Let P be the property of lying outside S, and let Ap be the set of points
in I' which exemplify P. Let m be the standard measure of the areas of two-dimensional
shapes. Then nearly all of the elements in I exemplify P (relative to m). To see why, note
that the area of the set of points in I' but not in Ap—the area of the set of points in S—is
much smaller than the area of I'. So for some very small non-negative e, % <€

TyYPICAL PROPERTY does not include a free parameter for a measure. So to use
the measure-theoretic definition of ‘nearly all’ in TYPICAL PROPERTY, relativize both the
analysandum and the analysans to a measure parameter. The resulting version of TYPICAL
PROPERTY is: P is typical in T' (relative to m) if and only if nearly all of the elements in T'
exemplify P (relative to m).

This completes the analysis of typicality. Roughly put, typical properties are exempli-

fied by nearly all members of a given set. Typicality is nearly all.

3 Typicality Explanation

In this section, I argue that facts about typical properties—call them typicality facts—
can explain. In Section 3.1, I show that typicality explanations—that is, explanations which
cite typicality facts—arise routinely in everyday life. In Section 3.2, I propose a formalism for
typicality explanations, and I use my formalism to defend a well-known typicality explanation
in statistical mechanics against some objections. In Section 3.3, I say why typicality facts

can be explanatory.

3.1 Examples of typicality explanations

Typicality explanations are everywhere. For example, let s be the fact that Mary—

the Pennsylvania bobcat which crossed your path—has a tail which is short. Let f be the
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typicality fact that among bobcats, the property of being short-tailed is typical: so according
to TYPICAL PROPERTY, f is the fact that nearly all bobcats have short tails. Let b be the
fact that Mary is a bobcat. One perfectly good explanation of s cites b and f: Mary has a
short tail because she is a bobcat and nearly all bobcats have short tails.

This typicality explanation is distinct from explanations of other types. It is not the
sort of explanation which simply cites a cause: the typicality of short-tailed bobcats does not
cause Mary to have a short tail. It is not a grounding explanation: the typicality of short-
tailed bobcats does not ground the fact that Mary’s tail is short. And as I argue in Section 4.1,
typicality explanations like these are not probabilistic explanations: neither the explanandum
nor the explanans invokes the notion of a short-tailed bobcat being probable. So typicality
explanations, though quite commonplace, represent a distinct way of explaining.'?

Other typicality explanations are just as intuitive as this one. Why does that mosquito
not have malaria? Because nearly all mosquitos are malaria-free. Why is that person less
than seven feet tall? Because nearly everyone is. Why does that Canadian lynx have such
large paws? Because nearly all do.

One might object that in each of these cases, the typicality facts do no explanatory
work. In each case, the explanans is really just shorthand for a different explanans that does
not invoke typicality facts. Perhaps the typicality fact in the explanation of why Mary’s
tail is short—the fact that nearly all bobcats have short tails—is shorthand for some causal,
biological fact, such as the fact that Mary’s genes caused her to have a short tail. So the
typicality fact does not explain anything. Rather, it stands for an underlying, non-typicality
fact which does all the explaining.

In order to succeed, this objection needs to be spelled out more. Why think that when

12Typicality explanations are also distinct from explanations based on generics. ‘Mosquitos have malaria’
is a generic, but it is not a typicality fact: mosquitos typically do not have malaria. So there is a generic
explanation—but not a typicality explanation—of why a particular mosquito has malaria: it is a mosquito,
and mosquitos have malaria. ‘The property of not having malaria is typical among mosquitos’ is a typicality
fact, but it is not a generic. So there is a typicality explanation—but not a generic explanation—of why a
particular mosquito does not have malaria: it is a mosquito, and the property of not having malaria is typical
among mosquitos.



invoked in explanations, typicality facts merely stand proxy for non-typicality facts? Why
think that the explanatory power of a putative typicality explanation lies in something other
than the facts it explicitly invokes?

But even if these questions can be answered, this objection is problematic for another
reason. Set aside the issue of whether the typicality explanation of s which I offered earlier—
the one which cites b and f—is genuinely explanatory. Even if not, the typicality explanation
offered by the objector—the one which cites Mary’s genes—is plausibly a typicality explana-
tion too. Unwittingly, the objector rejects one typicality explanation, only to adopt another.

To see why, note that Mary’s genes—whatever they are—do not always cause short
tails in whatever bobcats have them. Plenty of bobcats with those genes are not short-tailed.
Genes can suffer mutation, or be switched off. Tails can be severed by traps or amputated
by veterinarians. So at best, Mary has the sort of genes that typically cause bobcats to have
short tails. Thus, the explanation offered by the objector invokes a typicality fact: the fact
that typically, such-and-such genes lead to short-tailed bobcats.

So typicality explanations are not obscure or mysterious. They are intuitively com-
pelling, and we give them all the time. We should, therefore, countenance typicality expla-

nations.

3.2 A formalism for typicality explanation

In this subsection, I propose a formal schema for typicality explanations. Then I discuss
a typicality explanation of gas expansion which conforms to the schema, and I defend that
explanation against two objections.

The basic schema for typicality explanation is as follows.

zisin [

P is typical in I (relative to m) (1)

z has P



where x is a particular entity, I' is a set, P is a property, and m is a measure. This is a
schema because different substitutions for x, I', P, m, and the ‘nearly all’ in the analysis of
‘typical’ yield different explanations. If that ‘nearly all’ is not defined measure-theoretically,
then the parenthetical in the second line should be dropped. And as for any explanation, in
order for an instance of (1) to be explanatory, the premises and the conclusion must all be
3

true.!

For example, the explanation of Mary’s being short-tailed fits this schema.

Mary is in the set of all bobcats

The property is short-tailed is typical in the set of all bobcats (2)

Mary has is short-tailed

Typicality explanations in many areas of science fit schema (1). As an example, I will
discuss an explanation of gas expansion due to Boltzmann ([1877/2015]). Suppose a large
box is divided in two by a retractable barrier. A gas occupies the box’s left half. Now
suppose that the barrier is removed. The gas begins to expand, and relatively quickly, it
reaches equilibrium: the gas is evenly distributed throughout the box.

There is a typicality explanation of why the gas reaches equilibrium relatively quickly.
It invokes two facts: the gas’s microstate X, at the time when the barrier is removed, belongs
to a particular macrostate I'; and the property P of reaching equilibrium relatively quickly
is typical in I" (relative to a particular measure p). Put roughly, I' is the initial macrostate
of the gas; P is the property of reaching equilibrium within a specified amount of time, by
following the dynamics determined by the gas’s Hamiltonian; and p is the modified Lebesgue
4

measure.

So here is the typicality explanation of why the gas reaches equilibrium relatively

13Recall that the typicality of a property often depends on context: the counting-theoretic definition of
‘nearly all’, and the measure-theoretic definition of ‘nearly all’, are both context-dependent. Because of that,
typicality explanations are context-dependent too. And that, I think, is an attractive feature of the proposed
theory of typicality. Explanation in general can be context-dependent, so one should expect that typicality
explanation can be context-dependent as well.

MFor rigorous definitions of I', P, and u, see Goldstein ([2001]) and Lazarovici and Reichert ([2015]).



quickly.

XisinT

P is typical in T (relative to ) (3)

X has P

The first premise is true by the definition of I'. The second premise is true as well, given the
measure-theoretic definition of ‘nearly all’. The conclusion is true because, as a matter of
fact, the gas actually does reach equilibrium relatively quickly.

The literature features several objections to explanations like (3). According to one,
such explanations are insufficient because they neglect the Hamiltonian dynamics (Frigg
[2011]). But regardless of whether this objection applies to other proffered typicality expla-
nations of gas expansion, it does not apply here. The Hamiltonian dynamics play a crucial
role in the rigorous definition of P, and they play a crucial role in selecting p as the appro-
priate typicality measure.

According to another objection, such explanations are insufficient because their ex-
planantia do not logically imply their explananda (Uffink [2007]). My response to this objec-
tion parallels the response Hempel gave when an analogous objection was made to his view
that probability facts can explain. In that case, the objection was that probabilistic explana-
tions are not actually explanatory because in probabilistic explanations, the explanantia do
not logically imply the explananda. But as Hempel pointed out, this sort of objection adopts
an overly restrictive view of explanation ([1965], p. 391). Many scientific explanations of par-
ticular events invoke probabilities. In those cases, the explanantia do not logically imply the
explananda, but that is perfectly fine: there are valid probability explanations of particular
events. The same sort of response can be given in the case of typicality. Many explanations
of particular events rely on the notion of typicality, and thus adhere to schema (1). In those
cases, the explanantia do not logically imply the explananda, but that is perfectly fine. As

I have shown, typicality explanations are quite common. Logical implication is simply not
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necessary for explanation.

3.3 An account of explanatory typicality facts

I have offered a formalism for typicality explanations, but I have not yet given an
account of what makes typicality facts explanatory. In this section, I argue that typicality
facts are explanatory for three related yet distinct reasons: they concisely summarize large
amounts of information; they show that certain phenomena are to be expected; and they
summarize determination facts—such as facts about what causes what—which are themselves
explanatory. But as shall become clear, not all typicality facts seem capable of explaining.
So I propose some preliminary criteria for distinguishing explanatory from non-explanatory
typicality facts.

To start, consider the first reason why typicality facts explain: they explain because
they provide succinct, highly informative summaries of the state of the world. Many typicality
facts eliminate lots of possible ways that the world could be, and they do so concisely. For
example, let f be the fact that the property is short-tailed is typical in the set of all bobcats.
Let —f be the proposition that it is not the case that is short-tailed is typical in the set of
all bobcats. There are many more ways for —f to obtain than ways for f to obtain;'® in
general, there are far more ways for certain typicality statements to be false than ways for
them to be true. So f rules out lots of possible ways that the world could be, and thus, f is
a highly informative summary of what the world is like. In addition, f is extremely concise:
it expresses all that information in a single, simple sentence.

One might wonder what it takes for a typicality fact to summarize the state of the

world. I think that typicality facts summarize in three different ways, but for now, let us

15 As an example, suppose there are only ten bobcats, and suppose that f holds: at most one of the bobcats
does not have a short tail, say. There are only 11 ways for that to occur: either none of the bobcats do not
have a short tail, or only the first bobcat does not have a short tail, or ... or only the tenth bobcat does not
have a short tail. A simple computation shows that there are 1013 ways for that not to occur: the first and
second bobcat do not have short tails, the first and third bobcat do not have short tails, and so on. So there
are far more ways for —f to obtain than for f to obtain.

11



consider two (I shall discuss the third, which concerns causation, later on). First, some
typicality facts summarize by describing what the actual world is like. The fact f does
this: it summarizes the state of the actual world because it says that nearly all actual-world
bobcats have short tails. Second, some typicality facts summarize by describing what nearly
all possible worlds—in which gases are governed by the same Hamiltonian—are like. As an
example, consider the typicality fact invoked in (3): in nearly all possible worlds in which the
gas in a box has a specific initial macrostate (and is governed by the same fixed Hamiltonian),
that gas reaches equilibrium relatively quickly. This typicality fact summarizes the state of
the actual world by placing constraints on what is possible. In other words, this typicality
fact summarizes by describing the structure of the set of possible worlds whose gases are
governed by a particular Hamiltonian. So the sort of summary provided by this typicality
fact is akin to the sort of summary provided by a dynamical law. This typicality fact, like a
law of dynamics, describes the actual world by constraining the structure of possibility space.

Because of that, my account of typicality explanation is akin to the deductive-nomological
account of explanation. Both accounts hold that certain general rules—typicality facts in my
account, laws in the deductive-nomological account—can be explanatory. And both accounts
imply that those general rules are explanatory because, in part, of their concision and infor-
mativeness.

There are other similarities between my account of typicality explanation and the
deductive-nomological account. One concerns the second reason why typicality facts explain:
they explain because they render certain phenomena expectable. The deductive-nomological
account implies something similar: laws are explanatory, according to the deductive-nomological
account, because they show that given the occurrence of various initial conditions, one ought
to expect the explanandum (Hempel [1965], p. 337). Likewise for typicality facts: given that
x is in T, and given that property P is typical in T' (relative to m), one ought to expect that

x has P. Call this a ‘typicality norm’ of rationality, since it says that typicality facts are a
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guide to rational expectation.!®

One might worry about these similarities between the deductive-nomological account
of explanation and my account of typicality explanation. In particular, one might worry that
my account of typicality explanation is susceptible to the problems facing the deductive-
nomological account. For instance, the deductive-nomological account does not always re-
spect the asymmetry of explanation; call this the ‘asymmetry problem’. The deductive-
nomological account implies, for example, that the length of a flagpole’s shadow can be
explained by (i) the height of the flagpole, and (ii) a law relating the shadow’s length to
the flagpole’s height. But the deductive-nomological account also implies that the height of
the flagpole can be explained by (i) the length of the flagpole’s shadow, and (ii) that same
law relating the shadow’s length to the flagpole’s height. And only the first of these seems
genuinely explanatory; the second is a deduction, not an explanation. So one might worry
that my account of typicality explanation faces some sort of analogous problem.

But it does not. To see why, consider once more the explanation (2) of Mary’s short
tail: (i) Mary is a bobcat, and (ii) the property is short-tailed is typical among bobcats.
One might try to get a violation of asymmetry by saying that (ii), along with the fact that
Mary is short-tailed, explains the fact that Mary is a bobcat. That is, one might try to get

a violation of asymmetry by arguing that the following is an explanation.

Mary is in the set of all short-tailed creatures

The property is short-tailed is typical in the set of all bobcats (4)

Mary has is a bobcat

But this does not have the right structure to be a typicality explanation; it does not conform
to schema (1), for instance. Alternatively, one might try to get a violation of asymmetry by
saying that Mary’s being a bobcat is explained by the following two facts: (i) Mary has a

short tail, and (ii’) the property is a bobcat is typical among short-tailed creatures. That is,

16This norm only applies if the agent’s epistemic state satisfies a variety of other conditions. For instance,
it only applies if the agent does not know that x does not have P.
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one might try to get a violation of asymmetry by arguing that the following is an explanation.

Mary is in the set of all short-tailed creatures

The property is a bobcat is typical in the set of all short-tailed creatures (5)

Mary has is a bobcat

But even though this is an instance of (1), it is still not a typicality explanation. Recall that
in order for an instance of (1) to be explanatory, each line must be true. But the second line
in (5) is false: bobcats comprise a small fraction of the set of short-tailed creatures.

Now for the third reason why typicality facts explain: they explain because they im-
plicitly summarize causal determination facts—facts, that is, about what causes what—and
summaries of causal determination facts are explanatory. For instance, the typicality fact
f—that nearly all bobcats have short tails—rules out the many causal histories in which
lots of bobcats come to have long tails or no tails at all. Thus, f concisely expresses a large
amount of information about the causal structure of the world: that causal structure is such
as to make the property is short-tailed typical among bobcats. Facts about causal structure
are explanatory, and so typicality facts like f—which describe that causal structure—are
explanatory too.!” In short, typicality facts inherit the explanatory capacities of the causal
facts they summarize.'®

One might deny that typicality facts explain by summarizing causal facts. For instance,
one might think that the causal summaries encoded in typicality facts are not really explana-

tory; call this the ‘no-explanation’ view. Or one might think that typicality facts do not

summarize causal facts at all; call this the ‘no-summary’ view. Either way, on views like

ITThis yields another reason why my account of typicality explanation avoids any problems with asymmetry.
Causal facts only explain in one direction: the direction of causation. Typicality facts, insofar as they explain
by summarizing causal facts, only explain in one direction too. So even if there is a typicality explanation
that—unlike (2)—seems reversible, the ‘reverse’ candidate explanation will not actually be explanatory, since
its direction of purported explanation will go against the direction of causation.

B Typicality facts also summarize other kinds of explanatory determination facts. For instance, typicality
facts summarize facts about grounding: f, for instance, summarizes facts of the form ‘Collections of particles
which ground the existence of this particular bobcat also ground the existence of this bobcat’s short tail’.
Facts about grounding structure are explanatory, so typicality facts like f—which describe that grounding
structure—are explanatory too.
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these, typicality facts do not inherit the explanatory capacities of facts about what causes
what.

I do not accept the no-explanation view, since it contradicts my preferred theories of
causal explanation. One such theory, due to Lewis ([1986]), is as follows: to explain an
event, it suffices to provide some information about that event’s causal history. Typicality
facts provide precisely that sort of information: the fact that property P is typical (relative
to set ') rules out the many causal histories in which a substantial number of elements
in I' do not exemplify P. Another such theory, due to Skow (|2014]), is as follows: to
explain an event, it suffices to cite facts about what causal histories would have resulted in
the occurrence of some alternative event. More specifically, according to Skow, facts which
contain causal-historical information can explain (|2014], p. 455). So again, typicality facts
are explanatory.t?

In addition, I do not accept the no-summary view, because I endorse a particular
account of what it takes for a typicality fact to summarize causal facts. To summarize causal
facts, according to this account, a typicality fact need only rule out some possible causal
histories of the world. In particular, to summarize causal facts, a typicality fact need only

imply that at least some causal histories did not obtain.?"

19Some views of causal explanation are incompatible with these accounts. For example, on Cartwright’s
view, the following candidate explanation is not actually explanatory, even though it summarizes causal-
historical information: a particular quail bobs its head when it walks because all quails bob their heads when
they walk. This is not explanatory, according to Cartwright, because it misses out on the detailed causal
story behind this particular quail’s head-bobbing behavior ([1983], pp. 70-1). T agree with Cartwright that
the candidate explanation misses out on a more detailed causal story. But I disagree that this is sufficient to
render the candidate explanation non-explanatory. The universal generalization ‘all quails bob their heads
while walking’ summarizes causal facts, since it rules out possible causal histories in which quails behave
differently. And the detailed causal story behind this particular quails’ head-bobbing behavior may well miss
out on the more general causal story, partially illuminated by that universal generalization, about why quails
behave in that way. Moreover, I see no clear line between explanatory and non-explanatory causal facts. So
I am inclined to think that either all causal facts are explanatory, or none of them are. And faced with that
choice, I prefer the former: all causal facts can explain, including the universal generalization about quails.
If the reader disagrees, then they may consider this an invitation to provide sharp criteria for distinguishing
explanatory from non-explanatory causal facts.

20The following case reveals a complication in the connection between explanatory typicality facts and
causal facts. Suppose a bobcat—call him Avon—Iloses his short tail in an accident. And suppose that Avon’s
short tail is surgically reattached. Then consider the following candidate explanation of why Avon has a
short tail: Avon is a bobcat, and nearly all bobcats have short tails. One might claim that this is not an
explanation: Avon has a short tail because of the surgery, not because nearly all bobcats have short tails. T am
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Not all typicality facts seem explanatory, however. Let I be the set containing all
short-tailed dogs and also Mary the bobcat. Let f’ be the typicality fact that is short-tailed
is typical in IV. One instance of (1) invokes f’, rather than f, to explain why Mary has a
short tail. The fact f’ is informative, renders certain phenomena expectable, and summarizes
lots of causal facts. But this instance of (1) does not seem like an explanation, since f" does
not seem capable of explaining why Mary’s tail, in particular, is short. So what distinguishes
explanatory typicality facts like f from non-explanatory typicality facts like f/?72!

The typicality norm leads to a related problem: by gerryrigging I' and m, one can use the
typicality norm to conclude that one ought to expect contradictory things.?? For instance, as
in (3), let I" be the set of all microstates belonging to a particular non-equilibrium macrostate,
let P be the property of evolving to equilibrium relatively quickly, and let = be a microstate
in I'. Furthermore, let g be the typicality fact that P is typical in I" (relative to x). Then by
the typicality norm, one ought to expect that x has P. Let I be defined as the set consisting
of (i) all microstates in I' which do not exemplify P, and (ii) the microstate . And let ¢’
be the typicality fact that —P is typical in I" (relative to p), where —P is the property of
not evolving to equilibrium relatively quickly. Then by the typicality norm, one ought to
expect that x has —P. So the typicality norm implies that one ought to have contradictory
expectations.

My solution to both problems relies on naturalness.?? In order to be explanatory, and

not sure whether this claim is correct. My intuition is that the candidate explanation is indeed explanatory:
it is just less explanatory than the explanation which cites the surgery. But if one thinks that the claim
is correct, then one owes an account of how the typicality fact in question—that nearly all bobcats have
short tails—can explain Mary’s short tail but not Avon’s. For the sake of brevity, I will not discuss any such
account in detail. But here is one that may be worth considering: if a typicality fact explains another fact,
then the two facts are grounded in the same kinds of causes. The typicality fact that nearly all bobcats have
short tails, and the fact that Avon has a short tail, are not so connected: the typicality fact obtains because
of causal facts about the genetics of bobcats, and the latter fact obtains because of causal facts about the
surgery (not causal facts about Avon’s genetics). So the typicality fact does not explain Avon’s short tail
because these two facts have different kinds of causal grounds.

2L An analogous problem—the reference class problem—arises for Hempel’s account of probabilistic expla-
nation ([1965], pp. 398-9).

22 An analogous problem—the problem of ambiguities—arises for Hempel’s account of inductive inferences
based on probabilities ([1965], pp. 56-7).

23Thanks to Audre Brokes for pressing the importance of naturalness here.
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in order to guide rational expectation in the way described by the typicality norm, typicality
facts must be sufficiently natural. Explanatory, rationality-guiding typicality facts invoke
natural sets and natural measures. And the naturalness of a set, as well as the naturalness
of a measure, is determined by a variety of factors: for instance, its simplicity, its unity, its
homogeneity, and its role in scientific theory.

For example, take the typicality facts f and f’. The set I' invoked in f—the set of all
bobcats—is fairly simple, unified, and homogeneous. It is also invoked in scientific theories,
such as evolutionary biology. So f is fairly natural. The set I invoked in f’—the set of all
short-tailed dogs and also Mary the bobcat—is fairly complex, disunified, and heterogeneous.
And it is not invoked in any scientific theories. So f’ is fairly non-natural. Consequently, f
can explain and f’ cannot.

Similarly, consider the typicality facts g and ¢’. The set I' invoked in g—the set of
all microstates belonging to a particular non-equilibrium macrostate—is extremely simple,
unified, and homogeneous. In addition, I' plays a crucial role in the formulation of statis-
tical mechanics. So ¢ is extremely natural. But the set I invoked in ¢'—the set of (i) all
microstates in I' which do not reach equilbrium relatively quickly, and (ii) some specific mi-
crostate x—is extremely complex, disunified, and homogeneous. Furthermore, IV does not
play a crucial role in the formulation of statistical mechanics. So ¢’ is extremely non-natural.
Consequently, g can be used to guide rational expectation in accordance with the typicality
norm, and ¢’ cannot.

Though I have focused on natural and non-natural sets, the same considerations apply
to natural and non-natural measures. In particular, only sufficiently natural measures yield
typicality explanations, and only sufficiently natural measures guide rational expectation.
The naturalness of the measure i used to explain why gases expand as they do, for example,
is determined principally by the laws. Stationary measures—that is, measures that preserve

the sizes of sets over time —are generally more natural than non-stationary measures.?* That

24For a discussion of stationarity, see (Diirr et al. [1992]).
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is why ¢ is more natural than the typicality fact that P is typical in I relative to j,, where
{ty is the atomic measure on some specific microstate y which has P. Whereas g invokes a
stationary measure, the measure s, invoked in the latter typicality fact is non-stationary. So
¢ is the more natural typicality fact.?

In short, some typicality facts carve at the joints better than others. Those are the
ones on which we focus. Those are the ones we tend to use in everyday conversations. And

those are the ones which scientific theories—designed to be simple, and to unify as many

phenomena as possible—tend to produce.

4 Differences Between Probability and Typicality

The relationship between probability and typicality is subtle. Their close kinship is
articulated by the law of large numbers: according to a particularly plausible interpreta-
tion, the law of large numbers says that the sample mean typically (rather than ‘probably’)
approximates the population mean. But I shall not focus on that here.

Instead, I shall focus on the differences between probability and typicality. For in
conversation, people often question whether typicality is anything over and above probability.
What is typically the case, they tend to say, is just what is probably the case.

So it is worth spelling out the differences between probability and typicality in some
detail. As discussed in Section 4.1, there are explanatory differences: some typicality ex-
planations are not probabilistic explanations, and some probabilistic explanations are not
typicality explanations. As discussed in Section 4.2, there are formal differences: not all

typicality facts can be expressed using probability measures. And as discussed in Section

25Stationarity is just one of many factors that can determine the naturalness of a particular measure. On
a Humean account of laws, the most natural measure may be whichever best maximizes the simplicity and
strength of the system in which it appears. On an anti-Humean account of laws, the most natural measure
may be determined by other physical facts. But either way, the situation with typicality measures is akin to
the situation with probability measures: just as facts about laws determine the right probability measure for
physical theorizing, facts about laws determine the right typicality measure for physical theorizing.
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4.3, there are metaphysical differences: to be probable is not always to be typical, and to be

typical is not always to be probable.

4.1 Explanatory differences

In this subsection, I discuss the connection between typicality explanations and prob-
abilistic explanations. As shall become clear, these two kinds of explanation have a lot in
common. But they are distinct. In particular, there are examples of each kind of explanation
which are not examples of the other.

Schema (1) is structurally analogous to Hempel’s schema for probabilistic explanation.
According to Hempel ([1965], p. 390), probabilistic explanations of particular phenomena

take the following form:

where 7 is an individual, F'i says that i is I, p(G, F) is the probability that something which
is F' is also G, and Gi says that i is G. The [r] term in (6) is simply meant to convey that
the explanation has a particular strength. And r must be quite high, in order for an instance
of (6) to count as an explanation (Hempel [1965], p. 390).

Schemas (1) and (6) are quite similar. The first and third lines of each schema assert
facts about particular individuals. The second lines of each schema are somewhat similar
too. In (1), the second line says that nearly all of the elements in I" exemplify P (relative
to m). In (6), the second line says that with high probability, individuals which have F' also
have GG. The similarity derives, of course, from the similarity between ‘nearly all’ claims and
‘has high probability’ claims. If nearly all of the elements in I' exemplify P (relative to m),

and one selects an object from I' at random—and if each object has the same probability
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of being selected—then there is a high probability that the selected object exemplifies P.
Correlatively, if each F' has a high probability of being a G—and if there are lots of F's—then
it is extremely likely that nearly all F's have G.

But typicality explanations and probabilistic explanations come apart. For instance,
here is a probabilistic explanation which is not a typicality explanation. Let ¢ be a plutonium
atom, let F' be the predicate ‘is a plutonium atom’, and let G be the predicate ‘decays’. Let
r be the probability that a plutonium atom decays in a fixed amount of time. For the sake
of the example, suppose that r is less than % And suppose that ¢ actually does decay. Now

plug all this into Hempel’s schema for probabilistic explanation.

1is a plutonium atom

The probability that a plutonium atom decays is r (7)

" [r] idecays

Nowadays, contrary to Hempel, it is generally accepted that some events can be explained
by probabilities which are quite low.?® So (7) counts as a probabilistic explanation.

(7) is not a typicality explanation, however. Since r is less than %, it is not the case
that typical plutonium atoms decay: the majority, in fact, do not. Therefore, the property of
decaying is not typical in the set I' of plutonium atoms. So there is no typicality explanation
of the fact that i decays.?”

On the face of it, many typicality explanations are not probabilistic explanations. Recall
the explanation of why Mary has a short tail: she is a bobcat, and nearly all bobcats have
short tails. The typicality fact f—that nearly all bobcats have short tails—does not mention
probabilities. So this does not appear to be a probabilistic explanation.

One might object that f is indeed a probabilistic fact, though it has been dressed

up in the language of typicality. In Section 3.1, I gave several reasons for being wary of

objections like these, so I will not rehearse them again. Instead, I will present another

26For discussion of the view that low probabilities can explain, see (Strevens [2000], p. 368).
2TThis example is compatible with the view that probabilistic explanations and typicality explanations
coincide when the probabilities in question are high. But the following examples challenge that view.
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compelling response to this objection. I will present two typicality explanations which, for
straightforward reasons, cannot be probabilistic explanations.

The first occurs within a version of the Everettian theory of quantum mechanics. Ac-
cording to this version of the theory, there is a multiplicity of approximately classical, ap-
proximately non-interacting regions of the wavefunction which can be described as classical
worlds (Wallace [2012], p. 38). These regions are often called ‘branches’, and together they
comprise the Everettian multiverse.

Everettian quantum mechanics differs from orthodox quantum mechanics in many ways,
but one will prove especially important here. Both agree that there are multiple possible
outcomes for any given experiment. In orthodox quantum mechanics, only one of those
outcomes ever actually occurs after measurement. Only one of the many possible outcomes
ultimately obtains. In Everettian quantum mechanics, however, all possible outcomes obtain
after measurement. All are actual. For example, suppose an electron’s wavefunction is in a
superposition of the electron being on the left and the electron being on the right. Suppose
we do an experiment to detect this electron’s location, and suppose we find it on the left.
In orthodox quantum mechanics, there is no electron on the right. Physical reality does
not include a right-located electron. In Everettian quantum mechanics, however, there is
an electron on the right. Each possibility—the electron being on the left, and the electron
being on the right—corresponds to a distinct, and actual, physical situation. Each possibility
obtains. We happened to detect an electron on the left, but the other electron is still there.
It is just on a different branch.

In this version of Everettian quantum mechanics, there is a typicality explanation which
cannot be a probabilistic explanation. The explanandum is that the observed outcomes of
our experiments, taken together, obey the Born rule.?® To explain this agreement between
observation and the Born rule, suppose we do n experiments on n electrons whose wavefunc-

tions are in a superposition of the electron being on the left and the electron being on the

2See (Shankar [1994]) for a detailed discussion of the Born rule.
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right.?? Suppose that n is large. Let I be the set of all sequences of observations which we
could have made: in one sequence, for example, the electron is always found on the left; in
another sequence, the electron alternates between being on the left and being on the right;
and so on. Let o be the sequence of observations which we did in fact make: perhaps this
sequence goes ‘left’) ‘left’, ‘right’, and so on. Let P be the property, exemplified by some
sequences in I', of obeying the Born rule: more precisely, sequence = in I exemplifies P just
in case the relative frequency of ‘left’ in x is within experimental error of %.30 As a matter
of fact, o is in I' and o exemplifies P.

It can be shown that relative to a particularly special typicality measure R, P is typical
in I'. R is special because as Everett demonstrated, R is the only measure which satisfies
a series of formal constraints. These constraints arise out of the mathematical structure of
pure wave mechanics (Barrett [2017], pp. 33-5), so it is natural to require that the typicality
measure satisfy them.?!

With all that as background, here is a typicality explanation of the fact that the ob-

served outcomes of our experiments conform to the Born rule.

oisin I

P is typical in T (relative to R) (8)

o has P

In other words, our observations agree with the Born rule for two reasons. First, the observed
sequence of outcomes is one of the many possible sequences of outcomes; this is just the first
premise of (8). Second, the property of obeying the Born rule is typical in the set of all
possible sequences (relative to R); this is just the second premise of (8).

(8) is a typicality explanation because its second premise is an explanatory typicality

29For the sake of the example, suppose that each electron’s wavefunction is %(|L> +|R)), where |L) is the

state of the electron being on the left and |R) is the state of the electron being on the right.
30The Born rule predicts that for an electron in state %(|L> + |R)), the probability of finding that electron

on the left is %
31For more on the role of typicality in Everett’s theory, see (Allori et al. [2011]).
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fact. This typicality fact is explanatory because (i) it is concise and highly informative, (ii)
it shows that the explanandum is to be expected, (iii) it summarizes causal facts concerning
the unitary evolution of the wavefunction, and (iv) the sets and measures it invokes are
sufficiently natural. So this typicality fact can explain.

But (8) is not a probabilistic explanation. For as mentioned earlier, in Everettian quan-
tum mechanics, the various possible outcomes of any given experiment all obtain. Everett
himself makes this point: it would be a mistake, he says, to think of just one outcome as
obtaining, to the exclusion of the others ([1956,/2012], p. 149). So the sequences of outcomes
other than the one invoked in the explanandum of (8)—the sequences other than o—occur
too. But in probabilistic explanations, that cannot happen. In probabilistic explanations,
the event invoked in the explanandum is the only outcome, of the various possible mutually
exclusive outcomes, that occurs.

For example, in (7), there are two mutually exclusive events over which the relevant
probabilities are defined: the event of ¢ decaying, which has probability r; and the event of
¢ not decaying, which has probability 1 — r. Since those events are mutually exclusive, they
cannot both occur: it is impossible for ¢ to decay and also not decay. So from the fact that
(7) is a probabilistic explanation, it follows that each alternative to the decay event described
in the explanandum—in particular, the alternative event in which ¢ does not decay—fails to
obtain.

This line of thought shows that (8) is not a probabilistic explanation. To see why,
let e be the event of getting some specific sequence of observations which contradicts the
Born rule: the sequence in which the electron is always found on the left, say. If (8) were
a probabilistic explanation, then e and o would be mutually exclusive events; just as the
event of ¢ decaying, and the event of ¢ not decaying, are mutually exclusive. But e and o are
clearly not mutually exclusive, on this version of Everettian quantum mechanics. For they

both obtain. So the explanation provided by (8) cannot be probabilistic.3?

32None of this implies that in Everettian quantum mechanics, probabilistic explanations are impossible.
This just shows that (8) is not probabilistic.
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Therefore, (8) provides an example of a typicality explanation which cannot be a prob-
abilistic explanation. (8) is a typicality explanation because, put roughly, the typicality fact
it invokes is concise, informative, expectation-guiding, connected to various causal facts, and
natural. But (8) is not a probabilistic explanation because if it were, then events which
contradict the Born rule would not occur. Yet they do.

The second typicality explanation can be extracted from comments made by Elga
(]2004]).3 Let H be the event of a coin landing heads, and let T' be the event of that
coin landing tails. Consider a universe in which this coin is flipped infinitely many times,
producing an infinite sequence HITTHHTHHHT . .. As Elga points out, it is not clear which
probability function best describes this sequence, because according to many different prob-
ability functions, the probability of this particular infinite sequence occurring is zero (|2004],
pp. 67-9). So which probability function describes this sequence best, and why?

To keep things simple, let us consider just two probability functions. One assigns H

1
2

1.

5; call this function p;. The other assigns H a

a probability of 5 and T a probability of

9.

15, call this function py. Only py, let us suppose, is

probability of % and T a probability of
part of the best deductive system for this world. So p;, but not py, provides a good summary
of this world’s goings-on. Or as Elga puts it, only p; fits the particular sequence of heads
and tails which occurs, on a particular definition of ‘fits’ (|[2004], p. 71). Then the question
from before is: why? In virtue of what does p;, rather than p,, provide a good summary of
what happens in this world?

The answer invokes a typicality fact: given a particular measure of typicality endorsed
by Elga ([2004], pp. 71-2), according to p; but not p,, the property of satisfying various

special conditions—which this particular sequence satisfies—is typical relative to the set of

all possible sequences.?* In other words, p; describes this world better than p, because py,

33Though the following explanation does not exactly conform to schema (1), it still uses a typicality fact
to explain something. So plausibly, it still qualifies as a typicality explanation.

34For example, this particular sequence satisfies the condition of % being the limiting relative frequency of
H. According to p; but not ps, the property of being an infinite sequence which satisfies that condition is
typical.
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but not p,, renders this sequence typical.

This is not a probabilistic explanation. The parallel probabilistic explanation, if there
were such a thing, would go like this: p; describes this world better than p, because p;, but
not po, renders this world probable. But this world is not probable, according to p;. For p;

assigns this particular sequence a probability of zero.3

4.2 Formal differences

There are many formal differences between probability and typicality. Here I focus on
one: in a precise sense, typicality facts ‘outstrip’ probabilistic facts. Typicality is strictly
more expressive, in the sense that some typicality facts—in which ‘nearly all’ is defined using
cardinality—cannot be expressed using only probability measures.

Against this, one might claim that there is a probability measure m such that for each
set [ and each property P, if P is typical in I" on the cardinality-theoretic definition of ‘nearly
all’ then according to m, the set of elements in I' which do not exemplify P has extremely
small probability. If this were true, then all typicality facts which invoke the cardinality-
theoretic definition of ‘nearly all’ could be expressed using probability facts concerning m.
But it can be shown that this claim is false.?® Alternatively, one might claim that for each T
there is a probability measure m such that for each P, if P is typical in I" on the cardinality-
theoretic definition of ‘nearly all’ then according to m, the set of elements in I" which do
not exemplify P has extremely small probability. Again, if this were true, then all typicality
facts which invoke the cardinality-theoretic definition of ‘nearly all’ could be expressed using

probability facts. But again, it can be shown that this claim is false.3”

35Thanks to an anonymous reviewer for this point.

36The proof is straightforward: given ZFC, there is no function m defined over every powerset of every set
I.

37 Again, the proof is straightforward. Let I' = N. For each i, let P; be the property of being greater than
i;80 Ap, = {i+ 1,9+ 2,...}. Then for each ¢, [I\Ap,| < |T'|. If the claim holds, then there is a probability
measure m such that for each ¢, m(I'\Ap,) < € (for some non-negative ¢ much smaller than 1). But by the
upward continuity of measures, 1 = m(I") = _lirr;) m(I'\Ap,) < ¢, which is a contradiction.

Py
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These technical issues cut to the heart of the formal difference between probability
and typicality. The heart of the difference is that while probability measures are always
upwards continuous, typicality is often not.®® It follows that the probability measures of
certain typical sets must get arbitrarily small; so even though those sets are typical, they

must have arbitrarily low probability.

4.3 Metaphysical differences

The metaphysics of typicality is distinct from the metaphysics of probability. In par-
ticular, a thing can be probable without being typical, and a thing can be typical without
being probable. So typicality and probability come apart.

To start, here is an example of something which is probable but not typical. Suppose
that the probability of a certain type of atom decaying is %; let I' be the set of all atoms
of this type. Then those atomic decays are probable, insofar as the event of a decay is more
probable than the event of a nondecay. But the property of decaying is not typical in I’
approximately nine in twenty of the I" atoms do not decay.?”

Now consider an example of something which is typical but not probable. Imagine a
machine that, every second, prints either a 0 or a 1 on a blank square of a tape. Suppose the
machine runs for a long, finite amount of time. And suppose that in doing so, the machine
produces a sequence which begins with ten thousand 0Os, then has a single 1, then has ten
thousand more 0s, then a single 1 again, and so on, always repeating the pattern of having
ten thousand Os followed by a 1. Let P be the property of bearing an inscribed 0. Then P
is typical, relative to the set of all squares on the tape: nearly all squares contain a 0. But

the event of exemplifying P—that is, the event of being a square inscribed with 0—is not

probable. For on most accounts of probability, there is a close connection between probability

38See (Folland [1999]) for a detailed discussion of upward continuity.
39Maudlin makes a similar point ([2011], pp. 316-7).
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and randomness: randomness is a core component of what probability is.*® But the sequence
of 0s and 1s is not a random sequence. And so given the connection between randomness
and probability, this sequence is not probabilistic.

In other words, while randomness is closely connected to probability, randomness is
not closely connected to typicality. Something can be typical without being random. But if
something is not random, then it is not probable. So a thing can be typical without being

probable.

5 Conclusion

There is much more to say about how the present theory of typicality connects with
other areas of philosophical research. The relationship between probability and typicality
deserves further exploration: as I intimated in Section 4, the key to that relationship seems
to lie in the law of large numbers. The relationship between typicality explanations, and
explanations which cite generics, deserves further exploration as well. T also suspect that the
notion of typicality can be used to illuminate the nature of special science laws. In addition,
typicality seems connected to causation in more ways than I have discussed. And it is worth
exploring whether typicality reasoning has its own formal logic.*!

The present theory of typicality makes way for those future projects. It provides an
analysis of typicality in terms of the notion of ‘nearly all’: typical properties are properties
exemplified by nearly all elements of the relevant set. And it provides an account of how
typicality facts explain. That analysis of typicality, and that account of typicality explana-
tion, should help facilitate the exploration of the relationship between typicality, probability,

generics, special science laws, causation, logic, and perhaps more.

400n some accounts of probability—for instance, an actual frequentist account—probabilistic sequences
need not be random. And so for those accounts, the event of exemplifying P may indeed be probable.
41Gee (Crane and Wilhelm [forthcoming]) for two formal logics for typicality reasoning.
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